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Milan Jokanović, Dragana Ristić,
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Introduction

Extremely toxic chemicals have been used for thousands

of years in wars, conflicts, and extremist activities by ter-

rorists and dictators in malicious poisonings and execu-

tions. One of the earliest forms of chemical warfare

agents (CWAs) was natural toxins from plants or animals,

which were used to coat arrowheads, commonly referred

to as “arrow poisons.” Ancient use of some CWAs and

riot control agents (RCAs) dates back to the 5th century

BCE during the Peloponnesian War, when the Spartans

used smoke from burning coal, sulfur, and pitch to tempo-

rarily incapacitate and confuse occupants of Athenian

strongholds. The Spartans also used bombs made of sulfur

and pitch to overcome the enemy. The Romans used irri-

tant clouds to drive out adversaries from hidden dwell-

ings. In the 15th century, Leonardo da Vinci proposed the

use of a powder of arsenic sulfide as a chemical weapon.

Modern use of CWAs and RCAs or incapacitating

agents dates back to World War I (WWI). With advance-

ments in science and chemistry in the 19th century, the

possibility of chemical warfare increased tremendously.

The first full-scale use of CWAs began in April 1915

when German troops launched a poison gas attack at

Ypres, Belgium, using 168 tons of chlorine gas, killing

about 5000 Allied (British, French, and Canadian) sol-

diers. During WWI, the deployment of CWAs, including

toxic gases (chlorine, phosgene, cyanide, and mustard),

irritants, and vesicants in massive quantities (about

125,000 tons), resulted in about 90,000 fatalities and 1.3

million nonfatal casualties. The majority of deaths in

WWI were a result of exposure to chlorine and phosgene

gases. During the Holocaust, the Nazis used carbon mon-

oxide and the insecticide Zyklon-B, containing hydrogen

cyanide, to kill several million people in extermination

camps. Poison gases were also used during the Warsaw

Ghetto Uprising in 1943. Again, in November 1978, reli-

gious cult leader Jim Jones murdered over 900 men,

women, and children with cyanide.

Prior to, during, and after World War II, anticholines-

terase organophosphate (OP) nerve agents/gases were

developed in Germany, the United States, the United

Kingdom, and Russia, and were produced in large

volumes in many other countries. They were maximally

produced and stockpiled during the “Cold War” period.

These nerve agents have been used in wars and by dicta-

tors, extremists, cult leaders, and terrorist groups as chem-

ical weapons of mass destruction (CWMD) on many

occasions. In 1980, Iraq attacked Iran, employing mustard

and OP nerve gases. During the period of the Iraq and

Iran conflict (1980�88), Iran sustained 387 attacks and

more than 100,000 troops were victims along with a large

number of civilians. Thousands of these victims still suf-

fer from long-term health effects. Shortly after the end of

the Iraq�Iran war in 1988, the brutal dictator of the Iraqi

regime, Saddam Hussein, used multiple CWAs against

the Kurdish minorities in Halabja, killing more than 10%

of the town’s 50,000 residents. To date, mustards have

been used in more than a dozen conflicts, killing and

inflicting severe injuries in millions of military personnel

and civilians.

During the Persian Gulf War, exposure to OP nerve

agents occurred from the destruction of munitions con-

taining 8.5 metric tons of sarin/cyclosarin housed in

Bunker 73 at Khamisyah on March 4, 1991, and addi-

tional destruction of these nerve agents contained in rock-

ets in a pit at Khamisyah on March 10, 1991. Although

exposure levels to nerve agents were too low to produce

signs of acute toxicity, military personnel serving in and

around the Khamisyah area still suffer from long-term

adverse health effects, most notably “Gulf War syn-

drome.” In 1996, about 60,000 veterans of the Persian

Gulf War claimed to suffer from “Gulf War syndrome” or

“Gulf veterans’ illnesses,” possibly due to low-level expo-

sure of nerve agents, mustard, pyridostigmine bromide,

and pesticides. Exposed veterans had an increased inci-

dence of chronic myelocytic leukemia and increased risk

of brain cancer deaths compared to unexposed personnel.

In the mid-1990s, two terrorist attacks by a fanatic

religious cult, Aum Shinrikyo (Supreme Truth), known as

Aleph since 2000, took place in Japan (Matsumoto, 1994

and Tokyo subway, 1995). In both incidents, the OP nerve

agent sarin was used as a CWA. Aum Shinrikyo in

Kamikuishiki, Japan, manufactured an estimated 70 tons

of sarin. Although the total fatality count involved not

more than 20 civilians, injuries were observed in more

than 6000 and millions were terrified. These acts of

chemical terrorism were unprecedented and the impact
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propagated throughout not only Japan, but the entire

world. In the past few decades, many incidents have also

occurred with biotoxins such as ricin and anthrax.

Publicity surrounding frequent recent use due to easy

access and copycat crimes increase the possibility of

future use of these chemicals and biotoxins, which war-

rants advancement in emergency preparedness planning at

the federal, state, and local government levels.

It is interesting to note that toxic chemicals have been

used by governmental authorities against rebels, or civi-

lians. In the 1920s, Britain used chemical weapons in Iraq

“as an experiment” against Kurdish rebels seeking inde-

pendence. Winston Churchill strongly justified the use of

“poisoned gas against uncivilized tribes.” The Russian

OSNAZ forces used an aerosol containing fentanyl anes-

thetic during the Moscow theater hostage crisis in 2002.

RCAs were frequently used in the US in the 1960s to dis-

perse crowds in riot control.

Intoxications or deaths by poisoning of emperors,

heads of countries, and other significant individuals have

been recorded for a long time. The French Emperor

Napoleon Bonaparte was poisoned with a mixture of hea-

vy metals including arsenic and mercury. Napoleon

Bonaparte died on May 5, 1821, while he was in exile on

the island of St. Helena. In December 2004, during the

presidential campaign, the former President of Ukraine,

Viktor Yuschenko, was poisoned by a very high dose of

2,3,7,8-tetrachlorodibenzodioxin (TCDD). Ex-lieutenant

of the Russian Federal Service, Alexander Litvinenko

(1962�2006) died on November 23, 2006, from intoxica-

tion with polonium 210. Kim Jong-Nam, a half-brother of

North Korean dictator Kim Jong-Un was poisoned with

VX nerve agent at Kuala Lumpur airport in Malaysia. He

died within 20 min of exposure. On March 4, 2018, the

former officer of the Russian Main Intelligence

Directorate, Sergey Skripal, and his daughter, Yuliya

Skripal, were poisoned with Novichoks in Salisbury,

United Kingdom. Following an aggressive antidotal ther-

apy, fortunately both survived.

At present, more than 25 countries and possibly many

terrorist groups possess CWAs, while many other coun-

tries and terrorist groups are seeking to obtain them, due

to their easy access. Some of these agents are stockpiled

in enormous quantities and their destruction and remedia-

tion are not only expensive but also associated with sig-

nificant health risks. There is also the possibility of

accidental release of CWAs or CWMD at their production

sites, as well as during transportation, dissemination, and

deployment. The intentional or accidental release of

highly toxic chemicals, such as the nerve agent VX

(Dugway Proving Ground, Utah, 1968), Agent Orange

(Vietnam, 1961�72), PBB (Michigan, USA, 1973),

dioxin (Seveso, Italy, 1976), and methyl isocyanate

(Bhopal, India, 1984), has caused injuries to more than a

million people, and deaths in several thousands. A 1968

accident with VX nerve gas killed more than 6000 sheep

in the Skull Valley area of Utah.

After September 11, 2001, the chances are greater

than ever before of the use of CWMD by extremist and

terrorist groups like Al Qaeda, which presents great risks

to humans, domestic animals, and wildlife in many parts

of the world. On November 26, 2008, Pakistani Islamic

terrorists attacked Mumbai city in India at 10 different

sites, including two luxury hotels, a Jewish center, a train

station, and hospitals and cafes. Approximately 200 inno-

cent people died and about 300 people were injured by

bullets and smoke. It is more likely that these terrorist

groups may use toxic industrial chemicals (agents of

opportunity) either as such or as a precursor for more

deadly CWMD. At present, many countries have estab-

lished Defense Research Institutes with two major mis-

sions: (1) to understand the toxicity profile of CWAs/

CWMDs and (2) to develop strategic plans for prophylac-

tic and therapeutic countermeasures. By the turn of the

21st century, the US established the Department of

Homeland Security. Many other countries also developed

similar governing branches and agencies at the state and

national levels to protect people and property from terror-

ist attacks. Among chemical, biological, and radiological

weapons, the possibility of CWMD is more likely because

of their easy access and delivery system. It is important to

mention that understanding the toxicity profile of CWAs/

CWMD is very complex, as these chemical compounds

are of a diverse nature, and, as a result, treatment

becomes very difficult or in some cases impossible.

In the past, many accords, agreements, declarations,

documents, protocols, and treaties have been signed at the

international level to prohibit the development, produc-

tion, stockpiling, deployment, and use of CWAs, yet dic-

tators and terrorists produce and/or procure these

chemicals to harm or kill enemies, create havoc, and draw

national and international attention. In 1907, The Hague

Convention outlawed the use of chemical weapons, yet

during WWI, many countries used these chemicals. The

first international accord on the banning of chemical war-

fare was agreed upon in Geneva in 1925. Despite the

General Protocol, the Japanese used chemical warfare

against China in 1930. In 1933, the Chemical Weapon

Convention banned the development, possession, and use

of CWAs. The document was signed and implemented by

more than 100 countries. Yet, during WWI many chemi-

cals of warfare were developed, produced, and used by

several countries. In 1993, another global convention ban-

ning the production and stockpiling of CWAs was signed

by over 100 countries.

The delayed health effects from CWAs used in the

Iraq�Iran conflict of the 1980s, sarin subway attacks in

Japan, and the First Gulf War in the 1990s are still not
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well understood. Recently, the Syrian government stock-

piled over 1300 metric tons of chemical agents, including

sarin, VX, and sulfur mustard. In August 2013, the Syrian

military repeatedly attacked civilians with chemical weap-

ons, including sarin and chlorine. More than 1300 people

died and thousands were injured. Again, on April 11�13,

2014, Syrian military forces attacked civilians in Hama

province with chlorine gas, killing and injuring an unac-

counted number of people. Despite warnings from many

countries, the Syrian army continues to use CWAs against

civilians. In the present world situation, it is highly likely

that these agents will be used in wars, conflicts, terrorist

attacks, and with malicious intent. In such scenarios, these

extremely toxic agents continuously pose serious threats

to humans, animals, and wildlife.

The first edition of this Handbook of Toxicology of

Chemical Warfare Agents was prepared in 2009 in order

to offer the most comprehensive coverage of every aspect

of the deadly toxic chemicals that can be used as CWAs/

CWMD. Since the publication of the first edition of this

Handbook, concerns over the use and misuse of CWAs

and BWAs have become greater than ever before. The

second edition of the Handbook of Toxicology of

Chemical Warfare Agents was published in 2015. This

third edition of this Handbook is prepared to meet the cur-

rent challenges facing academicians and lay persons alike.

The format employed is user friendly and easy to under-

stand. Standalone chapters on individual chemical and a

few biological agents, target organ toxicity, biosensors

and biomarkers, risks to man, animals, and wildlife, and

prophylactic and therapeutic countermeasures are just a

few of the many novel topics covered in this volume. The

chapters are enriched with historical background as well

as the latest information and up-to-date references. With

73 chapters, this book will serve as a reference source for

biologists, toxicologists, pharmacologists, forensic scien-

tists, analytical chemists, local/state/federal officials in

the Department of Homeland Security, Department of

Defense, Defense Research Establishments, Department

of Veterans Affairs, physicians at medical and veterinary

emergency care units of hospitals, poison control centers,

medical and veterinary diagnostic labs, environmentalists

and wildlife interest groups, researchers in the area of

nuclear, chemical, and biological warfare agents, and col-

lege and university libraries.

Contributors of the chapters in this book are the most

qualified scientists in their particular areas of chemical

and biological warfare agents and radiation. These scien-

tists are from around the globe and are regarded as

authorities in the fields of pharmacology, toxicology, and

military medicine. The editor sincerely appreciates each

author for his/her dedicated hard work and invaluable

contributions to this volume. The editor gratefully

acknowledges Robin B. Doss and Denise M. Gupta for

their technical assistance. Finally, the editor remains

indebted to the editors at Elsevier (Kristi Anderson,

Kattie Washington, and Kiruthika Govindaraju) for their

immense contributions to this book.

Ramesh C. Gupta
Toxicology Department, Breathitt Veterinary Center,

Murray State University, Hopkinsville, KY, United States
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Chapter 1

History of toxicology: from killers to
healers
Eugenie Nepovimova1 and Kamil Kuca2

1Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic, 2Philosophical Faculty, University of

Hradec Kralove, Hradec Kralove, Czech Republic

1.1 Introduction

The word toxicology comes from the Greek words toxi-

con, meaning a poison, and logos, meaning a scientific

study. Today, the term toxicology refers to a scientific dis-

cipline dealing with the physical-chemical properties of

toxic substances, their mechanisms of action on the body,

clinical symptoms of intoxications, and the prevention

and treatment of various poisonings (Klaassen, 2018). It

would not be an exaggeration to claim that toxicology is

almost as old as mankind. The earliest mentions of toxic

substances and intoxications can be found not only in

ancient scientific literature, but also in Greek myths. For

example, Homer describes how Odysseus sent a warrior

to Egypt to bring back traditional Egyptian poisons used

for arms ammunition. In another legend, Hercules soaked

his weapons in poison of the sacred Lernean hydra. Last,

but not least, the myth of Helen of Troy tells how her

captor died because of a wound caused by a poisoned

arrow.

1.2 Ancient times

Among the oldest literary sources focused on toxicology

is the Ebers Papyrus (1550 BCE) (Fig. 1.1), found in

1872 in Thebes. This 20.5 m long scroll, glued from 108

smaller sheets of papyrus, is also called “The book of

preparation of remedies for all parts of the body.” The

oldest pharmacopoeia of the ancient Egyptians contains

more than 900 prescriptions for drugs for the treatment

of diseases associated with the gastrointestinal tract,

respiratory tract, ear, throat, nose, eye, and skin. Such

prescriptions involved substances like opium, arsenic tri-

oxide, aconitine, cyanogenic glycosides, or a herb called

Dia-Dia, currently known as mandrake (Mandragora

officinalis, Solanaceae) (Hallmann-Mikołajczak, 2004).

Ancient Egyptian surgeons used the juice of mandrake

root for anesthesia and analgesia. Later, the art of the

preparation of hypnotic and painkilling remedies isolated

from the mandrake root transferred from Egypt to ancient

Greece. During surgical operations, the Greeks used a

sponge soaked in mandrake hot juice for anesthesia.

Inhalation of the vapors of this juice resulted in a deep

sleep of the patient. In the works of the Roman physician

Galen, we can find passages telling about large quantities

of mandrake tincture that were delivered daily to Rome.

Apart from the medicinal use of mandrake, one of the

Roman writers mentions mandrake wine used for war

purposes, thanks to which the Carthaginians defeated the

enemy. The soldiers of ancient Carthage left their camp

with the mandrake wine in a conspicuous place. After

returning back to the camp, they thereafter easily over-

powered their sleeping enemies (Emboden, 1989; Mion,

2017).

Probably the most famous poisoning of the Hellenistic

period was the execution of the Greek philosopher

Socrates (470�399 BCE), who was condemned to drink

the extract from hemlock (Conium maculatum, Apiaceae).

His death is depicted in detail in Plato’s tract Phaedo

(Hotti and Rischer, 2017; Nepovimova and Kuca, 2019).

The description of poisoning corresponds exactly to the

present knowledge of coniine, the main component of

hemlock.

The period of ancient Greece in world history is

known for the flourishing of various scientific disciplines,

including medicine. The founder of the most famous

school of medicine, that was located in the Greek town of

Kos, was the so-called “Father of Medicine” Hippocrates

3
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(460�370 BCE) (Fig. 1.2). Hippocrates rejected using

poisons for removing unwanted persons. Therefore in his

works, toxic substances are rarely mentioned. Some of his

disciples, such as Pliny or Galen, followed the same prin-

ciple, describing in their works only the antidotes. Such

an informal rule has been preserved until the modern era,

when young doctors, by taking the Hippocratic Oath,

promise neither to administer a poison to anybody when

asked to do so, nor to suggest such a course (Emery,

2013).

The ancient scientists abounded in a deep knowledge

of various poisons. Usually they gained such knowledge

from the observation of accidental poisonings, as well as

from intentional exposure to poisons. In contrast to

Eastern countries, in ancient Greece and subsequently

Rome, toxic substances were quite often used as a means

of killing convicts. Thus the ancient Greek poet and phy-

sician Nikander of Kolophon in his poem Theriaca

describes clinical symptoms of intoxications by various

animal toxins. In Nikander’s further work Alexipharmaca

that has survived to the present time, we find descriptions

of the characteristics of plant poisons as well as methods

for their treatment. As very effective therapeutic

approaches he recommended invoking vomiting by drink-

ing warm flaxseed oil or irritating the throat by simple

devices made from paper or bird feathers. The majority of

the knowledge reported by Nikander was based on his

own experiments on convicted criminals. In addition,

Nikander was by all accounts the first to describe the

signs of lead poisoning (Clauss, 2012). In ancient Rome,

lead was widely used in everyday life. For example, lead

plates were added to wine to improve its quality. At that

time, lead was very expensive and only rich people could

afford it. Therefore it is not surprising that chronic lead

poisoning became a scourge of the ancient Roman aristoc-

racy (Hernberg, 2000).

From the point of view of the history of toxicology as

a medical discipline, not only were poisoners and crimes

committed by means of poisons important, but also

searching for potent antidotes. Especially in ancient

times, there was an obsession to discover a universal

antidote, able to protect against most, if not all, poisons.

Quite instructive is the story of King Mithridates VI of

Pontus (132�63 BCE) (Fig. 1.3). Mithridates was terri-

bly afraid of poisons, therefore, he began to study toxi-

cology in depth—he observed the effects of various

poisons on people (mostly convicts or slaves), designed

antidotes, and subsequently tested their efficacy on the

same groups of people. Finally, he managed to prepare a

universal antidote consisting of 36 components. Such

FIGURE 1.1 Ebers Papyrus found in 1872 in Thebes (https://

commons.wikimedia.org/wiki/File:A_page_from_the_Ebers_Papyrus,

_written_circa_1500_B.C._Wellcome_M0008455.jpg).

FIGURE 1.2 Father of Medicine, Hippocrates (https://commons.wiki-

media.org/wiki/File:A_marble_bust_said_to_represent_Hippocrates_by_J.

_Faber._Wellcome_M0017663.jpg).
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an antidote even received a special designation in the

Roman Pharmacopoeia—mithridaticum. The reputation

of this antidote was excellent. It was even considered the

best antidote of those times, capable of preventing the

actions of aconitine, snake, scorpion, or spider toxins,

etc. King Mithridates believed in his recipe so much that

he decided to take this remedy daily. Acquired resis-

tance, however, played a crucial role in his life. In old

age, Mithridates attempted to commit suicide by taking a

large dose of poison, but survived. Therefore he was

forced to use other means (a sword) to finish this act.

Based on this legend, the term mithridatism has been

adopted into the modern toxicology indicating the

increased resistance of an individual to poisons (Griffin,

1995; Valle et al., 2012, 2009).

The last wife of the Roman Emperor Claudius (10

BCE�CE 54) was his niece Agrippina the Younger (CE

15�59) (Fig. 1.4). Soon after their marriage, she decided

to get rid of her husband as well as his first-born son

Britannicus to make her own son, Nero, the emperor

(Aveline, 2004). First, she poisoned Claudius using the

toxin muscarine present in toxic mushrooms, fly agaric

(Amanita muscaria, Amanitaceae), in one of his meals.

The Emperor’s physician, Aesculapius, tried to evoke

vomiting in Claudius. However, Agrippina foresaw such a

turn of events and had prepared in advance a poisoned

feather. This feather was in all probability the product of

the famous ancient poisoner—Locusta (Marmion and

Wiedemann, 2002). After Claudius’ death, Nero (CE

37�68) (Fig. 1.4) became the Emperor of Rome. Despite

this, Nero’s stepbrother Britannicus still constituted a

threat to him (Shotter, 2008). Similarly to his mother

Agrippina, Nero also asked for the help of the poisoner

Locusta. In this case, she gave him a poison that was

added to Britannicus’ wine. After removal of his competi-

tor, 17-year-old Nero became the only possible Emperor

of Rome. Thus he decided to reward Locusta by an

extraordinary right—to educate her own students. This

story was one of many examples in world history where

poisons were used for criminal purposes. Therefore in 81

BCE, the Roman dictator Sulla was forced to pass a spe-

cial law ordering punishment, including the death penalty,

for those who used poisonous substances with criminal

intent (Telford, 2014).

Dioscorides (CE 40�90), the physician of the Roman

Emperor Nero, in his tract De Materia Medica (Fig. 1.5)

classified poisons based on their origin to plant, animal,

and mineral. Additionally, in De Materia Medica we may

find the methods of identification of several poisons.

Such identification occurred in the scientific literature for

the first time. For the next 15 centuries, Dioscorides’

work was considered the “Holy Bible” of toxicology

(Staub et al., 2016).

1.3 The Middle Ages

In medieval Europe, poisons were freely available in

pharmacies. The first attempt to stop such a trade in poi-

sons was made in Italy. In 1365 in Siena, apothecaries

were forbidden from selling arsenic and mercury to peo-

ple unknown to them. In France, a ban on toxic sub-

stances was issued in 1662, whereas in Russia this took

place only in 1773 (Nepovimova and Kuca, 2019).

Despite these restrictions, the question of searching for

novel more potent poisons and corresponding antidotes

remained relevant.

In Europe, the search for novel antidotes as well as

their use in the prevention and treatment of poisoning con-

tinued until the beginning of the 18th century, and in

Turkey until the beginning of the 20th century. The

ancient works of Galen De Theriaca, ad Pisonem, De Usu

Thericae, ad Pamphilianum, and De Antidotis, mainly

inspired by the achievements of King Mithridates, were

within the period of the Renaissance and the Middle Ages

enriched with the knowledge of the Jewish physician and

philosopher Moses Maimonides (1135�1204) (Fig. 1.6).

His tract focused on poisons and antidotes and was pub-

lished in Arabic in Cordoba (Spain) in 1198 (Rosner,

2000). This literary work constitutes a noticeable mile-

stone in the history of toxicology, outlining the 1000-year

FIGURE 1.3 King Mithridates VI of Pontus (https://commons.wikime-

dia.org/wiki/File:Mithridates_VI_Louvre_white_background.jpg).
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experience of treating various poisonings and also

described the clinical picture of intoxication by poisons

that were previously unknown. The first part of the tract

describes intoxications as well as poisons of animal origin

(bites by enraged dogs, wasps, snakes, spiders, scorpions,

and other animals). As historically the first attempt,

Maimonides distinguished the neurotoxic and hematotoxic

symptoms of intoxication. In the second part, he focused

on mineral and plant poisons. For instance, in the case of

Atropa belladonna (Solanaceae) intoxication, Maimonides

reported skin redness and some kind of “excitement” of

the patient. As a therapeutic tool he recommended vomit-

ing evoked by warm milk, vegetable oil, etc. (Rosner,

1968).

None of the noble families left such a significant

imprint in the history of Italy and the whole world as the

Spanish “holy family” of Borgia that was sadly famous

for numerous murders committed by means of poisons.

These Spaniards twice occupied the throne of Saint

Peter—firstly as Pope Callixtus III and subsequently as

Pope Alexander VI (Hibbert, 2009). “Cantarella” was the

name of the poison used by the Borgias. Allegedly,

Cesare Borgia (1474�1507) (Fig. 1.7), the son of the

Pope Alexander VI (1431�1503) (Fig. 1.7), received

the recipe for this poison from his mother. Apparently,

the mystic poison contained arsenic, salts of copper, and

phosphorus. According to the literary sources, the papal

alchemists prepared such toxic mixtures that a drop was

enough to kill a bull. Not only the poison, but also the

tools containing such poison, were unique. Cesare Borgia

was the owner of a ring with a huge ruby that bore the

name the “Flame of Borgia.” Several times he pro-

nounced that this ring had repeatedly saved his life.

Presumably, under the gemstone there was a skillfully

made secret container with a poison. Cesare poured this

poison into the drink of those who dared to encroach on

FIGURE 1.4 Agrippina the Younger and her son

Nero (https://commons.wikimedia.org/wiki/File:Ner%

C3%B3n_y_Agripina.jpg).
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his life. The Pope himself also had a gold ring with a

secret. In the process of shaking hands, a small thorn

appeared on the inner side of the ring which slightly

scratched the skin of the sentenced person and released a

deadly drop of poison (Poole, 2010). Finally, destiny pun-

ished Pope Alexander VI, who accidentally drank poi-

soned wine that was intended for his victim (Hibbert,

2009).

Despite the wide use of poisons within the struggle for

power, the development of toxicology in European coun-

tries in the Middle Ages was significantly hampered by

the influence of religious ideologies. Medieval monks fol-

lowed the principle “Like is cured by like” (Similia simili-

bus curantur) (Zebroski, 2015). The exception was Swiss

physician, alchemist, botanist, astrologer, and occultist of

the era of the German Renaissance, Philippus Aureolus

Theophrastus Bombastus von Hohenheim (1492�1541),

also known as Paracelsus (Fig. 1.8). He chose this pseu-

donym for himself and it means “more than Celsus.”

Aulus Cornelius Celsus was a Roman naturalist, living

more than one and half thousand years before Paracelsus

(Grell, 1998). Paracelsus’ groundbreaking contribution to

life sciences consisted mainly in the interconnection

between chemistry and medicine. Therefore it is not

surprising that his life credo was: “The real purpose of

chemistry is not to make gold, but to make remedies!”

Paracelsus has been also considered the Father of

Toxicology, since in one of his books he stated: “Dose

makes the poison” (Dosis facit venenum). Thus substances

that are taken to be toxic could be harmless in small

doses, whereas normally harmless substances could be

fatal if consumed excessively. This postulate still belongs

among the basic pillars of modern toxicology. He was

also known for his revolutionary views on the observation

FIGURE 1.5 A page from

Dioscorides’ work De Materia

Medica (https://en.wikipedia.org/

wiki/De_Materia_Medica#/media/

File:NaplesDioscuridesMandrake.

jpg).
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of nature and man, created by himself instead of simply

quoting ancient texts. Last but not least, he gave the des-

ignation to the chemical element zinc and noted that cer-

tain diseases stem from the mind of the patient

(Paracelsus, 1999).

With regard to poisonings, medieval Italy and later

France were considered the most powerful countries in

the world. The French Queen, Catherine de’ Medici

(1519�89) (Fig. 1.9), also known as the Queen-Poisoner,

perfectly mastered the Italian technique of poisoning

to achieve her intended political goals (Kruse, 2003).

Alexandre Dumas, in his historical novel “Queen Margot,”

wrote that Queen Catherine was involved in the death of

her political rival Jeanne d’Albret by giving her an insidi-

ous present—poisoned gloves (Dumas, 1994). Within the

same novel, Dumas also describes the fatal mistake of the

Queen, who at the end of her life decided to remove the

son of poisoned Jeanne d’Albret—Henry. She commanded

he be given a poisoned book dealing with the art of hunt-

ing. Unfortunately, this book got into the wrong hands, to

her own son King Charles IX. Apart from removing the

competitors within the battle for the royal throne, Queen

Catherine was also known for experiments with various

toxic mixtures that she conducted on poor and sick people.

Catherine de’ Medici carefully reported each experiment,

recording the velocity of the toxic response (onset of the

FIGURE 1.6 Jewish physician and philosopher Moses Maimonides

(https://he.wikipedia.org/wiki/%D7%A7%D7%95%D7%91%D7%A5:

Maimonides-2.jpg).

FIGURE 1.7 The Pope Alexander VI (right) and

his son Cesare Borgia (left) (https://www.flickr.

com/photos/hinkelstone/38111166521; https://

www.flickr.com/photos/eriktorner/32671151065).

FIGURE 1.8 Philippus Aureolus Theophrastus Bombastus von

Hohenheim, also known as Paracelsus (https://commons.wikimedia.org/

wiki/File:Aureolus_Theophrastus_Bombastus_von_Hohenheim_

(Paracelsus)._Wellcome_V0004452.jpg).
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toxic effect), the efficacy of the toxic mixture, the strength

of the toxic effect in various parts of the body (organ

specificity, site of action), and the clinical picture of

intoxication. Thus despite the poor reputation of the

Queen-Poisoner, she can be considered the first experi-

mental toxicologist in history (Whyte, 2001).

The development of industry in the 16th century

gave rise to several highly specialized works dealing

with occupational diseases. In 1556 Georgius Agricola

(1494�1555), a German doctor and metallurgist, in his

work “On Mining and Metallurgy” described severe

occupational diseases of miners (Weber, 2002). The first

real systematic contribution to occupational toxicology

was made by Italian physician Bernardino Ramazzini

(1633�1714). In his work “Diseases of the workers,”

published in 1700, where he for the first time described

the diseases of workers in almost 70 professions, such as

miners, gilders, chemists, plasterers, blacksmiths, etc.

(Dhungat, 2017).

The Golden Age of King Louis XIV of France was not

associated just with the development of the country, but

also with several famous cases of poisoners—Marquis de

Brinvilliers, Catherine Monvoisin, and others. Catherine

Monvoisin (1640�80) (Fig. 1.10) was among the most

popular poison suppliers of that time. A frequent client of

Madame Monvoisin was also a hot favorite of the Sun

King—Marquis de Montespan. Due to the fact that poisons

were perceived as the simplest means of solving problems

among the aristocratic families, King Louis XIV issued a

special law, where the definition of poison was given as:

“Everything that can cause a rapid death or slowly destroy

human health, regardless of the fact whether it is a simple

or complex substance, must be considered as a poison.”

To complete the story of French poisoners, Marquis de

Brinvilliers, Catherine Monvoisin, and their associates

were executed. Marquis de Montespan, a mother of eight

illegitimate children of Louis XIV, was sent to exile in the

Netherlands (Somerset, 2004).

In the late 17th�early 18th centuries, Neapolitan poi-

soner Teophania, more commonly known as Tophana,

operated in Europe. Apparently, this Italian was responsi-

ble for the deaths of more than 600 people. Tophana was

an inventor of an original product called Aqua Tophana.

Aqua Tophana had a water-like, odorless, and colorless

consistency. Allegedly, five or six drops of this magical

water was enough to kill a man. The onset of the toxic

effect was gradual—painless, without any sign of fever or

inflammation. Death occurred due to weakness, loss of

appetite, and incessant thirst. Among the most frequent

customers of Aqua Tophana were women who desired to

get rid of their husbands. The exact content of Aqua

FIGURE 1.9 French Queen Catherine de’ Medici (https://commons.

wikimedia.org/wiki/File:Catherine-de-medici.jpg).

FIGURE 1.10 French poisoner Catherine Monvoisin (https://fr.wikipe-

dia.org/wiki/Fichier:Catherine_Deshayes_(Monvoisin,_dite_%C2%

ABLa_Voisin%C2%BB)_1680.jpg).
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Tophana remains unknown. According to one source, it

was made of arsenic acid with an addition of Herba cym-

balariae (Scrophulariaceae). Other sources claim that the

main component of Aqua Tophana was lead acetate solu-

tion. Seniora Tophana was eventually sentenced to death

and in 1709 burnt to death (Nepovimova and Kuca, 2019;

Wexler, 2017).

At the beginning of the 19th century, the most promi-

nent figure in toxicology was considered to be the Spanish

physician Mathieu Orfila (1787�1853) (Fig. 1.11). He

was the first to separate toxicology from pharmacology,

clinical and forensic medicine, giving toxicology the status

of an independent scientific discipline. At the age of 27,

Orfila wrote a book “Treatise on poisonings,” that was

later published in five editions. Several years later, another

work by Orfila’s “A treatise on the remedies to be

employed in cases of poisoning and apparent death:

including the means of detecting poisons, of distinguishing

real from apparent death, and of ascertaining the adultera-

tion of wines” met with great interest from the scientific

community. In his writings, the Spanish physician classi-

fied all known toxic substances, described the clinical

picture of intoxications typical for various classes of poi-

sons, and also recommended chemical methods for poison

identification in biological matrices (Myers, 1961). Based

on his works, it became obligatory to conduct a forensic

chemical analysis for official confirmation of poisoning as

the cause of the death. In addition, Mathieu Orfila gave

the most general definition of poison that remains widely

used “Poison is a substance, that by coming in contact

with a living organism in a small amount, destroys its

health and subsequently life” (Hadengue, 1987).

The 1850s could be characterized as the time of the

formation of modern toxicology. The decisive influence

belonged to the successes achieved in analytical chemistry

and experimental analysis that won its place in theoretical

medicine (Oser, 1987). The fundamental works of French

scientists Francois Magendie (1783�1855) (Fig. 1.12)

and his student Claude Bernard (1813�78) (Fig. 1.12)

dealing with the mechanism of action of strychnine, cya-

nide, curare, carbon monoxide, and other poisons, served

to strengthen the role of toxicology among the other

scientific disciplines (Bloch, 1989). Numerous methods of

FIGURE 1.12 Francois Magendie (left) and

his student Claude Bernard (right) (https://

commons.wikimedia.org/wiki/File:Fran%C3%

A7ois_Magendie._Lithograph_by_N._E._Maurin.

_Wellcome_V0003781.jpg; https://commons.

wikimedia.org/wiki/File:Portrait_of_Claude_

Bernard_(1813-1878),_French_physiologist_

Wellcome_M0000114.jpg).

FIGURE 1.11 The founder of toxicology Mathieu Orfila (https://com-

mons.wikimedia.org/wiki/File:Pierre_Matthieu_Joseph_Bonaventure_Orfila.

_Lithograph_by_Z._Wellcome_V0004368.jpg).
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particular physiological function evaluation, such as respi-

ration and neuromuscular conduction, proposed by Claude

Bernard were preserved in experimental practice for more

than 100 years. Claude Bernard was also an author of the

brilliant idea that toxic substances can serve as an excel-

lent tool in physiology research. He said: “These sub-

stances could be considered as real life reagents that are

carried by the blood stream to all points of the body, act

on some tissues and finally lead to the death. The mecha-

nism of death points to the physiological role of particular

tissues on which they act.” This finding became a signifi-

cant milestone in general physiology (Breathnach, 2014).

Additionally, within his experiments with curare, Claude

Bernard revealed that this poison paralyzes voluntary

muscles with no effect on impulse conduction in the

motor nerves as well as on contractility of the muscles.

This observation led to discovery of the special sensitivity

of the neuromuscular junction to curare. Several years

later, these investigations served as a strong argument for

the development of a theory of the neurochemical basis of

excitatory transmission within the nervous system

(Gomes et al., 2014).

For almost two centuries after the death of the French

Emperor Napoleon Bonaparte (1769�1821) (Fig. 1.13),

his demise has remained a hot topic, and the scientists

continue to investigate this case. After he was sent into

exile in 1820, the health status of the Corsician sharply

deteriorated. Throughout his stay on the island of St.

Helen, he complained about severe stomachache, weak-

ness, and frequent attacks of nausea. Finally, on May 5,

1821, he died. According to the findings of an interna-

tional group of scientists, Napoleon Bonaparte passed

away due to progressive stomach cancer with metastases

in the lymph nodes (Leys, 2015). However, according to

conspirologists, the symptoms of the ex-Emperor’s death

more resemble arsenic poisoning. Moreover, recent analy-

sis of his hair has shown an almost 40-fold increase in

arsenic concentration in comparison to normal people of

that time. Several theories have been formulated, explain-

ing how Napoleon Bonaparte could have been poisoned.

Among the most curious being poisonous wallpaper, or

the theory claiming that Napoleon was poisoned by a

mixture of heavy metals (Hindmarsh and Corso, 1998).

The first hypothesis builds on the fact that adding green

arsenic-based pigment into wallpaper was quite common

at that time. From a chemical point of view this pigment,

called Paris Green, was copper(II) acetoarsenite. The

humid weather of the island promoted the proliferation of

microscopic fungi which could convert inorganic arsenic

in Paris Green to an organic form. It is widely recognized

that organic forms of heavy metals more easily cross the

biological barriers compared to their corresponding inor-

ganic salts. Therefore this theory assumes that Napoleon

was intoxicated in particular by these organic forms of

arsenic. The latter theory already assumes foreign blame.

According to this hypothesis, low doses of arsenic were

added to Napoleon’s food and drinks. The clinical picture

of chronic intoxication with arsenic usually manifests as

severe pain in the stomach. To relieve vomiting in

Napoleon, the doctors administered him potassium tarta-

rate of antimony. In addition to this remedy, his physi-

cians prescribed him calomel and orgeat to combat

constipation and thirst, which represent other characteris-

tic symptoms of arsenic intoxication. The main compo-

nent of orgeat is bitter almond oil, whereas calomel is a

trivial name for mercury dichloride (Hg2Cl2). Hydrolyses

of orgeat to hydrocyanic acid in the acidic gastric envi-

ronment, together with calomel, gives rise to mercury

cyanide. Therefore either arsenic, hydrocyanic acid, anti-

mony, mercury cyanide, or a mixture of some or all of

them could be one of the causes of Napoleon’s death

(Mari et al., 2004).

1.4 The modern era

The Industrial Revolution in the middle of the 19th cen-

tury allowed the synthesis of natural toxins in unlimited

FIGURE 1.13 French Emperor Napoleon Bonaparte (https://thorvald-

sensmuseum.dk/en/collections/work/E876/zoom).
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quantity. Moreover, novel entities derived from natural

compounds were prepared. Due to all the above-

mentioned events, poisons were gradually losing their

mystery (Nepovimova and Kuca, 2019). At the begin-

ning of the 20th century, the development of toxicology

was strongly influenced by progress in the chemical

industry. From the perspective of chemical production,

Germany was among the most developed countries.

Within several branches of the chemical industry,

German chemists even maintained a monopoly position,

for example, in dye production. One of the most famous

German chemists of the time was Fritz Haber

(1868�1934) (Fig. 1.14), who discovered a method of

ammonia synthesis from atmospheric nitrogen. Such an

invention was of high importance for the large-scale syn-

thesis of fertilizers and explosives. Therefore in 1918,

Fritz Haber was awarded the Nobel Prize (Manchester,

2002). In the history of toxicology, F. Haber is better

known for another reason, he is called the “Father of

Chemical Weapons” due to his longlasting reasearch in

the field of weaponization of chlorine and other toxic

gases in World War I (WWI). In addition, it was

Haber’s suggestion to use chlorine in the first chemical

attack by Germans against British/French troops on

April 22, 1915, near the town of Ypres (Belgium)

(Charles, 2005). Subsequently, the Allies (France, Great

Britain, United States, and Russia) also started to use

chemicals for military purposes. During the 4 years of

WWI (1914�18), about 1.3 million people were affected

by chemical weapons on both sides of the conflict, of

which more than 100,000 died (Tucker, 2006).

On September 7, 1978, Bulgarian dissident Georgi

Markov (1929�78), after an evening broadcast on the

BBC, went around a crowded bus stop on the Waterloo

Bridge in London and suddenly felt a slight sting in his

leg. Looking around, the Bulgarian noticed a man picking

up an umbrella from the ground. The stranger spoke with

a strong accent, apologizing, and then caught a taxi and

left. Due to a high fever, acute stomachache, and severe

diarrhea, Markov was hospitalized that night, and a few

days later he died. Fortunately, he managed to talk about

the incident with the umbrella. Doctors, who performed

an autopsy, found a small iridium-platinum capsule in the

leg of the dissident. According to the findings of further

investigations, this capsule with a diameter of less than

2 mm was filled with ricin (Crompton and Gall, 1980).

Ricin is a plant toxin obtainable from the castor bean

(Ricinus communis, Euphorbiaceae). By all accounts,

Georgi Markov was shot by the Bulgarian special services

because of his active criticism of the communist regime

of Todor Zhivkov (Papaloucas et al., 2008). The killing

device was an umbrella endowed with a hidden sting that

shot small capsules filled with toxic ricin.

On March 20, 1995, the nerve agent sarin was used at

several subway stations in Tokyo (Japan). About 10,000

people were affected, with 5000 seriously intoxicated and

12 people died. Sarin was used by the terrorists of the

sect Aum Shinrikyo. They stored the nerve agent in plas-

tic bags, which were subsequently punctured by an

umbrella with a sharpened tip. The terrorists managed to

puncture 10 of 11 bags. Fortunately, due to the low purity

of the sarin (approximetely 30%) and the subway ventila-

tion system, the loss of life was not as high as it might

have been (Okumura et al., 2005). The question that still

needs to be answered is: “Why did the sect select sarin?”

There are plenty of possibilities why: (1) inspiration from

the Gulf War; (2) simple synthesis; (3) starting com-

pounds availability; and (4) low production costs (Nozaki

and Aikawa, 1995). Many sect members who participated

in the sarin production process claimed that they were

unaware of its toxic effects. However, the handbook

“Magic song of sarin,” found in one of the buildings used

by Aum Shinrikyo, apart from the instructions of how to

synthesize the nerve agent, gave a description of its lethal

effects. Therefore it was obvious that the members of the

sect had lied (Kimura, 2002). The terrorist use of sarin in

the Tokyo subway pointed out the serious risk of misuse

of chemical warfare agents for nonmilitary purposes and

highlighted the need for the development of appropriate

protection including antidotal therapy.

The former President of Ukraine, Viktor Yushchenko

(born 1954) (Fig. 1.15), was intoxicated by a very high

dose of 2,3,7,8-tetrachlorodibenzodioxin (TCDD) in
FIGURE 1.14 The “Father of Chemical Weapons” Fritz Haber (https://

commons.wikimedia.org/wiki/File:Fritz_haber_1929_PI_29-C-0097.jpg).
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