Handbook of TOXICOLOGY OF CHEMICAL WARFARE AGENTS

Edited by Ramesh C. Gupta

Third Edition

Handbook of Toxicology of Chemical Warfare Agents

THE UNCERTAINTY OF THE DANGER BELONGS TO THE ESSENCE OF TERRORISM

Jurgen Habermas (1929–Present)

Handbook of Toxicology of Chemical Warfare Agents

Third Edition

Edited by

Ramesh C. Gupta, DVM, MVSc, PHD, DABT, FACT, FACN, FATS Professor and Head, Toxicology Department, Breathitt Veterinary Center, Murray State University, Hopkinsville, KY, United States

ACADEMIC PRESS

An imprint of Elsevier

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2020 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www. elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-819090-6

For Information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Andre Gerhard Wolff Acquisitions Editor: Kattie Washington Senior Editorial Project Manager: Kristi Anderson Senior Production Project Manager: Kiruthika Govindaraju Cover Designer: Christian Bilbow

Typeset by MPS Limited, Chennai, India

Dedication

This book is dedicated to my beloved wife Denise, daughter Rekha, and parents, the late Chandra and Triveni Gupta.

Contents

List of contributors

Intro	oducti	on	xxxiii
Hi		n I ical perspective and niology	1
1.		ory of toxicology: from killers ealers	3
	Euge	nie Nepovimova and Kamil Kuca	
	1.1	Introduction	3
	1.2	Ancient times	3
	1.3	The Middle Ages	5
	1.4	The modern era	11
		Concluding remarks and future	
		directions	13
	Ackn	owledgment	14
	Refe	rences	14
2.	war Nath	orical perspective of chemical fare agents an H. Johnson, Joseph C. Larsen and ard C. Meek	17
	21	Introduction	17
		The first sustained use of chemicals	17
		as agents of war	18
	2.3	Initial countermeasures	19
	2.4	Events after World War I	20
	2.5	World War II	21
	2.6	Post–World War II	22
	2.7	Incapacitants and toxins	23
	2.8	Recent experience	24
	2.9	Terrorist use	25
	2.10	Concluding remarks and future	
		directions	25
	Refe	rences	25

xxvii

3.	Global impact of chemical warfare agents used before and after 1945	27
	Jiri Bajgar, Josef Fusek, Jiri Kassa, Kamil Kuca and Daniel Jun	
	3.1 Introduction	27
	3.2 Background	27
	3.3 Military use of chemical weapons	29
	3.4 The period between World War I and	
	World War II	30
	3.5 World War II	30
	3.6 The period after World War II, and the Cold War	30
	3.7 Iraq–Iran War and the Afghanistan War	31
	3.8 Vietnam War	32
	3.9 Development of VX agent	32
	3.10 Persian Gulf War	32
	3.11 Syria	33
	3.12 Unintentional use of toxic chemicals	33
	3.13 Terrorist use of chemical weapons	33
	3.14 Negotiations	34
	3.15 Concluding remarks and future	
	directions	35
	Acknowledgment References	35 35
	Kelerences	35
4.	Sarin attacks in Japan: acute	
	and delayed health effects in	
	survivors	37
	4.1 Part 1 Sarin attacks in Japan: acute and delayed health effects in survivors	
	of the Matsumoto incident	
	Tamie Nakajima	
	4.1.1 Introduction	37
	4.1.2 Matsumoto sarin incident	37
	4.1.3 Acute impacts	38
	4.1.4 Long-lasting complaints	38
	4.1.5 Psychological impacts	40
	4.1.6 Ten years after the sarin incident	40
	4.1.7 Conclusion	42
	References	43

	4.2	Part 2 Tokyo sarin attack: acute health effects	
	Take	ı Okumura, Toshiharu Yoshioka, mi Yoshida, Yukio Kuroiwa and 10 Satoh	
	4.2.1	Overview of the Tokyo subway sarin attack	43
	4.2.2	Emergency treatment of sarin	
	4.2.3		44
		sarin toxicity	47
		owledgments rences	47
	Kere	rences	47
	4.3	Part 3 Structural changes in the human brain related to sarin exposure	
	Hide	nori Yamasue	
	Ackn	owledgments	52
		rences	52
5.	mus the	y and delayed effects of sulfur stard in Iranian veterans after Iraq—Iran conflict di Balali-Mood	55
	5.1	Introduction	55
		5.1.1 Brief chemistry	55
		5.1.2 Summarized historical uses	55
	5.2	Types and routes of exposure	55
		Human toxicity	56
		Main mechanisms of toxicity	56
	5.5	Target organs and acute clinical features	56
	5.6	Hematoimmunological complications	58
		Delayed clinical complications	58
	5.8	Respiratory tract	59
		5.8.1 Chronic bronchitis	60
		5.8.2 Asthma	60
		5.8.3 Bronchiectasis	60
		5.8.4 Large airway narrowing5.8.5 Pulmonary fibrosis	60 60
	5.9	Peripheral neuromuscular	60
	5.5	complications	61
	5.10	Dermal delayed effects	61
	5.11	Ophthalmologic complications	61
	5.12	Psychiatric complications	62
	5.13	Carcinogenicity	62
	5.14	Reproductive complications	62
	5.15	Cardiovascular complications	62
	5.16	Recent advances in sulfur mustard	()
		poisoning and its complications	62

	5.17	Concluding remarks and future	
		directions	63
	Refe	rences	63
6.		lemiology of chemical fare agents	67
	Linda	a A. McCauley	
	6.1	Introduction	67
	6.2	Pre-World War II	67
	6.3	World War II	67
	6.4	Post-World War II	68
		Iran—Iraq War	70
		1991 Gulf War	71
	6.7	Syrian War	73
		Terrorism	74
		Concluding remarks and future	
		directions	75
	Refe	rences	75
7.	dest	emical weapons of mass truction and terrorism: reat analysis	79
		Pita, Arturo Anadón, Alejandro ero and Kamil Kuca	
	7.1	Introduction	79
	7.2	Chemical weapons for terrorist	
		actions	79
		7.2.1 "Classical" chemical warfare	
		agents: vesicants and nerve	
		agents	79
		7.2.2 Incapacitating agents	80
		7.2.3 Riot control agents	80
		7.2.4 Toxic industrial chemicals	81
	7.2	7.2.5 Toxins	81
	7.3	Tampering with chemical weapons	81 01
	7.4 7.5	State terrorism Nationalist and separatist terrorist	82
	7.5	groups	83
	7.6	Left-wing terrorist groups	83
	7.7	Right-wing terrorist groups and lone	00
	, .,	actors	84
	7.8	Apocalyptic cults: Aum Shinrikyo	84
	7.9	Jihadist terrorism: Al Qaeda, Daesh,	
		and the Global Jihad Movement	85
		7.9.1 Weapons of mass destruction	
		intentions	85
		7.9.2 Chemical weapon capabilities	86
		7.9.3 Plots with chemical weapons	88
	7.10	Concluding remarks and future	
		directions	91
	Refe	rences	92

148

Section II

Agents that can be used as weapons of mass destruction 95

97

8. Organophosphate nerve agents Robert A. Young and Annetta Watson

8.1	Introd	luction	97
8.2	Backg	round	98
	8.2.1	Development of organophosphate	
		formulations as chemical warfare	
		agents	98
	8.2.2	Destruction of nerve agent	
		stockpiles	98
	8.2.3	Physical and chemical properties of	
		nerve agents	98
	8.2.4	Mode of action and clinical signs	101
	8.2.5	Direct nervous system effects	101
	8.2.6	Binding with blood cholinesterases	102
	8.2.7	Binding with other enzymes	102
8.3	Toxici		104
	8.3.1	Effects	104
	8.3.2	Minimal potential for delayed	
		neuropathy	104
	8.3.3	Long-term effects following	
		exposure to nerve agents	105
	8.3.4	Evaluation of other potential effects	105
	8.3.5	Inhalation/ocular toxicity in controlle	
		experiments with human subjects	105
	8.3.6	Inhalation/ocular toxicity in	
		laboratory species	107
8.4		ssessment	112
	8.4.1	Acute exposure guideline levels	112
	8.4.2		114
	8.4.3	Management of exposure to nerve	
		agents	115
	8.4.4	Critical role of decontamination	115
	8.4.5	Signs and symptoms guiding medica	
		management	115
	8.4.6	Nerve agent antidotes	115
	8.4.7	Ongoing antidote development	116
8.5		uding remarks and future	
	direct		118
		dgments	118
Refe	erence	S	118

9. Russian VX 127

Vladimir Rembovskiy, Elena Savelieva, Andrey Radilov, Natalia Samchenko, Georgy Karakashev, Mikhail Leninskiy, Nadezhda Koryagina, Sergey Kuznetsov, Igor Mindukshev, Natalia Khlebnikova, Richard Jenkins and Nikolay Goncharov

	9.1	Introduction and background				
	9.2	Monitoring of Russian VX				
		9.2.1 Ambient monitoring of Russian VX				
		9.2.2	Biomonitoring of Russian VX	130		
	9.3	Mecha	anisms of action and principles of			
		therap	ру	133		
		9.3.1	Acute intoxication with Russian VX	133		
		9.3.2	Delayed effects: chronic and			
			subchronic intoxication with			
			Russian VX	134		
		9.3.3	Delayed effects: embryo- and			
			gonadotoxicity, mutagenesis, and			
			carcinogenesis	135		
		9.3.4	Principles of therapy	136		
	9.4	Toxico	ometry and hygienic regulations	136		
	9.5	Concl	uding remarks and future research	138		
	References					
10.	No	vicho	ks	143		
	Euge	enie Ne	epovimova and Kamil Kuca			
	10.1	Histo	orical overview	143		
	10.2	Synt	hesis	145		
			icochemical properties	145		
			hanism of action	146		
	10.5	Toxic	city	147		
	10.6	Cone	cluding remarks and future			
			ctions	148		
	Acknowledgment					

11. Blister agents149

Robert A. Young and Cheryl B. Bast

References

11.1	Introdu	uction	149
	11.1.1	Sulfur mustards	150
	11.1.2	Nitrogen mustards	150
	11.1.3	Lewisite	152
11.2	History	and background	153
	11.2.1	Sulfur mustards	153
	11.2.2	Nitrogen mustards	153
	11.2.3	Lewisite	154
11.3	Toxicol	kinetics	154
	11.3.1	Sulfur mustards	154
	11.3.2	Nitrogen mustards	155
	11.3.3	Lewisite	155
11.4	Mode of	of action	155
	11.4.1	Sulfur mustards	155
	11.4.2	Nitrogen mustards	156
	11.4.3	Lewisite	156
11.5	Toxicity	/	156
	11.5.1	Sulfur mustard	156
	11.5.2	Nitrogen mustards	159
	11.5.3	Lewisite	160

	11.6	Risk ass	essment	161
		11.6.1	Sulfur mustards	161
		11.6.2	Nitrogen mustards	163
		11.6.3	Lewisite	163
	11.7	Treatme	ent	163
		11.7.1	Sulfur mustards	163
		11.7.2	Nitrogen mustards	164
		11.7.3	Lewisite	164
	11.8		ding remarks and future	
	_ 1	directio	ns	165
	Reter	ences		165
12.	Riot	contro	ol agents	171
	Jaros	lav Pejch	al	
	12.1	Introdu	ction	171
	12.2	History		171
	12.3	Backgro		173
		12.3.1	The agents and their	
			physicochemical properties	173
			ism of action	178
	12.5	Toxicok		179
		12.5.1	Uptake, distribution, and	
			metabolism of ortho-	
		10 5 0	chlorobenzylidene malononitrile	179
		12.5.2	Uptake, distribution, and	
			metabolism of dibenz(b , f)-	170
		12.5.3	1:4-oxazepine	179
		12.3.3	Uptake, distribution, and metabolism of capsaicin	180
	12.6	Toxicity	•	180
	12.0	12.6.1		181
			Nasal/pharyngeal toxicity	183
		12.6.3	. ,	183
			Respiratory toxicity	184
			Neurologic toxicity	185
		12.6.6	<u> </u>	186
			Dermatological toxicity	186
			Other toxicity	187
		12.6.9	Lethality	188
		12.6.10	Traumatic injuries	188
	12.7	Risk ass	essment	188
		12.7.1	Identification of intended and	
			unintended effects	188
			Dose response	188
			Exposure assessment	189
		12.7.4	Characterization of the risk and	
		_	risk management	189
	12.8	Treatme		189
		12.8.1	Eyes	189
		12.8.2	Skin	189
		12.8.3	Respiratory	190

	12.9	Concluding remarks and future	
		directions	190
	Refer	ences	190
13.	Pho	sgene oxime	197
	Neer	a Tewari-Singh	
	13.1	Introduction	197
	13.2	Properties and chemistry	197
		Exposure and toxicity	198
		Mechanism of action	199
	13.5	Protection, decontamination, and	
		treatment	200
	13.6	Concluding remarks and future	
		directions	200
	Ackn	owledgment	201
	Refer	ences	201
14	Psvc	hotomimetic agent BZ	
		uinuclidinyl benzilate)	203
	•	1	
	Josef	Fusek, Alzbeta Dlabkova and Jan M	isik
	14.1	Introduction	203
	14.2	Background	204
	14.3	Toxicokinetics and mechanism	
		of action	205
	14.4	Toxicity	206
	14.5	Symptoms	207
	14.6	Risk assessment	207
	14.7	Treatment	207
	14.8	Analytical methods	210
	14.9	Agent BZ in behavioral research	210
	14.10	Concluding remarks and future	
		directions	211
	Refer	ences	212
15	Fluo	roacetate	215
13.	1100	i outetate	Z 1 J
		ay Goncharov, Elena Savelieva,	
		zhda Koryagina, Valeriy Zinchenko,	
		ey Kuznetsov, Igor Mindukshev, Pave	el Avdonin,
	Antoi	n Ukolov and Richard Jenkins	
	15.1	Introduction	215
		Background	215

15.1	Introat	215			
15.2	Backgr	Background			
15.3	Toxicol	Toxicokinetics			
	15.3.1	Detoxification	216		
	15.3.2	Analytical procedure	216		
	15.3.3	Distribution in tissues and			
		elimination	217		
15.4	Mecha	nism of action	217		
	15.4.1	Molecular mechanism of			
		aconitase inhibition	217		

	15.4.2				
		effects of fluoroacetate	218		
	15.4.3	Physiology of blood vessels			
		under intoxication with			
		fluoroacetate	224		
	15.4.4	Body temperature of rats and			
		rabbits under intoxication with			
		fluoroacetate	224		
	15.4.5	Electrophysiological studies of			
		fluoroacetate intoxication	225		
15.5	Toxicity	/ and risk assessment	225		
15.6	Treatm	ent	230		
15.7	Concluding remarks and future				
	directio	ons	232		
Refer	References				

16. Strychnine

Jiri Patocka

	16.1 Introduction			239
	16.2	Backgr	ound	239
		16.2.1	Chemistry and physicochemical	
			properties	239
		16.2.2	History	239
		16.2.3	Therapeutic uses	240
	16.3		acokinetics and toxicokinetics	240
		16.3.1	Absorption, distribution,	
			metabolism, and excretion	240
	16.4	Clinica	l symptomatology	241
			nism of action	241
	16.6	Toxicity	/	242
		16.6.1	Animal toxicity	242
			Human toxicity	242
			Diagnosis	244
	16.7		sessment	244
		16.7.1	Human health hazard	244
		16.7.2	Safety data	244
	16.8	Treatm		245
	16.9	Conclu	ding remarks and future	
		directio		245
	Refe	rences		245
17.	Sup	erwarf	arins	249
	Mich	ael J. Mi	ırphy	
		Introdu	• /	249
		magai		<u> </u>

17.1	Introduction	249
17.2	Background	
	17.2.1 AAPCC data on superwarfarins	251
17.3	Classification of superwarfarins	251
	17.3.1 4-Hydroxycoumarins	251
	17.3.2 Indanediones	254
17.4	Toxicokinetics	254

	17.4.1	Absorption, metabolism, and	
		excretion in laboratory animals	
		and humans	254
17.5	Mecha	nism of action	255
17.6	Toxicity	/	255
	17.6.1	Clinical effects: signs and	
		symptoms	255
17.7	Genera	Il treatment recommendations	257
		Referral to healthcare facilities	257
	17.7.2	Home observation criteria	257
	17.7.3	Treatment at healthcare	
		facilities	258
17.8	Conclu	ding remarks and future	
	directio	ons	259
Refe	rences		260
	manna (eki Masu	G. Loganathan and Inaga	
18.1	Introdu	uction	267
18.2		cal background	267
		exposure to PCBs,	
		, and PCDFs	269
18.4		ochemical properties and global	
	Physico	chemical properties and global	
	Physico distribu		270
	distribu		270 272
18.5	distribu Analyti	ition	
18.5 18.6	distribu Analyti Mecha	ition cal methods	272
18.5 18.6	distribu Analyti Mecha	ution cal methods nism of action and toxicity ding remarks and future	272
18.5 18.6 18.7	distribu Analyti Mechar Conclu	ution cal methods nism of action and toxicity ding remarks and future	272 274

neurotoxicity 279 Claire E. Bollinger, Monique McCallister,

Ryan Clark, Raina Rhoades, Mark Maguire, Russell E. Savage, Yuqin Jiao, Kenneth J. Harris, Aramandla Ramesh, Heather Lochotzki and Darryl B. Hood

Introduction Background		
19.2.1	Epidemiological evidence for the	
	negative effects of PAHs on	
	pregnant women	279
19.2.2	Conclusion from prospective	
	epidemiology cohort studies	280
19.2.3	Effects of maternal stress	280
19.2.4	PAH-DNA adducts	282

		19.2.5	Refinement of our susceptibility- exposure paradigm to assess the	
			effects of in utero exposure to PAI	ы
			aerosols on neurodevelopmental	1
			processes	283
		1926	Refinement of our susceptibility-	205
			exposure paradigm to assess the	
			effects of in utero exposure to	
			PAH aerosols on behavioral	
			phenotypes	283
	19.3	PAH ex	perimental model systems	284
		19.3.1	Toxicological observations from	
			modeling B(a)P aerosols	284
		19.3.2	0	
			metabolites" in neocortical	
			tissue from in utero exposure	
		10 2 2	to B(a)P aerosol	284
		19.3.3	1	
			NMDA-mediated developmental processes as a result of in utero	
			exposure to B(a)P aerosol	286
		19.3.4	•	200
		15.5.1	deficit phenotypes in brain- <i>Cpr</i> -n	ull
			offspring subsequent to in utero	an
			exposure to B(a)P aerosol	287
	19.4	Implica	•	288
	19.5	-	model systems used for	
		PAH-in	duced neurotoxicity and role	
			microbiome	294
	19.6		ding remarks and future	
	D (directio	ons	295
	Refei	rences		295
20.	Tha	llium		299
	Larry	J. Thom	npson	
	20.1	Introdu	uction	299
		Backgr		299
		Toxicol		300
	20.4	Mecha	nism of action	300
	20.5	Toxicity	/	300
	20.6	Risk as	sessment	300
		Treatm		301
	20.8		ding remarks and future	/
	D (directio	ons	301
	Reter	rences		301
21.	Arse	enicals	: toxicity, their use as	
			warfare agents, and	
	pos	sible re	emedial measures	303
				200
	Saksl	ni Srivas	tava and Swaran J.S. Flora	

21.1	Introduction	303
21.2	Background	303

	21.3	Arsine		304
-	21.5		Synthesis of arsine	305
			Metabolism of arsine	305
			Mechanism of toxicity	305
			Effects on humans	305
			Diagnostic tests	306
	21.4		c arsenicals	306
-			Mechanism of toxicity	306
			Symptoms	307
	21.5		dichloroarsine	307
	21.6		ylchloroarsine	307
-		-	Structure	307
			Effects of dlphenylchloroarsine	307
	21.7		chloroarsine	307
		,	Structure	308
			Effects of ethyldichloroarsine	308
	21.8			308
		21.8.1	Background	308
			Mechanism of action and	
			toxicokinetics	308
		21.8.3	Clinical and pathological	
			findings	308
	21.9	Inorga	nic arsenic	308
		-	Sources and uses	309
		21.9.2	Toxicokinetics	309
		21.9.3	Biochemical and toxic	
			effects	309
		21.9.4	Mechanisms of toxicity	311
			Diagnosis	311
		21.9.6	Chelating agents and	
			chelation therapy	313
		21.9.7	Monoisoamyl DMSA	314
2	1.10	Combi	nation treatment	316
2	1.11	Conclu	ding remarks and future	
		directio	ons	317
R	efer	ences		318
22. C	Chlo	orine		321
S	ylvia	Milanez		
22	2.1	Introduc	ction	321
22	2.2	History	of use and human exposure	321
22	2.3		ion, distribution, metabolism,	

and excretion

22.5.1 Human studies

22.8 Concluding remarks and future

22.5.2 Laboratory animal studies

22.4 Mechanistic studies

22.6 Risk assessment

directions

22.5 Toxicity

22.7 Treatment

References

322

323

324

324

326

335

336

336

337

23.	Phos	gene	341
	Chery	l B. Bast and Dana F. Glass-Mattie	
	23.1	Introduction	341
	23.2	Background	341
		Toxicokinetics	341
		Mechanism of action	342
	23.5	Toxicity	343
		23.5.1 Human	343
		23.5.2 Animal	343
		Risk assessment	344
		Treatment	344
		Concluding remarks and future	o 4 -
		directions	345
	Refere	ences	349
24.		on monoxide: can't see,	
		smell, body looks red but	
	they	are dead	353
	Rhian	В. Соре	
		Introduction	353
		Historical background	354
		Epidemiological considerations	355
	24.4	/ 1 1	~
	04 F	monoxide	355
	24.5		355
		24.5.1 External sources of carbon monoxide	250
		24.5.2 Endogenous sources of carbon	356
		monoxide	356
	24.6	Methods for carbon monoxide	550
		measurement	356
	24.7	Measurement of blood carbon	
		monoxide	357
	24.8	Ambient air carbon monoxide	357
	24.9	Home detectors	357
	24.10	Carbon monoxide in expired breath	357
	24.11	Toxicokinetics and toxicodynamics	358
		24.11.1 Absorption, distribution, and	
	04.42	elimination of carbon monoxide	358
	24.12		361
		24.12.1 Classical mode of action	361
		24.12.2 Electrocardiographic/heart rhythm effects	362
		24.12.3 Cardiac hemodynamic effects	362
		24.12.3 Cardiac hemodynamic enects 24.12.4 Cardiomegaly	362
		24.12.5 Other cardiac effects	363
		24.12.6 Effects on cerebral blood flow	363
	24.13		363
	24.14	Redox and reoxygenation/reperfusion	
		injuries in the brain	363
	24.15	The catecholamine crisis hypothesis	363
	24.16	Other possible mechanisms of central	
		nervous system toxicity	363

	24.17	Toxicity of carbon monoxide	364
		24.17.1 Factors affecting susceptibility	
		to poisoning	364
		24.17.2 Combined exposures to carbo	
		monoxide, cyanides, and othe	
		toxicological gases in battlefie	
		and military circumstances	364 365
		24.17.3 Acute toxicity24.17.4 Delayed (interval) manifestation	
		of acute toxicity	366
	24.18	,	366
	24.10		500
	2	overdose	367
		24.19.1 Oxygen	367
		24.19.2 Targeted temperature	
		management	367
		24.19.3 Sympatholytics and sedation	367
		24.19.4 Allopurinol and	
		<i>N</i> -acetylcysteine	367
		24.19.5 Insulin	367
	24.20	Acceptable exposure levels within	
		the military context	367
	24.21	Defensive measures	368
	24.22	Concluding remarks and future	
		directions	368
25.		rences te cyanide toxicity and	369
25.	Acut its ti and	te cyanide toxicity and reatment: the body is dead may be red but does not	
25.	Acut its ti and	te cyanide toxicity and reatment: the body is dead	369 373
25.	Acut its ti and stay	te cyanide toxicity and reatment: the body is dead may be red but does not	
25.	Acut its ti and stay <i>Rhian</i>	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>n B. Cope</i>	
25.	Acut its ti and stay <i>Rhian</i>	te cyanide toxicity and reatment: the body is dead may be red but does not red for long	
25.	Acut its ti and stay <i>Rhian</i>	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>n B. Cope</i> Introduction: basic terminology	
25.	Acut its ti and stay <i>Rhian</i>	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>B. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide	373
25.	Acut its tr and stay <i>Rhian</i> 25.1	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>B. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide	373 373
25.	Acui its tr and stay 25.1 25.2 25.2 25.3 25.4	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>a.B. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide Sources of exposure Toxic levels of cyanide Detection and estimation of cyanide	373 373 376
25.	Acui its tr and stay 25.1 25.2 25.2 25.3 25.4	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>a.B. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide Sources of exposure Toxic levels of cyanide Detection and estimation of cyanide Toxicokinetics of cyanide	373 373 376 377 378 379
25.	Acui its tr and stay 25.1 25.2 25.2 25.3 25.4	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>a.B. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide Sources of exposure Toxic levels of cyanide Detection and estimation of cyanide Toxicokinetics of cyanide 25.5.1 Absorption	373 373 376 377 378 379 379
25.	Acui its tr and stay 25.1 25.2 25.2 25.3 25.4	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>a.B. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide Sources of exposure Toxic levels of cyanide Detection and estimation of cyanide Toxicokinetics of cyanide 25.5.1 Absorption 25.5.2 Distribution	373 373 376 377 378 379 379 379 379
25.	Acui its tr and stay 25.1 25.2 25.3 25.4 25.5	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>a.B. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide Sources of exposure Toxic levels of cyanide Detection and estimation of cyanide Toxicokinetics of cyanide 25.5.1 Absorption 25.5.2 Distribution 25.5.3 Elimination	373 373 376 377 378 379 379 379 379
25.	Acui its tr and stay 25.1 25.2 25.3 25.4 25.5 25.4 25.5	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>a.B. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide Sources of exposure Toxic levels of cyanide Detection and estimation of cyanide Toxicokinetics of cyanide 25.5.1 Absorption 25.5.2 Distribution 25.5.3 Elimination Mechanism of action	373 373 376 377 378 379 379 379 379
25.	Acui its tr and stay 25.1 25.2 25.3 25.4 25.5 25.4 25.5	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>a.B. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide Sources of exposure Toxic levels of cyanide Detection and estimation of cyanide Toxicokinetics of cyanide 25.5.1 Absorption 25.5.2 Distribution 25.5.3 Elimination Mechanism of action Diagnosis and clinical features	373 373 376 377 378 379 379 379 379 380
25.	Acut its tr and stay 25.1 25.2 25.3 25.4 25.5 25.6 25.7	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>a.B. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide Sources of exposure Toxic levels of cyanide Detection and estimation of cyanide Toxicokinetics of cyanide 25.5.1 Absorption 25.5.2 Distribution 25.5.3 Elimination Mechanism of action Diagnosis and clinical features of cyanide poisoning	373 373 376 377 378 379 379 379 379 380 381
25.	Acui its tr and stay 25.1 25.2 25.3 25.4 25.5 25.4 25.5	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>a.B. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide Sources of exposure Toxic levels of cyanide Detection and estimation of cyanide Toxicokinetics of cyanide 25.5.1 Absorption 25.5.2 Distribution 25.5.3 Elimination Mechanism of action Diagnosis and clinical features of cyanide poisoning Treatment of cyanide poisoning	373 373 376 377 378 379 379 379 379 380 381 383
25.	Acut its tr and stay 25.1 25.2 25.3 25.4 25.5 25.6 25.7	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>b. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide Sources of exposure Toxic levels of cyanide Detection and estimation of cyanide Toxicokinetics of cyanide 25.5.1 Absorption 25.5.2 Distribution 25.5.3 Elimination Mechanism of action Diagnosis and clinical features of cyanide poisoning Treatment of cyanide poisoning 25.8.1 Antidotal therapy	373 373 376 377 378 379 379 379 379 380 381 383 383
25.	Acut its tr and stay 25.1 25.2 25.3 25.4 25.5 25.6 25.7	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>a.B. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide Sources of exposure Toxic levels of cyanide Detection and estimation of cyanide Toxicokinetics of cyanide 25.5.1 Absorption 25.5.2 Distribution 25.5.3 Elimination Mechanism of action Diagnosis and clinical features of cyanide poisoning Treatment of cyanide poisoning 25.8.1 Antidotal therapy 25.8.2 Methemoglobin inducers	373 373 376 377 378 379 379 379 379 380 381 383 383 383
25.	Acut its tr and stay 25.1 25.2 25.3 25.4 25.5 25.6 25.7	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>a.B. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide Sources of exposure Toxic levels of cyanide Detection and estimation of cyanide Toxicokinetics of cyanide 25.5.1 Absorption 25.5.2 Distribution 25.5.3 Elimination Mechanism of action Diagnosis and clinical features of cyanide poisoning Treatment of cyanide poisoning 25.8.1 Antidotal therapy 25.8.2 Methemoglobin inducers 25.8.3 Amyl nitrite	373 373 376 377 378 379 379 379 379 380 381 383 383 383 383
25.	Acut its tr and stay 25.1 25.2 25.3 25.4 25.5 25.6 25.7	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>a.B. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide Sources of exposure Toxic levels of cyanide Detection and estimation of cyanide Toxicokinetics of cyanide 25.5.1 Absorption 25.5.2 Distribution 25.5.3 Elimination Mechanism of action Diagnosis and clinical features of cyanide poisoning Treatment of cyanide poisoning 25.8.1 Antidotal therapy 25.8.2 Methemoglobin inducers 25.8.3 Amyl nitrite 25.8.4 Sodium nitrite	373 373 376 377 378 379 379 379 380 381 383 383 383 383 384 384
25.	Acut its tr and stay 25.1 25.2 25.3 25.4 25.5 25.6 25.7	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>a.B. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide Sources of exposure Toxic levels of cyanide Detection and estimation of cyanide Toxicokinetics of cyanide 25.5.1 Absorption 25.5.2 Distribution 25.5.3 Elimination Mechanism of action Diagnosis and clinical features of cyanide poisoning Treatment of cyanide poisoning 25.8.1 Antidotal therapy 25.8.2 Methemoglobin inducers 25.8.3 Amyl nitrite 25.8.4 Sodium nitrite 25.8.5 4-Dimethylaminophenol	373 373 376 377 378 379 379 379 379 380 381 383 381 383 383 384 384 384
25.	Acut its tr and stay 25.1 25.2 25.3 25.4 25.5 25.6 25.7	te cyanide toxicity and reatment: the body is dead may be red but does not red for long <i>a.B. Cope</i> Introduction: basic terminology and a brief and tragic history of the use and misuse of cyanide Sources of exposure Toxic levels of cyanide Detection and estimation of cyanide Toxicokinetics of cyanide 25.5.1 Absorption 25.5.2 Distribution 25.5.3 Elimination Mechanism of action Diagnosis and clinical features of cyanide poisoning Treatment of cyanide poisoning 25.8.1 Antidotal therapy 25.8.2 Methemoglobin inducers 25.8.3 Amyl nitrite 25.8.4 Sodium nitrite	373 373 376 377 378 379 379 379 380 381 383 383 383 384 384

		25.8.9 Hydroxocobalamin (Cyanokit)25.8.10 Supportive therapy	385 385
	25.9	Concluding remarks and future	
		directions	385
	Refer	ences	385
26		huling groups to the Dhanel and	200
26.		hyl isocyanate: the Bhopal gas	389
	Rame	esh C. Gupta and Daya R. Varma	
		Introduction	389
		The making of a disaster	389
	26.3	Chemistry and toxicokinetics of	200
		isocyanates 26.3.1 Chemistry of isocyanates	390 390
	26.4		390
	20.4	exposure to methyl isocyanate	392
	26.5	The cyanide controversy	392
		Toxicity of isocyanates	393
	26.7		393
		26.7.1 Toxicity of methyl isocyanate	
		in animal models	394
		26.7.2 Toxicity in humans	395
		Treatment	397
	26.9	• • • •	
		beyond the Bhopal disaster	398
	26.10	7	
	06.44	at Bhopal	398
	26.11	0	300
		directions	399 399
	Ackn		399
	Ackn	directions owledgments	
27.	Ackn Refer	directions owledgments	399
27.	Ackne Refer Othe	directions owledgments ences	399
27.	Ackne Refer Other	directions owledgments ences er toxic chemicals as potential	399 399
27.	Ackne Refer Othe cher	directions owledgments ences er toxic chemicals as potential mical warfare agents	399 399
27.	Ackne Refer Othe cher Jiri Ba Kamin	directions owledgments ences er toxic chemicals as potential mical warfare agents ajgar, Jiri Kassa, Josef Fusek, I Kuca and Daniel Jun	399 399 403
27.	Ackne Refer Othe cher Jiri Ba Kamin	directions owledgments ences er toxic chemicals as potential mical warfare agents ajgar, Jiri Kassa, Josef Fusek, I Kuca and Daniel Jun Introduction	399 399
27.	Ackno Refer Othe cher Jiri Ba Kamin 27.1	directions owledgments ences er toxic chemicals as potential mical warfare agents aggar, Jiri Kassa, Josef Fusek, I Kuca and Daniel Jun Introduction General	399399403403
27.	Ackno Refer Othe cher Jiri Ba Kamin 27.1	directions owledgments ences er toxic chemicals as potential mical warfare agents aggar, Jiri Kassa, Josef Fusek, I Kuca and Daniel Jun Introduction General	399399403403
27.	Ackno Refer Othe cher Jiri Ba Kamin 27.1	directions owledgments ences er toxic chemicals as potential mical warfare agents ajgar, Jiri Kassa, Josef Fusek, I Kuca and Daniel Jun Introduction General 27.2.1 Chemical weapons convention:	399 399 403 403 403
27.	Ackne Refer Othe cher Jiri Ba Kamin 27.1 27.2	directions owledgments ences er toxic chemicals as potential mical warfare agents ajgar, Jiri Kassa, Josef Fusek, I Kuca and Daniel Jun Introduction General 27.2.1 Chemical weapons convention: article II, definitions and criteria Specific agents 27.3.1 Carbamates	399 399 403 403 403 403
27.	Ackne Refer Othe cher Jiri Ba Kamin 27.1 27.2	directions owledgments ences er toxic chemicals as potential mical warfare agents agar, Jiri Kassa, Josef Fusek, I Kuca and Daniel Jun Introduction General 27.2.1 Chemical weapons convention: article II, definitions and criteria Specific agents 27.3.1 Carbamates 27.3.2 Dioxin	399 399 403 403 403 403 404 404
27.	Ackne Refer Othe cher Jiri Ba Kamin 27.1 27.2	directions owledgments ences er toxic chemicals as potential mical warfare agents aggar, Jiri Kassa, Josef Fusek, I Kuca and Daniel Jun Introduction General 27.2.1 Chemical weapons convention: article II, definitions and criteria Specific agents 27.3.1 Carbamates 27.3.2 Dioxin 27.3.3 Bicyclic phosphates	399 399 403 403 403 403 404 404 405 405
27.	Ackne Refer Othe cher Jiri Ba Kamin 27.1 27.2	directions owledgments ences er toxic chemicals as potential mical warfare agents ajgar, Jiri Kassa, Josef Fusek, I Kuca and Daniel Jun Introduction General 27.2.1 Chemical weapons convention: article II, definitions and criteria Specific agents 27.3.1 Carbamates 27.3.2 Dioxin 27.3.3 Bicyclic phosphates 27.3.4 Perfluoroisobutene	399 399 403 403 403 403 403 404 404 405 405 405
27.	Ackne Refer Othe cher Jiri Ba Kamin 27.1 27.2	directions owledgments ences er toxic chemicals as potential mical warfare agents ajgar, Jiri Kassa, Josef Fusek, I Kuca and Daniel Jun Introduction General 27.2.1 Chemical weapons convention: article II, definitions and criteria Specific agents 27.3.1 Carbamates 27.3.2 Dioxin 27.3.3 Bicyclic phosphates 27.3.4 Perfluoroisobutene 27.3.5 Organophosphates	399 399 403 403 403 403 403 404 404 405 405 405 405
27.	Ackne Refer Othe cher Jiri Ba Kamin 27.1 27.2	directions owledgments ences er toxic chemicals as potential mical warfare agents ajgar, Jiri Kassa, Josef Fusek, I Kuca and Daniel Jun Introduction General 27.2.1 Chemical weapons convention: article II, definitions and criteria Specific agents 27.3.1 Carbamates 27.3.2 Dioxin 27.3.3 Bicyclic phosphates 27.3.4 Perfluoroisobutene 27.3.5 Organophosphates 27.3.6 Toxins	399 399 403 403 403 403 403 404 404 404 405 405 405 405 406
27.	Ackne Refer Othe cher Jiri Ba Kamin 27.1 27.2	directions owledgments ences er toxic chemicals as potential mical warfare agents ajgar, Jiri Kassa, Josef Fusek, I Kuca and Daniel Jun Introduction General 27.2.1 Chemical weapons convention: article II, definitions and criteria Specific agents 27.3.1 Carbamates 27.3.2 Dioxin 27.3.3 Bicyclic phosphates 27.3.4 Perfluoroisobutene 27.3.5 Organophosphates 27.3.6 Toxins 27.3.7 Bioregulators	399 399 403 403 403 403 403 404 404 405 405 405 405 405 406 407
27.	Ackne Refer Othe <i>Jiri Ba</i> <i>Kamii</i> 27.1 27.2 27.3	directions owledgments ences er toxic chemicals as potential mical warfare agents agar, Jiri Kassa, Josef Fusek, I Kuca and Daniel Jun Introduction General 27.2.1 Chemical weapons convention: article II, definitions and criteria Specific agents 27.3.1 Carbamates 27.3.2 Dioxin 27.3.3 Bicyclic phosphates 27.3.4 Perfluoroisobutene 27.3.5 Organophosphates 27.3.6 Toxins 27.3.7 Bioregulators 27.3.8 Thyroid-stimulating hormone	399 399 403 403 403 403 403 404 404 405 405 405 405 405 405 405
27.	Ackne Refer Othe cher Jiri Ba Kamin 27.1 27.2	directions owledgments ences er toxic chemicals as potential mical warfare agents agar, Jiri Kassa, Josef Fusek, Kuca and Daniel Jun Introduction General 27.2.1 Chemical weapons convention: article II, definitions and criteria Specific agents 27.3.1 Carbamates 27.3.2 Dioxin 27.3.3 Bicyclic phosphates 27.3.4 Perfluoroisobutene 27.3.5 Organophosphates 27.3.6 Toxins 27.3.7 Bioregulators 27.3.8 Thyroid-stimulating hormone Nonlethal weapons	 399 399 399 403 403 403 403 404 405 405 405 405 405 406 407 409 409 409
27.	Ackne Refer Othe <i>Jiri Ba</i> <i>Kamii</i> 27.1 27.2 27.3	directions owledgments ences er toxic chemicals as potential mical warfare agents agar, Jiri Kassa, Josef Fusek, I Kuca and Daniel Jun Introduction General 27.2.1 Chemical weapons convention: article II, definitions and criteria Specific agents 27.3.1 Carbamates 27.3.2 Dioxin 27.3.3 Bicyclic phosphates 27.3.4 Perfluoroisobutene 27.3.5 Organophosphates 27.3.6 Toxins 27.3.7 Bioregulators 27.3.8 Thyroid-stimulating hormone	399 399 403 403 403 403 403 404 404 405 405 405 405 405 405 405

Ackno Refere	wledgm ences	ent	410 410
Ricin			413
Rames	sh C. Gu	pta and Harry Salem	
28.1	Introdu	iction	413
		of biological weapons	413
28.3		aponization of biological agents	415
28.4		nily of ribosome-inactivating	415
20.4	protein		416
28.5		in toxin structure and	410
20.5	biosynt		418
28.6	,	lular internalization of ricin	419
			419
	,	osidase activity of ricin	
28.8		nd symptoms of ricin exposure	420
20.9		prward biological agent detection	421
	28.9.1	Immunoassays	
	28.9.2	DNA-based assays: polymerase of	
00.40		reaction	422
28.10		ding remarks and future	400
D (directio	ons	423
Refere	ences		424
Botu	linum	toxin	427
Rhian	В. Соре		
29.1	Introdu	iction	427
29.2	Historio	cal aspects	427
	Backgro	-	429
	29.3.1		
		function	429
	29.3.2	Overview of botulinum neurotox	in
		action	430
	29.3.3	Clinical forms of botulism in hun	nans
		and animals	430
	29.3.4	Infectious forms of botulism	431
	29.3.5	Noninfectious forms of botulism	432
	29.3.6		432
29.4			433
2311	29.4.1	Foodborne botulism	433
29.5	Pathog		435
20.0	29.5.1	Overview of pathogenesis	435
	29.5.2		436
	29.5.3	,	
	29.9.9	from the gastrointestinal tract	437
	29.5.4	-	438
	29.5.4	Toxin binding and uptake into ta	
	∠9.9.9	tissues	439
29.6	Toxicok		439 439
29.0			439 439
	29.6.1	Foodborne toxicity	439 441
20.7		Inhalation toxicity nism of action	
29.7			442
	29.7.1	1	442
	14/1	Light chain	443

28.

29.

29.8	Toxicity		444
	29.8.1	Lethality	444
	29.8.2	Oral toxicity	446
	29.8.3	Inhalation toxicity	446
	29.8.4	Clinical toxicity	446
29.9	Risk asse	essment	447
29.10	Treatme	nt	448
	29.10.1	Antitoxin	448
	29.10.2	Treatment for infant botulism	448
	29.10.3	Vaccines	449
29.11	Conclud	ling remarks and future	
	direction	ns	449
	29.11.1	Development of animal	
		model test systems	449
Refere	ences		450

30. Onchidal and fasciculins 455

Arturo Anadón, María-Rosa Martínez-Larrañaga and Luis G. Valerio

	30.1	Introduction	455
	30.2	Background	456
		30.2.1 Onchidal	456
		30.2.2 Fasciculin	457
	30.3	Mechanism of action and biological	
		effects	458
		30.3.1 Onchidal	458
		30.3.2 Fasciculin	459
	30.4	Experimental and human toxicity	460
		30.4.1 Experimental	460
		30.4.2 Human	461
	30.5	Computational toxicology assessment	462
		Treatment	463
	30.7	Concluding remarks and future	
		directions	464
	30.8		464
		owledgments	464
	Refer	rences	464
31	Суа	nobacterial	
51.		e-green algae) toxins	467
		dra K. Malik, Vijay K. Bharti, Anu Rahal,	
	Dines	sh Kumar and Ramesh C. Gupta	
	31.1	Introduction	467
	31.2	Hepatotoxins	468
		31.2.1 Microcystins and nodularins	468
		31.2.2 Cylindrospermopsin	471
	31.3	Neurotoxins	473
		31.3.1 Anatoxin-a	473
		31.3.2 Anatoxin-a(s)	474
		31.3.3 Saxitoxins	475
	31.4	Concluding remarks and future directions	475
	Refer	rences	476

Section III

Target Organ Toxicity	479
-----------------------	-----

32.	Chemical warfare agentsand the nervous system4			481
	Jing Liu, Linzzi K. Wright and Carey N. Pope			
	32.1 Introduction			481
	32.2		w of the nervous system	481
			Special features of neurons	400
			and high energy demand Blood—brain barrier	483
	22.2		f neurotoxicity	484 484
	32.3 32.4		d chemical warfare agents	404
	J2.7		ect the nervous system	484
			Organophosphorus nerve agents	485
			Cyanides	490
			Sulfur mustard	491
		32.4.4	3-Quinuclidinyl benzilate	492
	32.5	Conclud	ling remarks and future	
		direction	ns	492
	Refer	ences		493
33.	Beh	avioral	toxicity of nerve agents	499
	Jiri Kassa, Jiri Bajgar, Kamil Kuča and Daniel Jun			
	33.1 Introduction			
	33.2	The met	thods used to evaluate the	
		behavio	ral effects of nerve agents	499
			Functional observatory battery	499
		33.2.2	Performance on the RAM task	502
			Acoustic startle response and	
			prepulse inhibition	502
			Performance on the Y-maze	502
			Performance on the T-maze	503
			Performance on the Morris water	500
			maze	503
			Performance on the passive avoidance test	503
			Performance on the Barnes maze	505
	33 3		rm behavioral effects of acute	504
	55.5		rel exposure to nerve agents	504
	33.4		behavioral effects of single or	
			d low-level exposure to nerve	
		agents	·	506
	33.5	0	ling remarks and future	
		direction	ns	509
	Refer	ences		510
24	The	respira	tory toxicity of chemical	

warfare agents	515
Alfred M. Sciuto and Urmila P. Kodavanti	

34.1	Introduction		515
------	--------------	--	-----

	34.2	History	of chemical warfare agents use	515
	34.3	The res	spiratory system	516
	34.4	Pulmor	nary agents	517
		34.4.1		517
		34.4.2	Chlorine	518
		34.4.3	Phosgene	520
		34.4.4	Nerve agents	521
		34.4.5	Nonvolatile agents	525
		34.4.6	Cyanides	527
		34.4.7	Riot control agents	528
		34 4 8	DA and DC	534
			Vesicating agents	535
	34.5		ding remarks and future	555
	54.5	directio		538
	Ackn	owledgi		538
		ences	nents	539
35.			ovascular system as a	- 4 -
		et of c a K. Zoli	hemical warfare agents	545
	35.1	Introdu		545
			Potential indicators	545
			Hazard models	547
	35.2	Backgr		547
			Cardiac anatomy	547
			Innervation of the heart	548
			Neuropeptides	548
		35.2.4	Energetics of the heart	549
		35.2.5	Electrophysiology	549
	35.3	Signatu	res of cardiac toxicity	549
		35.3.1	The electrocardiogram as a	
			diagnostic tool for poisoning	549
		35.3.2	Biochemical markers of tissue	
			injury	551
	35.4	Indices	of the toxicity of warfare	
		agents	,	552
			Classes of warfare agents	552
		35.4.2	0	552
		35.4.3	Signatures of toxicity	552
			, , , , , , , , , , , , , , , , , , ,	552
		35.4.5	Electrocardiographic signature of	001
		55.1.5	organophosphates	553
	35.5	Specifi	c warfare agents of concern	555
	55.5	-	ng the heart	554
		35.5.1	•	557
		55.5.1	agents rely on organophosphate	
			, <u>, , , , , , , , , , , , , , , , , , </u>	554
		3550	compounds Antidatas for organophosphata	554
		35.5.2	§ 1 1	550
		25 5 2	nerve agents Cvanida	556
	25.0		Cyanide	556
	35.6		terror agents	558
			Arsenic	558
		35.6.2	Ricin	559

Therapeutics under development		559
Conclu	ding remarks and future	
direction	ons	560
35.8.1	Current concerns	560
35.8.2	Potential future scenarios	561
A new	approach	561
References		
	Concludirection 35.8.1 35.8.2 A new	Therapeutics under development Concluding remarks and future directions 35.8.1 Current concerns 35.8.2 Potential future scenarios A new approach rences

36. Ocular toxicity of chemical warfare agents 567

Patrick M. McNutt, Tracey A. Hamilton, Megan E. Lyman and Marian R. Nelson

36.1	Introdu	ction	567
36.2	Backgro	ound	568
	36.2.1	The structure of the eye	568
	36.2.2	Effects of ocular structure on	
		regenerative capacities	569
	36.2.3	Importance of neurological	
		function to vision	571
36.3	Ocular	toxicities of specific chemical	
	warfare	agents	572
	36.3.1	Selection of agents discussed	572
36.4		ts (Group 1)	572
	36.4.1	The mustard gases	573
		Lewisite	579
	36.4.3	Phosgene oxime	579
36.5	Nerve a	agents	580
36.6	Psycho	mimetic incapacitating agents	581
36.7	Blood a	igents	581
36.8	Chokin	g agents	582
36.9		ntrol agents	582
36.10		cal toxins	583
		Botulinum neurotoxins	
		(BoNTs)	583
	36.10.2	Ricin	584
	36.10.3	Staphylococcus enterotoxin	
		B (SEB)	585
36.11	Conclu	ding remarks and future	
	directio	ons	585
Discla	imer		585
Refere	ences		585
37. Skele	etal mu	ıscle	589

Ramesh C. Gupta, Robin B. Doss,

Jitendra K. Malik 37.1 Introduction

37.2 Behavioral effects

37.3 Cholinergic system

Snjezana Zaja-Milatovic, Wolf-D. Dettbarn and

acetylcholinesterase and its

37.3.1 Normal activity of

molecular forms

589

589

590

590

	37.3.2	Inhibition of acetylcholinesterase	e and
		its molecular forms by nerve	
		agents	591
	37.3.3	Butyrylcholinesterase	592
	37.3.4	Choline acetyltransferase	593
	37.3.5	Acetylcholine receptors	593
37.4		olinergic system	595
	37.4.1	Muscle excitotoxicity	595
	37.4.2	Oxidative/nitrosative stress	596
	37.4.3	High-energy phosphate depletio	n
		and myonecrosis	597
37.5		activity—electromyography	598
37.6		fiber histopathology	599
37.7		cytotoxicity biomarkers	602
	37.7.1	Creatine kinase and creatine	
		kinase isoenzymes	602
	37.7.2	Lactate dehydrogenase and lacta	
		dehydrogenase isoenzymes	603
37.8		l muscle involvement	
		ance development	603
37.9		I muscle involvement in	
		ediate syndrome	605
37.10		ion/treatment of myopathy	605
37.11	Acetylcholinesterase reactivators and		
	,	nolinesterase receptor blockers	605
	37.11.1	<i>N</i> -Methyl-D-aspartate receptor	606
	27112	antagonist	606
	37.11.2		607
	27112	anesthetics	607
	37.11.3		(07
27 12	Canala	agents, and creatine	607
37.12	directio	ding remarks and future	600
Ackno	wledgm		608 608
Refere		ent	608
Kelere	inces		000
Dern	nal toxi	icity of sulfur mustard	613
		Michael P. Shakarjian, ecke and Robert P. Casillas	
38.1 I	ntroduc	tion	613

38.1	Introduction 6		613
38.2	Backgro	ound	613
	38.2.1	Military use	613
	38.2.2	Wound repair	613
38.3	Pathog	enesis	614
	38.3.1	Cytotoxicity of sulfur mustard	615
	38.3.2	Inflammation	617
	38.3.3	Protease activation	618
	38.3.4	Apoptosis	618
	38.3.5	Signal transduction pathways	619
38.4	Models	of dermal sulfur mustard	
	exposu	re	619
	38.4.1	Introduction	619
	38.4.2	Model systems for screening sulfur	
		mustard	620

38.

	38.4.3	Decontamination	622
	38.4.4	Treatment of blisters	623
38.5	Therap	eutics	623
	38.5.1	Antioxidants	623
	38.5.2	Poly(ADP-ribose) polymerase	
		inhibitors	626
	38.5.3	Proteolytic inhibitors	626
	38.5.4	Steroids, corticosteroids, and	
		glucocorticoids	627
	38.5.5	Nonsteroidal antiinflammatory	
		drugs	628
	38.5.6	Bifunctional compounds	628
	38.5.7	Transient receptor potential	
		ligands	629
	38.5.8	Cooling	629
38.6		iding remarks and future	
	direction	ons	630
Refe	rences		630
Pon	roduc	tive toxicity and	
		tive toxicity and	
		disruption of potential	641
cne	mical	warfare agents	04 I
Tim J	I. Evans		
39.1	Introdu	uction	641
39.2	Import	ant definitions and concepts	642
	39.2.1	Chemical warfare agents	642
	39.2.2	Environmental contaminants	
		associated with industrial or	
		agricultural terrorism	642
	39.2.3	Reproduction	643
	39.2.4		643
39.3		productive toxicity of selected	
	toxican		646
	39.3.1	The reproductive toxicity of riot	
		control agents	647
	39.3.2	1 /	
		of chemical warfare agents	647
	Conclu	ision	653
Refe	rences		654
Live	r toxic	ity of chemical warfare	
age		ity of chemical warfare	659
U			033
Atray	vee Bane	erjee	
40.1	Introdu	uction	659
40.2	Structu	ral organization of the liver	659
		Hepatic functional capacity	660

39.

.

	40.2.2	Hepatic cellular components	660
40.3	Factors i	influencing hepatic toxicity	661
	40.3.1	Preferential hepatic uptake	661
	40.3.2	Xenobiotic metabolic	
		bioactivation	661
	40.3.3	Phase II/conjugation reactions	661
	40.3.4	Phase III reactions	662

41.

	40.3.5	Pathologic manifestations	
		of hepatic injury	662
	40.3.6	• • • •	
		with classic examples	664
	40.3.7		
		homeostasis	666
	40.3.8		000
	101010	function	666
	40.3.9		000
		reticulum stress	667
	40.3.10	Disruption of the cytoskeleton	667
40.4		cal toxins	668
40.5		e agents affecting the liver	668
	40.5.1	Fungal and plant toxins	668
	40.5.2	Bacterial (anthrax)	669
40.6		ding remarks and future	000
1010	directio		670
Refer	ences		670
	ences		0, 0
Ren	al syste	em	673
Share	n M. G.	waltney-Brant	
41.1		,	673
		ny and physiology	673
41.2		Functional anatomy	673
		Biotransformation	675
41.3		esponses of the urinary system	676
41.5	41.3.1	• • • •	676
		Chronic renal failure	676
	41.3.2		
	41.3.4		677 677
	41.3.4		677
	41.3.6	Proximal tubular injury Distal nephron/renal papillary	0//
	41.5.0	injury	678
	41.3.7		678
41.4		Lower urinary tract ffects of chemical warfare agents	679
41.4	41.4.1	Vesicants	679
			679
	41.4.2	0	680
	41.4.3		680
	41.4.4		680 680
		Anthrax toxins	681
		Cyanobacterial toxins	681
		,	
/1 ⊑		Other agents ding remarks and future	681
41.5	directio		600
Dofor		1115	682
relet	ences		682

42. Impact of chemical warfare agents on the immune system 685

Kavita Gulati, Suresh Kumar Thokchom and Arunabha Ray

42.1 Introduction 685

42.2	The im	mune system	685
		The innate immune system	686
		The adaptive immune system	687
42.3		of immunotoxicity	688
72.3	0	Effects on precursor stem cells	688
		•	000
	42.3.2	Effects on maturation of	
		lymphocytes	688
	42.3.3	Effects on initiation of immune	
		responses	688
	42.3.4	Induction of inflammation and	
		noncognate T-B cooperation	689
42.4	Exposit	tion of autoantigens and interfer	ence
	with co	o-stimulatory signals	689
42.5	Regula	tion of the immune response	690
42.6	-	otoxicity of chemical warfare	
	agents	,	690
	42.6.1	Nerve agents	691
		Blister or vesicant agents	694
		Choking agents	696
		Blood agents	699
42.7		Iding remarks and future direction	
	rences	0	701

Section IV

Special	Topics	
---------	--------	--

43. Health effects of nuclear weapons	and
releases of radioactive materials	707
Roger O. McClellan	

705

43.1	Introduction 70		
43.2	Conceptual framework		
43.3	Nomenc	lature	710
43.4	Sources	of radiation dose	711
43.5	Key early	y events in radiation science	711
43.6	Historica	al overview of radiation protect	ion
	standard	ls	712
43.7	Discover	ry of fission changed the world	713
43.8	The Man	hattan Project	714
43.9	The tole	rance dose	714
43.10	The first nuclear weapons 71		
43.11	Post-World War II nuclear weapons		
	develop	ment and testing	715
43.12	Contem	porary nuclear activities	716
43.13	Blast and	thermal effects of nuclear	
	weapons	5	716
43.14	Exposure	es to radioactive materials and	
	radiatior	n dose	718
43.15	Radiatio	n-induced health effects	720
	43.15.1	Sources of information on radia	tion
		effects	720
	43.15.2	Acute radiation syndrome and e	early
		effects	724

43.16	Early radiation effects from internally		
	deposited radionuclides	725	
	43.16.1 Radiation-induced cancer in		
	humans from acute exposures	728	
43.17	Linear nonthreshold models	734	
43.18	Current radiation protection guidance	736	
43.19	Summary	738	
43.20	Personal perspective	739	
43.21	Dedication	739	
References			

44. Clinical and cellular aspects of traumatic brain injury 745

Jason Pitt, Yiuka Pitt and Jordana Lockwich

44.1	Introdu	ıction	745		
44.2	Traumatic brain injury mouse models 745				
44.3	Clinical manifestations and management				
	of traumatic brain injury				
	44.3.1	Classifying traumatic brain injury			
		using the Glasgow Coma Scale	746		
	44.3.2	Coma recovery scale to track			
		meaningful changes with severe			
		traumatic brain injury	747		
	44.3.3	Intracranial pressure	748		
	44.3.4	Primary and secondary brain			
		injury	750		
	44.3.5	Immediate care	752		
	44.3.6	Surgical management	752		
	44.3.7	Targeted therapies to prevent			
		secondary injury	752		
44.4	Mainte	nance of adequate cerebral			
	perfusion improves outcome after				
	trauma	tic brain injury	752		
	44.4.1	Other targeted therapies	753		
	44.4.2	Opportunities for rehabilitation an	d		
		recovery posttraumatic brain			
		injury	753		
44.5	Cogniti	ive impairments	754		
	44.5.1	Neuronal loss	754		
	44.5.2	Synapse loss	755		
	44.5.3	Seizures	756		
44.6	Cellula	r mechanisms of primary and			
	second	ary injuries	757		
	44.6.1	Necrosis	757		
	44.6.2	Apoptosis	758		
44.7	Potenti	al mechanisms of synaptic			
	impairr	nent	761		
44.8	Patholo	ogical hallmarks of Alzheimer's			
		in traumatic brain injury	761		
	44.8.1	Alzheimer's disease: A β and tau	761		
		A β in traumatic brain injury	762		
		Tau in traumatic brain injury	762		
44.9		ding remarks and future direction	s762		
Refer	ences		763		

45. Neurological effects and mechanisms of blast overpressure injury 767

Jason Pitt

45.1	Introduction		
45.2	Blast waves and mechanisms of injury		
	45.2.1	Pressure waves	768
	45.2.2	Mechanism of primary injury	769
45.3		features of traumatic brain	
	injury		769
	45.3.1	Common clinical features	
		of traumatic brain injury	770
	45.3.2	Distinct clinical features of blast	
	1	traumatic brain injury	772
45.4	Human	neuropathology of blast	
	traumati	ic brain injury	772
	45.4.1	Neuropathological features	
	(of blast traumatic brain injury	772
	45.4.2	Clinical management	773
45.5	Animal r	nodels of blast traumatic brain	
	injury		774
45.6	Biomark	ers of blast injury	775
		Serum and cerebrospinal	
	1	fluid protein biomarkers	775
45.7		ling remarks and future	
	direction	8	776
Refe	rences		776

46. Genomics and proteomics in brain complexity in relation to chemically induced posttraumatic stress disorder779

Gopala Krishna and Mayur Krishna

46.1	Introduction	779
46.2	The effect of posttraumatic stress	
	disorder on different regions of brain	780
46.3	The hypothalamic-pituitary-adrenal	
	axis	780
46.4	Hippocampus	780
46.5	Amygdala	781
46.6	Cortex	781
46.7	Understanding posttraumatic stress	
	disorder: the genomics and proteomics	
	way	782
46.8	Applications of genomic and	
	transcriptomics methods	783
46.9	Role of noncoding RNAs and epigenetic	S
	in posttraumatic stress disorder	785
46.10	Toxic chemical exposure and human	
	diseases	786
46.11	Genomic applications: understanding	
	the relationship between posttraumatic	
	stress disorder and chemical toxicity	786
46.12	Proteomics	787

	46.13	Neuroproteomics: proteomics applications in neuroscience	788
	46.14	Proteomics approaches to understand natural and chemical toxicity-induced	
		posttraumatic stress disorder	788
	46.15	Concluding remarks and future	
		directions	789
	Ackno	wledgment	789
	Refere	ences	789
47.		otoxicity, oxidative stress, neuronal injury	795
	Snjeza	na Zaja-Milatovic and Ramesh C. Gupta	

795
796
797
799
801
302
802
804
306
306
306
7 7 8 8 8

48. Blood-brain barrier damage and dysfunction by chemical toxicity

Ramesh C. Gupta, Jason Pitt and Snjezana Zaja-Milatovic

48.1	Introduction				
48.2	Structu	Structure and function of the BBB			
48.3	In vivo	and in vitro models to study the			
	BBB		812		
	48.3.1	In vivo model	813		
	48.3.2	In vitro models	813		
48.4	Gende	r differences in the BBB	814		
48.5	The BB	B in young and adult brains	815		
48.6	Transport of molecules across the BBB 8				
48.7	Effects of toxic agents on the BBB				
	48.7.1 Anticholinesterase organophosphate				
	nerve agents 812				
	48.7.2 Oxime reactivators of AChE inhibited				
		by OPs and the BBB	818		
	48.7.3 NMDAR antagonist memantine				
		and the BBB	818		

		48.7.4	Drugs of abuse-induced BBB	
			damage	819
		48.7.5	Metals	819
	48.8	Bacter	ial toxin-induced BBB damage	820
	48.9		nd the BBB	820
			of blasts on the BBB	821
			toxicity, stress, and the BBB	821
	48.12		parriers and CNS diseases	822
	48.13		onin and the BBB	823
	48.14	-	uding remarks and future	
		directi		823
		owledgn	nent	823
	Refer	ences		823
49 .			s of organophosphates	
			y stages of human	
	skel	etal m	uscle regeneration	829
	Тота	z Mars,	Katarina Mis, Maja Katalinic,	
	Katar	ina Pega	n, Zoran Grubic and Sergej Pirk	majer
	49.1	Introdu	ction	829
	49.2	Regene	ration process in human	
		skeletal	muscle	831
	49.3	Noncho	linergic effects of DFP in	
		regener	ating human skeletal muscle	831
		49.3.1	The effect of DFP on IL-6 secret	on
			from myoblasts and myotubes	831
		49.3.2	Heat shock proteins in human	
			myoblasts and myotubes after	
			treatment with DFP	832
		49.3.3	Response of human myoblasts	
			to hypoxia	833
		49.3.4	The effects of DFP on the NRE	
		-	activity in human myoblasts	833
	49.4	-	ion and role of AChE in human	
		myobla		834
		49.4.1	Recovery of AChE mRNA	
			expression and AChE activity aft	
			gene silencing of AChE and afte	
		40.4.2	exposure to DFP	834
		49.4.2	The role of AChE in myoblast	836
	49.5	Conclu	apoptosis ding romarks and future	050
	47.3	directio	ding remarks and future	837
	Ackn			837
		owledgn ences		837
	ACICI	ciices		0.57
50.	-		tal modeling for delayed	
	effe	cts of o	organophosphates	843

Nikolay Goncharov, Daria Belinskaia, Vladimir Shmurak, Ekaterina Korf, Richard Jenkins and Pavel Avdonin

50.1	Introduction and background	843
50.2	Experimental procedures	844

50.3	Toxicological data		844
50.4	Biochemical data		844
	50.4.1	Cholinesterases	844
	50.4.2	Carboxylesterase	845
	50.4.3	Carbohydrate and fat metabolism	846
	50.4.4	Liver and kidney damage	847
50.5	Conclu	ding remarks and future	
	directio	ons	849
Funding			849
References			849

51. Alternative animal toxicity testing of chemical warfare agents 853

Gopala Krishna, Saryu Goel and Mayur Krishna

51.1	Introduction	853
51.2	Brief history of chemical warfare use	855
51.3	Top five chemical warfare agents	855
51.4	The concept of 3Rs	858
51.5	International cooperation on	
	alternative test methods	860
51.6	Alternatives to animal testing	
	of chemical warfare agents	864
51.7	Animal efficacy rule	865
51.8	Human-on-a-chip	867
	51.8.1 New predictive models	
	of toxicity	868
51.9	Concluding remarks and future	
	directions	869
Refe	rences	870

Section V

Toxicokinetics, toxicodynamics	
and physiologically-based	
pharmacokinetics	873

52.		cokinetic aspects of nerve nts and vesicants	875
		ld John, Frank Balszuweit, Dirk Steinritz, ehe, Franz Worek and Horst Thiermann	
	52.1	Introduction	875
	52.2	Overview of the invasion processes of	
		CWAs	875

	52.2.1 Percutaneous uptake by contact with		√ith
		skin	876
	52.2.2	Respiratory uptake by inhalation	878
	52.2.3	Gastrointestinal uptake by	
		ingestion	879
	52.2.4	Uptake by intravenous injection	880
52.3	Nerve a	agents	880
	52.3.1	OPCs as nerve agents	880
	52.3.2	Physicochemical properties	880

		52.3.3	Toxicity	883
		52.3.4	Inhibition of AChE	883
		52.3.5	Additional targets with potential	
			clinical relevance	885
		52.3.6	Elemental steps of nerve agent	
			toxicokinetics	885
		52.3.7	Enzymatic hydrolysis	887
		52.3.8	Nonproteinaceous scavengers ar	nd
			hydrolyzing compounds	890
		52.3.9	Formation of protein adducts	890
		52.3.10	Muscarinic receptors	895
			Excretion	895
			Concentration-time profiles	
			of nerve agents in blood after	
			various routes of administration	895
		52.3.13	Mathematical simulation for	
		5215115	prediction of nerve agent	
			toxicokinetics	897
		52.3.14	Bioanalytical techniques	0.5.7
		52.5.11	relevant to toxicokinetics	898
	524	Vesicant		899
	52.1		Sulfur mustard	899
		52.4.2		906
	52 5		ling remarks and future	500
	52.5	direction	•	909
	Refe	rences	13	910
	Refer	enees		510
53.	Tovi	colling	tics and	
				921
	toxi	codyna	mics of DFP	921
	toxi Migu	codyna el Sogort	mics of DFP b, Jorge Estevez and	921
	toxi Migu	codyna	mics of DFP b, Jorge Estevez and	921
	toxi Migu	codyna el Sogort nio Vilano	mics of DFP b, Jorge Estevez and ova	921 921
	toxi Migu Euge	codyna el Sogorb nio Vilano Introduc	mics of DFP b, Jorge Estevez and ova ction	
	toxi Migu Euge	codyna el Sogork nio Vilano Introduc 53.1.1	mics of DFP b, Jorge Estevez and ova ction DFP synonyms and scientific	
	toxi Migu Euge	codyna el Sogorl nio Vilano Introduc 53.1.1	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications	921
	toxi Migu Euge	codyna el Sogork nio Vilano 53.1.1 53.1.2	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP	921 921
	toxi Migu Euger 53.1	codyna el Sogork nio Vilano 53.1.1 53.1.2 Physicoo	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications	921 921
	toxi Migu Euger 53.1	codyna el Sogork nio Vilano 53.1.1 53.1.2 Physicod chemica	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and I identification of DFP	921 921 921
	toxi Migu Euger 53.1	codyna el Sogorl nio Vilano 53.1.1 53.1.2 Physicoo chemica 53.2.1	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and I identification of DFP Chemical structure, identity, and	921 921 921 923
	toxi Migu Euger 53.1	codyna el Sogork nio Vilano 53.1.1 53.1.2 Physicoo chemica 53.2.1	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and I identification of DFP Chemical structure, identity, and analogy with other nerve agents	921 921 921
	toxi Migu Euger 53.1 53.2	codyna el Sogork nio Vilano 53.1.1 53.1.2 Physicoc chemica 53.2.1 53.2.2	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and I identification of DFP Chemical structure, identity, and analogy with other nerve agents Physicochemical properties	921 921 921 923 923
	toxi Migu Euger 53.1	codyna el Sogork nio Vilano 53.1.1 53.1.2 Physicoc chemica 53.2.1 53.2.2 History o	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and I identification of DFP Chemical structure, identity, and analogy with other nerve agents Physicochemical properties of DFP synthesis and its	921 921 921 923 923
	toxi Migu Euger 53.1 53.2	codyna el Sogork nio Vilano 53.1.1 53.1.2 Physicoc chemica 53.2.1 53.2.2 History o relations	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and l identification of DFP Chemical structure, identity, and analogy with other nerve agents Physicochemical properties of DFP synthesis and its ship with the development of	921 921 921 923 923
	toxi Migu Euger 53.1 53.2 53.3	codyna el Sogork nio Vilano 53.1.1 53.1.2 Physicoc chemica 53.2.1 53.2.2 History o relations warfare	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and l identification of DFP Chemical structure, identity, and analogy with other nerve agents Physicochemical properties of DFP synthesis and its ship with the development of nerve agents	921 921 921 923 923 924
	toxi Migu Euger 53.1 53.2	codyna el Sogorl nio Vilano 53.1.1 53.1.2 Physicoo chemica 53.2.1 53.2.2 History o relations warfare Toxicoki	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and I identification of DFP Chemical structure, identity, and analogy with other nerve agents Physicochemical properties of DFP synthesis and its ship with the development of nerve agents netic and biotransformation	 921 921 923 923 924 924
	toxi Migu Euger 53.1 53.2 53.3	el Sogorl nio Vilano Introduc 53.1.1 53.1.2 Physicoc chemica 53.2.1 53.2.2 History relations warfare Toxicoki of DFP a	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and I identification of DFP Chemical structure, identity, and analogy with other nerve agents Physicochemical properties of DFP synthesis and its ship with the development of nerve agents netic and biotransformation and studies on DFPase	921 921 921 923 923 924
	toxi Migu Euger 53.1 53.2 53.3	codyna el Sogork nio Vilano 53.1.1 53.1.2 Physicoc chemica 53.2.1 53.2.2 History of relations warfare Toxicoki of DFP a 53.4.1	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and l identification of DFP Chemical structure, identity, and analogy with other nerve agents Physicochemical properties of DFP synthesis and its ship with the development of nerve agents netic and biotransformation and studies on DFPase Absorption, distribution, and	 921 921 923 923 924 924 924 928
	toxi Migu Euger 53.1 53.2 53.3	codyna el Sogork nio Vilano 53.1.1 53.1.2 Physicoc chemica 53.2.1 53.2.2 History of relations warfare Toxicoki of DFP a 53.4.1	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and l identification of DFP Chemical structure, identity, and analogy with other nerve agents Physicochemical properties of DFP synthesis and its ship with the development of nerve agents netic and biotransformation and studies on DFPase Absorption, distribution, and toxicokinetic studies	 921 921 923 923 924 924
	toxi Migu Euger 53.1 53.2 53.3	codyna el Sogork nio Vilano 53.1.1 53.1.2 Physicoc chemica 53.2.1 Fistory of relations warfare Toxicoki of DFP a 53.4.1	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and l identification of DFP Chemical structure, identity, and analogy with other nerve agents Physicochemical properties of DFP synthesis and its ship with the development of nerve agents netic and biotransformation and studies on DFPase Absorption, distribution, and toxicokinetic studies Biotransformation of DFP:	 921 921 923 924 924 924 928
	toxi Migu Euger 53.1 53.2 53.3	codyna el Sogork nio Vilano 53.1.1 53.1.2 Physicod chemica 53.2.1 53.2.2 History of relations warfare Toxicoki of DFP a 53.4.1	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and analogy with other nerve agents Physicochemical properties of DFP synthesis and its ship with the development of nerve agents netic and biotransformation and studies on DFPase Absorption, distribution, and toxicokinetic studies Biotransformation of DFP: phosphotriesterases, paraoxonase,	921 921 923 923 924 924 924 928 928
	toxi <i>Migu</i> <i>Eugel</i> 53.1 53.2 53.3 53.4	codyna el Sogork nio Vilano 53.1.1 53.1.2 Physicoc chemica 53.2.1 53.2.2 History of relations warfare Toxicoki of DFP a 53.4.1	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and I identification of DFP Chemical structure, identity, and analogy with other nerve agents Physicochemical properties of DFP synthesis and its ship with the development of nerve agents netic and biotransformation and studies on DFPase Absorption, distribution, and toxicokinetic studies Biotransformation of DFP: phosphotriesterases, paraoxonase, DFPPase	 921 921 923 924 924 924 928
	toxi Migu Euger 53.1 53.2 53.3	codyna el Sogorl nio Vilano 53.1.1 53.1.2 Physicoc chemica 53.2.1 53.2.2 History of relations warfare Toxicoki of DFP a 53.4.1 53.4.2 Acute to	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and I identification of DFP Chemical structure, identity, and analogy with other nerve agents Physicochemical properties of DFP synthesis and its ship with the development of nerve agents netic and biotransformation and studies on DFPase Absorption, distribution, and toxicokinetic studies Biotransformation of DFP: phosphotriesterases, paraoxonase, DFPPase oxicity of DFP and interaction	 921 921 923 923 924 924 928 929
	toxi <i>Migu</i> <i>Eugel</i> 53.1 53.2 53.3 53.4	codyna el Sogorl nio Vilano 53.1.1 53.1.2 Physicoc chemica 53.2.1 53.2.2 History of relations warfare Toxicoki of DFP a 53.4.1 53.4.2 Acute to with AC	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and l identification of DFP Chemical structure, identity, and analogy with other nerve agents Physicochemical properties of DFP synthesis and its ship with the development of nerve agents netic and biotransformation and studies on DFPase Absorption, distribution, and toxicokinetic studies Biotransformation of DFP: phosphotriesterases, paraoxonase, DFPPase oxicity of DFP and interaction hE	921 921 923 923 924 924 924 928 928
	toxi <i>Migu</i> <i>Eugel</i> 53.1 53.2 53.3 53.4	codyna el Sogork nio Vilano 53.1.1 53.1.2 Physicoc chemica 53.2.1 53.2.2 History of relations warfare Toxicoki of DFP a 53.4.1 53.4.2 Acute to with AC 53.5.1	mics of DFP b, Jorge Estevez and bya ction DFP synonyms and scientific publications Research field of the use of DFP chemical properties and I identification of DFP Chemical structure, identity, and analogy with other nerve agents Physicochemical properties of DFP synthesis and its ship with the development of nerve agents netic and biotransformation and studies on DFPase Absorption, distribution, and toxicokinetic studies Biotransformation of DFP: phosphotriesterases, paraoxonase, DFPPase oxicity of DFP and interaction	 921 921 923 923 924 924 928 929

		53.5.2	Experimental animal studies on cholinesterase inhibition and acute toxicity	932
		53.5.3	Studies in man	932 933
	53.6		studies on neurotoxicity and	955
	55.0		/ with reactivators	933
		53.6.1	Neuropharmacological studies	333
		55.0.1		933
		53.6.2	of the cholinergic system Neurobehavior and	955
		55.0.2		024
		F2 (2	neurodevelopment	934
		53.6.3	Therapy against anticholinesterase toxicity	025
		F2 (4		935 935
	F0 7		DFP in other biological studies tion of DFP with other esterases	
	53.7			935
		53.7.1	Serine proteases and albumin:	0.25
			role of tyrosine residues	935
		53.7.2	Inhibition of soluble PVases of	0.25
			peripheral nerve by DFP	935
		53.7.3	DFP- and OP-induced delayed	
			neuropathy and neuropathy	
			target esterase	936
	53.8		ding remarks and future	
	Refer	directio ences	ons	938 938
	pha	rmacol	cally based kinetic modeling	
	of c	hemica [.] y M. Ge	al warfare agents Parhart, Peter J. Robinson and	945
	of c Jeffer Edwa	hemica ry M. Ge rd M. Ja	al warfare agents earhart, Peter J. Robinson and kubowski	945
	of c Jeffer Edwa 54.1	hemica ry M. Ge rd M. Ja Introdu	al warfare agents Parhart, Peter J. Robinson and kubowski Action	945
	of cl Jeffer Edwa 54.1 54.2	hemica y M. Ge rd M. Ja Introdu Develo	al warfare agents earhart, Peter J. Robinson and kubowski action pment of PBPK models	
	of cl Jeffer Edwa 54.1 54.2	hemica y M. Ge rd M. Ja Introdu Develo Need fo of CWM	al warfare agents earhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use	945 946
	of cl Jeffer Edwa 54.1 54.2 54.3	hemica y M. Ge rd M. Ja Introdu Develo Need fo of CWN of PBPI	al warfare agents earhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use K analysis of data	945
	of cl Jeffer Edwa 54.1 54.2	hemica y M. Ge rd M. Ja Introdu Develo Need fa of CWN of PBPH Relation	al warfare agents earhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use < analysis of data nship between regenerated sarin	945 946
	of cl Jeffer Edwa 54.1 54.2 54.3	hemica y M. Ge rd M. Ja Introdu Develo Need fa of CWN of PBPH Relation	al warfare agents earhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use K analysis of data	945 946
	of c Jeffer Edwa 54.1 54.2 54.3 54.4	hemica y M. Ge rd M. Ja Introdu Develo Need fo of CWN of PBPH Relation and AC surroga	al warfare agents <i>parhart, Peter J. Robinson and</i> <i>kubowski</i> action pment of PBPK models or improved measures NA exposure—the use K analysis of data nship between regenerated sarin the activity and its use as a dose tte	945 946 947 948
	of cl Jeffer Edwa 54.1 54.2 54.3 54.4 54.4	hemica y M. Ge rd M. Ja Introdu Develo Need fo of CWN of PBPH Relation and AC surroga Genera	al warfare agents earhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use K analysis of data nship between regenerated sarin the activity and its use as a dose ate I PBPK model structure	945 946 947
	of cl Jeffer Edwa 54.1 54.2 54.3 54.4 54.4	hemica y M. Ge rd M. Ja Introdu Develo Need fo of CWN of PBPI Relation and AC surroga Genera PBPK si	al warfare agents earhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use X analysis of data nship between regenerated sarin the activity and its use as a dose tte I PBPK model structure imulation of cholinesterase	945 946 947 948
	of cl Jeffer Edwa 54.1 54.2 54.3 54.4 54.4	hemica y M. Ge rd M. Ja Introdu Develo Need fa of CWN of PBPH Relation and AC surroga Genera PBPK si inhibiti	al warfare agents earhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use K analysis of data nship between regenerated sarin the activity and its use as a dose ate I PBPK model structure imulation of cholinesterase on and regenerated GB	945 946 947 948
	of cl Jeffer Edwa 54.1 54.2 54.3 54.4 54.4	hemica y M. Ge rd M. Ja Introdu Develo Need fa of CWN of PBPH Relation and AC surroga Genera PBPK si inhibiti Conclu	al warfare agents parhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use K analysis of data nship between regenerated sarin thE activity and its use as a dose ate I PBPK model structure imulation of cholinesterase on and regenerated GB ding remarks and future	945 946 947 948 948
	of cl Jeffer Edwa 54.1 54.2 54.3 54.3 54.4 54.5 54.6	hemica y M. Ge rd M. Ja Introdu Develo Need fa of CWN of PBPH Relation and AC surroga Genera PBPK si inhibiti	al warfare agents parhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use K analysis of data nship between regenerated sarin thE activity and its use as a dose ate I PBPK model structure imulation of cholinesterase on and regenerated GB ding remarks and future	945 946 947 948 948
	of cl Jeffer Edwa 54.1 54.2 54.3 54.3 54.4 54.5 54.6 54.7	hemica y M. Ge rd M. Ja Introdu Develo Need fa of CWN of PBPH Relation and AC surroga Genera PBPK si inhibiti Conclu	al warfare agents parhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use K analysis of data nship between regenerated sarin thE activity and its use as a dose ate I PBPK model structure imulation of cholinesterase on and regenerated GB ding remarks and future	945 946 947 948 948 949
55.	of cl Jeffer Edwa 54.1 54.2 54.3 54.4 54.5 54.6 54.7 Refer	hemica y M. Ge rd M. Ja Introdu Develo Need fo of CWN of PBPH Relation and AC surroga Genera PBPK si inhibiti Conclu direction ences	al warfare agents earhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use K analysis of data nship between regenerated sarin the activity and its use as a dose tte Il PBPK model structure imulation of cholinesterase on and regenerated GB ding remarks and future ons	945 946 947 948 948 949 951
55.	of cl Jeffer Edwa 54.1 54.2 54.3 54.4 54.5 54.4 54.5 54.6 54.7 Refer Biot	hemica y M. Ge rd M. Ja Introdu Develo Need fa of CWN of PBPH Relation and AC surroga Genera PBPK si inhibiti Conclu direction rences ransfo	al warfare agents parhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use K analysis of data nship between regenerated sarin thE activity and its use as a dose ate I PBPK model structure imulation of cholinesterase on and regenerated GB ding remarks and future ons rmation of warfare	945 946 947 948 948 949 951 952
55.	of cl Jeffer Edwa 54.1 54.2 54.3 54.4 54.5 54.6 54.7 Refer Biot	hemica y M. Ge rd M. Ja Introdu Develo Need fo of CWN of PBPH Relation and AC surroga Genera PBPK si inhibiti Conclu direction rences ransfo /e agen	al warfare agents parhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use K analysis of data nship between regenerated sarin the activity and its use as a dose ate I PBPK model structure imulation of cholinesterase on and regenerated GB ding remarks and future ons rmation of warfare hts	945 946 947 948 948 949 951
55.	of cl Jeffer Edwa 54.1 54.2 54.3 54.4 54.5 54.4 54.5 54.6 54.7 Refer Biot nerv Milar	hemica y M. Ge rd M. Ja Introdu Develo Need fa of CWN of PBPH Relation and AC surroga Genera PBPK si inhibiti Conclu direction rences ransfo /e agen Jokano	al warfare agents parhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use K analysis of data nship between regenerated sarin thE activity and its use as a dose ate I PBPK model structure imulation of cholinesterase on and regenerated GB ding remarks and future ons rmation of warfare nts vić, Dragana Ristić,	945 946 947 948 948 949 951 952
55.	of cl Jeffer Edwa 54.1 54.2 54.3 54.4 54.5 54.4 54.5 54.6 54.7 Refer Biot nerv Milar	hemica y M. Ge rd M. Ja Introdu Develo Need fa of CWN of PBPH Relation and AC surroga Genera PBPK si inhibiti Conclu direction rences ransfo /e agen Jokano	al warfare agents parhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use K analysis of data nship between regenerated sarin the activity and its use as a dose ate I PBPK model structure imulation of cholinesterase on and regenerated GB ding remarks and future ons rmation of warfare hts	945 946 947 948 948 949 951 952
55.	of cl Jeffer Edwa 54.1 54.2 54.3 54.4 54.5 54.6 54.7 Refer Biot nerv Milar Bojar	hemica y M. Ge rd M. Ja Introdu Develo Need fa of CWN of PBPH Relation and AC surroga Genera PBPK si inhibiti Conclu direction rences ransfo /e agen <i>Jokano</i> <i>Kovač a</i>	al warfare agents parhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use K analysis of data nship between regenerated sarin the activity and its use as a dose the I PBPK model structure imulation of cholinesterase on and regenerated GB ding remarks and future ons rmation of warfare hts vić, Dragana Ristić, and Miloš P. Stojiljković	945 946 947 948 948 949 951 952 953
55.	of cl Jeffer Edwa 54.1 54.2 54.3 54.4 54.5 54.6 54.7 Refer Biot nerv <i>Milar</i> <i>Bojar</i> 55.1	hemica y M. Ge rd M. Ja Introdu Develo Need fa of CWN of PBPH Relation and AC surroga Genera PBPK si inhibiti Conclu direction rences ransfo /e agen Jokano a Kovač a Introdu	al warfare agents parhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use X analysis of data nship between regenerated sarin the activity and its use as a dose ate I PBPK model structure imulation of cholinesterase on and regenerated GB ding remarks and future ons rmation of warfare hts vić, Dragana Ristić, and Miloš P. Stojiljković action	945 946 947 948 948 949 951 952
55.	of cl Jeffer Edwa 54.1 54.2 54.3 54.4 54.5 54.6 54.7 Refer Biot nerv Milar Bojar	hemica y M. Ge rd M. Ja Introdu Develo Need fa of CWN of PBPH Relation and AC surroga Genera PBPK si inhibiti Conclu direction ransfo /e agen <i>Jokano</i> <i>Kovač</i> a Introdu Chemic	al warfare agents parhart, Peter J. Robinson and kubowski action pment of PBPK models or improved measures NA exposure—the use K analysis of data nship between regenerated sarin the activity and its use as a dose the Il PBPK model structure imulation of cholinesterase on and regenerated GB ding remarks and future ons rmation of warfare hts vić, Dragana Ristić, and Miloš P. Stojiljković	945 946 947 948 948 949 951 952 953

5	5.3	Esterases involved in the metabolism of	
		warfare nerve agents	956
		55.3.1 A-esterases	956
		55.3.2 B-esterases	958
5	5.4	Lipase	962
5	5.5	Protein binding	962
5	5.6	Concluding remarks and future	
		directions	962
R	efei	rences	963

Section VI

Analytical methods, biosensors and biomarkers 967

56.	war	oratory analysis of chemical fare agents, adducts, and abolites in biomedical samples	969
	<i>М.</i> Ј. ч	van der Schans	
	56.1	Introduction	969
	56.2	Nerve agents	970
		56.2.1 Analysis of intact nerve agents56.2.2 Verification of exposure	970
		to nerve agents	971
	56.3	Sulfur mustard and lewisite	973
	56.4	0	
		directions	975
	Refe	rences	976
57	On-	site detection of chemical	
<i>.</i>		fare agents	983
	Yasud	o Seto	
	57.1	Introduction	983
		Properties of chemical warfare agents	983
		Concept of on-site detection	984
	57.4	•	
		technology	987
		57.4.1 Classical manual method	987
		57.4.2 Photometric method	989
		57.4.3 Ion mobility spectrometry	
		method	989
		57.4.4 Vibrational spectroscopy	993
		57.4.5 Gas chromatography	993
		57.4.6 Mass spectrometry	994
		57.4.7 Other sensor technologies	994
	57.5	Comparison of existing on-site detection technologies	007
	57.6	Development of new on-site	997
	57.0	detection technologies	997
	57.7	Concluding remarks and future	557
	57.7	directions	997
	Refe	rences	1000

58.	bior	narker	ny target esterase as a and biosensor of europathic agents	1005
	R. Má		rdson, John K. Fink, den, Sanjeeva J. Wijeyesakere an rhaeva	d
	58.1 58.2	Introdu Organo 58.2.1	iction p hosphorus compounds Conventional nerve agents versus delayed neuropathic	1005 1005
		58.2.2	agents Organophosphorus compounds of pentavalent versus trivalent	1005
	58.3	delayed	phosphorus pphosphorus compound-induce d neurotoxicity	1007
	58.4	Neuro 58.4.1	bathy target esterase Definition of neuropathy target esterase and its potential normal or pathogenic roles	1008 1008
		58.4.2	Role of neuropathy target esteras in organophosphorus compound-induced delayed	se 1009
	58.5		neurotoxicity s of organophosphorus or—serine hydrolase interactions	
		58.5.1	Introduction	1010
		58.5.2	Inhibition	1011
		58.5.3	Reactivation	1012
		58.5.4	Aging	1013
		58.5.5	Relative inhibitory potency	1013
	58.6	Biomar		1014
		58.6.1 58.6.2		1014
		58.6.3	inhibition and aging Identification of neuropathy targ esterase–organophosphorus	1015 et
			conjugates using mass	1015
	58.7	Biosens	spectrometry	1015 1017
	50.7	58.7.1	Nanostructured electrochemical	1017
			biosensors to measure enzyme activity	1017
		58.7.2	Electrochemical biosensor arrays for high-throughput analysis	; 1018
		58.7.3	Assembly of electrochemical biosensor interfaces for serine hydrolases	1018
		58.7.4	Electrochemical measurements	
			of serine esterase activity	1019
	58.8	Conclu	ding remarks and future	
		directio		1020
	Refer	ences		1020

59.	orga Imp	cross-linking action of anophosphorus poisons; lications for chronic rotoxicity	1027
	Oksa	na Lockridge and Lawrence M. Schopfe	r
	59.1	Introduction	1027
	59.2	Chemical reactions of organophosphorus poisons	1027
	593	Cross-linking mechanism	1027
	59.4	•	1020
		cross-linked peptides	1028
	59.5	• •	
		tubulin with chlorpyrifos oxon	1029
	59.6	Implications for neurotoxicity	1030
	59.7	Zero-length cross-links between	
		lysine and glutamic acid or lysine and	
		aspartic acid	1030
	59.8	Concluding remarks	1031
	Refe	rences	1031
60.	cho	nitoring of blood linesterase activity in workers osed to nerve agents	1035
	•	el Jun, Jiri Bajgar, Kamil Kuca and Jiri Kas	sa
	60.1		1035
		Determination of cholinesterases	1035
		Factors influencing the activity of	
		cholinesterases	1037
	60.4	Diagnosis of organophosphorus	
		compound poisoning	1038
	60.5	Monitoring of blood cholinesterase	
		activity in workers exposed to nerve	
		agents	1040
		60.5.1 Introduction	1040
		60.5.2 Methods for determination	1040
		60.5.3 Correlation among methods	1040
		60.5.4 Subjects	1040
		60.5.5 Statistical analysis	1041
	(0.(60.5.5 Statistical analysis60.5.6 Results and discussion	1041 1041
		60.5.5 Statistical analysis60.5.6 Results and discussionConcluding remarks	1041 1041 1042
	Ackn	60.5.5 Statistical analysis 60.5.6 Results and discussion Concluding remarks owledgments	1041 1041 1042 1042
	Ackn	60.5.5 Statistical analysis60.5.6 Results and discussionConcluding remarks	1041 1041 1042

Section VII

Risks to animals and wildlife 1047

61.	Potential agents that can	
	cause contamination of animal	
	feedingstuff and terror	1049
	Robert W. Coppock and Margitta M. Dziwenka	a
	61.1 Introduction	1049

		61.1.1	Agricultural food ecosystem and	
			terror	1051
	61.2	Mycoto	xins and toxigenic fungi	1051
		61.2.1	Background	1051
		61.2.2	Applications of biotechnology	1052
			Fungal biocontrol agents	1052
		61.2.4	Economic losses from the use	
			of fungi and mycotoxins as	1052
		(1) 5	weapons	1052
		61.2.5	Terrorism using mycotoxin-	1052
		61.2.6	contaminated feedingstuff Residues in edible tissues	1052 1052
	61.3		ial toxins	1052
	01.5		Botulism toxin	1053
	61.4	Plant to		1053
	•		Toxins in seeds	1053
			Castor beans (ricin)	1053
			Other plant source type	
			2 RIPs	1055
	61.5	Rapidly	acting and easily available	
		substan	ces	1055
		61.5.1	Cyanide	1055
			Insecticides and drugs	1056
	61.6		nt organic compounds	1056
			Background	1056
		61.6.2	Potential economics of terror	
			attacks using persistent organic	1057
	(17	Heener	pollutants	1057
	61./	Heavy r 61.7.1	netals and metalloids	1057 1057
		61.7.2		1057
	61.8		ding remarks and future	1057
	01.0	directio		1058
	Refer	ences		1058
62 .	Che	mical v	warfare agents and	
	risks	s to ani	imal health	1061
	Tina	Wismer		
	ппа			
	62.1			1061
	62.2		al warfare agents	1062
		62.2.1	8	1062
			Phosgene	1062
			Mustard gas Lewisite	1063 1064
			Phosgene oxime	1064
			Cyanide and hydrogen	1000
		02.2.0	cyanide	1066
		62.2.7	Military nerve agents	1067
			3-Quinuclidinyl benzilate	1069
			RCAs (lacrimators)	1070
			Ricin and abrin (toxalbumins)	1071
	62.3		ding remarks and future	
		directio		1072
	Refer	ences		1072

63. Threats to wildlife by chemical and warfare agents 1077

Robert W. Coppock and Margitta M. Dziwenka

63.1	Introduction	1077
63.2	Infrastructure and potential	
	widespread chemical contamination	1078
63.3	Pyroterrorism and wildlife	1079
63.4	Candidate chemical agents	1079
	63.4.1 Background	1079
63.5	Selected pesticides	1082
	63.5.1 Background	1082
	63.5.2 Incidents of intoxication	1083
63.6	Castor bean (Ricinus communis)	1083
	63.6.1 Background	1083
	63.6.2 Toxicology and pathology	1083
	63.6.3 Water baits	1084
63.7	Concluding remarks and future	
	directions	1084
Refe	rences	1084

Section VIII

Prophylactic, therapeutic and countermeasures

64.	Pharmacological prophylaxis against nerve agent poisoning: experimental studies and practical implications 1091		
		ajgar, Josef Fusek, Jiri Kassa, I Kuca and Daniel Jun	
	64.1	Introduction	1091
	64.2	Protection of acetylcholinesterase	
		against inhibition	1092
	64.3	Scavengers	1093
	64.4	Prophylaxis with current antidotes	1094
	64.5	Prophylactic use of other drugs	1094
	64.6	Concluding remarks and future	
		directions	1097
	Ackn	owledgment	1097
		rences	1097
65.	Pror	ohylactic and therapeutic meas	ures
		erve agents poisonings	1103

Miloš P. Stojiljković, Milan Jokanović, Dragana Lončar-Stojiljković and Ranko Škrbić

65.1	Introdu	uction	1103
65.2	Prophy	laxis against intoxication	
	with ne	erve agents	1104
	65.2.1	Use of acetylcholinesterase	
		inhibitors in prophylaxis of	
		poisoning with nerve agents	1105
	65.2.2	Prophylactic use of oximes	1107

	65.2.3	Use of N-methyl-D-aspartate-rece	ptor-
		blocking drugs in prophylaxis aga	ainst
		organophosphorus compounds	1107
	65.2.4	Adverse effects of prophylatic	
		regimens	1109
	65.2.5	Bioscavengers against nerve	
		agents	1109
65.3	Treatme	ent of intoxication with nerve	
	agents		1109
	65.3.1	Anticholinergics	1109
	65.3.2	Acetylcholinesterase reactivators	1110
	65.3.3	Anticonvulsants	1111
65.4	Conclu	ding remarks and further	
	directio	ons	1113
References			1113

66. Physiologically based pharmacokinetic/ pharmacodynamic modeling of countermeasures to nerve agents 1121

Elaine Merrill, Chris Ruark, Jeffery M. Gearhart and Peter Robinson

66.1	Introduction	1121
66.2	Background	1121
66.3	Current countermeasures	1122
66.4	Novel countermeasures	1122
66.5	PBPK/PD modeling	1123
66.6	Development of PBPK/PD models	1124
66.7	Experimental and QSAR methodologie	s
	to predict blood and tissue partition	
	coefficients	1125
66.8	Interaction PBPK/PD model	
	for NAs and countermeasures	1127
66.9	Health effects assessment and	
	countermeasure optimization	1130
66.10	Concluding remarks and future	
	directions	1131
References		1132

67. Research on medical countermeasures for chemical attacks on civilians 1135

Shardell M. Spriggs, Gennady E. Platoff Jr. and David A. Jett

67.1	Introduction	1135
67.2	Medical countermeasures used	
	in civilian chemical incidents	1136
67.3	Research needs for civilian medical	
	countermeasures	1137
67.4	Research at the National Institutes	
	of Health in the United States	1138
67.5	Contract core facilities	1139
67.6	Scope of research	1140
67.7	Research on medical countermeasure	es for
	civilian chemical threats	1140

		directio	ons	1142
	Refer	ences		1143
68.	of p		n oximes in the treatment ng with organophosphoru Is	ıs 1145
			vić, Miloš P. Stojiljković, and Dragana Ristić	
	68.1 68.2	Introdu Interac	ction tion of cholinesterases with	1145
			phosphorus inhibitors	1145
	68.3		aspects of acute	
			phosphorus poisoning	1146
	68.4		es in the treatment of	
		0	phosphorus poisoning	1147
			Atropine	1147
			Diazepam	1148
			Oximes	1148
	68.5	,	ium oximes in the management	
		•	oning with warfare nerve agents	1149
			Pralidoxime (PAM-2)	1149
			Trimedoxime (TMB-4)	1150
			Obidoxime (LüH-6, toxogonin)	1150
			Asoxime (HI-6)	1151
		68.5.5		1151
			Methoxime (MMB-4)	1152
	68.6		ium oximes in the management	
			oning with organophosphorus	
		pesticio		1152
	68.7		ding remarks and future	
		directio	ons	1155
	Refer	ences		1155
69.	Nov	el cho	linesterase reactivators	1161

67.8 Concluding remarks and future

Kamil Musilek, David Malinak, Eugenie Nepovimova, Rudolf Andrys, Adam Skarka and Kamil Kuca

69.1	Introduction	1161
69.2	OP AChE inhibitors	1161
69.3	Acetylcholinesterase (AChE; EC 3.1.1.7)	1162
69.4	Antidotes for AChE inhibited by OP	
	compounds	1163
69.5	Design and synthesis of new AChE and	
	BChE reactivators	1164
69.6	Uncharged non-oxime reactivators	1164
69.7	Uncharged oxime reactivators	1165
69.8	Mono- or double-charged oxime	
	reactivators	1168
69.9	In vitro evaluation of selected AChE	
	reactivators	1172
69.10	The structure-activity relationship and	
	discussion	1173

69.11	Recent trends in the development of new	
	AChE reactivators and future directions	1174
69.12	Concluding remarks and future	
	directions	1174
Ackno	owledgments	1174
Refere	ences	1174

70.	Paraoxonase (PON1), detoxification	
	of nerve agents, and modulation of	
	their toxicity	1179

Lucio G. Costa, Toby B. Cole, Jacqueline Garrick, Judit Marsillach and Clement E. Furlong

70.1	Introduction	1179
70.2	PON1 polymorphisms: defining	
	PON1 status	1179
70.3	PON1 and the toxicity of OP	
	insecticides	1180
70.4	PON1 and the toxicity of nerve agents	1182
70.5	PON1 as a therapeutic agent	1184
70.6	Concluding remarks and future	
	directions	1185
Acknowledgment		1186
References		

71. The role of carboxylesterases
in therapeutic interventions
of nerve agent poisoning1191

Miloš P. Stojiljković, Milan Jokanović, Dragana Lončar-Stojiljković and Ranko Škrbić

71.1	Introduction	1191
71.2	Enzymology of carboxylesterase	1191
71.3	Carboxylesterase reactivation	1192
71.4	Source and induction of	
	carboxylesterase activity	1192
71.5	Carboxylesterases as scavengers	
	of nerve agents	1193
71.6	Toxicity of nerve agents and	
	carboxylesterase	1194
71.7	Carboxylesterase inhibitors	1194
71.8	Carboxylesterase and prophylactic/	
	therapeutic interventions	1195
71.9	Stoichiometric and catalytic scavenge	rs
	of organophosphorus compounds	1195
71.10	Concluding remarks and future	
	directions	1196
Refere	ences	1196

72. Catalytic bioscavengers: the second generation of bioscavenger-based medical countermeasures 1199

Patrick Masson and Sofya V. Lushchekina

Abbreviations		
72.1 Introduction	1199	

72.2	Stoichi	1201			
72.3	Pseudo	1202			
72.4	Catalyt	1203			
72.5	Requir	1203			
72.6	Potenti	1205			
	72.6.1	Phosphotriesterases	1205		
	72.6.2	Other enzymes	1209		
	72.6.3	Engineered cholinesterases			
		and carboxylesterases	1210		
72.7 Concluding remarks and future					
	1217				
Ackr	1218				
Refe	1218				

Section IX

Decontamination and detoxification 1231

73.	Rapid decontamination of							
			warfare agents					
	fror	U	1233					
	Edwa	ard D. C	larkson and Richard K. Gordon					
	Abbr	IS	1233					
	73.1	73.1 Background: the nature of						
		human skin 73.2 Background: nerve agents						
	73.3 Background: vesicating agents							
	(distilled sulfur mustard, HD; impure							
			nustard, H; Lewisite, L)	1235				
	73.4		systems to measure absorption,					
			ll, and decontamination	1236				
		73.4.1		1236				
			Guinea pigs	1236				
		73.4.3	• · · · · · •	1237				
			amination requirements	1237				
	73.6 Decontamination schemes			1238				
		73.6.1	Classical liquid: sodium					
			hypochlorite (bleach)	1238				
		73.6.2	Powder decontamination					
			material: M291 SDK	1239				
		73.6.3	Liquid decontamination					
			material: Sandia foam	1240				
		73.6.4	Liquid decontamination					
			material: Diphotérine	1240				
		73.6.5	Liquid and sponges: Reactive					
			Skin Decontamination Lotion	1241				
		73.6.6	Polyurethane sponge	1242				
		73.6.7	Immobilized enzyme badges	1243				
	73.7	Conclu	ding remarks and future					
		directio	ons	1244 1244				
References								
Inde	х			1249				

List of contributors

- Arturo Anadón Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
- **Rudolf Andrys** University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
- **Pavel Avdonin** Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
- Jiri Bajgar Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Sokolska, Czech Republic
- Mahdi Balali-Mood Medical Toxicology Research Centre; Department of Clinical Toxicology; Imam Reza Hospital, Faculty of Medicine Mashhad University of Medical Sciences, Mashhad, IR, Iran
- Frank Balszuweit Bundeswehr Medical Service Headquarters, Koblenz, Germany
- Atrayee Banerjee Senior Toxicologist, Reckitt Benckiser, United States
- Cheryl B. Bast Keller and Heckman LLP, Washington, DC, United States
- **Daria Belinskaia** Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
- Vijay K. Bharti Defence Institute of High Altitude Research (DIHAR), DRDO, Ministry of Defence, Leh-Ladakh, India
- **Claire E. Bollinger** College of Health & Rehabilitative Sciences, The Ohio State University, Columbus, OH, United States
- **Robert P. Casillas** Latham BioPharm Group, Cambridge, MA, United States
- **Ryan Clark** Office for Educational Outreach and Health Careers, Morehouse School of Medicine, Atlanta, GA, United States

- **Edward D. Clarkson** Medical Toxicology Branch, Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Grounds - Edgewood Area, MD, United States
- **Toby B. Cole** Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States; Center on Human Development and Disability, University of Washington, Seattle, WA, United States
- Rhian B. Cope Australian Pesticides and Veterinary Medicines Authority, Canberra, Australia
- **Robert W. Coppock** Toxicologist and Associates, Ltd, Vegreville, AB, Canada
- Lucio G. Costa Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States; Department of Medicine and Surgery, University of Parma, Parma, Italy
- Wolf-D. Dettbarn Vanderbilt University, Nashville, TN, United States
- Alzbeta Dlabkova Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic
- **Robin B. Doss** Toxicology Department, Breathitt Veterinary Center, Murray State University, Hopkinsville, KY, United States
- Margitta M. Dziwenka Health Sciences Laboratory Animal Services (HSLAS), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; ToxAlta Consulting, Vegreville, AB, Canada
- Jorge Estevez University Miguel Hernandez of Elche, Elche, Spain
- **Tim J. Evans** Veterinary Medical Diagnostic Laboratory, Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
- John K. Fink Department of Neurology, University of Michigan, Ann Arbor, MI, United States

- Swaran J.S. Flora National Institute of Pharmaceutical Education and Research-Raebareli, Transit Campus, Lucknow, India
- **Clement E. Furlong** Department of Medicine (Division of Medical Genetics), University of Washington, Seattle, WA, United States; Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Josef Fusek Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; Faculty of Health Studies, University of Pardubice, Pardubice, Czech Republic
- Jacqueline Garrick Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
- Jeffery M. Gearhart The Henry M. Jackson Foundation for Military Medicine, 711th HPW, Airman Readiness Optimization Branch, Wright-Patterson AFB, Dayton, OH, United States
- **Donald R. Gerecke** Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, United States
- **Dana F. Glass-Mattie** Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Saryu Goel Expert Consultants, Leesburg, VA, United States
- Nikolay Goncharov Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
- Richard K. Gordon US Army Medical Research and Material Command, Ft. Detrick, MD, United States
- Joshua P. Gray Department of Science. US Coast Guard Academy, New London, CT, United States
- **Zoran Grubic** Laboratory for Molecular Neurobiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Kavita Gulati Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
- Ramesh C. Gupta Toxicology Department, Breathitt Veterinary Center, Murray State University, Hopkinsville, KY, United States; Division of Pharmacology & Toxicology, IVRI, Bareilly, Uttar Pradesh, India
- Sharon M. Gwaltney-Brant Veterinary Information Network, Davis, CA, United States

- **Tracey A. Hamilton** Department of Toxicology, US Army Medical Research Institute of Chemical Defense, MD, United States
- Kenneth J. Harris Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States
- **Darryl B. Hood** Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States
- Edward M. Jakubowski Toxicology and Obscurants Division, Combat Capabilities Development Command-Chemical Biological Center, Aberdeen Proving Ground, MD, United States
- Richard Jenkins School of Allied Health Sciences, De Montfort University, Leicester, United Kingdom
- **David A. Jett** National Institutes of Health/National Institute of Neurological Disorders and Stroke, Rockville, MD, United States
- Yuqin Jiao Department of Neuroscience, Colorado State University, Fort Collins, CO, United States
- Harald John Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
- Nathan H. Johnson Department of Laboratory Sciences, University of Arkansas for Medical Sciences, AR, United States
- Milan Jokanović Experta Consulting, Belgrade, Serbia
- Daniel Jun Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense in Brno, Trebesska, Czech Republic; University Hospital Hradec Kralove, Sokolska, Czech Republic
- Georgy Karakashev Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia
- Jiri Kassa Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense in Brno, Trebesska, Czech Republic
- Maja Katalinic Institute for Medical Research and Occupational Health, Zagreb, Croatia
- Kai Kehe Bundeswehr Medical Service Academy, Division F, Medical CBRN Defense, Munich, Germany

- Natalia Khlebnikova Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia
- Urmila P. Kodavanti Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, United States
- **Ekaterina Korf** Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
- Nadezhda Koryagina Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia
- Bojan Kovač Military Medical Academy, Belgrade, Serbia
- Gopala Krishna Expert Consultants, Ellicott City, MD, United States
- Mayur Krishna Expert Consultants, Ellicott City, MD, United States
- Kamil Kuca Philosophical Faculty, University of Hradec Kralove, Hradec Kralove, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- **Dinesh Kumar** FJD-R, IVRI, Rajdhani Enclave, Dehradun, Uttarakhand, India
- Yukio Kuroiwa Japan Poison Information Centre, Tsukuba, Japan
- Sergey Kuznetsov Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
- Kamil Kuča University Hospital Hradec Kralove, Sokolska, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho, Czech Republic; Faculty of Science and Philosophical, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Joseph C. Larsen Strategic Portfolio Development, VenatoRx Pharmaceuticals, PA, United States
- Mikhail Leninskiy Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia
- Jing Liu Preclinical Safety Assessment, Charles River Laboratories, Inc. Reno, NV, United States; Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United State

- Heather Lochotzki Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States
- **Oksana Lockridge** University of Nebraska Medical Center, Eppley Institute, Omaha, NE, United States
- Jordana Lockwich Department of Physical Therapy, University of Evansville, IN, United States
- **Bommanna G. Loganathan** Department of Chemistry and Watershed Studies Institute, Murray State University, Murray, KY, United States
- **Dragana Lončar-Stojiljković** Department of Anesthesiology and Intensive Care, Institute for Cardiovascular Diseases, Dedinje, Belgrade, Serbia
- **Sofya V. Lushchekina** Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russian Federation
- Megan E. Lyman Department of Toxicology, US Army Medical Research Institute of Chemical Defense, MD, United States
- Mark Maguire Department of Neuroscience and Pharmacology, Meharry Medical School, Nashville, TN, United States
- Galina F. Makhaeva Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Russia
- Jitendra K. Malik FJD-R, IVRI, Rajdhani Enclave, Dehradun, Uttarakhand, India
- **David Malinak** University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
- **Tomaz Mars** Laboratory for Molecular Neurobiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Judit Marsillach Department of Medicine (Division of Medical Genetics), University of Washington, Seattle, WA, United States
- María-Rosa Martínez-Larrañaga Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
- **Patrick Masson** Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russian Federation
- Shigeki Masunaga Yokohama National University, Yokohama, Japan
- Monique McCallister Cooperative Extension Program, Tennessee State University, Nashville, TN, United States

- Linda A. McCauley Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States
- **Roger O. McClellan** Toxicology and Human Health Risk Analysis, Albuquerque, NM, United States
- Patrick M. McNutt Department of Toxicology, US Army Medical Research Institute of Chemical Defense, MD, United States
- **Edward C. Meek** Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, MS, United States
- Elaine Merrill Air Force Research Laboratory, 711/HPW RHBBF, Wright-Patterson AFB, OH, United States
- Sylvia Milanez Oak Ridge National Laboratory, Oak Ridge, TN, United States
- **Igor Mindukshev** Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
- Katarina Mis Laboratory for Molecular Neurobiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Jan Misik Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Michael J. Murphy University of Minnesota, St. Croix Trail N, Stillwater, MN, United States
- Kamil Musilek University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
- **Tamie Nakajima** Department of Life and Health Sciences, Chubu University, Kasugai, Japan
- Marian R. Nelson Department of Toxicology, US Army Medical Research Institute of Chemical Defense, MD, United States
- **Eugenie Nepovimova** Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- **Tetsu Okumura** Japan Poison Information Centre, Tsukuba, Japan
- **Jiri Patocka** Department of Radiology and Toxicology, Faculty of Health and Social Studies, University of South Bohemia Ceske Budejovice, Hradec Kralove, Czech Republic
- Katarina Pegan Laboratory for Molecular Neurobiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

- Jaroslav Pejchal Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
- Sergej Pirkmajer Laboratory for Molecular Neurobiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- **René Pita** Chemical Defense Department, Army CBRN Defense School, Madrid, Spain
- Jason Pitt Department of Physical Therapy, University of Evansville, Evansville, IN, United States
- Yiuka Pitt Department of Anesthesia, Methodist Health, KY, United States
- **Gennady E. Platoff, Jr.** National Institutes of Health/ National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
- **Carey N. Pope** Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United State
- Andrey Radilov Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia
- Anu Rahal Division of Animal Health, ICAR-Central Institute for Research on Goats, Mathura, India
- Aramandla Ramesh Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, United States
- Arunabha Ray Department of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Hamdard University, New Delhi, India
- Vladimir Rembovskiy Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia
- Raina Rhoades Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States
- **Rudy J. Richardson** Department of Environmental Health Sciences, Department of Neurology, Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Dragana Ristić Military Medical Academy, Belgrade, Serbia
- Peter J. Robinson The Henry M. Jackson Foundation for Military Medicine, Air Force Research Laboratory, 711/HPW RHBBF, Wright-Patterson AFB, Dayton, OH, United States
- Alejandro Romero Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain

- Chris Ruark The Procter and Gamble Company, Mason, OH, United States
- Harry Salem Columbus, OH, United States
- Natalia Samchenko Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia
- Tetsuo Satoh Japan Poison Information Centre, Tsukuba, Japan
- **Russell E. Savage** Toxicology Education Foundation, Cincinnati, OH, United States
- **Elena Savelieva** Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia
- Lawrence M. Schopfer University of Nebraska Medical Center, Eppley Institute, Omaha, NE, United States
- Alfred M. Sciuto (Retired), Biochemical and Physiology Branch, Analytical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States

Yasuo Seto RIKEN SPring-8 Center, Hyogo, Japan

- Michael P. Shakarjian Environmental Health Science, New York Medical College, School of Health, Sciences and Practice, Valhalla, NY, United States
- Vladimir Shmurak Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
- Adam Skarka University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
- **Ranko Škrbić** Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
- Miguel Sogorb University Miguel Hernandez of Elche, Elche, Spain
- Shardell M. Spriggs National Institutes of Health/ National Institute of Neurological Disorders and Stroke, Rockville, MD, United States
- Sakshi Srivastava National Institute of Pharmaceutical Education and Research-Raebareli, Transit Campus, Lucknow, India
- **Dirk Steinritz** Bundeswehr Medical Service Academy, Division F, Medical CBRN Defense, Munich, Germany

- Miloš P. Stojiljković Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
- Neera Tewari-Singh Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
- Horst Thiermann Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
- Suresh Kumar Thokchom Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
- Larry J. Thompson Thompson Tox, Edwardsville, IL, United States
- Anton Ukolov Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia
- Luis G. Valerio Toxicology Expert, Ellicott City, MD, United States
- M.J. van der Schans TNO, Rijswijk, The Netherlands
- Daya R. Varma Montreal, Canada
- **Eugenio Vilanova** University Miguel Hernandez of Elche, Elche, Spain
- Annetta Watson Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Sanjeeva J. Wijeyesakere Department of Environmental Health Sciences, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
- **Tina Wismer** ASPCA Animal Poison Control Center, Urbana, IL, United States
- **R. Mark Worden** Department of Biomedical Engineering, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
- Franz Worek Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
- Linzzi K. Wright CCDC Chemical Biological Center, Aberdeen Proving Ground, MD, United States
- Hidenori Yamasue Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu city, Japan
- Takemi Yoshida Japan Poison Information Centre, Tsukuba, Japan
- **Toshiharu Yoshioka** Japan Poison Information Centre, Tsukuba, Japan

- **Robert A. Young** Senior Research Staff (Retired), Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- **Snjezana Zaja-Milatovic** PAREXEL International, Alexandria, VA, United States; PAREXEL International, Billerica, MA, United States
- Valeriy Zinchenko Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
- Csaba K. Zoltani Emeritus, ARL, Aberdeen Proving Ground, MD, United States

Introduction

Extremely toxic chemicals have been used for thousands of years in wars, conflicts, and extremist activities by terrorists and dictators in malicious poisonings and executions. One of the earliest forms of chemical warfare agents (CWAs) was natural toxins from plants or animals, which were used to coat arrowheads, commonly referred to as "arrow poisons." Ancient use of some CWAs and riot control agents (RCAs) dates back to the 5th century BCE during the Peloponnesian War, when the Spartans used smoke from burning coal, sulfur, and pitch to temporarily incapacitate and confuse occupants of Athenian strongholds. The Spartans also used bombs made of sulfur and pitch to overcome the enemy. The Romans used irritant clouds to drive out adversaries from hidden dwellings. In the 15th century, Leonardo da Vinci proposed the use of a powder of arsenic sulfide as a chemical weapon.

Modern use of CWAs and RCAs or incapacitating agents dates back to World War I (WWI). With advancements in science and chemistry in the 19th century, the possibility of chemical warfare increased tremendously. The first full-scale use of CWAs began in April 1915 when German troops launched a poison gas attack at Ypres, Belgium, using 168 tons of chlorine gas, killing about 5000 Allied (British, French, and Canadian) soldiers. During WWI, the deployment of CWAs, including toxic gases (chlorine, phosgene, cyanide, and mustard), irritants, and vesicants in massive quantities (about 125,000 tons), resulted in about 90,000 fatalities and 1.3 million nonfatal casualties. The majority of deaths in WWI were a result of exposure to chlorine and phosgene gases. During the Holocaust, the Nazis used carbon monoxide and the insecticide Zyklon-B, containing hydrogen cyanide, to kill several million people in extermination camps. Poison gases were also used during the Warsaw Ghetto Uprising in 1943. Again, in November 1978, religious cult leader Jim Jones murdered over 900 men, women, and children with cyanide.

Prior to, during, and after World War II, anticholinesterase organophosphate (OP) nerve agents/gases were developed in Germany, the United States, the United Kingdom, and Russia, and were produced in large volumes in many other countries. They were maximally produced and stockpiled during the "Cold War" period. These nerve agents have been used in wars and by dictators, extremists, cult leaders, and terrorist groups as chemical weapons of mass destruction (CWMD) on many occasions. In 1980, Iraq attacked Iran, employing mustard and OP nerve gases. During the period of the Iraq and Iran conflict (1980-88), Iran sustained 387 attacks and more than 100,000 troops were victims along with a large number of civilians. Thousands of these victims still suffer from long-term health effects. Shortly after the end of the Iraq-Iran war in 1988, the brutal dictator of the Iraqi regime, Saddam Hussein, used multiple CWAs against the Kurdish minorities in Halabja, killing more than 10% of the town's 50,000 residents. To date, mustards have been used in more than a dozen conflicts, killing and inflicting severe injuries in millions of military personnel and civilians.

During the Persian Gulf War, exposure to OP nerve agents occurred from the destruction of munitions containing 8.5 metric tons of sarin/cyclosarin housed in Bunker 73 at Khamisyah on March 4, 1991, and additional destruction of these nerve agents contained in rockets in a pit at Khamisyah on March 10, 1991. Although exposure levels to nerve agents were too low to produce signs of acute toxicity, military personnel serving in and around the Khamisyah area still suffer from long-term adverse health effects, most notably "Gulf War syndrome." In 1996, about 60,000 veterans of the Persian Gulf War claimed to suffer from "Gulf War syndrome" or "Gulf veterans' illnesses," possibly due to low-level exposure of nerve agents, mustard, pyridostigmine bromide, and pesticides. Exposed veterans had an increased incidence of chronic myelocytic leukemia and increased risk of brain cancer deaths compared to unexposed personnel.

In the mid-1990s, two terrorist attacks by a fanatic religious cult, Aum Shinrikyo (Supreme Truth), known as Aleph since 2000, took place in Japan (Matsumoto, 1994 and Tokyo subway, 1995). In both incidents, the OP nerve agent sarin was used as a CWA. Aum Shinrikyo in Kamikuishiki, Japan, manufactured an estimated 70 tons of sarin. Although the total fatality count involved not more than 20 civilians, injuries were observed in more than 6000 and millions were terrified. These acts of chemical terrorism were unprecedented and the impact

propagated throughout not only Japan, but the entire world. In the past few decades, many incidents have also occurred with biotoxins such as ricin and anthrax. Publicity surrounding frequent recent use due to easy access and copycat crimes increase the possibility of future use of these chemicals and biotoxins, which warrants advancement in emergency preparedness planning at the federal, state, and local government levels.

It is interesting to note that toxic chemicals have been used by governmental authorities against rebels, or civilians. In the 1920s, Britain used chemical weapons in Iraq "as an experiment" against Kurdish rebels seeking independence. Winston Churchill strongly justified the use of "poisoned gas against uncivilized tribes." The Russian OSNAZ forces used an aerosol containing fentanyl anesthetic during the Moscow theater hostage crisis in 2002. RCAs were frequently used in the US in the 1960s to disperse crowds in riot control.

Intoxications or deaths by poisoning of emperors, heads of countries, and other significant individuals have been recorded for a long time. The French Emperor Napoleon Bonaparte was poisoned with a mixture of heavy metals including arsenic and mercury. Napoleon Bonaparte died on May 5, 1821, while he was in exile on the island of St. Helena. In December 2004, during the presidential campaign, the former President of Ukraine, Viktor Yuschenko, was poisoned by a very high dose of 2,3,7,8-tetrachlorodibenzodioxin (TCDD). Ex-lieutenant of the Russian Federal Service, Alexander Litvinenko (1962-2006) died on November 23, 2006, from intoxication with polonium 210. Kim Jong-Nam, a half-brother of North Korean dictator Kim Jong-Un was poisoned with VX nerve agent at Kuala Lumpur airport in Malaysia. He died within 20 min of exposure. On March 4, 2018, the former officer of the Russian Main Intelligence Directorate, Sergey Skripal, and his daughter, Yuliya Skripal, were poisoned with Novichoks in Salisbury, United Kingdom. Following an aggressive antidotal therapy, fortunately both survived.

At present, more than 25 countries and possibly many terrorist groups possess CWAs, while many other countries and terrorist groups are seeking to obtain them, due to their easy access. Some of these agents are stockpiled in enormous quantities and their destruction and remediation are not only expensive but also associated with significant health risks. There is also the possibility of accidental release of CWAs or CWMD at their production sites, as well as during transportation, dissemination, and deployment. The intentional or accidental release of highly toxic chemicals, such as the nerve agent VX (Dugway Proving Ground, Utah, 1968), Agent Orange (Vietnam, 1961–72), PBB (Michigan, USA, 1973), dioxin (Seveso, Italy, 1976), and methyl isocyanate (Bhopal, India, 1984), has caused injuries to more than a million people, and deaths in several thousands. A 1968 accident with VX nerve gas killed more than 6000 sheep in the Skull Valley area of Utah.

After September 11, 2001, the chances are greater than ever before of the use of CWMD by extremist and terrorist groups like Al Qaeda, which presents great risks to humans, domestic animals, and wildlife in many parts of the world. On November 26, 2008, Pakistani Islamic terrorists attacked Mumbai city in India at 10 different sites, including two luxury hotels, a Jewish center, a train station, and hospitals and cafes. Approximately 200 innocent people died and about 300 people were injured by bullets and smoke. It is more likely that these terrorist groups may use toxic industrial chemicals (agents of opportunity) either as such or as a precursor for more deadly CWMD. At present, many countries have established Defense Research Institutes with two major missions: (1) to understand the toxicity profile of CWAs/ CWMDs and (2) to develop strategic plans for prophylactic and therapeutic countermeasures. By the turn of the 21st century, the US established the Department of Homeland Security. Many other countries also developed similar governing branches and agencies at the state and national levels to protect people and property from terrorist attacks. Among chemical, biological, and radiological weapons, the possibility of CWMD is more likely because of their easy access and delivery system. It is important to mention that understanding the toxicity profile of CWAs/ CWMD is very complex, as these chemical compounds are of a diverse nature, and, as a result, treatment becomes very difficult or in some cases impossible.

In the past, many accords, agreements, declarations, documents, protocols, and treaties have been signed at the international level to prohibit the development, production, stockpiling, deployment, and use of CWAs, yet dictators and terrorists produce and/or procure these chemicals to harm or kill enemies, create havoc, and draw national and international attention. In 1907, The Hague Convention outlawed the use of chemical weapons, yet during WWI, many countries used these chemicals. The first international accord on the banning of chemical warfare was agreed upon in Geneva in 1925. Despite the General Protocol, the Japanese used chemical warfare against China in 1930. In 1933, the Chemical Weapon Convention banned the development, possession, and use of CWAs. The document was signed and implemented by more than 100 countries. Yet, during WWI many chemicals of warfare were developed, produced, and used by several countries. In 1993, another global convention banning the production and stockpiling of CWAs was signed by over 100 countries.

The delayed health effects from CWAs used in the Iraq-Iran conflict of the 1980s, sarin subway attacks in Japan, and the First Gulf War in the 1990s are still not

well understood. Recently, the Syrian government stockpiled over 1300 metric tons of chemical agents, including sarin, VX, and sulfur mustard. In August 2013, the Syrian military repeatedly attacked civilians with chemical weapons, including sarin and chlorine. More than 1300 people died and thousands were injured. Again, on April 11–13, 2014, Syrian military forces attacked civilians in Hama province with chlorine gas, killing and injuring an unaccounted number of people. Despite warnings from many countries, the Syrian army continues to use CWAs against civilians. In the present world situation, it is highly likely that these agents will be used in wars, conflicts, terrorist attacks, and with malicious intent. In such scenarios, these extremely toxic agents continuously pose serious threats to humans, animals, and wildlife.

The first edition of this Handbook of Toxicology of Chemical Warfare Agents was prepared in 2009 in order to offer the most comprehensive coverage of every aspect of the deadly toxic chemicals that can be used as CWAs/ CWMD. Since the publication of the first edition of this Handbook, concerns over the use and misuse of CWAs and BWAs have become greater than ever before. The second edition of the Handbook of Toxicology of Chemical Warfare Agents was published in 2015. This third edition of this Handbook is prepared to meet the current challenges facing academicians and lay persons alike. The format employed is user friendly and easy to understand. Standalone chapters on individual chemical and a few biological agents, target organ toxicity, biosensors and biomarkers, risks to man, animals, and wildlife, and prophylactic and therapeutic countermeasures are just a few of the many novel topics covered in this volume. The chapters are enriched with historical background as well as the latest information and up-to-date references. With 73 chapters, this book will serve as a reference source for biologists, toxicologists, pharmacologists, forensic scientists, analytical chemists, local/state/federal officials in the Department of Homeland Security, Department of Defense, Defense Research Establishments, Department of Veterans Affairs, physicians at medical and veterinary emergency care units of hospitals, poison control centers, medical and veterinary diagnostic labs, environmentalists and wildlife interest groups, researchers in the area of nuclear, chemical, and biological warfare agents, and college and university libraries.

Contributors of the chapters in this book are the most qualified scientists in their particular areas of chemical and biological warfare agents and radiation. These scientists are from around the globe and are regarded as authorities in the fields of pharmacology, toxicology, and military medicine. The editor sincerely appreciates each author for his/her dedicated hard work and invaluable contributions to this volume. The editor gratefully acknowledges Robin B. Doss and Denise M. Gupta for their technical assistance. Finally, the editor remains indebted to the editors at Elsevier (Kristi Anderson, Kattie Washington, and Kiruthika Govindaraju) for their immense contributions to this book.

Ramesh C. Gupta

Toxicology Department, Breathitt Veterinary Center, Murray State University, Hopkinsville, KY, United States

Chapter 1

History of toxicology: from killers to healers

Eugenie Nepovimova¹ and Kamil Kuca²

¹Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic, ²Philosophical Faculty, University of Hradec Kralove, Hradec Kralove, Czech Republic

1.1 Introduction

The word toxicology comes from the Greek words toxicon, meaning a poison, and logos, meaning a scientific study. Today, the term toxicology refers to a scientific discipline dealing with the physical-chemical properties of toxic substances, their mechanisms of action on the body, clinical symptoms of intoxications, and the prevention and treatment of various poisonings (Klaassen, 2018). It would not be an exaggeration to claim that toxicology is almost as old as mankind. The earliest mentions of toxic substances and intoxications can be found not only in ancient scientific literature, but also in Greek myths. For example, Homer describes how Odysseus sent a warrior to Egypt to bring back traditional Egyptian poisons used for arms ammunition. In another legend, Hercules soaked his weapons in poison of the sacred Lernean hydra. Last, but not least, the myth of Helen of Troy tells how her captor died because of a wound caused by a poisoned arrow.

1.2 Ancient times

Among the oldest literary sources focused on toxicology is the Ebers Papyrus (1550 BCE) (Fig. 1.1), found in 1872 in Thebes. This 20.5 m long scroll, glued from 108 smaller sheets of papyrus, is also called "The book of preparation of remedies for all parts of the body." The oldest pharmacopoeia of the ancient Egyptians contains more than 900 prescriptions for drugs for the treatment of diseases associated with the gastrointestinal tract, respiratory tract, ear, throat, nose, eye, and skin. Such prescriptions involved substances like opium, arsenic trioxide, aconitine, cyanogenic glycosides, or a herb called Dia-Dia, currently known as mandrake (Mandragora officinalis, Solanaceae) (Hallmann-Mikołajczak, 2004). Ancient Egyptian surgeons used the juice of mandrake root for anesthesia and analgesia. Later, the art of the preparation of hypnotic and painkilling remedies isolated from the mandrake root transferred from Egypt to ancient Greece. During surgical operations, the Greeks used a sponge soaked in mandrake hot juice for anesthesia. Inhalation of the vapors of this juice resulted in a deep sleep of the patient. In the works of the Roman physician Galen, we can find passages telling about large quantities of mandrake tincture that were delivered daily to Rome. Apart from the medicinal use of mandrake, one of the Roman writers mentions mandrake wine used for war purposes, thanks to which the Carthaginians defeated the enemy. The soldiers of ancient Carthage left their camp with the mandrake wine in a conspicuous place. After returning back to the camp, they thereafter easily overpowered their sleeping enemies (Emboden, 1989; Mion, 2017).

Probably the most famous poisoning of the Hellenistic period was the execution of the Greek philosopher Socrates (470–399 BCE), who was condemned to drink the extract from hemlock (*Conium maculatum, Apiaceae*). His death is depicted in detail in Plato's tract *Phaedo* (Hotti and Rischer, 2017; Nepovimova and Kuca, 2019). The description of poisoning corresponds exactly to the present knowledge of coniine, the main component of hemlock.

The period of ancient Greece in world history is known for the flourishing of various scientific disciplines, including medicine. The founder of the most famous school of medicine, that was located in the Greek town of Kos, was the so-called "Father of Medicine" Hippocrates

FIGURE 1.1 Ebers Papyrus found in 1872 in Thebes (https:// commons.wikimedia.org/wiki/File:A_page_from_the_Ebers_Papyrus, _written_circa_1500_B.C._Wellcome_M0008455.jpg).

(460–370 BCE) (Fig. 1.2). Hippocrates rejected using poisons for removing unwanted persons. Therefore in his works, toxic substances are rarely mentioned. Some of his disciples, such as Pliny or Galen, followed the same principle, describing in their works only the antidotes. Such an informal rule has been preserved until the modern era, when young doctors, by taking the Hippocratic Oath, promise neither to administer a poison to anybody when asked to do so, nor to suggest such a course (Emery, 2013).

The ancient scientists abounded in a deep knowledge of various poisons. Usually they gained such knowledge from the observation of accidental poisonings, as well as from intentional exposure to poisons. In contrast to Eastern countries, in ancient Greece and subsequently Rome, toxic substances were quite often used as a means of killing convicts. Thus the ancient Greek poet and physician Nikander of Kolophon in his poem Theriaca describes clinical symptoms of intoxications by various animal toxins. In Nikander's further work Alexipharmaca that has survived to the present time, we find descriptions of the characteristics of plant poisons as well as methods for their treatment. As very effective therapeutic approaches he recommended invoking vomiting by drinking warm flaxseed oil or irritating the throat by simple devices made from paper or bird feathers. The majority of the knowledge reported by Nikander was based on his own experiments on convicted criminals. In addition,

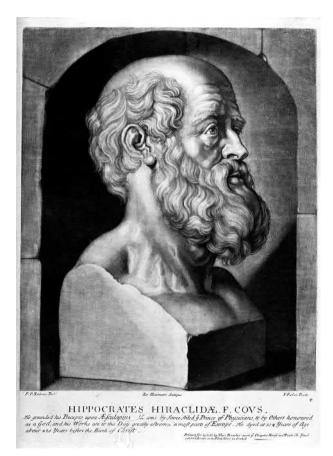


FIGURE 1.2 Father of Medicine, Hippocrates (https://commons.wikimedia.org/wiki/File:A_marble_bust_said_to_represent_Hippocrates_by_J. _Faber._Wellcome_M0017663.jpg).

Nikander was by all accounts the first to describe the signs of lead poisoning (Clauss, 2012). In ancient Rome, lead was widely used in everyday life. For example, lead plates were added to wine to improve its quality. At that time, lead was very expensive and only rich people could afford it. Therefore it is not surprising that chronic lead poisoning became a scourge of the ancient Roman aristocracy (Hernberg, 2000).

From the point of view of the history of toxicology as a medical discipline, not only were poisoners and crimes committed by means of poisons important, but also searching for potent antidotes. Especially in ancient times, there was an obsession to discover a universal antidote, able to protect against most, if not all, poisons. Quite instructive is the story of King Mithridates VI of Pontus (132–63 BCE) (Fig. 1.3). Mithridates was terribly afraid of poisons, therefore, he began to study toxicology in depth—he observed the effects of various poisons on people (mostly convicts or slaves), designed antidotes, and subsequently tested their efficacy on the same groups of people. Finally, he managed to prepare a universal antidote consisting of 36 components. Such

FIGURE 1.3 King Mithridates VI of Pontus (https://commons.wikimedia.org/wiki/File:Mithridates_VI_Louvre_white_background.jpg).

an antidote even received a special designation in the Roman Pharmacopoeia—*mithridaticum*. The reputation of this antidote was excellent. It was even considered the best antidote of those times, capable of preventing the actions of aconitine, snake, scorpion, or spider toxins, etc. King Mithridates believed in his recipe so much that he decided to take this remedy daily. Acquired resistance, however, played a crucial role in his life. In old age, Mithridates attempted to commit suicide by taking a large dose of poison, but survived. Therefore he was forced to use other means (a sword) to finish this act. Based on this legend, the term *mithridatism* has been adopted into the modern toxicology indicating the increased resistance of an individual to poisons (Griffin, 1995; Valle et al., 2012, 2009).

The last wife of the Roman Emperor Claudius (10 BCE–CE 54) was his niece Agrippina the Younger (CE 15–59) (Fig. 1.4). Soon after their marriage, she decided to get rid of her husband as well as his first-born son Britannicus to make her own son, Nero, the emperor (Aveline, 2004). First, she poisoned Claudius using the toxin muscarine present in toxic mushrooms, fly agaric (*Amanita muscaria, Amanitaceae*), in one of his meals. The Emperor's physician, Aesculapius, tried to evoke vomiting in Claudius. However, Agrippina foresaw such a turn of events and had prepared in advance a poisoned

feather. This feather was in all probability the product of the famous ancient poisoner-Locusta (Marmion and Wiedemann, 2002). After Claudius' death, Nero (CE 37-68) (Fig. 1.4) became the Emperor of Rome. Despite this, Nero's stepbrother Britannicus still constituted a threat to him (Shotter, 2008). Similarly to his mother Agrippina, Nero also asked for the help of the poisoner Locusta. In this case, she gave him a poison that was added to Britannicus' wine. After removal of his competitor, 17-year-old Nero became the only possible Emperor of Rome. Thus he decided to reward Locusta by an extraordinary right-to educate her own students. This story was one of many examples in world history where poisons were used for criminal purposes. Therefore in 81 BCE, the Roman dictator Sulla was forced to pass a special law ordering punishment, including the death penalty, for those who used poisonous substances with criminal intent (Telford, 2014).

Dioscorides (CE 40–90), the physician of the Roman Emperor Nero, in his tract *De Materia Medica* (Fig. 1.5) classified poisons based on their origin to plant, animal, and mineral. Additionally, in *De Materia Medica* we may find the methods of identification of several poisons. Such identification occurred in the scientific literature for the first time. For the next 15 centuries, Dioscorides' work was considered the "Holy Bible" of toxicology (Staub et al., 2016).

1.3 The Middle Ages

In medieval Europe, poisons were freely available in pharmacies. The first attempt to stop such a trade in poisons was made in Italy. In 1365 in Siena, apothecaries were forbidden from selling arsenic and mercury to people unknown to them. In France, a ban on toxic substances was issued in 1662, whereas in Russia this took place only in 1773 (Nepovimova and Kuca, 2019). Despite these restrictions, the question of searching for novel more potent poisons and corresponding antidotes remained relevant.

In Europe, the search for novel antidotes as well as their use in the prevention and treatment of poisoning continued until the beginning of the 18th century, and in Turkey until the beginning of the 20th century. The ancient works of Galen *De Theriaca, ad Pisonem, De Usu Thericae, ad Pamphilianum,* and *De Antidotis,* mainly inspired by the achievements of King Mithridates, were within the period of the Renaissance and the Middle Ages enriched with the knowledge of the Jewish physician and philosopher Moses Maimonides (1135–1204) (Fig. 1.6). His tract focused on poisons and antidotes and was published in Arabic in Cordoba (Spain) in 1198 (Rosner, 2000). This literary work constitutes a noticeable milestone in the history of toxicology, outlining the 1000-year

FIGURE 1.4 Agrippina the Younger and her son Nero (https://commons.wikimedia.org/wiki/File:Ner% C3%B3n_y_Agripina.jpg).

experience of treating various poisonings and also described the clinical picture of intoxication by poisons that were previously unknown. The first part of the tract describes intoxications as well as poisons of animal origin (bites by enraged dogs, wasps, snakes, spiders, scorpions, and other animals). As historically the first attempt, Maimonides distinguished the neurotoxic and hematotoxic symptoms of intoxication. In the second part, he focused on mineral and plant poisons. For instance, in the case of *Atropa belladonna (Solanaceae)* intoxication, Maimonides reported skin redness and some kind of "excitement" of the patient. As a therapeutic tool he recommended vomiting evoked by warm milk, vegetable oil, etc. (Rosner, 1968).

None of the noble families left such a significant imprint in the history of Italy and the whole world as the Spanish "holy family" of Borgia that was sadly famous for numerous murders committed by means of poisons. These Spaniards twice occupied the throne of Saint Peter-firstly as Pope Callixtus III and subsequently as Pope Alexander VI (Hibbert, 2009). "Cantarella" was the name of the poison used by the Borgias. Allegedly, Cesare Borgia (1474–1507) (Fig. 1.7), the son of the Pope Alexander VI (1431-1503) (Fig. 1.7), received the recipe for this poison from his mother. Apparently, the mystic poison contained arsenic, salts of copper, and phosphorus. According to the literary sources, the papal alchemists prepared such toxic mixtures that a drop was enough to kill a bull. Not only the poison, but also the tools containing such poison, were unique. Cesare Borgia was the owner of a ring with a huge ruby that bore the name the "Flame of Borgia." Several times he pronounced that this ring had repeatedly saved his life. Presumably, under the gemstone there was a skillfully made secret container with a poison. Cesare poured this poison into the drink of those who dared to encroach on

FIGURE 1.5 A page from Dioscorides' work *De Materia Medica* (https://en.wikipedia.org/ wiki/De_Materia_Medica#/media/ File:NaplesDioscuridesMandrake. jpg).

his life. The Pope himself also had a gold ring with a secret. In the process of shaking hands, a small thorn appeared on the inner side of the ring which slightly scratched the skin of the sentenced person and released a deadly drop of poison (Poole, 2010). Finally, destiny punished Pope Alexander VI, who accidentally drank poisoned wine that was intended for his victim (Hibbert, 2009).

Despite the wide use of poisons within the struggle for power, the development of toxicology in European countries in the Middle Ages was significantly hampered by the influence of religious ideologies. Medieval monks followed the principle "Like is cured by like" (*Similia similibus curantur*) (Zebroski, 2015). The exception was Swiss physician, alchemist, botanist, astrologer, and occultist of the era of the German Renaissance, Philippus Aureolus Theophrastus Bombastus von Hohenheim (1492–1541), also known as Paracelsus (Fig. 1.8). He chose this pseudonym for himself and it means "more than Celsus." Aulus Cornelius Celsus was a Roman naturalist, living more than one and half thousand years before Paracelsus (Grell, 1998). Paracelsus' groundbreaking contribution to life sciences consisted mainly in the interconnection between chemistry and medicine. Therefore it is not surprising that his life credo was: "The real purpose of chemistry is not to make gold, but to make remedies!" Paracelsus has been also considered the Father of Toxicology, since in one of his books he stated: "Dose makes the poison" (Dosis facit venenum). Thus substances that are taken to be toxic could be harmless in small doses, whereas normally harmless substances could be fatal if consumed excessively. This postulate still belongs among the basic pillars of modern toxicology. He was also known for his revolutionary views on the observation of nature and man, created by himself instead of simply quoting ancient texts. Last but not least, he gave the designation to the chemical element zinc and noted that certain diseases stem from the mind of the patient (Paracelsus, 1999).

With regard to poisonings, medieval Italy and later France were considered the most powerful countries in the world. The French Queen, Catherine de' Medici (1519–89) (Fig. 1.9), also known as the Queen-Poisoner, perfectly mastered the Italian technique of poisoning to achieve her intended political goals (Kruse, 2003). Alexandre Dumas, in his historical novel "Queen Margot," wrote that Queen Catherine was involved in the death of her political rival Jeanne d'Albret by giving her an insidious present—poisoned gloves (Dumas, 1994). Within the

FIGURE 1.6 Jewish physician and philosopher Moses Maimonides (https://he.wikipedia.org/wiki/%D7%A7%D7%95%D7%91%D7%A5: Maimonides-2.jpg).

same novel, Dumas also describes the fatal mistake of the Queen, who at the end of her life decided to remove the son of poisoned Jeanne d'Albret—Henry. She commanded he be given a poisoned book dealing with the art of hunting. Unfortunately, this book got into the wrong hands, to her own son King Charles IX. Apart from removing the competitors within the battle for the royal throne, Queen Catherine was also known for experiments with various toxic mixtures that she conducted on poor and sick people. Catherine de' Medici carefully reported each experiment, recording the velocity of the toxic response (onset of the

FIGURE 1.8 Philippus Aureolus Theophrastus Bombastus von Hohenheim, also known as Paracelsus (https://commons.wikimedia.org/ wiki/File:Aureolus_Theophrastus_Bombastus_von_Hohenheim_ (Paracelsus)._Wellcome_V0004452.jpg).

FIGURE 1.7 The Pope Alexander VI (right) and his son Cesare Borgia (left) (https://www.flickr. com/photos/hinkelstone/38111166521; https:// www.flickr.com/photos/eriktorner/32671151065).

FIGURE 1.9 French Queen Catherine de' Medici (https://commons. wikimedia.org/wiki/File:Catherine-de-medici.jpg).

toxic effect), the efficacy of the toxic mixture, the strength of the toxic effect in various parts of the body (organ specificity, site of action), and the clinical picture of intoxication. Thus despite the poor reputation of the Queen-Poisoner, she can be considered the first experimental toxicologist in history (Whyte, 2001).

The development of industry in the 16th century gave rise to several highly specialized works dealing with occupational diseases. In 1556 Georgius Agricola (1494–1555), a German doctor and metallurgist, in his work "On Mining and Metallurgy" described severe occupational diseases of miners (Weber, 2002). The first real systematic contribution to occupational toxicology was made by Italian physician Bernardino Ramazzini (1633–1714). In his work "Diseases of the workers," published in 1700, where he for the first time described the diseases of workers in almost 70 professions, such as miners, gilders, chemists, plasterers, blacksmiths, etc. (Dhungat, 2017).

The Golden Age of King Louis XIV of France was not associated just with the development of the country, but also with several famous cases of poisoners—Marquis de Brinvilliers, Catherine Monvoisin, and others. Catherine Monvoisin (1640–80) (Fig. 1.10) was among the most popular poison suppliers of that time. A frequent client of Madame Monvoisin was also a hot favorite of the Sun King—Marquis de Montespan. Due to the fact that poisons

FIGURE 1.10 French poisoner Catherine Monvoisin (https://fr.wikipedia.org/wiki/Fichier:Catherine_Deshayes_(Monvoisin,_dite_%C2% ABLa_Voisin%C2%BB)_1680.jpg).

were perceived as the simplest means of solving problems among the aristocratic families, King Louis XIV issued a special law, where the definition of poison was given as: "Everything that can cause a rapid death or slowly destroy human health, regardless of the fact whether it is a simple or complex substance, must be considered as a poison." To complete the story of French poisoners, Marquis de Brinvilliers, Catherine Monvoisin, and their associates were executed. Marquis de Montespan, a mother of eight illegitimate children of Louis XIV, was sent to exile in the Netherlands (Somerset, 2004).

In the late 17th–early 18th centuries, Neapolitan poisoner Teophania, more commonly known as Tophana, operated in Europe. Apparently, this Italian was responsible for the deaths of more than 600 people. Tophana was an inventor of an original product called *Aqua Tophana*. Aqua Tophana had a water-like, odorless, and colorless consistency. Allegedly, five or six drops of this magical water was enough to kill a man. The onset of the toxic effect was gradual—painless, without any sign of fever or inflammation. Death occurred due to weakness, loss of appetite, and incessant thirst. Among the most frequent customers of Aqua Tophana were women who desired to get rid of their husbands. The exact content of Aqua Tophana remains unknown. According to one source, it was made of arsenic acid with an addition of *Herba cymbalariae* (*Scrophulariaceae*). Other sources claim that the main component of Aqua Tophana was lead acetate solution. Seniora Tophana was eventually sentenced to death and in 1709 burnt to death (Nepovimova and Kuca, 2019; Wexler, 2017).

FIGURE 1.11 The founder of toxicology Mathieu Orfila (https://commons.wikimedia.org/wiki/File:Pierre_Matthieu_Joseph_Bonaventure_Orfila. _Lithograph_by_Z._Wellcome_V0004368.jpg).

At the beginning of the 19th century, the most prominent figure in toxicology was considered to be the Spanish physician Mathieu Orfila (1787-1853) (Fig. 1.11). He was the first to separate toxicology from pharmacology, clinical and forensic medicine, giving toxicology the status of an independent scientific discipline. At the age of 27, Orfila wrote a book "Treatise on poisonings," that was later published in five editions. Several years later, another work by Orfila's "A treatise on the remedies to be employed in cases of poisoning and apparent death: including the means of detecting poisons, of distinguishing real from apparent death, and of ascertaining the adulteration of wines" met with great interest from the scientific community. In his writings, the Spanish physician classified all known toxic substances, described the clinical picture of intoxications typical for various classes of poisons, and also recommended chemical methods for poison identification in biological matrices (Myers, 1961). Based on his works, it became obligatory to conduct a forensic chemical analysis for official confirmation of poisoning as the cause of the death. In addition, Mathieu Orfila gave the most general definition of poison that remains widely used "Poison is a substance, that by coming in contact with a living organism in a small amount, destroys its health and subsequently life" (Hadengue, 1987).

The 1850s could be characterized as the time of the formation of modern toxicology. The decisive influence belonged to the successes achieved in analytical chemistry and experimental analysis that won its place in theoretical medicine (Oser, 1987). The fundamental works of French scientists Francois Magendie (1783–1855) (Fig. 1.12) and his student Claude Bernard (1813–78) (Fig. 1.12) dealing with the mechanism of action of strychnine, cyanide, curare, carbon monoxide, and other poisons, served to strengthen the role of toxicology among the other scientific disciplines (Bloch, 1989). Numerous methods of

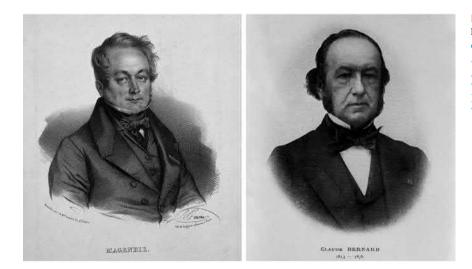


FIGURE 1.12 Francois Magendie (left) and his student Claude Bernard (right) (https:// commons.wikimedia.org/wiki/File:Fran%C3% A7ois_Magendie._Lithograph_by_N._E._Maurin. _Wellcome_V0003781.jpg; https://commons. wikimedia.org/wiki/File:Portrait_of_Claude_ Bernard_(1813-1878),_French_physiologist_ Wellcome_M0000114.jpg).

particular physiological function evaluation, such as respiration and neuromuscular conduction, proposed by Claude Bernard were preserved in experimental practice for more than 100 years. Claude Bernard was also an author of the brilliant idea that toxic substances can serve as an excellent tool in physiology research. He said: "These substances could be considered as real life reagents that are carried by the blood stream to all points of the body, act on some tissues and finally lead to the death. The mechanism of death points to the physiological role of particular tissues on which they act." This finding became a significant milestone in general physiology (Breathnach, 2014). Additionally, within his experiments with curare, Claude Bernard revealed that this poison paralyzes voluntary muscles with no effect on impulse conduction in the motor nerves as well as on contractility of the muscles. This observation led to discovery of the special sensitivity of the neuromuscular junction to curare. Several years later, these investigations served as a strong argument for the development of a theory of the neurochemical basis of excitatory transmission within the nervous system (Gomes et al., 2014).

For almost two centuries after the death of the French Emperor Napoleon Bonaparte (1769–1821) (Fig. 1.13). his demise has remained a hot topic, and the scientists continue to investigate this case. After he was sent into exile in 1820, the health status of the Corsician sharply deteriorated. Throughout his stay on the island of St. Helen, he complained about severe stomachache, weakness, and frequent attacks of nausea. Finally, on May 5, 1821, he died. According to the findings of an international group of scientists, Napoleon Bonaparte passed away due to progressive stomach cancer with metastases in the lymph nodes (Leys, 2015). However, according to conspirologists, the symptoms of the ex-Emperor's death more resemble arsenic poisoning. Moreover, recent analysis of his hair has shown an almost 40-fold increase in arsenic concentration in comparison to normal people of that time. Several theories have been formulated, explaining how Napoleon Bonaparte could have been poisoned. Among the most curious being poisonous wallpaper, or the theory claiming that Napoleon was poisoned by a mixture of heavy metals (Hindmarsh and Corso, 1998). The first hypothesis builds on the fact that adding green arsenic-based pigment into wallpaper was quite common at that time. From a chemical point of view this pigment, called Paris Green, was copper(II) acetoarsenite. The humid weather of the island promoted the proliferation of microscopic fungi which could convert inorganic arsenic in Paris Green to an organic form. It is widely recognized that organic forms of heavy metals more easily cross the biological barriers compared to their corresponding inorganic salts. Therefore this theory assumes that Napoleon was intoxicated in particular by these organic forms of

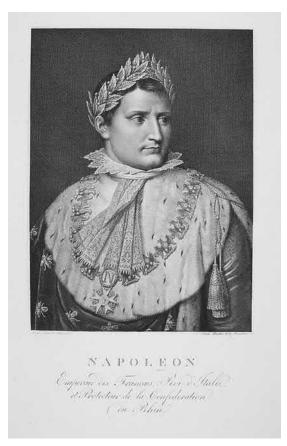


FIGURE 1.13 French Emperor Napoleon Bonaparte (https://thorvaldsensmuseum.dk/en/collections/work/E876/zoom).

arsenic. The latter theory already assumes foreign blame. According to this hypothesis, low doses of arsenic were added to Napoleon's food and drinks. The clinical picture of chronic intoxication with arsenic usually manifests as severe pain in the stomach. To relieve vomiting in Napoleon, the doctors administered him potassium tartarate of antimony. In addition to this remedy, his physicians prescribed him calomel and orgeat to combat constipation and thirst, which represent other characteristic symptoms of arsenic intoxication. The main component of orgeat is bitter almond oil, whereas calomel is a trivial name for mercury dichloride (Hg₂Cl₂). Hydrolyses of orgeat to hydrocyanic acid in the acidic gastric environment, together with calomel, gives rise to mercury cyanide. Therefore either arsenic, hydrocyanic acid, antimony, mercury cyanide, or a mixture of some or all of them could be one of the causes of Napoleon's death (Mari et al., 2004).

1.4 The modern era

The Industrial Revolution in the middle of the 19th century allowed the synthesis of natural toxins in unlimited

quantity. Moreover, novel entities derived from natural compounds were prepared. Due to all the abovementioned events, poisons were gradually losing their mystery (Nepovimova and Kuca, 2019). At the beginning of the 20th century, the development of toxicology was strongly influenced by progress in the chemical industry. From the perspective of chemical production, Germany was among the most developed countries. Within several branches of the chemical industry, German chemists even maintained a monopoly position, for example, in dye production. One of the most famous German chemists of the time was Fritz Haber (1868–1934) (Fig. 1.14), who discovered a method of ammonia synthesis from atmospheric nitrogen. Such an invention was of high importance for the large-scale synthesis of fertilizers and explosives. Therefore in 1918, Fritz Haber was awarded the Nobel Prize (Manchester, 2002). In the history of toxicology, F. Haber is better known for another reason, he is called the "Father of Chemical Weapons" due to his longlasting reasearch in the field of weaponization of chlorine and other toxic gases in World War I (WWI). In addition, it was Haber's suggestion to use chlorine in the first chemical attack by Germans against British/French troops on April 22, 1915, near the town of Ypres (Belgium) (Charles, 2005). Subsequently, the Allies (France, Great Britain, United States, and Russia) also started to use chemicals for military purposes. During the 4 years of WWI (1914–18), about 1.3 million people were affected

FIGURE 1.14 The "Father of Chemical Weapons" Fritz Haber (https:// commons.wikimedia.org/wiki/File:Fritz_haber_1929_PI_29-C-0097.jpg).

by chemical weapons on both sides of the conflict, of which more than 100,000 died (Tucker, 2006).

On September 7, 1978, Bulgarian dissident Georgi Markov (1929-78), after an evening broadcast on the BBC, went around a crowded bus stop on the Waterloo Bridge in London and suddenly felt a slight sting in his leg. Looking around, the Bulgarian noticed a man picking up an umbrella from the ground. The stranger spoke with a strong accent, apologizing, and then caught a taxi and left. Due to a high fever, acute stomachache, and severe diarrhea, Markov was hospitalized that night, and a few days later he died. Fortunately, he managed to talk about the incident with the umbrella. Doctors, who performed an autopsy, found a small iridium-platinum capsule in the leg of the dissident. According to the findings of further investigations, this capsule with a diameter of less than 2 mm was filled with ricin (Crompton and Gall, 1980). Ricin is a plant toxin obtainable from the castor bean (Ricinus communis, Euphorbiaceae). By all accounts, Georgi Markov was shot by the Bulgarian special services because of his active criticism of the communist regime of Todor Zhivkov (Papaloucas et al., 2008). The killing device was an umbrella endowed with a hidden sting that shot small capsules filled with toxic ricin.

On March 20, 1995, the nerve agent sarin was used at several subway stations in Tokyo (Japan). About 10,000 people were affected, with 5000 seriously intoxicated and 12 people died. Sarin was used by the terrorists of the sect Aum Shinrikyo. They stored the nerve agent in plastic bags, which were subsequently punctured by an umbrella with a sharpened tip. The terrorists managed to puncture 10 of 11 bags. Fortunately, due to the low purity of the sarin (approximetely 30%) and the subway ventilation system, the loss of life was not as high as it might have been (Okumura et al., 2005). The question that still needs to be answered is: "Why did the sect select sarin?" There are plenty of possibilities why: (1) inspiration from the Gulf War; (2) simple synthesis; (3) starting compounds availability; and (4) low production costs (Nozaki and Aikawa, 1995). Many sect members who participated in the sarin production process claimed that they were unaware of its toxic effects. However, the handbook "Magic song of sarin," found in one of the buildings used by Aum Shinrikyo, apart from the instructions of how to synthesize the nerve agent, gave a description of its lethal effects. Therefore it was obvious that the members of the sect had lied (Kimura, 2002). The terrorist use of sarin in the Tokyo subway pointed out the serious risk of misuse of chemical warfare agents for nonmilitary purposes and highlighted the need for the development of appropriate protection including antidotal therapy.

The former President of Ukraine, Viktor Yushchenko (born 1954) (Fig. 1.15), was intoxicated by a very high dose of 2,3,7,8-tetrachlorodibenzodioxin (TCDD) in