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v

Developmental toxicology is a unique, integrated field, containing concepts from develop-
mental biology, embryology, nutrition, genetics, cellular and molecular biology, and gen-
eral toxicology. Assimilation of these diverse disciplines provides a specific means to evaluate 
alterations to normal developmental patterning and signaling and to assess mechanisms of 
congenital malformations, changes to neurobehavioral status, and increased embryonic 
death. Amazingly, nearly approximately 3% of all live births manifest with a structural or 
functional birth defect, but this statistic, although alarming, may likely be an underestima-
tion of the overarching developmental problem at hand as many in utero effects may mani-
fest later in life, supporting the fetal basis of disease. The connection between in utero 
exposures and postnatal, adult health consequences has become an emphasized focus to 
thereby further our understanding of embryonic and fetal exposure effects. These studies 
become paramount to more fully understanding other causes of many diseases that are 
more prevalent in later life, while not specifically apparent at birth. As the notion of the fetal 
basis of disease is developed, characterizing contributing developmental factors and mecha-
nisms as a result of prenatal exposure becomes increasingly important.

Several methodological approaches can be extremely informative for our understanding 
of developmental toxicant mechanisms, characterization of developmental outcomes, and 
development of potential interventions that are clinically relevant. Due to the unique nature 
of development itself, these approaches can be modified to capture specific aspects of devel-
opment, including proliferation, differentiation, apoptosis, migration, and morphology. 
Many of these approaches are found in this volume. We regret that not all developmental 
toxicology methods are fully represented here but feel that many of the popular, staple and 
newer, state-of-the-art approaches found in this volume will be beneficial and provide read-
ers with techniques for tackling important developmental toxicology questions. Here, we 
focus on numerous cellular models (induced pluripotent stem cells, neural crest culture, 
etc.), some less frequently used but important animal models (chick, zebrafish), in vitro 
approaches using whole embryos (rat, mouse, and rabbit), and specific outcome method-
ologies to assess changes on the morphological to molecular level. We anticipate that as our 
knowledge of development and developmental toxicology progresses, new, exciting meth-
ods will emerge to support more investigation into specific mechanisms and outcomes with 
developmental exposures.

Provo, UT, USA Jason M. Hansen 
Kingston, ON, Canada  Louise M. Winn 
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Chapter 1

In Vitro Models in Developmental Toxicology

Louise M. Winn

Abstract

Developmental toxicity associated with exposure to exogenous compounds such as drugs and environ-
mental chemicals can be assessed using a variety of different in vitro models, each with their own advan-
tages and disadvantages. These models include cultured cells (Chapters 3–6), organ and tissue cultures 
(Chapters 7 and 8), and whole embryo cultures (Chapters 13–15) and typically support the guiding prin-
ciples of the three Rs: replace, reduce, and refine. These models can be used in early chemical screens and 
have helped further our understanding into the mechanisms associated with developmental toxicity follow-
ing exposure to many chemicals.

Key words Cell culture, Tissue culture, Organ culture, Whole embryo culture, In vitro methods, 
Development, Toxicant

1 Introduction

In normal embryonic development, cells proliferate extensively, 
differentiate, and undergo cell death, all in a tightly controlled, 
spatial, temporal, and tissue-specific fashion. Therefore, exposures 
to drugs or environmental chemicals that result in alterations in 
these processes during development have the potential to cause 
developmental toxicity. This toxicity can range from embryo death 
to abnormal development resulting in structural defects such as 
cleft lip and palate and biochemical and functional malformations, 
including long-term neurological deficits. There are several in vitro 
models that can be used to assess this toxicity, each with their own 
advantages and disadvantages, which should be carefully consid-
ered when deciding how to approach answering specific experi-
mental questions [1, 2]. These models all include some type of 
biological constituent that can undergo physiological activities that 
allows the investigator to study processes such as differentiation, 
proliferation, and cell death and include cultured cells (Chapters 
3–6), organ and tissue cultures (Chapters 7 and 8), and whole 
embryo cultures (Chapters 13–15).

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9182-2_1&domain=pdf
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Generally speaking, in vitro studies are less expensive, require 
less time to complete, can be more flexible in terms of avenues of 
investigation, and require the use of fewer animals when compared 
to in vivo animal studies. In vitro models also impart the investiga-
tor the advantage of having precise control over toxicant exposure 
conditions, including concentration, timing of exposure, and 
length of exposure. Timing of exposure can be significant given 
the dynamic nature of mammalian development and the known 
principle of critical periods of susceptibility in teratogenesis. 
Therefore, overall in  vitro models usually support the guiding 
principles of the three Rs: replace, reduce, and refine [3]. In addi-
tion, in vitro models break down the physiological complexity of 
the whole system, which has its advantages but also a clear disad-
vantage of not replicating the interrelationships that exist in the 
body between the various organs and tissues. Furthermore, these 
models also remove any maternal factors, including nutritional and 
metabolic pathways that may influence toxicity outcome. Therefore, 
choice of what specific in vitro model to adopt will depend on the 
goal of the study and whether the model includes the necessary 
molecular pathways and biological processes to provide meaning-
ful answers.

2 Cell Cultures

Elucidating the mechanisms governing developmental toxicity can 
be aided by the use of in vitro cell culture models. One example is 
the use of cultured primary murine embryonic stem cells, which 
are derived from the inner cells of the blastocyte and therefore 
pluripotent. This gives the investigator the ability to manipulate 
the cells so that they differentiate into a variety of different cell 
types depending upon the components of the culture media, for 
example, cardiomyocytes or osteoblasts [4–6]. The impacts of 
exposure to a potential developmental toxicant can then be assessed 
with respect to effects on differentiation and cell death, including 
the molecular and biochemical pathways governing these pro-
cesses. In addition, cell-specific toxicity can also be evaluated which 
can be highly relevant given the known cell-specific susceptibility 
versus resistance to various toxicants. In these types of investiga-
tions, species differences in the way a particular toxicant is metabo-
lized can be overcome by including the appropriate metabolizing 
system or specific metabolites themselves.

Stem cells can also be generated through the reprogramming 
of somatic cells into pluripotent stem cells (Chapter 4). For exam-
ple, Palmer et al. [7] have developed a human-induced pluripotent 
stem (iPS) cell-based assay to assess changes in metabolism to pre-
dict the developmental toxicity potential of a given toxicant (dev-
TOX quickPredict). This assay specifically determines changes in 

2.1 Embryonic Stem 
Cell Cultures

Louise M. Winn



3

the levels ornithine and cystine, which are metabolic biomarkers, 
over a broad dose-response range [7].

A variety of different embryonic primary cells can also be cultured 
including neural crest cells (Chapter 5). These cells can also be 
induced to differentiate, proliferate, and migrate to form impor-
tant embryonic cellular structures including neurons and glia [8, 
9]. Isolated embryonic fibroblasts (Chapter 3), cardiomyocytes, 
and dorsal root ganglia are some other examples of primary cell 
cultures that have been widely used to study developmental toxic-
ity. We have also isolated primary liver cells from gestational day 14 
fetal mice to specifically study mechanisms of developmental hema-
totoxicity induced by toxicants such as benzene [10]. The fetal 
liver is of interest because, during gestational days 12–14.5 in the 
mouse, the liver contains the highest population of hematopoietic 
stem cells and is the primary site of hematopoiesis prior to the site 
of hematopoiesis switching to the spleen followed by the bone 
marrow as the fetus matures [11].

The use of cultured immortalized cells in vitro can also be a benefi-
cial in vitro tool. For example, we have used the immortalized cell 
line P19 in our laboratory to study the mechanisms of toxicity of 
the anticonvulsant drug valproic acid [12]. The P19 cell line is 
derived from a gestational day 7.5 mouse embryo transplanted 
from the uterus into the testes of another mouse resulting in the 
formation of an embryonal carcinoma [13]. These pluripotent P19 
cells have been used as an early model of embryonic development 
when cultured in their undifferentiated state, although they can be 
induced chemically to differentiate into cardiovascular and neuro-
nal cell types [13]. P19 cells have been used extensively in develop-
mental toxicology studies, especially in the context of valproic 
acid-mediated transcriptional alterations [14, 15]. Previous studies 
have evaluated both short- (<6 h) and long-term (24 h) valproic 
acid exposures in P19 cells and mouse embryos and have demon-
strated a high correlation of gene expression changes using micro-
array analysis [14, 15]. Furthermore, many of the genes similarly 
altered in both P19 cells and mouse embryos following valproic 
acid exposure have also been implicated in neural tube defects. 
Although there may be concerns over the use of embryonal carci-
noma cells in terms of relevance to embryonic development, a sub-
sequent study has demonstrated a high concordance between the 
observed transcriptional changes following valproic acid exposure 
in mouse embryonic stem cells, P19 cells, and mouse embryos 
[16]. It is however important to recognize the limitations of using 
immortalized cells given that they typically lack significant bio-
transformation capacity and cell population diversity and acquire 
mutations resulting from immortalization [17].

2.2 Primary Cell 
Cultures

2.3 Immortalized 
Cell Cultures

In Vitro Models
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3 Micromass and Organ Cultures

Micromass culture systems from species such as mouse, rat, and 
chicken can be created by seeding a high density of primary cells 
isolated from various embryonic structures such as limbs (Chapter 
6), brain, and palate during the early stages of gestation. During 
culture the cells will organize themselves and come together and 
form micromasses. The effects of potential developmental toxi-
cants can then be evaluated for their impact on a variety of end-
points such as cell-to-cell communication, cell division, 
differentiation, and so on.

Additionally, whole embryonic organs such as limbs (Chapter 
7), ovaries (Chapter 8), palate, and eyes can be microdissected 
from several species and grown in culture. Since these are intact 
systems that grow and differentiate to a significant degree of intri-
cacy, they are considered to embody an intermediate level of com-
plexity (Chapter 7). Once isolated these cultures can be exposed to 
potential toxicants, either as a single or repeated dose, for various 
lengths of time depending upon the endpoints assessed in the 
study. Endpoints can include morphological considerations and 
biochemical measurements including impacts on mRNA and pro-
tein expression.

4 Whole Embryo Cultures

Rodent embryo cultures (Chapters 13 and 14) first developed in 
the new laboratory in 1978 have been routinely used in several 
laboratories to study the mechanism of action of various develop-
mental toxicants [18–22]. This approach has also expanded to 
include rabbit embryo culture (Chapter 15) and chick embryo cul-
tures. These models offer several advantages over in vivo studies 
including (1) the removal of potential maternal and paternal con-
founding factors; (2) visualization and selection of embryos that 
are within a defined developmental stage, which may decrease vari-
ability seen in vivo where littermates may be at different stages of 
development; and (3) the ability to have direct control over chemi-
cal concentrations, including toxicants, probes, and potential 
embryoprotective additives.

5 Summary

In conclusion, in vitro approaches offer additional tools to further 
our understanding of developmental toxicology. Some of these 
models are described in detail in the following chapters, specifically 
giving detailed applicability to each model with respect to  predicting 

Louise M. Winn
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potential developmental toxicity. Future directions will likely 
involve integrated testing strategies with the aim of reducing the 
number of experimental animals while increasing the accuracy and 
predictability of potential toxicity associated with new drugs and 
chemicals.
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Chapter 2

Use of Primary Mouse Embryonic Fibroblasts 
in Developmental Toxicity Assessments

Jason M. Hansen and Ted B. Piorczynski

Abstract

Mouse embryonic fibroblasts (MEFs) are commonly collected as a means to maintain the culture and 
growth of embryonic stem cells (ESCs). However, their utility can extend well beyond their use exclusively 
in ESC culture. With collection from various transgenic mouse models, use of MEFs may serve as a more 
simplistic means to reconstitute in vivo/in utero toxicological assessments in an in vitro format for evalu-
ation of function of specific proteins during toxic insults. The ease of collection, rapid growth kinetics, and 
large-scale expansion to perform multiple, high-throughput experiments are just some of the advantages 
of MEF use. Here, we describe procedures for successful MEF isolation and culture. As an example of 
MEF utility, we use MEFs collected form wild-type (WT) and Nrf2 knockout mice. After collection, MEFs 
were pretreated with the Nrf2 activator, dithiol-3-thione (D3T; 10 μM) for 12 h, and then treated with 
either hydrogen peroxide (0–2000 μM) or mercury (0–100 μM) for another 24 h. Viability was measured 
via MTT assay after 24 h of treatment.

Key words Mouse embryonic fibroblasts, MEF, Nrf2, Transgenic

1 Introduction

Mouse embryonic fibroblasts (MEFs) are easily collected from 
embryos on gestational day (GD) 14.5–15.5. These cells are com-
monly used as feeder layers in the maintenance of embryonic stem 
cells (ESCs) and are preferential as a substrate as they help to main-
tain ESC pluripotency, enhance plating efficiency, and support 
ESC growth and survival [1]. However, MEF use can be expanded 
beyond their use as merely a feeder layer and a support cell in ESC 
culturing methodologies.

Previous studies have used MEFs as an “embryonic” model for 
better understanding the mechanism of action for specific toxicants. 
For example, fumonisin B1 (FB1) is a mycotoxin found in corn, 
and exposure to FB1 is correlated to the manifestation of neural 
tube defects (NTDs) in humans and in animal models [2–4]. Results 
showed that FB1 inhibits ceramide synthase causing sphingosine 
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kinase-mediated production of sphinganine-1- phosphate (SaP1) 
from sphinganine [5]. SaP1 is an inhibitor of histone deacetylases 
(HDACs), supporting the hypothesis that FB1- induced SaP1 accu-
mulation and subsequent HDAC inhibition are potential contribu-
tors to NTD pathologies.

Use of MEFs can also be advantageous to evaluate protein 
function. To evaluate cadmium (Cd) toxicity, MEFs were iso-
lated from wild-type and Nrf2 knockout (KO) mice. Data show 
that Cd causes a significant increase in reactive oxygen species 
(ROS) generation in wild-type MEFs, but the Cd effect was 
exacerbated in Nrf2 KO MEFs, which were more highly sensi-
tized to Cd-induced cell death [6]. Nrf2 is a transcription factor 
that is regulated through ubiquitination and proteasomal degra-
dation during unstressed periods but is largely responsible for 
the upregulation of antioxidant and phase II detoxification genes 
during episodes of oxidative stress. In wild-type MEFs, the 
expression of the cytoprotective genes, NADPH/quinone oxi-
doreductase-1 (NQO1) and heme oxygenase-1 (HO1), was 
increased but not in Nrf2 KO MEFs, suggesting that Cd insti-
gates an antioxidant response through Nrf2 activities capable of 
conferring protection from cell death. In another study, MEFs 
lacking the polyubiquitin (Ubc) gene demonstrated increase 
Nrf2-related gene expression with arsenite treatment, but cell 
death was not decreased [7]. These data suggest that arsenite 
toxicity in Ubc-deficient MEFs is not due to the disruption of 
the Nrf2 pathway but rather was demonstrated to be a result of 
the accumulation of misfolded proteins yielding an unfolded 
protein response.

In some cases, MEF methods are advantageous as knockout 
MEFs can be collected from mice where the deletion does not 
yield viable offspring. For example, the p65 subunit of NF-kappaB 
deletion is embryonic lethal, where on GD 15–16 massive hepatic 
apoptosis is observed [8], but MEFs are still isolatable. MEFs lack-
ing p65 (−/−) were exposed to the teratogen, methotrexate [9]. 
p65 −/− MEFs were more susceptible to methotrexate-induced 
cell death than wild-type MEFs, suggesting a protective role of 
NF-kappaB during embryonic exposures.

Another benefit of MEF use is that they retain some differen-
tiation capacities. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) 
is a polyaromatic hydrocarbon that can cause cleft palate, dental 
abnormalities, hydronephrosis, and reproductive organ malfor-
mations during development [10–13]. Using TCDD, MEFs were 
pretreated and then differentiated into adipocytes. MEFs demon-
strated markers of adipogenesis, but with TCDD pretreatments, 
adipogenesis was significantly attenuated [14]. In c-Src-deficient 
MEFs, TCDD was unable to decrease the expression of these 
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important adipogenic regulators, suggesting a role of c-Src in 
TCDD-mediated disruption of adipogenic differentiation.

In the above studies (and many others not listed here), MEFs 
have proven to be a beneficial tool, and their use has some unique 
advantages for the assessment of developmental toxicity and the 
study of mechanisms of birth defects. These advantages include the 
ease of MEF collection, the use of a primary cell model, the means 
to study differentiation, and the collection of cells from specific 
transgenic animal models. Here, we describe MEF isolation proce-
dures and evaluate transgenic MEFs responses to toxicants to dem-
onstrate their usefulness.

2 Materials

All reagents and equipment are readily available from commercial 
sources.

 1. Gestational day (GD) 14.5–15.5 time-mated, primigravida 
pregnant mice, 8–12 weeks old (see Note 1). C57Bl6 mice are 
generally used for MEF isolation (see Note 2).

 2. Forceps.
 3. Microforceps.
 4. Dissection scissors.
 5. Hank’s Balanced Salt Solution.
 6. 10 cm sterile petri dishes.
 7. Phosphate-buffered saline (PBS).
 8. Razor blades.
 9. 70% ethanol.
 10. Dissection microscope.
 11. Trypsin (0.25%) with EDTA.
 12. Dulbecco’s Modified Eagles Medium (DMEM) with high 

glucose, phenol red, and glutamine.
 13. Fetal bovine serum (FBS).
 14. Water bath.
 15. Pasteur pipettes with rubber bulbs (modified; see Note 3).
 16. Cell strainers (40 μm).
 17. 15–50 mL centrifuge tube.
 18. Centrifuge.
 19. Hemocytometer.
 20. Cell culture incubator.

2.1 Embryo Removal 
and Mouse Embryonic 
Fibroblast Isolation

Use of Primary Mouse Embryonic Fibroblasts in Developmental Toxicity Assessments
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3 Methods

Primigravida female C57Bl6 mice (8–12  weeks old) are housed 
with a C57Bl6 male at a ratio of 2:1 from 1800 h to 0600 h the 
following day. At 0600 h, a probe is used to check for the presence 
of a vaginal plug as evidence of mating. If positive, the dam is 
removed and placed in a cage to be singly housed.

Mice are placed in a container and gassed with 100% CO2 for 
10  min. Mice are monitored for loss of consciousness and are 
removed when unresponsive to a toe pinch.

 1. Mice are placed ventral side up and are swabbed generously 
with 70% ethanol to disinfect the area and wet the fur. A full- 
length midline abdominal incision is made with scissors from 
the urethral opening to the sternum to expose the abdominal 
cavity. A second incision can be made along the body wall one- 
third the way along the midline incision for better abdominal 
cavity viewing.

 2. The gravid uterus is then removed by pinching the cervix 
tightly with a pair of forceps and cutting between the cervix 
and vagina. At the same time, lift the cervix to pull the 
uterus upward until the ovaries are visible. The uterus is 
bicornate. A final cut can be made just beyond the ovaries to 
free the uterus, leaving the ovaries attached to the uterus. 
The uterus is placed in Hank’s Balanced Salt Solution (see 
Note 4) (Fig. 1).

3.1 Mouse Breeding

3.2 Euthanasia

3.3 Laparotomy 
and Uterus Removal

Fig. 1 Gravid uterus on gestational day 15. The uterus contains numerous 
conceptuses

Jason M. Hansen and Ted B. Piorczynski
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 1. The gravid uterus is washed with fresh HBSS and then placed 
in a petri dish with a silicone-covered bottom. The dish is filled 
with HBSS. The uterus is pinned just below the ovaries with 
needles to the silicone. The uterus should be stretched as this 
will aid in making incisions through the myometrium but not 
overstretched.

 2. Starting at one ovary, a small incision is made that is large 
enough to insert a prong of the dissection scissors. As addi-
tional cuts are made along the original incision, the incision 
will move toward the cervix in a straight line. This will expose 
the embryos.

 3. Embryos are removed by gently scraping the embryos out of 
the uterus by blunt dissection. Embryos are then freed into 
the HBSS (Fig. 2).

 1. Embryos are carefully prepared by removing all extraembryonic 
membranes and exogenous tissues (e.g., placenta) (Fig. 3). They 
are placed into a new petri dish with fresh HBSS (see Note 5).

 2. The head is removed with dissection scissors, and the internal 
organs can be removed through blunt dissection with forceps 
(Fig. 4). Wash embryos thoroughly to assure removal of all 
internal organs. Discard head and internal organs (see Note 6) 
(Fig. 5).

 3. Remove the remaining trunk to a dry petri dish.
 4. Using a sterile, new razor blade, mince the embryos in a sterile 

environment (Fig. 6). Mince continuously for approximately 
10 min and avoid any large chunks of tissue. The consistency 
should be like a viscous liquid.

3.4 Removal 
of Embryos

3.5 Embryo 
Preparation

Fig. 2 Gestational day 15 mouse embryo after removal from the uterus. 
Extraembryonic membranes are still intact

Use of Primary Mouse Embryonic Fibroblasts in Developmental Toxicity Assessments
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Fig. 3 Gestational day 15 mouse embryo following removal from the uterus and 
the removal of extraembryonic membranes

Fig. 4 Gestational day 15 mouse embryo following evisceration (liver and intes-
tines) and removal of the head. Hepatic and neuronal cells can interfere with 
mouse embryonic fibroblast grown and take over a culture. Removal of these 
tissues allows for the optimization of fibroblast isolation

 1. Collect minced embryos with a pipette and place in a 50 mL 
centrifuge tube (see Note 7).

 2. Add approximately 5  mL of 0.25% trypsin with EDTA for 
every embryo. Vortex briefly to break up isolate.

 3. Place in water bath at 37  °C for approximately 45–60  min 
with agitation every 10–15 min.

3.6 Mouse Embryo 
Fibroblast Isolation

Jason M. Hansen and Ted B. Piorczynski
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Fig. 5 Complete dissection of gestational day 15 embryo with the liver, intestines, 
and head removed

Fig. 6 Embryo mincing using a sterile razor blade. Embryos are minced thor-
oughly in a sterile plastic petri dish performed in a sterile culture hood. Mince for 
10 min and avoid chunks until tissue has the consistency of a viscous liquid as 
shown here

 4. After trypsinization, use a modified Pasteur pipette (see Note 3) 
and pipette the solution up and down several times to pro-
mote disassociation.

 5. Add 1 mL of FBS for every embryo in the solution to stop 
trypsinization and mix gently.

 6. Using a cell strainer (40 μm), strain the cell containing solu-
tion into a new 50 mL centrifuge tube. This removes partially 
dissociated material.

Use of Primary Mouse Embryonic Fibroblasts in Developmental Toxicity Assessments
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 7. Centrifuge the collection for 5  min at 1200  ×  g at room 
temperature.

 8. Resuspend pelleted cells in growth media (DMEM with 10% 
FBS and antibiotics).

 9. Seed cells into a 100 mm tissue culture plate and place into a 
humidified incubator at 37 °C with 5% CO2 (see Note 8). This 
is passage 0 (see Note 9).

 10. Replace media the following day.

 1. Cultured cells should grow rapidly and reach confluence with 
48–72 h (Fig. 7).

 2. Passages should be at a 1:4 dilution (every plate should be split 
into four plates of equal size) following trypsinization with 
0.25% trypsin with EDTA (see Note 10).

Mouse embryonic fibroblasts were collected from wild-type and 
Nrf2 knockout (−/−) (B6.129X1-Nfe2l2tm1Ywk/J) mice from 
Jackson Laboratories as outlined in Subheading 3 above. Nrf2 is a 
transcription factor that regulates the antioxidant response. Under 
periods of oxidative stress, Nrf2 is activated and upregulates many 
antioxidant and phase II detoxification genes [15]. The purpose of 
this small experiment is to determine if Nrf2 activation prior to 
oxidant exposure (hydrogen peroxide [H2O2] and mercury chlo-
ride [Hg]) yields protection against MEF death. On passage 2, 
MEFs were plated in a 96-well plate and, after 24 h, were conflu-
ent. Confluent cultures were treated overnight with an Nrf2 
inducer, dithiole-3-thione (10  μM; D3T) [16]. The following 
morning, MEFs were treated with 0–2000  μM of H2O2 or 

3.7 Maintenance 
of Isolated Mouse 
Embryonic Fibroblasts

3.8 Example of MEF 
Use

Fig. 7 After plating, mouse embryonic fibroblasts will adhere to the plate. They 
can be expanded after initial plating
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0–100 μM of Hg for 24 h. After 24 h of exposure, MEF viability 
was assessed via MTT assay as described elsewhere [17].

Data in wild-type MEFs show that both H2O2 and Hg decrease 
cell viability in a dose-dependent manner (Fig. 8a, b, respectively). 
Interestingly, pretreatment with D3T increased cellular viability at 
similar concentrations that were toxic, suggesting that pre- 
activation of an Nrf2-mediated antioxidant response provides 
increase protection from either H2O2 or Hg. To verify the role of 
Nrf2, Nrf2 KO MEFs were treated in identical fashion. As 
expected, non-pretreated Nrf2 KO MEFs demonstrated increased 
toxicity in a dose-dependent manner similar to what was observed 
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Fig. 8 Comparison between mouse embryonic fibroblasts collected from wild- 
type (WT) and Nrf2 knockout (Nrf2 KO) gestational day 15 mice. Using a Nrf2 
inducer, D3T, to promote an antioxidant response, fibroblasts were then treated 
with increasing concentrations of either (a) hydrogen peroxide or (b) mercury 
chloride (Hg) for 24 h after which cell viability was assessed. Treatment with D3T 
showed protection in WT fibroblasts but not in Nrf2 KO fibroblasts
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