THE PRACTICE OF MEDICINAL CHEMISTRY

THIRD EDITION

EDITED BY CAMILLE GEORGES WERMUTH

The Practice of Medicinal Chemistry

Third edition

This page intentionally left blank

The Practice of Medicinal Chemistry

Third edition

Edited by

Camille Georges Wermuth Prestwick Chemical Inc.

Prestwick Chemical Inc Illkirch, France

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD • PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK

> First published 1996 Reprinted 2001 Second edition 2003 Third edition 2008

Copyright © 2008, Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-374194-3

For information on all Academic Press publications visit our web site at www.books.elsevier.com

Typeset by Charon Tec Ltd., A Macmillan Company (www.macmillansolutions.com)

Printed in China 08 09 10 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID Sabre Foundation

Contents

Biography	XXV
Section Editors	xxvii
Contributors	xxix
Preface to the First Edition	XXXV
Preface to the Second Edition	xxxvii
Preface to the Third Edition	xxxix

1

Part I	General Aspects	of Medicinal Chemistry
	Section Editor: Hugo	Kubinyi

1. A History of Drug Discovery François Chast	3
 Introduction A. The renewal of chemistry B. The dawn of the organic chemistry crosses the birth of biology II. Two Hundred Years of Drug Discoveries A. Pain killers: best-sellers and controversies B. Giving back the heart its youth C. Fight against microbes and viruses D. Drugs for immunosuppression E. Contribution of chemists to the fight against cancer F. Drugs for endocrine disorders G. Anti-acid drugs H. Lipid lowering drugs I. From neurotransmitters to receptors J. Drugs of the mind III. Considerations on Recent Trends in Drug Discovery A. From genetics to DNA technology B. Hopes and limits for drug hunting 	4 4 5 6 10 15 24 26 30 34 35 37 41 49 49 52
 Medicinal Chemistry: Definitions and Objectives, Drug Activity Drug Classification Systems Peter Imming 	7 Phases, 63
 I. Definitions and Objectives A. Medicinal chemistry and related disciplines and terms B. Drugs and drug substances C. Stages of drug development II. Drug Activity Phases A. The pharmaceutical phase B. The pharmacokinetic phase 	63 63 64 64 66 66 66

Cont	ents
------	------

		C. The pharmacodynamic phase	67
		D. The road to successful drug development?	67
	III.	Drug Classification Systems	67
		A. Classification by target and mechanism of action	68
		B. Other classification systems	70
	Refe	rences	71
3.		asurement and Expression of Drug Effects Pierre Nowicki and Bernard Scatton	73
	-		
		Introduction	73
	II.	In Vitro Experiments	75
		A. Binding studies	75
		B. Ligand–receptor interaction-induced functional effects	76
		C. Allosteric interaction	78
		D. Expression of functional effects for targets other than GPCRS	79
		E. Cellular and tissular functional responses	79
		Ex Vivo Experiments	81
		In Vivo Experiments rences	82 83
	Kele	iterices	05
4.	Мо	lecular Drug Targets	85
	Jean-	Pierre Gies and Yves Landry	
	I.	Introduction	86
		A. How many drug targets for how many drugs?	86
		B. From the drug target to the response of the organism	86
		C. Drug binding, affinity and selectivity	87
		D. Various ligands for a single target	87
	II.	Enzymes as Drug Targets	88
		A. Targeting human enzymes	88
		B. Targeting enzymes selective of invading organisms	89
	III.	Membrane Transporters as Drug Targets	89
		A. Established drug targets among membrane transporters	89
		B. Progress in the pharmacological control of membrane transporters	89
	IV.	Voltage-Gated Ion Channels as Drug Targets	90
		A. Voltage-gated sodium channels (Na _v channels)	90
		B. Voltage-gated calcium channels (Ca _v channels)	91
		C. Potassium channels	91
	V.	Non-Selective Cation Channels as Drug Targets	92
	VI.	Direct Ligand-Gated Ion Channels (Receptors with Intrinsic Ion Channel)	93
		A. P2X-ATP receptors	94
		B. Glutamate-activated receptors	94
		C. The "Cys-loop receptor superfamily"	95
	VII.	Receptors with Intrinsic Enzyme Activity	95
		A. Receptors with guanylate cyclase activity	95
		B. Receptors with serine/threonine kinase activity	96
		C. Receptors with tyrosine kinase activity	96
	VIII.	Receptors Coupled to Various Cytosolic Proteins	97
		A. Receptors coupled to the cytosolic tyrosine kinase JAK	97
		B. Receptors coupled to the cytosolic Src, Zap70/Syk and Btk tyrosine kinases (immunoreceptors)	97
		C. Receptors coupled to the cytosolic serine/threonine kinase IRAK	98
		D. Receptors coupled to caspases and to NF κ B	98
		E. Receptors of the cellular adhesion	99
	IX.	G-Protein-Coupled Receptors	99
		A. How many druggable GPCRs?	100

 B. Diversity of G-proteins C. Diversity of GPCR-elicited signaling and related drug targets X. Nuclear Receptors As Drug Targets References 	101 101 103 104
5. Drug Targets, Target Identification, Validation and Screening Kenton H. Zavitz, Paul L. Bartel and Adrian N. Hobden	106
 Introduction Improving the Resolution of Disease Etiology Biopharmacuetical Therapies Passive immunotherapy Drug Target Identification Rare mutations leading to generalized therapies Mining the proteome Yeast two-hybrid systems RNA interference Hit-to-Lead Cell-based screening Intracellular receptors Intracellular enzymes G-protein-coupled receptors Transgenic animals Drug metabolism Toxicology VI. Clinical Biomarkers VII. Conclusions References 	106 107 108 109 109 109 109 110 111 113 113 113 113 113 115 115 115 117 118 118 118 119 119
Part II Lead Compound Discovery Strategies Section Editor: John R. Proudfoot	123
 6. Strategies in the Search for New Lead Compounds or Original Working Hypotheses Camille G. Wermuth 	125
L. Introduction	

B. Inhibitors of the ACE	139
C. Discovery of the H2-receptor antagonists	141
VI. Conclusion	142
References	142
7. High-Throughput Screening and Drug Discovery John R. Proudfoot	144
I. Introduction	144
II. Historical Background	144
III. From Screen to Lead	146
A. Compound collections	146
B. Assays	146
C. Hit-to-lead process	147
IV. Examples of Drugs Derived from Screening Leads	147
A. Reverse transcriptase inhibitors, nevirapine, efavirenz, and delavirdine	148
B. Endothelin antagonists, bosentan, sitaxsentan, edonentan, and ambrisentan	150
C. Raf kinase inhibitor, sorafenib	152
V. Practical Application, Recent Example	152
A. IKK inhibitors	152
VI. Conclusion	154
References	155
8. Natural Products as Pharmaceuticals and Sources for Lead Structures	159
David J. Newman, Gordon M. Cragg and David G. I. Kingston	
I. Introduction	159
II. The Importance of Natural Products in Drug Discovery and Development	160
A. The origin of natural products	161
B. The uniqueness of the natural products approach	161
C. The impact of new screening methods	162
III. The Design of an Effective Natural-Products-Based Approach to Drug Discovery A. Acquisition of biomass	163 163
B. The unexplored potential of microbial diversity	164
C. Extraction	167
D. Screening methods	167
E. Isolation of active compounds	168
F. Structure elucidation	168
G. Further biological assessment	168
H. Procurement of large-scale supplies	168
I. Determination of structure–activity relationships	169
IV. Examples of Natural Products or Analogs as Drugs	169
A. Antihypertensives	169
B. Anticholesterolemics	169
C. Immunosuppressives	171
D. Antibiotics	171
E. Microbial anticancer agents	172
F. Anticancer agents from plants	174
G. Anticancer agents from marine organisms	175
H. Antimalarial agents	177
I. Other natural products	177
V. Future Directions in Natural Products as Drugs and Drug Design Templates	177
A. Introduction	177
B. Combinatorial chemistry	177
C. Natural products as design templates	178
D. Interactions of microbial sources, genomics, and synthetic chemistry	178 180
VI. Summary References	180
155.15.115.115.07	

9.	Biology Oriented Synthesis and Diversity Oriented Synthesis in Compound Collection Development Kamal Kumar, Stefan Wetzel and Herbert Waldmann	187
	 Introduction Diversity Oriented Synthesis A. DOS: Principles B. DOS of small molecule libraries C. Applications of DOS libraries Biology Oriented Synthesis A. Introduction B. The scaffold tree for structural classification of natural products C. Protein structure similarity clustering D. BIOS: The combined application of SCONP and PSSC E. BIOS: Prospects and future directions IV. Conclusion and Outlook 	187 188 188 188 192 194 194 194 194 199 202 205 205 205 206
10.	In Silico Screening: Hit Finding from Database Mining Thierry Langer and Sharon D. Bryant	210
	 Introduction A. Chemoinformatics in drug discovery B. What is the difference between a hit and a lead structure? C. Data mining using chemoinformatics II. Representation of Chemical Structures A. Structural keys and 1D fingerprints B. Topological descriptors C. 3D descriptors D. Further descriptors II. Data Mining Methods IV. Database Searches A. Distance and similarity searches B. 2D database searches C. 3D database searches V. Applications A. Ligand-based <i>in silico</i> screening B. Structure-based <i>in silico</i> screening C. Assessing affinity profiles using parallel <i>in silico</i> screening D. Example: Parallel pharmacophore-based virtual screening VI. Conclusion and Future Directions 	210 211 212 212 213 213 214 216 216 216 216 217 217 217 217 218 218 218 218 219 219 219 219 219 222 222
11.	Fragment-Based Drug Discovery Bennett T. Farmer and Allen B. Reitz	228
	 Ligand–Protein Interactions: First Principles A. Binding energy as the sum of the parts B. Historical development C. Ligand efficiency II. Status of Late 1990s Drug Discovery in the Pharmaceutical Industry III. What is FBDD? A. Concept and overview B. Differences between FBDD and HTS/HTL approaches C. The role of the medicinal chemist in FBDD 	228 229 230 230 231 231 233 233 234

Со	nt	e	nt	S

	IV.	Creation and Analysis of FBDD Libraries	234
		A. General evaluation and analysis	234
		B. Computational approaches	235
		C. Use of primary data: sprouting and merging to create secondary libraries	235
	V	Nuclear Magnetic Resonance	235
	۷.		235
		A. 1D (ligand-based) screening	
		B. Example	236
		C. 2D (protein-based) screening	237
	VI.	X-ray Crystallography	237
		A. General principles and limitations	237
		B. Examples	238
	VII	Other Biophysical and Biochemical Screening Methods	238
	v 11.	A. Substrate activity screening	238
		B. In situ click chemistry	239
		C. SPR spectroscopy	239
		D. SAR by mass spectroscopy	239
	VIII.	Methods for Fragment Hit Follow-Up	239
		A. How to best reduce false positives (NMR, MS) and false negatives (X-ray)	239
		B. Isothermal and differential titration calorimetry and further secondary analysis	240
	IX	Trends for the Future	240
		rences	240
	Kele	Tences	241
10	×		2.4.4
12.		id-Likeness and Drug-Likeness	244
	Alex	Polinsky	
	т	Introduction	244
	II.	Assessing "Drug-Likeness"	245
		A. Avoiding known threats	245
		B. Mimicking known drugs	247
		C. Direct property prediction	249
	III.	Selecting Better Leads: "Lead-Likeness"	250
		A. What is a "high-quality" lead compound?	250
		B. Designing "lead-like" libraries for biochemical screening	251
	11.7	Conclusion	
			253
	Refe	rences	253
13.		b Alert: Using the Internet for Medicinal Chemistry	255
	Davi	d Cavalla	
	I.	Introduction	255
	II.	Blogs	256
		Wikis	257
		A. RSS information feeds	257
	IV.	Compound Information	257
	IV.		
		A. Chemspider	257
		B. The NIH Roadmap and PubChem	258
		C. ChemBank	258
	V.	Biological Properties of Compounds	258
		A. Prediction of biochemical properties	259
		B. Molecular datasets	259
		C. Information on metabolic properties	260
	171		
	VI.	Drug Information	260
		A. DrugBank	260
		Physical Chemical Information	261
		Prediction and Calculation of Molecular Properties	261
	IX.	Chemical Suppliers	263

		244
	X. Chemical Synthesis	264 263
	XI. Chemical Software ProgramsA. Chemical drawing and viewing software	205
	B. Various chemoinformatics software	264
	C. Datasets for virtual screening	265
	XII. Analysis	267
	XIII. Chemical Publications	267
	A. Journals	267
	B. Open access	268
	C. Theses	268
	XIV. Patent Information	269
	A. Japanese patents	270
	XV. Toxicology	270
	XVI. Metasites and Technology Service Provider Databases	272
De	ut III Drimenny Exploration of Structure Activity Deletionships	
Pa	ITT III Primary Exploration of Structure–Activity Relationships Section Editor: Camille G. Wermuth	273
	Section Earton camme a. wennaut	21)
14.	Molecular Variations in Homologous Series: Vinylogues and Benzologues Camille G. Wermuth	275
	I. Homologous Series	275
	A. Definition and classification	275
	B. Shapes of the biological response curves	277
	C. Results and interpretation	278
	II. Vinylogues and Benzologues	283
	A. Applications of the vinylogy principle	283
	B. Comments	287
	References	287
15.	Molecular Variations Based on Isosteric Replacements Paola Ciapetti and Bruno Giethlen	290
	I. Introduction	290
	II. History: Development of the Isosterism Concept	291
	A. The molecular number	291
	B. The isosterism concept	292
	C. The notion of pseudoatoms and Grimm's hydride displacement law	293
	D. Erlenmeyer's expansion of the isosterism concept	293
	E. Isoserism criteria: Present conceptions	293
	F. The bioisosterism concept: Friedman's and Thornber's definitions	294
	III. Currently Encountered Isosteric and Bioisosteric Modifications	294
	A. Replacement of univalent atoms or groups	294
	B. Interchange of divalent atoms and groups	294
	C. Interchange of trivalent atoms and groups	296
	D. Ring equivalents	297
	E. Groups with similar polar effects: functional equivalents	303
	F. Reversal of functional groups	320
	IV. Scaffold Hopping	323
	A. Successful examples of serendipitous scaffold hopping	323
	B. Scaffold hopping and virtual screening	325
	V. Analysis of the Modifications Resulting from Isosterism	326 327
	A. Structural parametersB. Electronic parameters	327
	C. Solubility parameters	327
	o. concontry parametero	221

D. Anomalies in isosterism

328

Contents
330
330
331
333
334
343

360

Christophe Morice and Camille G. Wermuth	
I. Introduction	343
II. Analogical Approaches	343
A. Analogy by ring opening: open-chain analogs	343
B. Analogy by ring closure	345
C. Other analogies	349
III. Disjunctive Approaches	354
A. Cocaïne-derived local anesthetics	355
B. Morphinic analgesics	355
C. Dopamine autoreceptor agonists	355
D. CCK antagonists	355
IV. Conjunctive Approaches	356
A. Dopaminergic antagonists	356
B. Glutamate NMDA and AMPA receptor antagonists	358
C. Norfloxacin analogs	359
D. Melatonin analogs	360
V. Conclusion	360

7.	Conformational Restriction and/or Steric Hindrance in Medicinal Chemistry	363

Anare Mann	
I. Introduction	363
A. Theoretical points	364
B. On constrainted analogs	366
C. On conformational analysis	367
D. On the natur of Steric effects	368
E. Rigid compounds and bioavailability	368
II. Case studies	368
A. Bradykinin	368
B. Allylic constraints for inducing conformational rigidity	369
C. Diversity-Oriented Synthesis	371
D. Epibatidine bioactive conformation	371
E. Ligands for the Hepatitis C virus	372
F. Nociceptin	374
G. Opioid receptors ligands	374
H. Peptidomimetics for SH2 domains	375
III. Summary and Outlook	377
References	378

18. Homo and Heterodimer Ligands the Twin Drug Approach Jean-Marie Contreras and Wolfgang Sippl	380
I. Indroduction	380
II. Homodimer and Symmetrical Ligands	383
A. Symmetry in nature	383
B. Homodimers as receptors ligands	383
C. Homodimers as enzyme inhibitors	387

References

References

1

16. Ring Transformations

VI. Minor Metalloids-Toxic IsostersA. Carbon–silicon bioisosterismB. Carbon–boron isosterismC. Bioisosteries involving selenium

	D. Homodimers as DNA ligands	390
	E. Homodimers of pharmacological interest	390
	III. Heterodimer and Dual Acting Ligands	391
	A. Hybrid molecules as ligands of two different receptors	391
	B. Hybrids as enzymes inhibitors	394
	C. Hybrids acting at one receptor and one enzyme	398
	D. Other examples of dual acting drugs	400
	IV. Binding Mode Analysis of Identical and Non-identical Twin Drugs	401
	A. Identical and non-identical twin drugs interacting with two adjacent binding sites located	
	on the same macromolecule	403
	B. Identical twin drugs interacting with two similar binding sites located on different	
	monomers of the same macromolecule	405
	C. Identical and non-identical twin drugs interacting with two different binding sites located	
	on different macromolecules	408
	V. Conclusion	409
	References	410
19	. Application Strategies for the Primary Structure–Activity Relationship	
	Exploration	415
	Camille G. Wermuth	
	Camille G. Wermuth	
	I. Introduction	415
	I. Introduction II. Preliminary Considerations	415
	I. Introduction II. Preliminary Considerations III. Hit Optimization Strategies	415 416
	 I. Introduction II. Preliminary Considerations III. Hit Optimization Strategies A. Some information about the target is available 	415 416 417
	 I. Introduction II. Preliminary Considerations III. Hit Optimization Strategies A. Some information about the target is available B. No information about the target is available 	415 416 417 418
	 I. Introduction II. Preliminary Considerations III. Hit Optimization Strategies A. Some information about the target is available B. No information about the target is available C. The predominant objective is potency 	415 416 417 418 418
	 I. Introduction II. Preliminary Considerations III. Hit Optimization Strategies A. Some information about the target is available B. No information about the target is available C. The predominant objective is potency D. The predominant objective is the establishment of SARs 	415 416 417 418 418 419
	 I. Introduction II. Preliminary Considerations III. Hit Optimization Strategies A. Some information about the target is available B. No information about the target is available C. The predominant objective is potency D. The predominant objective is the establishment of SARs E. The predominant objective consists of analog design 	415 416 417 418 418 419 422
	 I. Introduction II. Preliminary Considerations III. Hit Optimization Strategies A. Some information about the target is available B. No information about the target is available C. The predominant objective is potency D. The predominant objective is the establishment of SARs E. The predominant objective consists of analog design IV. Application Rules 	415 416 417 418 418 419 422 422
	 Introduction Preliminary Considerations Hit Optimization Strategies A. Some information about the target is available B. No information about the target is available C. The predominant objective is potency D. The predominant objective is the establishment of SARs E. The predominant objective consists of analog design IV. Application Rules A. Rule number one: the minor modification rule 	415 416 417 418 418 419 422 422 422
	 Introduction Preliminary Considerations Hit Optimization Strategies A. Some information about the target is available B. No information about the target is available C. The predominant objective is potency D. The predominant objective is the establishment of SARs E. The predominant objective consists of analog design IV. Application Rules A. Rule number one: the minor modification rule B. Rule number two: the biological logic rule 	415 416 417 418 418 419 422 422 422 422 422
	 Introduction Preliminary Considerations Hit Optimization Strategies A. Some information about the target is available B. No information about the target is available C. The predominant objective is potency D. The predominant objective is the establishment of SARs E. The predominant objective consists of analog design IV. Application Rules A. Rule number one: the minor modification rule B. Rule number two: the biological logic rule C. Rule number three: the structural logic's rule 	415 416 417 418 418 419 422 422 422 423 423 424
	 Introduction Preliminary Considerations Hit Optimization Strategies A. Some information about the target is available B. No information about the target is available C. The predominant objective is potency D. The predominant objective is the establishment of SARs E. The predominant objective consists of analog design IV. Application Rules A. Rule number one: the minor modification rule B. Rule number two: the biological logic rule C. Rule number four: the right substituent choice 	415 416 417 418 419 422 422 422 423 423 424 424
	 Introduction Preliminary Considerations Hit Optimization Strategies A. Some information about the target is available B. No information about the target is available C. The predominant objective is potency D. The predominant objective is the establishment of SARs E. The predominant objective consists of analog design IV. Application Rules A. Rule number one: the minor modification rule B. Rule number two: the biological logic rule C. Rule number four: the right substituent choice E. Rule number five: the easy organic synthesis (EOS) rule 	415 416 417 418 419 422 422 422 422 423 424 424 424
	 Introduction Preliminary Considerations Hit Optimization Strategies A. Some information about the target is available B. No information about the target is available C. The predominant objective is potency D. The predominant objective is the establishment of SARs E. The predominant objective consists of analog design IV. Application Rules A. Rule number one: the minor modification rule B. Rule number two: the biological logic rule C. Rule number four: the right substituent choice E. Rule number five: the easy organic synthesis (EOS) rule F. Rule number six: eliminate the chiral centers! 	415 416 417 418 419 422 422 422 422 423 424 424 425 425
	 Introduction Preliminary Considerations Hit Optimization Strategies A. Some information about the target is available B. No information about the target is available C. The predominant objective is potency D. The predominant objective is the establishment of SARs E. The predominant objective consists of analog design IV. Application Rules A. Rule number one: the minor modification rule B. Rule number two: the biological logic rule C. Rule number four: the right substituent choice E. Rule number five: the easy organic synthesis (EOS) rule 	415 416 417 418 419 422 422 422 422 423 424 424 424

Part IV Substituents and Functions: Qualitative and Quantitative Aspects of Structure–Activity Relationships Section Editor: Han van de Waterbeemd

431
431
432
432
434
435
433
440

429

	III.	Effects of Unsaturated Groups A. Vinyl series	441 442
		B. Allylic series	443
		C. Acetylenic series	445
		D. Cyclenic equivalents of the phenyl ring	447
	IV.	Effects of Halogenation	448
		A. The importance of the halogens in the structure–activity relationship	448
		B. Usefulness of the halogens and of cognate functions	451
	V.	Effects of Hydroxylation	452
		A. Effects on solubility	453
		B. Effects on the ligand-receptor interaction	453
		C. Hydroxylation and metabolism	453
	VI.	Effects of Thiols and Other Sulfur-Containing Groups	454
		A. Drugs containing thiol	454
		B. Drugs containing oxidized sulfides	454
		C. Drugs containing thiocyanate or thiourea	454
	VII.	Acidic Functions	456
		A. Effects on solubility	456
	17111	B. Effects on biological activity	457
		Basic Groups	458
	IX.	Attachment of Additional Binding Sites	459
		A. To increase lipophilicity	459
	Dofe	B. To achieve additional interactions rences	459 460
21.		e Role of Functional Groups in Drug-Receptor Interactions	464
	I		
		Introduction	464
	II.	General Principles	464
	II.	General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor	464 465
	II.	General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions	464 465 465
	II.	General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions	464 465 465 471
	II. III.	General PrinciplesThe Importance of the Electrostatic and Steric Match Between Drug and ReceptorA. Electrostatic interactionsB. Steric interactionsC. Enthalpy/entropy compensation	464 465 465 471 472
	II. III.	 General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions 	464 465 465 471 472 473
	II. III.	 General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions 	464 465 465 471 472 473 473
	II. III.	 General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions B. The methyl group and other nonpolar substituents 	464 465 465 471 472 473 473 475
	II. III.	 General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions B. The methyl group and other nonpolar substituents C. The hydroxyl group and other hydrogen-bond forming substituents 	464 465 465 471 472 473 473 475 476
	II. III.	 General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions B. The methyl group and other nonpolar substituents C. The hydroxyl group and other hydrogen-bond forming substituents D. Acidic and basic substituents 	464 465 465 471 472 473 473 473 475 476 476
	II. III.	 General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions B. The methyl group and other nonpolar substituents C. The hydroxyl group and other hydrogen-bond forming substituents D. Acidic and basic substituents E. Practical applications for the medicinal chemist 	464 465 465 471 472 473 473 473 475 476 476 476
	II. III. IV.	 General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions B. The methyl group and other nonpolar substituents C. The hydroxyl group and other hydrogen-bond forming substituents D. Acidic and basic substituents E. Practical applications for the medicinal chemist F. Ligand efficiency 	464 465 465 471 472 473 473 473 475 476 476 476 478
	II. III. IV. V.	 General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions B. The methyl group and other nonpolar substituents C. The hydroxyl group and other hydrogen-bond forming substituents D. Acidic and basic substituents E. Practical applications for the medicinal chemist F. Ligand efficiency Cooperative binding 	464 465 465 471 472 473 473 473 475 476 476 476 476 478 478
	II. III. IV. V.	 General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions B. The methyl group and other nonpolar substituents C. The hydroxyl group and other hydrogen-bond forming substituents D. Acidic and basic substituents E. Practical applications for the medicinal chemist F. Ligand efficiency 	464 465 465 471 472 473 473 473 475 476 476 476 478
22.	II. III. IV. V. Refe	General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions B. The methyl group and other nonpolar substituents C. The hydroxyl group and other nonpolar substituents D. Acidic and basic substituents E. Practical applications for the medicinal chemist F. Ligand efficiency Cooperative binding rences	464 465 465 471 472 473 473 473 475 476 476 476 476 478 478
22.	II. III. IV. Refe Cor Chris	General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions B. The methyl group and other nonpolar substituents C. The hydroxyl group and other hydrogen-bond forming substituents D. Acidic and basic substituents E. Practical applications for the medicinal chemist F. Ligand efficiency Cooperative binding rences mpound Properties and Drug Quality stepher A. Lipinski	464 465 465 471 472 473 473 473 475 476 476 476 476 478 478 479 481
22.	II. III. IV. V. Refe Cor Chris I.	General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions B. The methyl group and other nonpolar substituents C. The hydroxyl group and other hydrogen-bond forming substituents D. Acidic and basic substituents E. Practical applications for the medicinal chemist F. Ligand efficiency Cooperative binding rences mpound Properties and Drug Quality stapher A. Lipinski Introduction	464 465 465 471 472 473 473 473 475 476 476 476 476 478 478 479 481
22.	II. III. IV. V. Refe Cor Chris I.	General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions B. The methyl group and other nonpolar substituents C. The hydroxyl group and other hydrogen-bond forming substituents D. Acidic and basic substituents E. Practical applications for the medicinal chemist F. Ligand efficiency Cooperative binding rences mpound Properties and Drug Quality stopher A. Lipinski Introduction Combinatorial Libraries	464 465 465 471 472 473 473 473 475 476 476 476 476 478 478 479 481 481 482
22.	II. III. IV. V. Refe Cor Chris I.	General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions B. The methyl group and other nonpolar substituents C. The hydroxyl group and other hydrogen-bond forming substituents D. Acidic and basic substituents E. Practical applications for the medicinal chemist F. Ligand efficiency Cooperative binding rences mpound Properties and Drug Quality stopher A. Lipinski Introduction Combinatorial Libraries A. Library design for HTS screens	464 465 465 471 472 473 473 473 475 476 476 476 476 476 478 478 479 481 481 482 482
22.	II. III. IV. V. Refe Cor Chris I.	General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions B. The methyl group and other nonpolar substituents C. The hydroxyl group and other nonpolar substituents D. Acidic and basic substituents E. Practical applications for the medicinal chemist F. Ligand efficiency Cooperative binding rences mpound Properties and Drug Quality stopher A. Lipinski Introduction Combinatorial Libraries A. Library design for HTS screens B. Experimental synthesis success rate	464 465 465 471 472 473 473 473 475 476 476 476 476 476 476 478 478 479 481 481 482 482 483
22.	II. III. IV. V. Refe Cor Chris I.	General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions B. The methyl group and other nonpolar substituents C. The hydroxyl group and other hydrogen-bond forming substituents D. Acidic and basic substituents E. Practical applications for the medicinal chemist F. Ligand efficiency Cooperative binding rences mpound Properties and Drug Quality stopher A. Lipinski Introduction Combinatorial Libraries A. Library design for HTS screens B. Experimental synthesis success rate C. Poor solubility and library design	464 465 465 471 472 473 473 473 475 476 476 476 476 476 476 476 478 479 481 481 482 482 483 483
22.	II. III. IV. V. Refe Cor Chris I.	General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions to Drug–Receptor Interactions B. The methyl group and other nonpolar substituents C. The hydroxyl group and other nydrogen-bond forming substituents D. Acidic and basic substituents E. Practical applications for the medicinal chemist F. Ligand efficiency Cooperative binding rences mpound Properties and Drug Quality stopher A. Lipinski Introduction Combinatorial Libraries A. Library design for HTS screens B. Experimental synthesis success rate C. Poor solubility and library design D. Importance of the synthesis rate-determining step	464 465 465 471 472 473 473 473 475 476 476 476 476 476 476 478 479 481 481 482 482 483 483
22.	II. III. IV. V. Refe Cor Chris I.	General Principles The Importance of the Electrostatic and Steric Match Between Drug and Receptor A. Electrostatic interactions B. Steric interactions C. Enthalpy/entropy compensation The Strengths of Functional Group Contributions to Drug–Receptor Interactions A. Measuring functional group contributions B. The methyl group and other nonpolar substituents C. The hydroxyl group and other hydrogen-bond forming substituents D. Acidic and basic substituents E. Practical applications for the medicinal chemist F. Ligand efficiency Cooperative binding rences mpound Properties and Drug Quality stopher A. Lipinski Introduction Combinatorial Libraries A. Library design for HTS screens B. Experimental synthesis success rate C. Poor solubility and library design	464 465 465 471 472 473 473 473 475 476 476 476 476 476 476 476 478 479 481 481 482 482 483 483

	G. If library production is rate determining	484
	H. Relative importance of ADME assays	484
	III. Chemistry Control of Intestinal Permeability	484
	A. Improving permeability	485
	B. Hydrogen bonding and permeability	485
	C. Intramolecular hydrogen bonds D. Permeability testing	485 485
	IV. Chemistry Control of Aqueous Solubility	485
	A. The definition of poor solubility	480
	B. Aqueous solubility and blunt SAR	486
	C. Changing the pK_a	486
	D. Improving aqueous solubility	487
	V. In Vitro Potency and Chemistry Control	487
	A. Lead complexity	487
	VI. Metabolic stability	488
	A. ADME computational models	488
	B. Limitations of Caco-2 cell culture	488
	C. Poor aqueous solubility and permeability assay noise	489
	D. Physiologically-relevant screening concentration	489
	VII. Acceptable Solubility Guidelines for Permeability Screens	489
	A. Batch-mode solubility prediction	490
	References	490
23.	Quantitativa Approaches to Structure Activity Polationship	
	Quantitative Approaches to Structure–Activity Relationship	es 491
	Han van de Waterbeemd and Sally Rose	s 491
		491 491
	Han van de Waterbeemd and Sally Rose	
	Han van de Waterbeemd and Sally Rose I. Introduction to QSAR	491
	Han van de Waterbeemd and Sally Rose I. Introduction to QSAR II. Brief History and Outlook	491 492
	Han van de Waterbeemd and Sally Rose I. Introduction to QSAR II. Brief History and Outlook III. QSAR Methodology	491 492 493
	Han van de Waterbeemd and Sally Rose I. Introduction to QSAR II. Brief History and Outlook III. QSAR Methodology A. Descriptors	491 492 493 493
	 Han van de Waterbeemd and Sally Rose I. Introduction to QSAR II. Brief History and Outlook III. QSAR Methodology A. Descriptors B. Methods for building predictive models C. Global and local models, and consensus modeling D. Time-series behavior and autoQSAR 	491 492 493 493 496
	 Han van de Waterbeemd and Sally Rose I. Introduction to QSAR II. Brief History and Outlook III. QSAR Methodology A. Descriptors B. Methods for building predictive models C. Global and local models, and consensus modeling D. Time-series behavior and autoQSAR E. Experimental design 	491 492 493 493 496 503 503 503 504
	 Han van de Waterbeemd and Sally Rose I. Introduction to QSAR II. Brief History and Outlook III. QSAR Methodology A. Descriptors B. Methods for building predictive models C. Global and local models, and consensus modeling D. Time-series behavior and autoQSAR E. Experimental design F. Inverse QSAR and multi-objective optimization 	491 492 493 493 496 503 503 504 505
	 Han van de Waterbeemd and Sally Rose I. Introduction to QSAR II. Brief History and Outlook III. QSAR Methodology A. Descriptors B. Methods for building predictive models C. Global and local models, and consensus modeling D. Time-series behavior and autoQSAR E. Experimental design F. Inverse QSAR and multi-objective optimization IV. Practical Applications 	491 492 493 493 496 503 503 504 504 505 505
	 Han van de Waterbeemd and Sally Rose I. Introduction to QSAR II. Brief History and Outlook III. QSAR Methodology A. Descriptors B. Methods for building predictive models C. Global and local models, and consensus modeling D. Time-series behavior and autoQSAR E. Experimental design F. Inverse QSAR and multi-objective optimization IV. Practical Applications A. Limitations and appropriate use 	491 492 493 493 496 503 503 504 505 505 505
	 Han van de Waterbeemd and Sally Rose I. Introduction to QSAR II. Brief History and Outlook III. QSAR Methodology A. Descriptors B. Methods for building predictive models C. Global and local models, and consensus modeling D. Time-series behavior and autoQSAR E. Experimental design F. Inverse QSAR and multi-objective optimization IV. Practical Applications A. Limitations and appropriate use B. Examples 	491 492 493 493 496 503 503 503 504 505 505 505 505
	 Han van de Waterbeemd and Sally Rose I. Introduction to QSAR II. Brief History and Outlook III. QSAR Methodology A. Descriptors B. Methods for building predictive models C. Global and local models, and consensus modeling D. Time-series behavior and autoQSAR E. Experimental design F. Inverse QSAR and multi-objective optimization IV. Practical Applications A. Limitations and appropriate use B. Examples C. Library design, compound acquisition and profiling 	491 492 493 493 496 503 503 503 504 505 505 505 505 505 506 508
	 Han van de Waterbeemd and Sally Rose I. Introduction to QSAR II. Brief History and Outlook III. QSAR Methodology A. Descriptors B. Methods for building predictive models C. Global and local models, and consensus modeling D. Time-series behavior and autoQSAR E. Experimental design F. Inverse QSAR and multi-objective optimization IV. Practical Applications A. Limitations and appropriate use B. Examples C. Library design, compound acquisition and profiling D. HTS analysis 	491 492 493 493 496 503 503 503 504 505 505 505 505 506 508 508
	 Han van de Waterbeemd and Sally Rose I. Introduction to QSAR II. Brief History and Outlook III. QSAR Methodology A. Descriptors B. Methods for building predictive models C. Global and local models, and consensus modeling D. Time-series behavior and autoQSAR E. Experimental design F. Inverse QSAR and multi-objective optimization IV. Practical Applications A. Limitations and appropriate use B. Examples C. Library design, compound acquisition and profiling 	491 492 493 493 496 503 503 503 504 505 505 505 505 505 506 508

Part V Spatial Organization, Receptor Mapping and Molecular Modeling Section Editor: David J. Triggle 515

24.	Overview: The Search for Biologically Useful Chemical Space David J. Triggle	517
	I. Introduction	517
	II. How Big is Chemical Space?	518
	III. Biological Space is Extremely Small	518
	IV. Limited Biological Space as an Effective Biological Strategy	519
	References	520

25.	Pharmacological Space Andrew L. Hopkins	521
	 What is Pharmacological Space? Chemical Space A. Drug-like space III. Target Space A. Druggability B. Structure-based druggability C. Degrees of druggability D. Druggable genome VI. Conclusions Acknowledgments References 	521 522 524 525 526 527 529 531 531 531
26.	Optical Isomerism in Drugs Camille G. Wermuth	533
	 Introduction Experimental Facts and Their Interpretation A. Stereoselectivity in biologically active compounds B. The three-point contact model C. Diastereoisomers D. Stereoselectivity ratios E. Pfeiffer's rule Optical Isomerism and Pharmacodynamic Aspects A. Differences in potency and antagonism between two enantiomers B. Differences in the pharmacological profile of two enantiomers B. Differences in the pharmacological profile of two enantiomers B. Differences on absorption and distribution B. Isomer effects on absorption and distribution B. Isomer effects on uptake D. Isomer effects on excretion V. Practical Considerations A. Racemates or enantiomers? B. The distomer counteracts the eutomer C. Racemic switches D. The distomer is metabolized to unwanted or toxic products E. Deletion of the chiral center F. Usefulness of racemic mixtures 	533 533 535 537 537 538 538 538 539 539 540 540 540 541 541 541 541 541 541 541 542 542 542 542 543 543 543
27.	Multi-Target Drugs: Strategies and Challenges for Medicinal Chemists Richard Morphy and Z. Rankovic	549
	 Introduction Strategies for Lead Generation Main Areas of Focus in DML Discovery (1990–2005) A. SERT-plus DMLs for depression Dopamine D₂-plus DMLs for schizophrenia DMLs targeting the angiotensin system for hypertension Histamine H₁-plus DMLs for allergies AChE-based DMLs for Alzheimer's disease PPAR-based DMLs for metabolic disease DMLs that inhibit multiple kinases for treating cancer 	549 551 553 554 555 555 558 559 560 560

	 H. DMLs targeting the arachidonic acid cascade I. Mu-opioid-plus DMLs for treating pain IV. Optimization of the Activity Profile and Wider Selectivity V. The Physicochemical Challenge VI. Summary References 	561 563 563 565 568 569
28.	Pharmacophore Identification and Pseudo-Receptor Modeling Wolfgang Sippl	572
	 Introduction A. Historical background B. Definitions C. Importance of the pharmacophore concept D. Application of pharmacophores II. Methodology A. Pharmacophore modeling III. Advanced approaches A. Structure-based pharmacophores B. Pseudo-receptor models IV. Application study A. Pharmacophore-based screening for novel histamine H₃-receptor antagonists B. Pharmacophore-based screening of compound libraries V. Conclusions References 	572 573 573 574 574 575 575 575 577 577 579 580 580 580 581 581 582 584
29.	3D Quantitative Structure–Property Relationships Thierry Langer and Sharon D. Bryant	587
	 Introduction JD QSAR Workflow JD QSAR: Conformation Analysis and Molecular Superimposition Calculation of 3D Molecular Field Descriptors Statistical Tools Alignment Independent 3D QSAR Techniques VII. Validation Of 3D QSAR Models VIII. Applications A. 3D QSAR study on the structural requirements for inhibiting AChE B. 3D QSAR as a tool to determine molecular similarity IX. Conclusions and Future Directions 	587 589 590 591 592 592 594 594 594 594 594 597 601
30.	Protein Crystallography and Drug Discovery Jean-Michel Rondeau and Herman Schreuder	605
	 Presentation Historical Background A. The early days of crystallography B. The current state of the art C. Past and present contributions to drug discovery Examples A. Aliskiren (Tekturna[™], Rasilez[™]) B. Nilotinib (Tasigna[™]) IV. Basic Principles and Methods of Protein Crystallography A. Crystallization 	605 607 607 608 609 609 610 611 611

	B. Data collection	615
	C. From diffraction intensities to a molecular structure	615
	D. Information content and limitations of crystal structures	618
V.	Practical Applications	621
	A. Target identification, selection and validation	621
	B. Hit/lead generation	623
	C. Lead optimization	627
Refe	erences	629

Part VI Chemical Modifications Influencing the Pharmacokinetic Properties Section Editor: Richard B. Silverman 635

31.	Physiological Aspects Determining the Pharmacokinetic Properties		
	of Drugs	637	
	Koen Boussery, Frans M. Belpaire and Johan Van de Voorde		
	I. Introduction	637	
	II. Passage of Drugs Through Biological Barriers	638	
	A. Transcellular drug transport	638	
	B. Paracellular drug transport	640	
	III. Drug Absorption	640	
	A. Dosage form of the drug	640	
	B. GI motility and gastric emptying	640	
	C. GI permeability to the drug	642	
	D. Perfusion of the GI tract and the first-pass effect	643	
	IV. Drug Distribution	644	
	A. Plasma protein binding	644	
	B. Drug accumulation	645	
	C. The blood–brain barrier	645	
	V. Drug Elimination	645	
	A. ExcretionB. Biotransformation	645	
	VI. Some Pharmacokinetic Parameters and Terminology	647 648	
	A. Plasma concentration–time curve	648	
	B. Volume of distribution	649	
	C. Clearance	650	
	D. Elimination half-life $(T_{1/2})$	651	
	E. Bioavailability	651	
	VII. Variability in Pharmacokinetics	652	
	A. Genetic factors	652	
	B. Age	652	
	C. Drug interactions	653	
	D. Disease state	653	
	E. Pregnancy	653	
	Bibliography	654	
32.	Biotransformation Reactions and their Enzymes Bernard Testa	655	
	I. Introduction	655	
	II. Functionalization Reactions	656	
	A. Enzymes catalyzing functionalization reactions	657	
	B. Reactions of carbon oxidation and reduction	660	
	C. Oxidation and reduction of N- and S-containing moieties	662	
	D. Reactions of hydration and hydrolysis	663	

	III.	Conjugation Reactions	664
		A. Introduction	664
		B. Methylation	665
		C. Sulfonation	665
		D. Glucuronidation	665
		E. Acetylation	667
		F. Conjugation with coenzyme A and subsequent reactions	668
		G. Conjugation reactions of glutathione	669
	IV.	Biological Factors Influencing Drug Metabolism	671
	V.	Concluding Remarks	672
	Refe	erences	672
33.		otransformations Leading to Toxic Metabolites: Chemical Aspects ne-Christine Macherey and Patrick M. Dansette	674
	I.	Historical Background	674
	II.	Introduction	675
	III.	Reactions Involved in the Bioactivation Process	676
		A. Oxidation	676
		B. Oxidative stress	678
		C. Reduction	680
		D. Substitutions: hydrolysis and conjugation	682
		E. Eliminations	683
		F. Further biotransformations leading to the ultimate toxicant	683
	IV.	Examples of Metabolic Conversions Leading to Toxic Metabolites	685
	1 v.	A. Acetaminophen	685
		B. Tienilic acid	687
		C. Halothane	688
		D. Valproic acid	690
		E. Troglitazone	691
	V.	Conclusion	693
		erences	694
34.		ug Transport Mechanisms and their Impact on the Disposition	<i>(</i> - -
		d Effects of Drugs -Michel Scherrmann	697
			(07
	I.	Introduction	697
	II.	Biology and Function of Transporters	698
		A. Modes of active transport	698
		B. Genes and classification	698
		C. Basic structure	699
		D. Distributions and properties of transporters in tissues	699
	III.	Transporters in Drug Disposition	702
		A. ABC transporters	702
		B. SLC transporters	703
	IV.	Roles of Transporters in Drug Pharmacokinetics, Pharmacodynamics and Toxicology	705
		A. Intestinal absorption	705
		B. Liver and hepatic clearance	706
		C. Blood barriers and tissue distribution	707
		D. Kidney and renal clearance	707
	V.	Conclusion	709
		nowledgments	709
	Refe	erences	709

xix

	Strategies for Enhancing Oral Bioavailability and Brain Penetration Brian C. Shook and Paul F. Jackson	711
	I. Introduction	711
	II. Enhancing Oral Bioavailability	711
	A. Metabolic stability	711
	B. Structural rigidity	712
	C. pK _a	713
	D. Hydrogen bond interactions E. Miscellaneous	713 715
	III. Enhancing Brain Penetration	715
	A. Metabolic stability	715
	B. pK _a	716
	C. Log P	717
	D. Hydrogen bond interactions	718
	IV. Conclusion	719
]	References	719
36.	Designing Prodrugs and Bioprecursors	721
(Camille G. Wermuth	
	I. Introduction	721
	II. The Different Kinds of Prodrugs	721
	A. Definitions and classifications	721
	B. The carrier prodrug principle	722
	C. The bioprecursor-prodrug principle	723
	D. Other categories of prodrugs E. Practical applications of prodrug design	724 724
	III. Carrier Prodrugs: Application Examples	724
	A. Improvement of the bioavailability and the biomembrane passage	724
	B. Site-specific delivery	728
	C. Prolonged duration of action	730
	IV. Particular Aspects of Carrier Prodrug Design	731
	A. Use of cascade prodrugs	731
	B. Codrugs	734
	C. Soft drugs	734
	D. Carrier prodrugs: conclusionV. Bioprecursor Prodrugs: Application Examples	734 735
	A. Oxidative bioactivations	735
	B. Reductive bioactivations	737
	C. Mixed bioactivation mechanism	738
	D. Reactions without change in the state of oxidation	740
	VI. Discussion	740
	A. Bioprecursors versus carrier prodrugs	740
	B. Existence of mixed-type prodrugs	740
	VII. Difficulties and Limitations	741
	VIII. Conclusion References	742
1	Kelerences	742
Par	t VII Pharmaceutical and Chemical Means to Solubility and Formulation Problems	
	Section Editor: Michael J. Bowker	747
	Preparation of Water-Soluble Compounds through Salt Formation Michael J. Bowker and P. Heinrich Stahl	749
1	I. Introduction	749
	II. The Solubility of Compounds in Water	749 750

II. The Solubility of Compounds in Water

	A. The determination and prediction of solubility	750
	B. Ionization of drugs and the importance of pK_a	751
III.	Acids and Bases Used in Salt Formation	751
IV.	Early salt formation studies	753
	A. Choice of salt formers	753
	B. Prediction of the pH of the salt in solution	754
	C. Search for crystalline salts	755
V.	Comparison of Different Crystalline Salts	755
	A. Melting point	756
	B. Aqueous solubility	756
	C. Common ion and indifferent electrolyte effects	758
	D. Hygroscopicity	758
	E. Solubility in co-solvents (water-miscible solvents)	759
	F. Dissolution Rate	759
	G. Particle size and crystal morphology	760
	H. Polymorphism and pseudopolymorphism	760
	I. Chemical stability	761
	J. Other properties	761
VI.	Implications of Salt Selection on Drug Dosage Forms	762
	A. Tablet products	762
	B. Hard gelatine capsules	763
	C. Parenteral solutions	763
	D. Oral solutions	763
	E. Suspension formulations	763
	F. MDI products	764
	G. DPI products	764
	H. Soft gelatine capsule formulations	764
	I. Emulsions, creams and ointments	764
VII.	Conclusion	765
Refe	erences	765

38.	Preparation of Water-Soluble Compounds by Covalent Attachment
	of Solubilizing Moieties
	Camille G. Wermuth

_am	lile G. wermun	
I.	Introduction	767
II.	Solubilization Strategies	768
	A. How will the solubilizing moiety be grafted?	768
	B. Where will it be grafted?	768
	C. What kind of solubilizing chain will be utilized?	768
III.	Acidic Solubilizing Chains	769
	A. Direct introduction of acidic functions	769
	B. Alkylation of OH and NH functions with acidic chains	769
	C. Acylation of OH and NH functions with acidic chains	770
IV.	Basic Solubilizing Chains	775
	A. Direct attachment of a basic residue	775
	B. Bioisosteric exchange of a basic functionality	776
	C. Development of a water-soluble prodrug of diazepam	776
	D. Attachment of the solubilizing moiety to an alcoholic hydroxyl	777
	E. Attachment of the solubilizing moiety to an acidic NH function	779
	F. Attachment of the solubilizing moiety to a basic NH ₂ function	779
	G. Attachment of the solubilizing moiety to carboxylic acid functionalities	780
V.	Non-ionizable Side Chains	780
	A. Glycolyl and glyceryl side chains	780
	B. Polyethylene glycol derivatives	781
	C. Glucosides and related compounds	781

	VI. Concluding Remarks References	782 783
39.	Drug Solubilization with Organic Solvents, or Using Micellar Solutions or Other Colloidal Dispersed Systems Michael J. Bowker and P. Heinrich Stahl	786
	I. Introduction	786
	II. Factors Controlling Solubility and Absorption	788
	A. The nature of drug substances	788
	B. The polarity of the solvent system	788
	III. Water–cosolvent systems	789
	IV. Solubilization Mediated by Surfactants	793
	V. Solubilization by Lipid Vehicles	798
	A. Emulsions and microemulsions	798
	B. Liposomes	802
	VI. Nanoparticles and Other Nanocolloidal Technologies	803
	VII. Drug Delivery and Clearance Mechanisms of Nanocolloids	806
	VIII. Drug Delivery and Accumulation Using Colloidal Systems for the Treatment of Cancer	807
	A. Liposome formulations	807
	B. Formulations based on nanoparticles, microparticles and conjugated systems	808
	IX. Modification of Drug Toxicity by Nanocolloidal Drug Delivery Systems	808
	References	809
40.	Improvement of Drug Properties by Cyclodextrins Kaneto Uekama and Fumitoshi Hirayama	813
	I. Introduction	813
	II. Pharmaceutically Useful CyDs	813
	A. Physicochemical profiles of CyDs	814
	B. Biological profiles of CyDs	814
	III. Improvement of Drug Properties	816
	A. Solubilization	817
	B. Stabilization in solution	818
	C. Control of solid properties	819
	D. Release control	821
	E. Enhancement of drug absorption	822
	F. Reduction of side-effects	824
	G. Use in peptide and protein drugs	826
	H. Combined use of CyDs with additives	829
	IV. CyD-Based Site-Specific Drug Delivery	831
	A. Colon targeting	832
	B. Cell targeting	834
	C. Brain targeting	835
	V. Conclusion	835
	References	835
41.	Chemical and Physicochemical Approaches to Solve Formulation Problems Camille G. Wermuth	841
	I. Introduction	841
	II. Increasing Chemical Stability	841
	III. Improved Formulation of Peptides and Proteins	844
	IV. Dealing with Mesomorphic Crystalline Forms	845
	V. Increasing the Melting Point	846
	A. Salt or complex formation	846
	B. Covalent derivatives	846

	C. Introduction of symmetry	847
VI	I. Gastrointestinal Irritability and Painful Injections	847
	A. Gastrointestinal irritability	847
	B. Avoidance of painful injections	848
VII	I. Suppressing Undesirable Organoleptic Properties	849
	A. Odor	849
	B. Taste	850
Re	ferences	852

Part VIII Development of New Drugs: Legal and Economic Aspects Section Editor: Bryan G. Reuben

42.	Discover a Drug Substance, Formulate and Develop It to a Product Bruno Galli and Bemard Faller	857
	I. Introduction	857
	II. Discover the Drug Substance	857
	A. Exploratory research (target finding)	858
	B. Early discovery program (lead finding)	858
	C. Mature discovery program (lead optimization)	858
	D. Research–development interface	859
	E. Learning experiences	859
	III. Defining Experimental Formulations, The Creative Phase	859
	A. Basic thoughts on oral formulation	859
	B. What is the purpose of a formulation?	859
	C. Suggested sequence of activities prior to start formulation	860
	D. Biopharmaceutical classification of compounds	861
	E. How do we proceed at a practical level?	861
	F. Which formulation principles are used?	862
	IV. Pharmaceutical Development in Industry	863
	V. Fixing The Quality And Develop The Product in A Regulated Environment	865
	References	866
43.	Drug Nomenclature R. G. Balocco Mattavelli, J.C. Dong, S. Lasseur and S. Kopp	867
	I. Introduction	867
	II. Trade Names and Nonproprietary Names	867
	III. Drug Nomenclature	868
	A. INNs for pharmaceutical substances	868
	B. Common names selected by the International Standards Organization (ISO)	874
	IV. Use and Protection of Nonproprietary Names	874
	A. Use of nonproprietary names	874
	B. Protection of nonproprietary names	874
	V. Summary	875
	References	875
	Annex	875
44.	Legal Aspects of Product Protection: What a Medicinal Chemist Should Know about Patent Protection	878
	Maria Souleau	070
	I. Introduction	878
	A. History of the patent-system prior to 1883	878
	B. Main conventions and treaties	879

xxiii

855

	II. Definition of A Patent – Patent Rights	882
	III. Kind of Inventions	882
	IV. Subjects of Patents: Basic and Formal Requirements for Filing a Patent	882
	A. Basic requirements	882
	B. Formal requirements	888
	V. Lifetime of Patents	890
	VI. Ownership of Patents	890
	VII. Infringement of a Patent	890
	VIII. Patents as a Source of Information	891
	IX. Patenting in the Pharmaceutical Industries	891
	X. Conclusion	892
	References	892
45.	The Consumption and Production of Pharmaceuticals	894
	Bryan G. Reuben	
	I. "Important" Drugs	895
	A. The top-earning drugs	895
	B. The most widely prescribed drugs	895
	C. National differences in prescribing	899
	II. Sources of Drugs	902
	A. Vegetable sources	902
	B. Animal sources	902
	C. Biological sources	902
	D. Fermentation	903
	E. Chemical synthesis	903
	III. Manufacture of Drugs	903
	A. Good manufacturing practice	904
	B. Plant design	904
	C. Formulation and packaging–sterile products	905
	D. Choice of reagents	906
	E. "Green" chemistry F. Downstream processing	906 907
	G. Outsourcing	907 907
	IV. Social and Economic Factors	907
	A. Pattern and cost of innovation	909
	B. Patents	910
	C. Orphan drugs	911
	D. Generic pharmaceuticals	912
	E. Parallel trade	914
	F. Cost containment measures	914
	G. Pharmacoeconomics	916
	V. The Future of the Pharmaceutical Industry	918
	A. Trends in pharmaceuticals	919
	B. Conclusion	920
	References	920
Ind	ex	923
mu		923

Biography

Camille-Georges Wermuth PhD. Prof. and Founder Prestwick Chemical. of was Professor of Organic Chemistry and Medicinal Chemistry at the Faculty of Pharmacy, Louis Pasteur University, Strasbourg, France from 1969 to 2002. He became interested in Medicinal Chemistry during his two years of military service in the French Navy at the "Centre d'Etudes Physio biologiques Appliquées à la

Marine" in Toulon. During this time he worked under the supervision of Dr Henri Laborit, the scientist who invented artificial hibernation and discovered chlorpromazine.

Professor Wermuths' main research themes focus on the chemistry and the pharmacology of pyridazine derivatives. The 3-aminopyridazine pharmacophore, in particular, allowed him to accede to an impressive variety of biological activities, including antidepressant and anticonvulsant molecules; inhibitors of enzymes such as mono-amine-oxidases, phosphodiesterases and acetylcholinesterase; ligands for neuro-receptors: GABA-A receptor antagonists, serotonine 5-HT₃ receptor antagonists, dopaminergic and muscarinic agonists. More recently, in collaboration with the scientists of the Sanofi Company, he developed potent antagonists of the 41 amino-acid neuropeptide CRF (corticotrophinreleasing factor) which regulates the release of ACTH and thus the synthesis of corticoids in the adrenal glands. Professor Wermuth has also, in collaboration with Professor Jean-Charles Schwartz and Doctor Pierre Sokoloff (INSERM, Paris), developed selective ligands of the newly discovered dopamine D_3 receptor. After a three-year exploratory phase, this research has led to nanomolar partial agonists which may prove useful in the treatment of the cocaine-withdrawal syndrome.

Besides about 300 scientific papers and about 80 patents, Professor Wermuth is co-author or editor of several books including; *Pharmacologie Moléculaire*, Masson & Cie, Paris; *Médicaments Organiques de Synthèse*, Masson & Cie, Paris; *Medicinal Chemistry for the Twenty-first Century*, Blackwell Scientific Publications, Oxford; *Trends in QSAR and Molecular Modeling*, ESCOM, Leyden, two editions of *The Practice of Medicinal Chemistry*, Academic Press, London and *The Handbook of Pharmaceutical Salts, Properties Selection and Use*, Wiley-VCH.

Professor Wermuth was awarded the Charles Mentzer Prize of the Société Française de Chimie Thérapeutique in 1984, the Léon Velluz Prize of the French Academy of Science in 1995, the Prix de l'Ordre des Pharmaciens 1998 by the French Academy of Pharmacy and the Carl Mannich Prize of the German Pharmaceutical Society in 2000. He is Corresponding Member of the German Pharmaceutical Society and was nominated Commandeur des Palmes Académiques in 1995. He has been President of the Medicinal Chemistry Section of the International Union of Pure and Applied Chemistry (IUPAC) from 1988 to 1992 and from January 1998 to January 2000 was President of the IUPAC Division on Chemistry and Human Health. This page intentionally left blank

Section Editors

Michael J. Bowker studied chemistry and received his doctorate in Organic Chemistry from the University of Leeds, UK. After 5 years working for a multinational polymer company, he moved to May & Baker Ltd., a UK subsidiary of Rhône-Poulenc Santé (now Sanofi-Aventis). He was a Director of Analytical Chemistry for about 15 years and, more

recently, Director of Preformulation at Aventis Pharma Ltd. He has been intimately involved in preformulation and solid-state activities, on a worldwide basis for more than 15 years. He has published several research papers and one chapter for a book on pharmaceutical salts and is currently a Director of M. J. Bowker Consulting Limited, a small company undertaking consultancy in salt selection, polymorph selection and pharmaceutical preformulation.

Hugo Kubinyi is a Medicinal Chemist with 35 years of industrial experience in drug design, molecular modeling, protein crystallography and combinatorial chemistry, in Knoll and BASF AG, Ludwigshafen. He is a Professor of Pharmaceutical Chemistry at the University of Heidelberg, former Chair of The QSAR and Modelling Society and IUPAC Fellow.

From his scientific work resulted more than 100 publications and seven books on QSAR, drug design, chemogenomics, and drug discovery technologies.

Bryan G. Reuben is Professor Emeritus of Chemical Technology at London South Bank University. He has written widely on the technology and economics of the chemical and pharmaceutical industries. His most recent experimental work was on hydrogen–deuterium exchange in protonated peptides and on the downstream processing of nisin.

Richard B. Silverman is the John Evans Professor of Chemistry at Northwestern University. He has published 240 research articles, holds 38 domestic and foreign patents, has written four books, and is the inventor of LyricaTM (pregabalin), marketed worldwide by Pfizer for refractory epilepsy, neuropathic pain, fibromyalgia, and (in Europe) for generalized anxiety disorder.

David J. Triggle is a SUNY Disinguished Professor and the University Professor State University of New York at Buffalo. Educated in United Kingdom and Canada in physical and organic chemistry he has served a variety roles at Buffalo including Dean of the School of Pharmacy and University Provost. His work has been principally in the area of the chemical pharmacology of drug-receptor and

drug-ion channel interactions. He is the author and editor of some 30 books and several hundred publications.

John R. Proudfoot received his Ph.D. from University College Dublin, Ireland 1981 working in with Professor Dervilla Donnelly. He completed post doctoral studies with Professor Carl Djerassi at Stanford University and Professor John Cashman at the University of California San Francisco.

In 1987, he joined Boehringer Ingelheim and is presently a Distinguished Scientist in the medicinal chemistry department.

Han van de Waterbeemd studied organic and medicinal chemistry and got his PhD at the University of Leiden. After his academic years at the University of Lausanne with Bernard Testa he worked for 20 years in the pharmaceutical industry for Roche, Pfizer and AstraZeneca. His research interests are in optimizing compound quality using measured and predicted physico-

chemical and DMPK properties. He contributed to 145 research papers and book chapters, and (co-)edited 13 books.

This page intentionally left blank

Contributors

Raffaella. G. Balocco Mattavelli

Manager of the International Nonproprietary Names Programme Quality Assurance & Safety: Medicines World Health Organization 20, av. Appia CH-1211, Geneva 27

Paul L. Bartel Myriad Genetics, Inc. 320 Wakara Way Salt Lake City, UT 84108 USA

Patrick Bazzini Prestwick Chemical Inc. Boulevard Gonthier d'Andernach 67400 Illkirch France

Frans M. Belpaire Heymans Institute for Pharmacology Jeroom Duquesnoylaan 37 9051 Gent Belgium

Koen Boussery Laboratory of Medical Biochemistry and Clinical Analysis Faculty of Pharmaceutical Sciences Gent University Harelbekestraat 72 9000 Gent Belgium

Michael J. Bowker M.J. Bowker Consulting Ltd. 36, Burses Way Hutton, Brentwood Essex CM13 2PS UK

Sharon D. Bryant Medicinal Chemistry Group Laboratory of Pharmacology and Chemistry National Institute of Environmental Health Sciences P.O. Box 12233, MD: B3-05 Research Triangle Park, NC 27709 USA

David Cavalla Arachnova St. John's Innovation Centre Cambridge CB4 4WS UK

François Chast Pharmacy, Pharmacology, Toxicology Department Hôtel-Dieu 1, Place du Parvis Notre-Dame 75004 Paris France

Paola Ciapetti Head of Medicinal Chemistry Novalyst Discovery Boulevard Sébastien Brant BP 30170 F-67405 Illkirch Cedex France

Jean-Marie Contreras Prestwick Chemical Inc. Boulevard Gonthier d'Andernach 67400 Illkirch France

Gordon M. Cragg Natural Products Branch National Cancer Institute 1003 W 7th Street, Suite 206 Frederick, MD 21701 USA

Patrick M. Dansette Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université PARIS Descartes UMR 8601 – CNRS 45, Rue des Saints Pères F-75270 Paris Cedex 06 France

Ji-Cui Dong

International Nonproprietary Names Programme Quality Assurance & Safety: Medicines World Health Organization 20, av. Appia CH-1211, Geneva 27

Bernard Faller

Novartis Pharma AG Werk Klybeck Klybeckstrasse 141 WKL-122.P.33 CH-4057 Basel Switzerland

Bennett T. Farmer

Boehringer Ingelheim Pharmaceuticals, Inc. 900 Ridgebury Road P.O. Box 368 Ridgefield, CT 06877 USA

Bruno Galli

Novartis Pharma AG TRD-PTM WSJ-340-451 Lichtstrasse 35 CH-4056 Basel Switzerland

Jean-Pierre Gies

Université Louis Pasteur Faculté de Pharmacie Equipe de Signalisation Cellulaire 74, Route du Rhin 67401 Illkirch-Cedex, France

Bruno Giethlen

Prestwick Chemical Inc. Boulevard Gonthier d'Andernach 67400 Illkirch France

Fumitoshi Hirayama

Faculty of Pharmaceutical Sciences Sojo University 4-22-1 Ikeda Kumamoto 860-0082 Japan

Adrian N. Hobden

Myriad Genetics, Inc. 320 Wakara Way Salt Lake City, UT 84108 USA

Andrew L. Hopkins

Division of Biological Chemistry and Drug Discovery College of Life Sciences University of Dundee Dundee Scotland DD1 5EH UK

Peter Imming

Institut für Pharmazie Martin-Luther-Universitaet Halle-wittenberg Wolfgang-Langenbeck-Str. 4 06120 Halle (Saale) Germany

Paul F. Jackson

Johnson & Johnson Pharmaceutical R&D, L.L.C. Welsh McKean Roads P.O. Box 776 Spring House, PA 19477 USA

David G. I. Kingston

Virginia Polytechnic Institute & State University Department of Chemistry, M/C 0212 3111 Hahn Hall West Campus Drive Blacksburg, VA 24061 USA

Sabine Kopp

Medicines Quality Assurance Programme Quality Assurance & Safety: Medicines World Health Organization 20, av. Appia CH-1211 Geneva 27

Hugo Kubinyi

Donnersbergstrasse 9 67256 Weisenheim am Sand Germany

Kamal Kumar

Max Planck Institute of Molecular Physiology Otto-Hahn-Str. 11 D-44227 Dortmund Germany

Yves Landry

Université Louis Pasteur Faculté de Pharmacie Equipe de Signalisation Cellulaire 74, Route du Rhin 67401 Illkirch-Cedex, France

Thierry Langer

Inte:Ligand GmbH Clemens Maria Hofbauer-G.6 2344 Maria Enzersdorf Austria

Institute of Pharmacy University of Innsbruck Innrain 52 6020 Innsbruck Austria

Sophie Lasseur

International Nonproprietary Names Programme Quality Assurance & Safety: Medicines World Health Organization 20, av. Appia CH-1211, Geneva 27

Christopher A. Lipinski Melior Discovery 10 Conshire Drive Waterford, CT 06385-4122 USA

Anne-Christine Macherey Unité de Prévention du Risque Chimique UPS 831–Bat.11 CNRS Avenue de la Terrasse F-91198 Gif sur Yvette Cedex France

André Mann Département de Pharmacochimie de la Communication Cellulaire UMR 7175 LC 1 ULP/CNRS Faculté de Pharmacie 74 route du Rhin 67401 Illkirch France

Christophe Morice

Prestwick Chemical Inc. Boulevard Gonthier d'Andernach 67400 Illkirch France

Richard Morphy Organon Laboratories Ltd. A part of the Schering Plough Corporation Newhouse Lanarkshire Scotland ML1 5SH UK

David J. Newman Natural Products Branch National Cancer Institute 1003 W 7th Street, Suite 206 Frederick, MD 21701 USA

Jean-Pierre Nowicki

Sanofi-Aventis RD 31, Avenue Paul Vaillant-Couturier 92220 Bagneux France

Alex Polinsky Research Technologies Pfizer Global Research and Development 620 Memorial Drive Cambridge, MA 02138 USA

John R. Proudfoot Boehringer Ingelheim Pharmaceuticals Inc. 900 Ridgebury Road P.O. Box 368 Ridgefield, CT 06877 USA

Z. Rankovic Organon Laboratories Ltd. A part of the Schering Plough Corporation Newhouse Lanarkshire Scotland ML1 5SH UK

Allen B. Reitz Johnson & Johnson Pharmaceutical Research and Development, LLC Welsh McKean Rds. Spring House, PA 19477 USA

Bryan G. Reuben London South Bank University 24 Claverley Grove London N3 2DH UK

Jean-Michel Rondeau Novartis Pharma AG Novartis Institutes for BioMedical Research WSJ-88.8.08A CH-4056 Basel Switzerland Sally Rose Cresset BioMolecular Discovery Ltd BioPark Hertfordshire Broadwater Road Welwyn Garden City Herts., AL7 3AX UK

Bernard Scatton Sanofi-Aventis RD 31, Avenue Paul Vaillant-Couturier 92220 Bagneux France

Laurent Schaeffer Prestwick Chemical Inc. Boulevard Gonthier d'Andernach 67400 Illkirch France

Jean-Michel Scherrmann

INSERM U 705; CNRS 7157 University Paris Descartes and Paris Diderot Department of Pharmacokinetics Faculty of Pharmacy 4, avenue de l'Observatoire 75006 Paris France

Herman Schreuder Aventis Pharma Deutschland GmbH Building G 6865A D-65926 Frankfurt am Main Germany

Brian C. Shook

Johnson & Johnson Pharmaceutical R&D, L.L.C. Welsh McKean Roads P.O. Box 776 Spring House, PA 19477 USA

Richard B. Silverman

Department of Chemistry Northwestern University 2145, Sheridon Road Evanston, IL 60208-3113 USA

Wolfgang Sippl

Department of Pharmaceutical Chemistry Martin-Luther-Universität Halle-Wittenberg Wolfgang-Langenbeck-Str. 4 06120 Halle (Saale) Germany Maria Souleau Sanofi-Aventis 20, Rue Raymond Aron 92160 Antony France

P. Heinrich Stahl

Lerchenstrasse 28 79104 Freiburg im Breisgau Germany

Bernard Testa

Service de Pharmacie, CHUV Centre Hospitalier Universitaire Vaudois Rue du Bugnon 46 CH-1011 Lausanne Switzerland

David J Triggle

SUNY at Buffalo School of Pharmaceutical Sciences 126 Cooke Hall Buffalo, NY 14260 USA

Kaneto Uekama

Faculty of Pharmaceutical Sciences Sojo University 4-22-1 Ikeda Kumamoto 860-0082 Japan

Johan Van de Voorde

Ghent University Vascular Research Unit De Pintelaan 185 – Blok B 9000 Gent Belgium

Han van de Waterbeemd

AstraZeneca LG DECS, Global Compound Sciences Alderley Park, 50S39 Macclesfield Cheshire SK10 4TG UK

Herbert Waldmann

Max Planck Institute of Molecular Physiology Otto-Hahn-Str. 11 D-44227 Dortmund Germany

Camille G. Wermuth

Prestwick Chemical Inc. Boulevard Gonthier d'Andernach 67400 Illkirch France

Stefan Wetzel

Max Planck Institute of Molecular Physiology Otto-Hahn-Str. 11 D-44227 Dortmund Germany Kenton H. Zavitz Myriad Genetics, Inc. 320 Wakara Way Salt Lake City, UT 84108 USA This page intentionally left blank

The role of chemistry in the manufacture of new drugs, and also of cosmetics and agrochemicals, is essential. It is doubtful, however, whether chemists have been properly trained to design and synthesize new drugs or other bioactive compounds. The majority of medicinal chemists working in the pharmaceutical industry are organic synthetic chemists with little or no background in medicinal chemistry who have to acquire the specific aspects of medicinal chemistry during their early years in the pharmaceutical industry. This book is precisely aimed to be their 'bedside book' at the beginning of their career.

After a concise introduction covering background subject matter, such as the definition and history of medicinal chemistry, the measurement of biological activities and the three main phases of drug activity, the second part of the book discusses the most appropriate approach to finding a new lead compound or an original working hypothesis. This most uncertain stage in the development of a new drug is nowadays characterized by high-throughput screening methods, synthesis of combinatorial libraries, data base mining and a return to natural product screening. The core of the book (Parts III to V) considers the optimization of the lead in terms of potency, selectivity, and safety. In 'Primary Exploration of Structure-Activity Relationships', the most common operational stratagems are discussed, allowing identification of the portions of the molecule that are important for potency. 'Substituents and functions' deals with the rapid and systematic optimization of the lead compound. 'Spatial Organization, Receptor Mapping and Molecular Modelling' considers the threedimensional aspects of drug-receptor interactions, giving particular emphasis to the design of peptidomimetic drugs and to the control of the agonist- antagonist transition. Parts VI and VII concentrate on the definition of satisfactory drug-delivery conditions, i.e. means to ensure that the molecule reaches its target organ. Pharmacokinetic properties are improved through adequate chemical modifications, notably prodrug design, obtaining suitable water solubility (of utmost importance in medical practice) and improving organoleptic properties (and thus rendering the drug administration acceptable to the patient). Part VIII, 'Development of New Drugs: Legal and Economic Aspects', constitutes an important area in which chemists are almost wholly self taught following their entry into industry.

This book fills a gap in the available bibliography of medicinal chemistry texts. There is not, to the authoreditor's knowledge, any other current work in print which deals with the practical aspects of medicinal chemistry, from conception of molecules to their marketing. In this single volume, all the disparate bits of information which medicinal chemists gather over a career, and generally share by word-of-mouth with their colleagues, but which have never been organized and presented in coherent form in print, are brought together. Traditional approaches are not neglected and are illustrated by modern examples and, conversely, the most recent discovery and development technologies are presented and discussed by specialists. Therefore, The Practice of Medicinal Chemistry is exactly the type of book to be recommended as a text or as first reading to a synthetic chemist beginning a career in medicinal chemistry. And, even if primarily aimed at organic chemists entering into pharmaceutical research, all medicinal chemists will derive a great deal from reading the book.

The involvement of a large number of authors presents the risk of a certain lack of cohesiveness and of some overlaps, especially as each chapter is written as an autonomic piece of information. Such a situation was anticipated and accepted, especially for a first edition. It can be defended because each contributor is an expert in his/her field and many of them are 'heavyweights' in medicinal chemistry. In editing the book I have tried to ensure a balanced content and a more-or-less consistent style. However, the temptation to influence the personal views of the authors has been resisted. On the contrary, my objective was to combine a plurality of opinions, and to present and discuss a given topic from different angles. Such as it is, this first edition can still be improved and I am grateful in advance to all colleagues for comments and suggestions for future editions.

Special care has been taken to give complete references and, in general, each compound described has been identified by at least one reference. For compounds for which no specific literature indication is given, the reader is referred to the Merck Index.

The cover picture of the book is a reproduction of a copperplate engraving designed for me by the late Charles Gutknecht, who was my secondary school chemistry teacher in Mulhouse. It represents an extract of Brueghel's engraving *The alchemist ruining his family in pursuing his chimera*, surmounted by the aquarius symbol. Represented on the left-hand side is my lucky charm caster oil plant (*Ricinus communis L., Euphorbiaceae*), which was the starting point of the pyridazine chemistry in my laboratory. The historical cascade of events was as follows: cracking of caster oil produces n-heptanal and aldolization of

n-heptanal – and, more generally, of any enolisable aldehyde or ketone – with pyruvic acid leads to a-hydroxy- γ -ketonic acids. Finally, the condensation of these keto acids with hydrazine yields pyrodazones. Thus, all our present research on pyridazine derivatives originates from my schoolboy chemistry, when I prepared in my home in Mulhouse n-heptanal and undecylenic acid by cracking caster oil!

Preparing this book was a collective adventure and I am most grateful to all authors for their cooperation and for the time and the effort they spent to write their respective contributions. I appreciate also their patience, especially as the editing process took much more time than initially expected.

I am very grateful to Brad Anderson (University of Utah, Salt Lake city), Jean-Jacques André (Marion Merrell

Dow, Strasbourg), Richard Baker (Eli Lilly, Erl Wood, UK), Thomas C. Jones (Sandoz, Basle), Isabelle Morin (Servier, Paris), Bryan Reuben (London South Bank University) and John Topliss (University of Michigan, Ann Arbor) for their invaluable assistance, comments and contributions.

My thanks go also to the editorial staff of Academic Press in London, Particularly to Susan Lord, Nicola Linton and Fran Kingston, to the two copy editors Len Cegielka and Peter Cross, and finally, to the two secretaries of our laboratory, Franqois Herth and Marylse Wernert.

Last but not least, I want to thank my wife Renée for all her encouragement and for sacrificing evenings an Saturday family life over the past year and a half, to allow me to sit before my computer for about 2500 hours!

Camille G. Wermuth

Like the first edition of *The Practice of Medicinal Chemistry* (nicknamed 'The Bible' by medicinal chemists) the second edition is intended primarily for organic chemists beginning a career in drug research. Furthermore, it is a valuable reference source for academic, as well as industrial, medicinal chemists. The general philosophy of the book is to complete the biological progress – Intellectualization at the level of function using the chemical progress Intellectualization at the level of structure (Professor Samuel J. Danishevsky, *Studies in the chemistry and biology of the epothilones and eleutherobins*, Conference given at the XXXIVémes Rencontres Internationales de Chimie Th6rapeutique, Facult6 de Pharmacie, Nantes, 8–10 July, 1998).

The recent results from genomic research have allowed for the identification of a great number of new targets, corresponding to hitherto unknown receptors or to new subtypes of already existing receptors. The massive use of combinatorial chemistry, associated with high throughput screening technologies, has identified thousands of hits for these targets. The present challenge is to develop these hits into usable and useful drug candidates. This book is, therefore, particularly timely as it covers abundantly the subject of drug optimization.

The new edition of the book has been updated, expanded and refocused to reflect developments over the nine years since the first edition was published. Experts in the field have provided personal accounts of both traditional methodologies, and the newest discovery and development technologies, giving us an insight into diverse aspects of medicinal chemistry, usually only gained from years of practical experience.

Like the previous edition, this edition includes a concise introduction covering the definition and history of

medicinal chemistry, the measurement of biological activities and the three main phases of drug activity. This is followed by detailed discussions on the discovery of new lead compounds including automated, high throughput screening techniques, combinatorial chemistry and the use of the internet, all of which serve to reduce pre-clinical development times and, thus, the cost of drugs. Further chapters discuss the optimization of lead compounds in terms of potency, selectivity, and safety; the contribution of genomics; molecular biology and X-ray crystallization to drug discovery and development, including the design of peptidomimetic drugs; and the development of drug-delivery systems, including organ targeting and the preparation of pharmaceutically acceptable salts. The final section covers legal and economic aspects of drug discovery and production, including drug sources, good manufacturing practices, drug nomenclature, patent protection, social-economic implications and the future of the pharmaceutical industry.

I am deeply indebted to all co-authors for their cooperation, for the time they spent writing their respective contributions and for their patience during the editing process. I am very grateful to Didier Rognan, Paola Ciapetti, Bruno Giethlen, Annie Marcincal, Marie-Louise Jung, Jean-Marie Contreras and Patrick Bazzini for their helpful comments.

My thanks go also to the editorial staff of *Academic Press* in London, particularly to Margaret Macdonald and Jacqueline Read. Last but not least, I want to express my gratitude to my wife Renée for all her encouragements and for her comprehensiveness.

Camille G. Wermuth

This page intentionally left blank

Like the preceding editions of this book, this third edition treats of the essential elements of medicinal chemistry in a unique volume. It provides a practical overview of the daily problems facing medicinal chemists, from the conception of new molecules through to the production of new drugs and their legal/economic implications. This edition has been updated, expanded and refocused to reflect developments in the past 5 years, including 11 new chapters on topics such as hit identification methodologies and cheminformatics. More than 50 experts in the field from eight different countries, who have benefited from years of practical experience, give personal accounts of both traditional methodologies and the newest discovery and development technologies, providing readers with an insight into medicinal chemistry.

A major change in comparison to the previous editions was the decision to alleviate my editorial burden in sharing it with seven section editors, each being responsible for one of the eight sections of the book. I highly appreciated their positive and efficacious collaboration and express them my warmest thanks (in the alphabetical order) to Michael Bowker, Hugo Kubinyi, John Proudfood, Bryan Reuben, Richard Silverman, David Triggle and Han van de Waterbeemd.

Another change was the decision taken by Elsevier/ Academic Press to publish the book in full colors thus rendering it more pleasant and user-friendly. I take this occasion to thank Keri Witman, Pat Gonzales, Kirsten Funk and Renske van Dijk for having successively ensured the editorial development of the book. Taking into account that we had to work with a cohort of about 50 authors, each of them having his personality, his original approach and his main busy professional live, this was not an easy task. I am deeply indebted to my assistant Odile Blin for the way she had mastered, efficiently and with friendliness, all the secretarial work and particularly the contacts with the different authors and with the Elsevier development editors. As for the earlier editions, I also want to express my gratitude to my wife Renée and my daughters Delphine, Joëlle and Séverine for all their encouragements and for sacrificing many hours of family life in order to leave me enough free time to edit this new version of the "Medicinal Chemist's Bible."

My final thoughts go to the future readers of the book, and especially to the newcomers in Medicinal Chemistry having the curiosity to read the preface. I cannot resist giving them some advice for doing good science.

First of all, be open-minded and original. As Schopenhauer noted, the task of the creative mind is "not so much to see what no one has seen yet; but to think what nobody has thought yet, about what everyone sees." A wonderful illustration is found in Peter Hesse's cartoon below.

" IT'S CALLED FIRE ... IT RECYCLES WOOD . "

Second, always keep in mind that the object of Medicinal Chemistry is to synthetize new drugs useful for suffering patients. Like many scientists, medicinal chemists, have to navigate between two tempting reefs. On one side they should avoid doing "NAAR": non-applicable applied research, on the other side they may be attracted by "NFBR": non-fundamental basic search."

Third, convinced as they may be that the neighbors grass is always greener, they may be attracted to start their research in using as a hit a recently published competitor's product. In fact, the published compound may exhibit only a weak activity, therefore be very careful when starting a new program and never forget that the worst thing a medicinal chemist can do is to prepare a me-too of an inactive compound!

Camille G. Wermuth

This page intentionally left blank

Part I

General Aspects of Medicinal Chemistry

Hugo Kubinyi Section Editor This page intentionally left blank

Chapter 1

A History of Drug Discovery

From first steps of chemistry to achievements in molecular pharmacology

François Chast

I. INTRODUCTION

- A. The renewal of chemistry
- B. The dawn of the organic chemistry crosses the birth of biology
- II. TWO HUNDRED YEARS OF DRUG DISCOVERIES
 - A. Pain killers: best-sellers and controversies
 - B. Giving back the heart its youth

- C. Fight against microbes and viruses
- D. Drugs for immunosuppression
- E. Contribution of chemists to the fight against cancer
- F. Drugs for endocrine disorders
- G. Anti-acid drugs
- H. Lipid lowering drugs
- I. From neurotransmitters to receptors

- J. Drugs of the mind
- III. CONSIDERATIONS ON RECENT TRENDS IN DRUG DISCOVERY
 - A. From genetics to DNA technology
 - B. Hopes and limits for drug hunting
- REFERENCES

Le médicament place l'organisme dans des conditions particulières qui en modifient heureusement les procédés physiques et chimiques lorsqu'ils ont été troublés.

Claude Bernard*

During more than 2,000 years, Hippocratic medical tradition weighed on the development of a modern medicine and a renewed approach of the treatment of diseases. The basis for the use of drugs remained founded on empirical theories linked to the equilibrium of body's "humors" consisting in sanguine, melancholic, phlegmatic and choleric. Health and disease were seen as a question of balance or imbalance with foods and herbs classified according to their ability to affect natural homeostasis. Later, during the Middle Ages, Muslim world made significant contributions to medicine and a major medical advance was the founding of many hospitals and university medical schools.

Before the 1800s, pharmacy remained an empiric science, guided by traditional medicine, inherited from "Ancients." Numerous drugs, most of them being prepared with plant extracts, (Figure 1.1) sometimes efficacious, were available. But none of them could respond to a chemical definition of what we call today a drug, except drugs coming from mineral reign.

The technology of making drugs was crude at best: tinctures, poultices, soups, and infusions were made with water- or alcohol-based extracts of freshly ground or dried herbs or animal products such as bone, fat, or even pearls, and sometimes from minerals best left in the ground.¹

The objective of this first chapter is to offer a presentation of the fabulous history of drug discoveries, from traditional pharmacy emerged from ethnopharmacy, till the recent

^{*}Leçons sur les Effets de Substances Médicamenteuses et Toxiques (1857) deuxième leçon (5 mars 1856), p.38: "Drugs place the body in particular conditions which modify fortunately the physical and chemical processes when they have been disturbed."

FIGURE 1.1 Opium latex flowing out of poppy.

concepts of drug design, production and development, born from molecular genetics and molecular pharmacology.

Of course, it is not possible to describe exhaustively, in such a short chapter, such a complex and diversified history. We made the choice to describe the evolution of few families of drugs as examples of mankind ingenuity and intelligence to make pharmaceutical progress more and more successful in treating or preventing diseases.

I. INTRODUCTION

A. The renewal of chemistry

The 18th century concluded its progress in chemistry with an enthusiastic environment. Joseph Priestley in the United Kingdom, Carl Wilhelm Scheele in Sweden, Antoine Laurent de Lavoisier in France,² gave a precise signification to the chemical reactivity and promoted a large number of substances to the statute of chemical reagents. Scheele and Priestley prepared and studied oxygen. Both of them discovered nitrogen as a constituent of air, carbon monoxide, ammonia, and several other gases ; manganese, barium and chlorine; isolated glycerin and many acids, including tartaric, lactic, uric, prussic, citric, and gallic. Lavoisier is generally considered as the founder of modern chemistry as creating the oxygen theory of combustion.³ He should be known as one of the most astonishing 18th century "men of the Enlightenment," the founder of modern scientific experimental methodology. By formulating the principle of the conservation of mass, he gave a clear differentiation between elements and compounds, something so important for pharmaceutical chemistry. Few years later, Antoine François de Fourcroy, Louis Nicolas Vauquelin, Joseph Louis Proust, Jöns Jakob Berzelius, Louis-Joseph Gay-Lussac, and Humphrey Davy introduced new concepts in chemistry. Those scientists integrated the practical advancements of a new generation of experimenters. All these industrial innovations would have their own impact on other developments in industrial and then medicinal chemistry.⁴ At the turn of the 19th century, as the result of a scientific approach, drugs are becoming an industrial item. Claude Louis Berthollet began the industrial exploitation of chlorine (1785). Nicolas Leblanc prepared sodium hydroxide (1789) and then, bleach (1796). Davy performed electrolysis and distinguished between acids and anhydrides. Louis Jacques Thénard prepared hydrogen peroxide and Antoine Jérôme Balard discovered bromide (1826). The growing of therapeutic resources was mainly due to the mastery of chemical or physico-chemical principles proposed by Gay-Lussac and Justus Von Liebig.⁵ This chemists' generation, by realizing all these discoveries, established the compost of the therapeutic discoveries of the 19th century. The constitution of chemistry as a scientific discipline found a new turn few decades later by crossing the road of biology which included revolutionary works of Claude Bernard,⁶ Rudolph Virchow,⁷ and Louis Pasteur.⁸ Besides these fundamental sciences, physiology, biochemistry, or microbiology were becoming natural tributaries of the outbreak of pharmacology. Thus, rational treatments were about to be designed on the purpose of new knowledge in various clinical or fundamental fields. After a period characterized by extraction and purification from natural materials (mainly plants), drugs would be synthesized in chemical factories or prepared through biotechnology (fermentation or gene technology) after a rational research, design and development in research laboratories. Whereas the purpose was to isolate active molecules from plants during the first half of the 19th century, the birth of organic chemistry following charcoal and oil industries, progressively led chemists and pharmacists toward organic synthesis performed in what would be called "laboratory" a new concept created by this generation of scientists. Even when those laboratories hosted discoveries like active principles extracted from plants, progresses in drug compounding and packaging made irreversible industrialization processes. At the same time, the economical dimension of growing pharmaceutical industry transformed drugs as strategic items, mainly when it could interfere with military processes, for instance during colonial expeditions.

The "modern" word "*pharmacology*" became more and more often used by physicians after the works of François Magendie (Figure 1.2) in France or Oscar Schmiedeberg in Germany. Progressively a clear dichotomy took place between those two entities. *Materia Medica* considered drugs with a static and conservative view as for their