The Comet Assay in Toxicology

Issues in Toxicology

Series Editors: Professor Diana Anderson, University of Bradford, UK Dr Michael D Waters, Integrated Laboratory Systems, Inc, N Carolina, USA Dr Timothy C Marrs, Edentox Associates, Kent, UK

Titles in the Series:

- 1: Hair in Toxicology: An Important Bio-Monitor
- 2: Male-mediated Developmental Toxicity
- 3: Cytochrome P450: Role in the Metabolism and Toxicity of Drugs and other Xenobiotics
- 4: Bile Acids: Toxicology and Bioactivity
- 5: The Comet Assay in Toxicology

How to obtain future titles on publication:

A standing order plan is available for this series. A standing order will bring delivery of each new volume immediately on publication.

For further information please contact:

Sales and Customer Care, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK Telephone: +44 (0)1223 432360, Fax: +44 (0)1223 420247, Email: sales@rsc.org

Visit our website at http://www.rsc.org/Shop/Books

The Comet Assay in Toxicology

Edited by

Alok Dhawan

Developmental Toxicology Division, Indian Institute of Toxicology Research, Lucknow, India

Diana Anderson

Division of Biomedical Sciences, University of Bradford, Bradford, UK

RSCPublishing

The cover image shows photomicrographs of comets from (A) *Escherichia coli* (B) *Bacopa monerii L.* (C) *Drosophila melanogaster* (D) differential DNA damage lymphocytes (E) human lymphocytes (F) irradiated diploid human lymphocyte with FISH showing double hybridisation signals indicating strand breakage (G) comets in human sperm (H) human sperm showing double breaks (I) haploid human sperm with FISH showing single hybridisation signal.

Issues in Toxicology No 5

ISBN: 978-0-85404-199-2 ISSN: 1757-7179

A catalogue record for this book is available from the British Library

© The Royal Society of Chemistry, 2009

All rights reserved

Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry or the copyright owner, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page.

Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK

Registered Charity Number 207890

For further information see our web site at www.rsc.org

Preface

This book is the first of its kind to be devoted exclusively to the Comet assay and its applications as an important tool in current toxicology. This multiauthor book will serve as both a reference and a guide for investigators in the biomedical, biochemical and pharmaceutical sciences. Specialists from the fields of genetic toxicology and human epidemiology, with first-hand knowledge of their chosen subspecialities, have contributed to this peer-reviewed scientific venture.

Simplicity, rapidity, versatility and ease of application of the Comet assay have made it a favourite amongst researchers and it is now also gaining acceptance amongst regulators. It can be used in all single cells from prokaryotes and eukaryotes, in plants and animals including humans, involving both somatic and germ cells. It is also a relatively inexpensive assay to perform.

The book is divided into different sections, reflecting the range of interest in the exploitation of this assay. It begins with an introductory section reviewing the genesis of the assay for those new to the technique, and details the various fields in which it finds wide acceptance. This sets the scene by explaining why the assay has become the most sensitive and sought after assay in modern toxicology.

There is a section that describes the protocols being followed to assess various types of DNA damage in different cell types. The third section brings together the specific applications of the assay in diverse areas ranging from genetic toxicity testing to human monitoring, and environmental toxicology. The last section considers strategies for the conduct of the assay using *in vitro* and *in vivo* systems, based on internationally accepted guidelines. The book draws to a close with an assessment of image-analysis principles and the statistics used for evaluating the data generated by the assay.

This book is a culmination of over fifteen years of active collaboration and friendship between the editors and provides a good basic understanding of issues relating to the assay.

The Editors

Contents

Section I: Genesis of Comet Assay

Chapter 1	The Comet Assay: A Versatile Tool for Assessing DNA Damage			
	Alok Dhawan, Mahima Bajpayee and Devendra Parmar			
	1.1 Introduction	3		
	1.2 Bacteria	5		
	1.3 Plant Models	5		
	1.3.1 The Comet Assay in Lower Plants	5		
	1.3.2 The Comet Assay in Higher Plants	18		
	1.4 Animal Models	19		
	1.4.1 Lower Animals	19		
	1.5 Higher Animals	24		
	1.5.1 Vertebrates	24		
	1.6 The Specificity, Sensitivity and Limitations of the			
	Comet Assay	28		
	1.7 Conclusions	30		
	Acknowledgements	30		
	References	30		
S	Section II: Various Procedures for the Comet Assay			
Chapter 2	Detection of Oxidised DNA Using DNA Repair Enzymes Amaya Azqueta, Sergey Shaposhnikov and Andrew R. Collins	57		
	2.1 Introduction2.2 Methods for Measuring DNA Oxidation Damage	57 60		

Issues in Toxicology No 5

The Comet Assay in Toxicology

Edited by Alok Dhawan and Diana Anderson

Published by the Royal Society of Chemistry, www.rsc.org

[©] Royal Society of Chemistry 2009

	 2.3 Enzyme Specificity 2.4 Applications 2.5 Protocol 2.5.1 Equipment 2.5.2 Supplies 2.5.3 Reagents, Buffers and Enzymes 2.5.4 Procedure Acknowledgment References 	61 62 64 65 65 66 74 75
Chapter 3	Microplate-Based Comet Assay Elizabeth D. Wagner and Michael J. Plewa	79
	 3.1 Introduction 3.2 Microplate Comet Assay 3.3 Drinking-Water Disinfection Byproducts 3.4 Chinese Hamster Ovary Cells 3.5 CHO Cell Microplate Comet Assay Protocol 3.5.1 CHO Cell Treatment 3.5.2 Preparation of Comet Microgels 3.5.3 Comet Microscopic Examination 3.5.4 Normalisation of CHO Cell Comet Data and Statistical Analysis 3.6 Utility of the Microplate Comet Assay in Comparing Classes of DBPs 	79 80 81 81 81 83 84 85 85
	 3.6.1 Microplate Comet Analysis of the Haloacetonitriles 3.6.2 Microplate Comet Analysis of the Haloacetamides 3.6.3 Comparison of SCGE Genotoxic Potency Values of the Haloacetonitriles and Haloacetamides 	89 90 91
	 3.7 Advantages of the Mammalian Cell Microplate Comet Assay Acknowledgements References 	92 92 93
Chapter 4	The Use of Higher Plants in the Comet Assay <i>Tomas Gichner, Irena Znidar, Elizabeth D. Wagner and</i> <i>Michael J. Plewa</i>	98
	4.1 Introduction4.2 Differences between the Animal and Plant	98
	Comet Assay	99

Contents

	4.3	Cultiva	tion and Treatment of Plants for the	
		Comet	Assay	99
			Onion (Allium cepa)	99
			Tobacco (Nicotiana tabacum)	100
			Broad Bean (Vicia faba)	100
			Plants used for In-Situ Studies	100
	4.4	Isolatio	on of Nuclei from Plant Tissues	101
		4.4.1	Isolation of Nuclei via Protoplast Formation	101
			Isolation of Nuclei by Mechanical	
			Destruction of the Cell Wall	101
	4.5	Prepara	ation of Comet Assay Slides	101
	4.6	DNA U	Jnwinding and Electrophoresis	102
	4.7	DNA S	Staining	103
	4.8	Reading	g the Slides, Expressing DNA Damage,	
		Statistic		103
	4.9	Comet	Assay Procedure	104
	4.10	Reagen	ts, Media, Buffers	105
	4.11	Equipm	nent and Software	107
	4.12	Determ	ination of Toxicity	107
	4.13	Correla	tion between the DNA Damage Evaluated by	
		the Cor	net Assay and Other Genetic Endpoints in	
		Plants		108
	4.14	The Ut	ility of the Comet Assay for Genotoxic	
			in the Laboratory	109
	4.15		ility of the Comet Assay	
			n Situ Marker	109
	4.16	Comet	Assay with Irradiated Food	
			t Origin	110
	4.17		mendations for Plant Comet Assay Users	110
		eviations	•	114
		ences		115
Chanton 5	Math	ada far T	Freezing Blood Somplog of 90 °C for DNA	
Chapter 5			Freezing Blood Samples at -80 °C for DNA ysis in Human Leukocytes	120
			Singh and Henry C. Lai	120
	nare	nara P. 2	Singh and Henry C. Lai	
	51	Introduc	tion	120
			s and Methods	121
	0.12		Protocol I	121
			Protocol II	122
			Fresh Blood	122
			Fresh Blood Stored on Ice Prior to Freezing	122
			mage and Data Analysis	123
	5.3		and Discussion	123
		rences		127

Chapter 6	Development and Applications of the Comet-FISH Assay for the Study of DNA Damage and Repair Valerie J. McKelvey-Martin and Declan J. McKenna			
	6.1	Introduction	129	
	6.2	The Comet-FISH Assay Procedure	130	
	6.3	Applications of the Comet-FISH Assay6.3.1 Discovery of the Comet-FISH	135	
		Assay 6.3.2 Using Comet-FISH to Measure DNA	135	
		Damage6.3.3 Using Comet-FISH to Quantify DNA	135	
		Repair	142	
	6.4	6.3.4 Summary of Studies	143 144	
	6.4	Limitations of Comet-FISH Assay 6.4.1 Practical Difficulties	144	
		6.4.2 Imaging Difficulties	144	
		6.4.3 Interpretation of Results	145	
	6.5	Conclusion	146	
		erences	146	
Chapter 7		ection of DNA Damage in Drosophila and Mouse k Dhawan, Mahima Bajpayee and Devendra Parmar General Protocol for the Assessment of DNA Damage	151	
	/.1	Using the Alkaline Comet Assay	153	
		7.1.1 Chemicals and Materials	153	
		7.1.2 Preparation of Reagents	153	
		7.1.3 Preparation of Agarose-Coated (Base) Slides for the Comet Assay	155	
		7.1.4 Preparation of Microgel Slides for the Comet		
		Assay 7.1.5 Electrophoresis of Microgel Slides	155 156	
		7.1.6 Evaluation of DNA Damage	150	
	7.2	The Alkaline Comet Assay in Multiple	157	
	/.2	Organs of Mouse	157	
		7.2.1 Chemicals and Materials	158	
		7.2.2 Methodology	158	
	7.3	The Alkaline Comet Assay in <i>Drosophila</i>		
		melanogaster	161	
		7.3.1 Chemicals and Materials	162	
		7.3.2 Methodology	162	
	7.4	Conclusions	165	
	Ack	nowledgements	166	
	Refe	erences	166	

Section III: Applications of Comet Assay

Chapter 8	S . 1		plications of the Comet Assay rakis, K. Kontogianni, G. Karanastasi and erakis	173
	8.1	Introd	luction	173
	8.2	The C	omet Assay Methodology	174
	8.3		al Studies	175
	8.4	Discus	ssion and Conclusions	195
	Refe	erences		196
Chapter 9			s of the Comet Assay in Human Biomonitoring Collins and Maria Dusinska	201
	9.1	Biomo	onitoring and Biomarkers – An Introduction	201
	9.2	The (N	Modified) Comet Assay	202
	9.3	Guide	lines for Biomonitoring Studies	202
	9.4	Biomo	onitoring with the Comet Assay: Special	
		Consid	derations	204
		9.4.1	Surrogate and Target Cells; The Use of White	
			Blood Cells	204
		9.4.2	Sampling Time and Transport	205
		9.4.3	Reference Standards	206
		9.4.4	What Affects the Background Level of DNA Damage?	206
	9.5	DNA	Damage as a Marker of Environmental	200
	1.5		ure and Risk	207
	9.6	*	Repair as a Biomarker of Individual	207
	9.0		otibility	207
	9.7	Protoc	•	207
	9.1	9.7.1	Protocol for Blood Sample Collection and	208
		9./.1	Long-Term Storage of Lymphocytes for the	
			Measurement of DNA Damage and Repair	208
		072	Comet Assay – Determination of DNA	200
		9.1.2	Damage (Strand Breaks and Oxidised Bases)	211
		9.7.3	In Vitro Assays for DNA Repair	211
	9.8		ons, etc.	214
	2.0	9.8.1.	Lysis Solution	216
		9.8.2.	Buffer F (Enzyme Reaction Buffer for FPG,	210
		7.0.2.	Endonuclease III, and <i>In Vitro</i> BER Assay)	217
		9.8.3	Buffer $F + Mg$ (Used for <i>In Vitro</i> NER Assay)	217
		9.8.4	Buffer A (Used in <i>In Vitro</i> Repair Assays)	217
		9.8.5	Triton Solution	217
		9.8.6	Ro 19-8022 (Photosensitiser)	217
		2.0.0	(1) 1) 0022 (1 notosensitiser)	<u>~</u> 1/

Contents

		9.8.7 Electrophoresis Solution	217
		9.8.8 Neutralising Buffer	218
		9.8.9 Agarose	218
		9.8.10 Enzymes	218
	9.9	Analysis and Interpretation of Results	218
		9.9.1 Quantitation	218
		9.9.2 Calculation of Net Enzyme-Sensitive	
		Sites	219
		9.9.3 Calibration	219
		9.9.4 How to Deal with Comet Assay Data	
		Statistically	219
	9.10	Conclusions	220
	Ackn	lowledgements	221
		rences	221
Chanter 10	The C	Comet Assay in Human Biomonitoring	227
		ara Valverde and Emilio Rojas	
	10.1	Introduction	227
	10.2	Human Monitoring	228
		Environmental Exposure	230
		Lifestyle Exposure	234
		Occupational Exposure	237
		Reviews	248
	10.7	Usefulness of the Comet Assay in Human	
		Monitoring	249
		Conclusions	251
	Refer	rences	252
Chapter 11	Come	et Assays in Dietary Intervention Trials	267
	Arme	en Nersesyan, Christine Hoelzl, Franziska Ferk,	
	Miro	slav Mišík and Siegfried Knasmueller	
		Introduction	267
		Experimental Design of Human Studies	268
	11.3	Indicator Cells and Media	269
	11.4	Conventional SCGE Trials with Complex Foods and	
		Individual Components – The Current State of	
		Knowledge	270
	11.5	Use of SCGE Trials to Detect Protection Against	
		DNA-Reactive Carcinogens	275
	11.6	Use of SCGE Experiments to Monitor Alterations of	
		the DNA-Repair Capacity	279
	11.7	What Have We Learned from Intervention Studies so	_//
		Far?	281
		± w	201

282 284 re 297
re
_,
297
298
• • • •
299
299
300
301
301
301
302
303
310
310
311
312
312
313
y 314
p 514
.p 316
510
317
318
319
319
319 320
320

Contents	

Acknowledgements	321
References	321

Chapter 14 The Comet Assay in Sperm – Assessing Genotoxins in Male Germ Cells

Adolf Baumgartner, Eduardo Cemeli, Julian Laubenthal and Diana Anderson

14.1	Introdu	iction	331	
14.2	14.2 Single-Cell Gel Electrophoresis			
14.3	The Us	e of Sperm with the Comet Assay	333	
	14.3.1	Human Sperm	333	
	14.3.2	Modifying Existing Comet Protocols for the		
		Use of Sperm	333	
	14.3.3	Sperm DNA and the Comet Assay	334	
	14.3.4	The Sperm Comet Assay and the Use of		
		Repair Enzymes	335	
	14.3.5	Assessing the Sperm Comet	336	
	14.3.6	Comet-FISH on Sperm	337	
	14.3.7	Cryopreserved versus Fresh Sperm	338	
	14.3.8	Viability Considerations	338	
	14.3.9	Statistical Analysis	339	
14.4	Utilisin	g Male Germ Cells with the Comet Assay	339	
	14.4.1	In Vivo Comet Assay	348	
	14.4.2	In Vitro Comet Assay	349	
14.5	The Sp	erm Comet Assay versus Other Assays Used in		
	Reprod	luctive Toxicology	350	
14.6	Conclu	sions	351	
Ackn	owledge	ments	351	
Refer	References			

Section IV: Regulatory, Imaging and Statistical Considerations

Chapter 15		•	– Protocols and Testing Strategies mann and Günter Speit	373
	15.1	Introdu	iction	373
	15.2	Applica	ations of the In Vivo Comet Assay	
		for Reg	gulatory Purposes	374
	15.3	Recom	mendations for Test Performance	375
		15.3.1	Genetic Endpoint of the Comet Assay	375
		15.3.2	Basic Considerations for Test Protocol	376
		15.3.3	Selection of Tissues and Cell Preparation	377
		15.3.4	Image Analysis	378

Contents

Chapter

		15.3.5	Assessment of Cytotoxicity – A Potential	
			Confounding Factor	378
		15.3.6	Ongoing Validation Exercises	379
	15.4	Applica	ations of the In Vivo Comet Assay	
		for Reg	gulatory Purposes	380
		15.4.1	Follow-Up Testing of Positive In Vitro	
			Cytogenetics Assays	380
		15.4.2	Follow-Up Testing of Tumourigenic	
			Compounds	381
		15.4.3	Assessment of Local Genotoxicity	382
		15.4.4	Assessment of Germ Cell Genotoxicity	382
		15.4.5	Assessment of Photogenotoxicity	382
		15.4.6	Genotoxicity Testing of Chemicals	384
	15.5	Conclu	sions	384
	Refer	ences		385
17				200
10	-	ing and I k Browne	Image Analysis in the Comet Assay	390
	Mark	<i>Browne</i>		
	16.1	Introdu	iction	390
	1011		Experimental Design and Applications	390
	16.2		Sample Preparation	391
	16.3		Fluorescence Staining and Visualisation	392
	16.4		scence Microscopy for Comet Imaging	395
			Light Sources	396
			Epifluorescence Light Path	398
			Fluorescence Filter Sets	399
		16.4.4	Microscope Objectives	401
			Beam-Splitter and C-Mount Adapter	402
	16.5		Detection – CCD, EMCCD	
		and CM	MOS Cameras	403
		16.5.1	Practical Matters	407
	16.6	Image	Processing and Comet Scoring	408
		16.6.1	Image Analysis	409
		16.6.2	Segmentation	410
		16.6.3	Further Segmentation – Identifying Head	
			and Tail of the Comet	413
		16.6.4	Analysis of the Comet, Head and Tail	
			Distributions	413
		16.6.5	Comet Analysis – Other Approaches	416
	16.7		Iany Cells, How Many Replicates?	417
		16.7.1	Data Presentation and Preparation for	
			Analysis	418
		16.7.2	Statistical Analyses	419
		16.7.3	Data Storage and Management	420

XV

xvi			Contents
	16.8	Conclusions	421
	Refer	ences	421
Chapter 17	Statis	tical Analysis of Comet Assay Data	424
	Davia	l P. Lovell	
	17.1	Introduction	424
	17.2	Experimental Design and Statistical Analysis	425
	17.3	Study Design	425
	17.4	Endpoints	427
	17.5	The Experimental Unit and Experimental Design	431
	17.6	Statistical Methods	432
	17.7	Use of Control Groups	436
	17.8	Assessment of Results	437
	17.9	Multiple Comparison Issues	438
	17.10	Power and Sample Size	441
	17.11	Human Studies	443
	17.12	Standardisation and Interlaboratory Comparisons	445
	Refer	¥ 1	446

Subject Index

SECTION I: GENESIS OF COMET ASSAY

CHAPTER 1 The Comet Assay: A Versatile Tool for Assessing DNA Damage

ALOK DHAWAN*, MAHIMA BAJPAYEE AND DEVENDRA PARMAR

Developmental Toxicology Division, Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre), P.O. Box 80, M.G. Marg, Lucknow, 226 001, India

1.1 Introduction

New chemicals are being added each year to the existing burden of toxic substances in the environment. This has led to increased pollution of ecosystems as well as deterioration of the air, water and soil quality. Excessive agricultural and industrial activities adversely affect biodiversity, threatening the survival of species in a particular habitat as well as posing disease risks to humans. Some of the chemicals, *e.g.* pesticides and heavy metals, may be genotoxic to the sentinel species and/or to nontarget species, causing deleterious effects in somatic or germ cells. Test systems that help in hazard prediction and risk assessment are important to assess the genotoxic potential of chemicals before their release into the environment or for commercial use as well as DNA damage in flora and fauna affected by contaminated/polluted habitats. The Comet assay has been widely accepted as a simple, sensitive and rapid tool for assessing DNA

Issues in Toxicology No 5 The Comet Assay in Toxicology Edited by Alok Dhawan and Diana Anderson © Royal Society of Chemistry 2009 Published by the Royal Society of Chemistry, www.rsc.org

^{*}Corresponding author

damage and repair in individual eukaryotic as well as some prokaryotic cells, and it has increasingly found application in diverse fields ranging from genetic toxicology to human epidemiology.

This review is an attempt to comprehensively encase the use of the Comet assay in different models from bacteria to man, employing diverse cell types to assess the DNA-damaging potential of chemicals and/or environmental conditions. Sentinel species are the first to be affected by adverse changes in their environment. Determination of DNA damage using the Comet assay in these indicator organisms would thus provide information about the genotoxic potential of their habitat at an early stage. This would allow for intervention strategies to be implemented for prevention or reduction of deleterious health effects in the sentinel species as well as in humans.

Ostling and Johanson¹ were the first to quantify DNA damage in cells using a microgel electrophoresis technique, known as the single-cell gel electrophoresis (SCGE) or Comet assay. However, the neutral conditions that they used allowed the detection of only double strand breaks in the DNA. Later, the assay was adapted under alkaline conditions by Singh et al.,² which led to a sensitive version of the assay that could assess both double- and single-strand DNA breaks as well as alkali-labile sites expressed as frank strand breaks in the DNA. Since its inception, however, the assay has been modified at various steps (lysis, electrophoresis) to make it suitable for various kinds of damage in different cells.^{3,4} The assay is now a well-established, simple, versatile, rapid, visual, and a sensitive, extensively used tool to assess DNA damage and repair, quantitatively as well qualitatively in individual cell populations.⁵ Some other lesions of DNA damage such as DNA crosslinking (e.g. thymidine dimers) and oxidative DNA damage may also be assessed using lesion specific antibodies or specific DNA repair enzymes in the Comet assay. It has gained wide acceptance as a valuable tool in fundamental DNA damage and repair studies,⁴ genotoxicity testing⁶ and human biomonitoring.^{7,8}

Relative to other genotoxicity tests, such as chromosomal aberrations, sister chromatid exchanges, alkaline elution and the micronucleus assays, the advantages of the Comet assay include its demonstrated sensitivity for detecting low levels of DNA damage (one break per 10^{10} Daltons of DNA⁹), requirement for small number of cells (~10000) per sample, flexibility to use proliferating as well as nonproliferating cells, low cost, ease of application, and the short time needed to complete a study. It can be conducted on cells that are the first site of contact with mutagenic/carcinogenic substances (*e.g.* oral and nasal mucosal cells). The data generated at the single-cell level allow for robust types of statistical analysis.

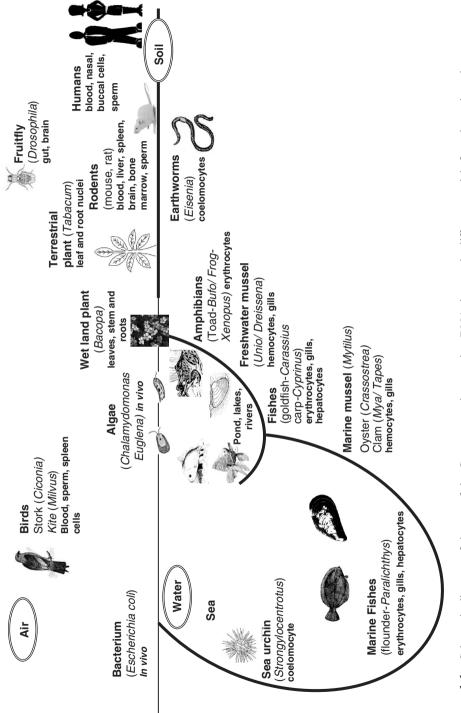
A limitation of the Comet assay is that aneugenic effects, which may be a possible mechanism for carcinogenicity,¹⁰ and epigenetic mechanisms (indirect) of DNA damage such as effects on cell-cycle checkpoints are not detected. The other drawbacks such as single cell data (which may be rate limiting), small cell sample (leading to sample bias), technical variability and interpretation are some of its disadvantages. However, its advantages far outnumber the

disadvantages and hence it has been widely used in fields ranging from molecular epidemiology to genetic toxicology.

The present review deals with various models ranging from bacteria to man used in the Comet assay for assessing DNA damage (Figure 1.1).

1.2 Bacteria

The first study to assess the genetic damage in bacteria treated with 12.5–100 rad of X-rays, using the Comet assay was conducted by Singh *et al.*¹¹ In the study, the neutral Comet assay was used for direct (visual) determination of DNA double-strand breaks in the single electrostretched DNA molecule of *Escherichia coli* JM101. A significant increase in DNA breaks was induced by a dose as low as 25 rad, which was directly correlated to X-ray dosage. The study supported a hypothesis that the strands of the electrostretched human DNA in the Comet assay represented individual chromosomes.


1.3 Plant Models

Plant bioassays are important tests that help detect genotoxic contamination in the environment.¹² Plant systems can provide information about a wide range of genetic damage, including gene mutations and chromosome aberrations. The mitotic cells of plant roots have been used for the detection of clastogenicity of environmental pollutants, especially for *in situ* monitoring of water contaminants. Roots of *Vicia faba* and *Allium cepa* have long been used for assessment of chromosome aberrations¹³ and micronuclei.¹⁴ During the last decade, the Comet assay has been extensively applied to plants (leaves, shoots, and roots) to detect DNA damage arising due to chemicals and heavy metals in polluted soil (Table 1.1).

1.3.1 The Comet Assay in Lower Plants

1.3.1.1 Fungi

Schizosaccharomyces pombe has been used as a model organism to investigate DNA damage due to chlorinated disinfectant, alum and polymeric coagulant mixture in drinking-water samples.¹⁵ The authors observed a significantly higher (P < 0.001) DNA damage in chlorinated water (*i.e.* tap water) when compared to untreated (negative control) or distilled water (laboratory control). Hahn and Hock¹⁶ used mycelia of Sordaria macrospora grown and treated with a variety of DNA-damaging agents directly on agarose minigels for the assessment of genotoxicity using the Comet assay. DNA-strand breaks were detected by an increase in the DNA migration from the nucleus. This model allowed for the rapid and sensitive detection of DNA damage by a number of chemicals simultaneously. Saccharomyces cerevisiae has also been employed for successful investigation of DNA damage at low concentrations of chemicals.²⁰²

Schematic diagram of the use of the Comet assay in assessing DNA damage in different models from bacteria to humans. Figure 1.1

Table 1.1 Comet assay	ay for assessment of DNA damage - bacteria to humans.	ria to humans.		
Model	Agent tested	Cell used	DNA damage	Ref.
	Bacteria	ria		
Escherichia coli JM101	X-rays WI	Whole organism <i>in vivo</i> odels	←	Ξ
Euglena gracilis	1-Methyl-3-nitro-1-nitrosoguanidine (MNNG), benzo[a]pyrene, mitomycin C and actinomycin	Whole organism in vivo	←	18
Chlamydomonas	4. Nitroquinoline-1-oxide (4-NQO), N-nitrosodi-	Whole organism in vivo	←	17
remmarum Rhodomonas Vicia faba	UV (UVA+UVB) radiation N-methyl-N-nitrosourea (MNU) and methyl methansenlfornate (MMK)	Whole organism <i>in vivo</i> Root tip meristematic cells	⇐←	19 21
Tobacco (Nicotiana tabacum I)	Ethyl methanesulfonate Age Kinetics of DNA repair Ethyl methanesulfonate (EMS) and N-ethyl-N-	Nuclei from leaf tissue Leaf nuclei Leaf nuclei Whole roots <i>in vivo</i>	← ←	22 23 24 25,26
	mitrosourea (ENU), maletc hydrazide (MH) O-phenylenediamine (o-PDA), hydrogen peroxide and ethyl methanesulfomate (FMS)	Isolated root nuclei	1	27
Potato plants (Solanum	Heavy metal (Cd, Cu, Pb, and Zn) Polychlorinated biphenyls Heavy metal (Cd, Cu, Pb, and Zn)	Leaf nuclei Nuclei from leaf tissue	← ← ←	28 29 28
tuberosum var. Koreta) Phaeseolus vulgaris Impatiens balsamina Bacopa monnieri L.	Uranium Roc Cr ⁶⁺ and airborne particulate Ster Ethyl methanesulfonate, methyl methanesulfo-Nuc nate, cadmium Animal models	Root or shoot cells Stem, root and leaves Nuclei isolated from roots and leaves todels	 ↑ ↑ dose- and time-dependent roots > leaves 	30 31 32
Tetrahymena thermophila	Phenol, hydrogen peroxide, and formaldchyde, influent and effluent water samples	Whole animal in vivo	←	33

(pan
и
(Conti
-
able 1
a

Table 1.1 (Continued).				
Model	Agent tested	Cell used	DNA damage	Ref.
	Invertebrates – Bivalves	– Bivalves		
Freshwater bivalve zebra mussel (Dreissena polymorpha)	Polybrominated diphenyl ethers (pbdes) Sodium hypochlorite, chlorine dioxide and peracetic acid Pentachlorphenol	Haemocytes	← ←	3 3 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Mytilus edulis	varying curperatures Polluted waters Cadmium (Cd) and chromium (Cr) Styrene Tritum Marine waters (Denmark), French Atlantic Coast	Gills Haemolymph cells Haemocytes Gill and haemolymph	-← ←←←	2 8 8 3 3 3 4 4 9 3 3 4 4 9 9 9 8 8 4 9 9 9 9 9 9 9 9 9 9 9 9
	Polycyclic aromatic hydrocarbons Sesonal variation	Gill and haemocytes Haemocytes		- 44 45
Freshwater mussels (Unio tumidus)	bound variation Polyphenols	Digestive gland cells	¢	46
Golden mussel (Linno- nerna fortunei)	Guaíba Basin water	Haemocytes	÷	47
Bivalve mollusc (Scapharca inaequivalvis)	Organotin compounds (MBTC, DBTC and TBTC)	Erythrocytes	←	48
Mytilus galloprovincialis	Environmental stress Heavy oil spill Cadminn	Haemocytes Gills Dimestive aland cells	←	49 50 51
Vent mussels (<i>Bath-vmodiolus azoricus</i>)	Hydrostatic pressure change	Haemocytes and gill tissues	÷	52,53
Green-lipped mussel (Perna viridis)	Benzo[a]pyrene	Haemocytes	←	54
Freshwater mussel (Utter- backia imbecillis)	Chemicals used in lawn care (atrazine, glyphosate, carbaryl. and copper)	Glochidia	←	55
Oyster (Crassostrea gigas)	Cryopreservation	Spermatozoa	←	56

57,58 59	60 63 63 65 65 67	69 69	70,71 72 71 73	74	75	76 77	78
← 1	↑ dose dependent ↑ ↑ ↑	↑ ↑ intestine > crop	← ← ← ←	<pre>concentration-dependent</pre>	1 damage and decreased renair		1 dose response
Haemolymph, gill and digestive gland Haemocytes and digestive gland cells Earthworms	Coelomocytes Coelomocytes Coelomocytes Coelomocytes Coelomocytes Sperm cells Eleocytes	Coelomocytes Intestine and crop/gizzard cells tebrates	Gut and brain cells of first instar larvae	Coelomocytes	Embryos	Hepatopancreas	Blood cells
Sediment-bound contaminants Haemolyn digestive Petroleum hydrocarbons Haemocyt gland ce Invertebrates – Earthworms	Chemical-treated soil Soil from coke ovens Soil from industrialised contaminated areas Sediment from polluted river Wastewater-irrigated soil Commercial parathion Imidacloprid and RH-5849 PAH-contaminated soil and hydrogen peroxide, cadmium <i>(in vitro)</i>	Nickel chloride Coelo Soil samples spiked with benzo[a]pyrene (B[a]P) Intest and/or lindane cells Other Invertebrates	Ethyl methanesulfonate (EMS), methyl methane- sulfonate (MMS), N-ethyl-N-nitrosourea (ENU) and cyclophosphamide (CP) Cypermethrin Lechates of industrial waste	Cispitatin Dispersed crude oil	UV, benzo[a]pyrene, and cadmium	Estuarine sediments Coal combustion residues	Hydrogen peroxide ethylmethanesulfonate (EMS) or benzo[a]pyrene (B[a]P)
Manila clam (Tapes semidecussatus) Clams (Mya arenaria)	Eisenia foetida	Aporrectodea longa (Ude)	Fruit fly (Drosophila melanogaster)	Sea urchins (Strongylocen-	trotus aroevacriterisus) Grass shrimp, (Paleomo- netes nugio)	(20 0 J 20 0 0 J	Sea anemone (Anthopleura elegantissima)

Model	Agent tested	Cell used	DNA damage	Ref.
	Vertebrates – Fishes	– Fishes		
Chub (Leuciscus cephalus)	PAHs, PCBs, organochlorine pesticides (OCPs), as well as heavy metals	Hepatocytes	←	79
Estuarine mullet (<i>Mugil</i> <i>sp.</i>) and sea catfish (<i>Notinus cn.</i>)	Exhaustive exercise Organochlorine pesticides and heavy metals High temperature	Erythrocytes Erythrocytes	←←	80 81,82
Fresh water teleost fish (Mystus wittetus)	Endosulfan	Gill, kidney, and	↑ in all cells	83
Eastern mudminnow (Umbra pvgmaea L.)	Rhine water for 11 days	Blood erythrocytes	÷	84
Neotropical fish (<i>Prochilodus lineatus</i>)	Diesel water soluble fraction acute (6, 24 and 96 h) and subchronic (15 days) exposures.	Erythrocytes	←	85
Freshwater goldfish (Carassius auratus)	Technical herbicide Roundup containing glyphosphate salt ADDB and PBTA-6	Erythrocytes	$\uparrow\uparrow$ dose dependent	86 87
Turbot (Scophthalmus maximus L.)	Sediment collected from polluted sites in Cork Harbour (Ireland)	Hepatocytes	←	88
Brazilian flounder (Para- lichthys orbignyanus)	Contaminated estuary waters	Blood cells	\downarrow	89
Bullheads (Ameiurus nebulosus)	Polycyclic aromatic hydrocarbon (PAH) and polychlorinated biphenyl (PCB) polluted waters	Erythrocytes	←	90
Carp (Cyprinus carpio)	Polycyclic aromatic hydrocarbon (PAH) and polychlorinated biphenyl (PCB) polluted waters	Erythrocytes	←	90
Brown trout (Salmo trutta fario)	PCB77 (3,3',4,4'-tetrachlorobiphenyl)	Erythrocytes	1	91
Marine flatfish	Ethyl methanesulfate	Blood, gill, liver and kidnev	↑ in all tissues	62 6
Trout (Oncorhynchus mykiss)	Cryopreservation (freeze-thawing)	Spermatozoa	Slight †	63

 Table 1.1 (Continued).

European eel (Anguilla anguilla)	Benzo[a]pyrene, Arochlor 1254, 2-3-7-8-tetra- chlorodibenzo-p-dioxin and beta-	Erythrocytes	←	94
Eelpout (Zoarces	Dil spill (PAH)	Nucleated erythrocytes	←	95
Gilthead sea bream	Copper	Erythrocytes	\downarrow \downarrow	96
Dab (Limanda limanda)	PAHs and PCBs polluted waters of English Channel	Blood cells	\uparrow in adults and males	43
Hornyhead turbot (Pleur- onichthys verticalis)	Sediments collected from a natural petroleum seep (pahs)	Liver cells	÷	67
In vitro				
Carp (Cyprius carpio)	Organic sediment extracts from the North Sea	Leukocytes	←	98
Trout (Oncorhynchus mykiss)	Cadmium Octadrive stress and its prevention by	Hepatocytes Erythrocytes	←←	99 100
Zebrafish (Danio rerio)	Tannins Tannins Diaryl tellurides and ebselen (organoselenium) Surface waters of German rivers, Rhine and Elbe	Hepatocytes and gill cells	\rightarrow \rightarrow \leftarrow 0	101 102 103
Rainbow trout hepatoma cell line (RTH-149) Rainbow trout gonad	Water samples from the polluted Kishon river (Israel) 4-Nitroguinoline-N-oxide N-methyl-N'-nitro-N-	Liver Gonad	↑ ↑ dose-dependent response	104 105
(RTG-2) cell line liver (RTL-W1) cell line	nitrosoguanidine, benzo[a]pyrene, nitrofur- antoin, 2-acetylaminofluorene, and dimethylni-	Epitheloid liver	-	
	trosamme, and surface waters Vertebrates – Amphibians	Amphibians		
Amphibian larvae (Xeno- pus laevis and Pleur-	Cadmium (CdCl ₂) Captan (N-trichloromethylthio-4-cyclohexene- 1.2 disorthoximida)	Erythrocytes	f concentration and time dependent	106,107
oueres want) Amphibian larva (<i>Xenopus</i> laevis)	1,ucar positioned Benzo[a]pyrene, ethyl methanesulfonate methyl methanesulfonate, aqueous extracts of five sediments from French channels	Erythrocytes	←	108,109

Table 1.1 (Communed).					
Model	Agent tested	Cell used	DNA damage	Ref.	
Toad (Bufo raddei)	Petrochemical (mainly oil and phenol) polluted	Liver cells and	←	110	
Toad (<i>Xenopus laevis</i> , and Xenopus tropicalis)	Bleomycin-induced DNA damage and repair	Splenic lymphocytes	↑ DNA damage X. tropica- lis > X. laevis DNA repair in X. laevis > X tronicalis	111	
Tadpoles of <i>Rana N.</i> Hallowell	Imidacloprid [1-(6-chloro-3-pyridylmethyl)-N- nitro-imidazolidin-2-ylideneamine] and RH- 58401 7-k-arroxylhydrostinel]	Erythrocytes		112	
<i>Rana hexadactyla</i> tadpoles	Sulfur dise (Sandopel Basic Black BHLN, Negrosine, Dermapel Black FNI, and Tur- quoise Blue) used in the textile and tannery industries	Erythrocytes	↓	113	
Bullfrog (Rana catesbei- ana) tadpoles	Herbicides AAtrex Nine-O (atrazine), Dual-960E (metalochlor), Roundup (glyphosate), Sencor- 500E (metriburin) and Amcol (74.D amina)	Erythrocytes	↓ ↓	114	
Tadpole Rana clamitans Rana pipiens	Agricultural regions, Industrial regions	Erythrocytes	↑ industrial regions > agricultural regions	115	
In vitro					
Xenopus laevis	High peak-power pulsed electromagnetic field Erythn Vertebrates – Birds	Erythrocytes – Birds	\uparrow due to rise in temperature	116	
Wild nestling white storks (<i>Ciconia ciconia</i>) Black kites (<i>Mibus</i>	Heavy metals and arsenic Toxic acid mining waste rich in heavy metals Heavy metals and arsenic	Blood cells Blood cells	<pre> f correlated with arsenic f f correlated with copper </pre>	117 118,119,120 117	Cha
<i>mugrans)</i> Turkey	Toxic acid mining waste rich in heavy metals Short-term storage	Sperm	ang cadmum (2-10 fold)	118,119,120 121	pter 1

 Table 1.1 (Continued).

Chicken	T-2 toxin and deoxynivalenol (DON) Spleen Storage conditions (4°C) Liver a: cells Vertebrates – Rodents	Spleen leukocytes Liver and breast muscle cells · Rodents	↑ ↑ liver cells > breast muscle cells	122 123
Aldh2 knockout mice P53(+/-) mice	Ethanol Melphalan	Hepatic cells Liver, bone marrow, per- ipheral blood and the	↑ oxidative damage DNA cross-links in all cells tested	124 125
SKH-1 mice	UV A + Fluoroquinolones (clinafloxacin, lome- floxacin, ciprofloxacin) TIVA + 8 mathexecondana (8 MOD)	Epidermal cells	↑↑ for fluoroquinolones	126
Dyslipidemic ApoE(-/-) mice	Ageing Diesel exhaust particles	Aorta, liver, and lung	 Oxidative damage in liver in lung or aorta 	127,128
Balb/c mice	Trypanosoma cruzi infection	Peripheral blood, liver, heart and spleen cells	f in heart and spleen	129
CD-1 mice	Lead acetate	Nasal epithelial cells, lung, whole blood, liver, kid- ney, bone marrow, brain and testes	 in all organs on prolonged exposure in testes 	130
Swiss albino mice	Sanguinarine alkaloid, argemone oil	Blood, bone marrow cells and liver	t dose dependent in blood	131,132
	Cypermethrin	Brain, liver, kidney, bone marrow blood spleen		133
	Steviol	Stomach cells, hepato- cytes, kidney and testicle	÷	134
	Apomorphine, 8-oxo-apomorphine-semiquinone Ethanol, grape seed oligomer and polymer pro- cyanidin fractions	Brain cells Brain cells	← ↓ ethanol-induced protec-	135 136
Male CBA mice	Pesticide formulations (Bravo and Gesaprim)	Hepatic cells, bone mar-	tion by grape seed	137
Isogenic mice	Sulfonamide, protozoan parasite <i>Toxoplasma</i>	Peripheral blood cells, liver calle and brain calle	\uparrow in peripheral blood cells	138
Cirrhotic rats	gonan Rutin and quercetin	Bone marrow cells	↓ ↓	139

The Comet Assay in Different Models

Table 1.1 (Continued)				
Model	Agent tested	Cell used	DNA damage	Ref.
In vitro				
FE1 muta mouse lung enithelial cell line	Carbon black	Lung epithelial cell line	←	140
L5178Y mouse lymphoma cells	Ketoprofen, promazine, chlorpromazine, dacar- bazine, acridine, lomefloxacin, 8-methoxypsor- alen, chlorhexidine, titanium dioxide, octvimethoxycinnamate	Lymphoma cells	Positive with phototoxic compound	141
Murine primary cultures of brain cells and a con- tinuous cell line of astrocytes	Xanthine/xanthine oxidase, hydrogen peroxide superoxide dismutase, catalase, or ascorbic acid	Brain cells	↓ by antioxidants	142
Chinese hamster ovary cell line (CHO)	Endosulfan Ovary Cypermethrin, pendimethalin, dichlorovous Humans – Clinical	Ovary cells Clinical	Ļ	143 144
Breast cancer patients and	Radiosensitivity	Peripheral blood mono- nuclear cells	←	145
Breast cancer patients and	Radiosensitivity	Peripheral blood mono-	↑ and reduced DNA repair	146
Normal individuals	Chlorhexidine	Buccal epithelial cells and peripheral blood lymphocytes	÷	147
Transitional cell carci- noma patients and controls	DNA-strand breaks	Exfoliated cells extracted from bladder washing	↑ in patients	148
Aaxia telangiectasia heterozygote	X-irradiation	Peripheral leukocytes	\uparrow (~3 times high) in patients	149

150 151	152	153 rity 154		155 156	15/ 158 159		160	161		166 167	-lym- 168	169 170 171 172
↑ in patients ↑ in patients	↑ in patients	↑ Decreased DNA integrity		→	↓ ↓ in oxidative damage		←		↓ in exposed population	←←	B-lymphocytes > T-lym- whowever > meanulocytes	
Peripheral blood mono- nuclear cells Peripheral blood mono-	Peripheral blood mono-	nuciear cens Peripheral blood cells Spermatozoa	ry intervention	Blood lymphocytes	Blood lymphocytes Blood lymphocytes	ccupational	Exfoliated buccal cells and	tymphocytes	Peripheral blood Blood lymphocytes	Lymphocytes Peripheral blood	Human T- and B-lympho- evtes and arguitoveres	Peripheral lymphocytes
X-irradiation -	1	Oxidative DNA damage DNA integrity	Humans – Dietary intervention	Tomato drink Green vegetables	Grape Junce Vitamin C supplementation Vitamin E and vitamin C	Humans – Occupational	Jet fuel vapours, jet fuel combustion products	Pesticides	Substances used in the rubber industry Air pollutants	Exhaustive exercise Ionising radiation	Polycyclic aromatic hydrocarbons (PAH)	Benzene in printing Lead (Pb) and cadmium (Cd) Asbestos cement plant Fenvalerate (FE) exposure
Nijmegen breakage syn- drome (NBS) patients Alzheimer disease patients	Breast cancer patients	Type 2 diabetes mellitus Cancer (testicular cancer, lymphoma and leuke- mia) patients		Healthy subjects	Smokers Technical anesthesiology	ыал	Airport personnel	Agricultural workers	Rubber factory workers Outdoor workers in Mex-	Rickshaw pullers Nuclear medicine	Workers	

Table 1.1(Continued).				
Model	Agent tested	Cell used	DNA damage	Ref.
	Coke oven emissions (coe) Welders (Cd, Co, Cr, Ni, and Pb) Pesticide formulators (organophosphorus pesticides)	Blood lymphocytes Lymphocytes Lymphocytes	←	174 175 176
Nurses	Copper smoth Copper smoth Chrome-plating workers (chromium VI) Lymp Chrome-plating workers (chromium VI) Lymp Workers in foundry and pottery (silica) Lymp 5-Fluorouracil, cytarabine, gemcitabine, cyclo- Lymp phosphamide, and ifosfamide Humans – Lifestyle	Leukocytes Lymphocytes Lymphocytes Lymphocytes	1 1 Slight 1	177 178 179 180
Normal individuals Active and passive	Endurance exercise Smoking	Lymphocytes Lymphocytes	←←	181 182
Normal individuals	Smoking Diat (unatorion or non unatorion)	Lymphocytes	←	183-186
Rural Indian women Normal individuals <i>In vitro</i>	Diet (vegetatian of non-vegetatian) Biomass fuels Benzo[a]pyrene, beta-naphthoflavone (BNF)	Lymphocytes Human umbilical vein endothelial cells (HUVEC)	← ←	187 188
Episkin	UV, Lomefloxacin and UV or 4-nitroquinoline-	Skin fibroblast cells	f reduced by Mexoryl	189
Sperms Prostate tissues primary culture	N-oxide (4NQO) and protection by Mexoryl Reproductive toxins 2-Amino-1-methyl-6-phenylimidazo[4,5-b] pyr- idine (PhIP), its N-hydroxy metabolite (N-OH-	Male germ cells Prostate cells	↑ ↑ dose related	190,191 192
Human keratinocytes MCF-7 cells JMI cells HepG2 cells	PhIP) and benzo[a]pyrene (B[a]P) UVA or UVB Estradiol Estradiol Endosulfan Indirect acting genotoxins (cyclophosphamide)	Skin cells Breast cells Lymphoblast cells Liver cells	↑ ↑ concentration dependent	193 194 195 195 196

197	198	199	200 201	ted
↑ with sodium dichromate and MNNG - with NDEA	↑ with BPDE and MNNG – with MEHP	↓ in oxidative damage	←←	DNA damage: – no DNA damage renor
Nasal cells		Lymphocyte		mage: decrease in
Sodium dichromate, N-nitrosodiethylamine (NDEA) and N-methyl-N-nitro-N-nitroso-gua- nidine (MNNG)	Mono(2-ethylhexyl) phthalate (MEHP), ben- zo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)	Heterocyclic amine and prevention by monomeric Lymphocyte and dimeric flavanols and black tea polyphenols	C ₆₀ Fullerenes Municipal sludge leachates	sionificant increase in DNA damaøe. ↑↑ hiohlv sionificant increase in DNA damaøe. decrease in DNA damaøe – no DNA damaøe renorted
Miniorgan cultures of human inferior nasal turbinate epithelia		Human lymphocytes		↑ sionificant increase in D

no DNA damage reported ↑ significant increase in DNA damage; ↑↑ highly significant increase in DNA damage; ↓ decrease in DNA damage; -

1.3.1.2 Algae

Aquatic unicellular plants like algae provide information on the potential genotoxicity of the water in which they grow. Being single celled they can be used as a model for assessment of DNA damage and monitoring of environmental pollution utilising the Comet assay. Unicellular green alga *Chlamydomonas reinhardtii* was used for evaluation of DNA damage due to known genotoxic chemicals and also demonstrated that oxidative stress was better managed by the algal cells under light rather than dark conditions.¹⁷ The Comet assay was found to be useful for evaluating chemically induced DNA damage and repair in *Euglena gracilis* and responses were more sensitive than those of human lymphocytes under the same treatment conditions.¹⁸ The ease of culturing and handling *E. gracilis* as well as its sensitivity, makes it a useful tool for testing the genotoxicity of chemicals and monitoring environmental pollution. A modified version of the Comet assay was used as an alternative technique to assess DNA damage due to UV radiation in *Rhodomonas* sp. (*Cryptophyta*), a marine unicellular flagellate.¹⁹

1.3.2 The Comet Assay in Higher Plants

Vicia faba has been widely used for the assessment of DNA damage using the Comet assay. Strand breaks and abasic (AP) sites in meristematic nuclei of *V. faba* root tips were studied by the neutral and alkaline Comet assay.^{20,21} The alkaline electrophoresis procedure was found to be most sensitive at low doses, while the neutral electrophoresis procedure yielded an optimal dose–response curve within a wider dose range. Angelis *et al.*²⁰ also suggested that the Comet assay was able to detect a phenomenon resembling clastogenic adaptation at the molecular level. Gichner and Plewa²² developed a sensitive method for isolation of nuclei from leaf tissue of *Nicotiana tabacum*. The method resulted in high resolution and constant low tail moment values for negative controls, and hence it could be incorporated as a test for *in situ* plant environmental monitoring.²²

The Comet assay has also been used to study the effect of age of plant on DNA integrity²³ as well as the kinetics of DNA repair²⁴ in isolated nuclei from leaves of tobacco plants. A small but significant increase in DNA damage compared to controls was noted in heterezygous tobacco and potato plants grown on soil contaminated with heavy metals.²⁸ The tobacco and potato plants with increased DNA damage were also found to be severely injured (inhibited growth, distorted leaves), which may be associated with necrotic or apoptotic DNA fragmentation. No DNA damage was observed in the root or shoot cells of *Phaeseolus vulgaris* treated with different concentrations of uranium.³⁰ The ornamental plant *Impatiens balsamina* was used as a model to understand the genotoxic effect of Cr^{6+} and airborne particulate matter,³¹ which produced increased strand breaks in plant parts (stem, root and leaves). Thus, this plant could be used for environmental biomonitoring studies involving air pollution and heavy metals.

The major drawback with plant models was the fact that exposure needs to be given in the soil and it is difficult to say whether the result demonstrates synergies with other chemicals in the soil or nonavailability of the toxicant due to its soil binding affinity. Therefore, Vajpayee *et al.*³² used *Bacopa monnieri L.*, a wetland plant, as a model for the assessment of ecogenotoxicity using the Comet assay. *In vivo* exposure to cadmium (0.01–500 μ M) for 2, 4, and 18 h resulted in dose-and time-dependent increases in DNA damage in the isolated roots and leaf nuclei, with roots showing greater DNA damage than leaves. *In vitro* (acellular) exposure of nuclei from leaves of *B. monnieri* to 0.001–200 μ M cadmium resulted in significant (*P*<0.05) levels of DNA damage.

These studies revealed that DNA damage measured in plants using the Comet assay is a good model for assessment of genotoxicity of polluted environments since *in situ* monitoring and screening can be accomplished. Higher plants can be used as an alternative first-tier assay system for the detection of possible genetic damage resulting from polluted waters/effluents due to industrial activity or agricultural run offs.

1.4 Animal Models

To assess safety/toxicity of chemicals/finished products, animal models have long been used. With the advancements in technology, knockouts and transgenic models have become common to mimic the effects in humans. The Comet assay has globally been used for assessment of DNA damage in various animal models (Table 1.1).

1.4.1 Lower Animals

Tetrahymena thermophila is a unicellular protozoan, widely used for genetic studies due to its well-characterised genome. Its uniqueness lies in the fact that it has a somatic and a germ nucleus in the same cell. Therefore it has been validated as a model organism for assessing DNA damage using a modified Comet assay protocol standardised with known mutagens such as phenol, hydrogen peroxide, and formaldehyde.³³ The method was then used for the assessment of genotoxic potential of influent and effluent water samples from a local municipal wastewater treatment plant.³³ The method provided an excellent, low-level detection of genotoxicants and proved to be a cost-effective and reliable tool for genotoxicity screening of wastewater.

1.4.1.1 Invertebrates

Studies have been carried out on various aquatic (marine and freshwater) and terrestrial invertebrates (Table 1.1). The genotoxicity assessment in marine and freshwater invertebrates using the assay has been reviewed.^{203–205} Cells from haemolymph, embryos, gills, digestive glands and coelomocytes from mussels (*Mytilus edulis*⁴²), zebra mussel (*Dreissena polymorpha*), clams

(*Mya arenaria*), and polychaetes (*Nereis virens*), have been used for ecogenotoxicity studies using the Comet assay. DNA damage has also been assessed in earthworms^{61,63} and fruit flies, *Drosophila*.^{72,206} The Comet assay has been employed to assess the extent of DNA damage in organisms at polluted sites in comparison to those at reference sites in the environment. In the laboratory it has been widely used as a mechanistic tool to determine pollutant effects and mechanisms of DNA damage.⁷⁸

1.4.1.2 The Comet Assay in Mussels

Freshwater and marine mussels have been used to study the adverse effect of contaminants in the aquatic environment as they are important pollutionindicator organisms. These sentinel species are adversely affected by the pollution of the water bodies and thus provide the potential for environmental biomonitoring. The Comet assay in mussels has been used to detect a reduction in water quality caused by chemical pollution.^{41,42,49,207} *Mytilus edulis* has been widely used for Comet assay studies to evaluate DNA-strand breaks in gill and digestive gland nuclei due to polycyclic aromatic hydrocarbons (PAHs) including benzo[a]pyrene (B[a]P),⁴⁴ and oil spills with petroleum hydrocarbons.⁵⁹ The DNA damage was found to be elevated in the exposed mussels. However, the damage returned to normal levels, after continued exposure to a high dose (20 ppb-exposed diet) of B[a]P for 14 days. This was attributed to an adaptive response in mussels to prevent the adverse effects of DNA damage.⁴⁴ The green lipped mussels (*Perna viridis*) also showed a similar result on exposure to B[a]P in water.⁵⁴

Significant levels of interindividual variability, including seasonal variations in DNA damage have been reported from some studies, both laboratory and field.^{45,49,208,209} Baseline monitoring thus has to be carried out over long time intervals. Temperature-dependent DNA damage was observed in haemocytes of freshwater mussel *Dreissena polymorpha*³⁷ showing that the mussels are sensitive towards change in water temperatures. Thus, monitoring ecogenotoxicity with these species should take into account variations in temperatures. Findings have also suggested that antioxidant supplementation can improve the sensitivity of the Comet assay by lowering the baseline damage in untreated animals.²⁰⁸

Villela *et al.*²¹⁰ used the golden mussel (*Limnoperna fortunei*) as a potential indicator organism for freshwater ecosystems due to its sensitivity to water contaminants. The Comet assay in haemocytes of freshwater Zebra mussel, *D. polymorpha* Pallas, was used as a tool in determining the potential genotoxicity of water pollutants.^{34–36,38} Klobucar *et al.*³⁸ suggested the use of the Comet assay in haemocytes from caged, nonindigenous mussels as a sensitive tool for monitoring genotoxicity of freshwater. DNA damage and repair studies in vent mussels, *Bathymodiolus azoricus*, have been carried out to study the genotoxicity of a naturally contaminated deep-sea environment.^{52,53} The vent mussels demonstrated similar sensitivity to environmental mutagens as that of coastal mussels and thus could be used for ecogenotoxicity studies of deep sea waters using the Comet assay.

The Comet Assay in Different Models

In vitro Comet assay has also been used in cells of mussels. Dose–response increases in DNA-strand breakages were recorded in digestive gland cells²¹¹ haemocytes²¹² and gill cells^{208,212} of *M. edulis* exposed to both direct (hydrogen peroxide and 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone) and indirect (B[a]P, 1-nitropyrene, nitrofurantoin and *N*-nitrosodimethylamine) acting genotoxicants. Digestive gland cells of *Unio tumidus* were also used for *in vitro* studies of DNA damage and repair due to pro-oxidative effect of polyphenolic compounds.^{46,213} Wilson *et al.*²⁰⁸ demonstrated the potential application of the Comet assay to the gill cells of *M. edulis* as a potential *in vitro* screen for agents destined for release or disposal into the marine environment.

1.4.1.3 The Comet Assay in Other Bivalves

Coughlan *et al.*⁵⁷ showed that the Comet assay could be used as a tool for the detection of DNA damage in clams (*Tapes semidecussatus*) as biomonitor organisms for sediments. Significant DNA-strand breaks were observed in cells isolated from haemolymph, gill and digestive gland from clams exposed to polluted sediment.^{57,58} The Comet assay was used for the assessment of sperm DNA quality of cryopreserved semen in Pacific oysters (*Crassostrea gigas*) as it is widely used for artificial fertilisation.⁵⁶ Gielazyn *et al.*²¹⁴ demonstrated the use of lesion-specific DNA repair enzyme formamidopyrimidine glycosylase (Fpg) to enhance the usefulness and sensitivity of the Comet assay in studying oxidative DNA damage in isolated haemocytes from oysters (*Crassostrea virginica*) and clams (*Mercenaria mercenaria*).

The studies in mussels have shown the Comet assay to be a sensitive, but nonspecific, molecular biomarker of genotoxicity. One of the drawbacks when applying single-cell gel electrophoresis to field populations may be the adapatability of the animals to high concentrations of contaminants (*e.g.* B[a]P), which may pose a major problem.⁴⁴ Also, seasonal variation and temperature altered both DNA damage baseline levels in untreated animals and cell sensitivity towards environmental pollutants under *in vitro* conditions.^{37,58} The Comet assay detecting DNA-strand breaks has demonstrated that higher basal levels of DNA damage are observed in marine invertebrates, hence the protocol followed in these animals should be considered for biomonitoring the ecogenotoxicity of a region.²¹⁵

1.4.1.4 The Comet Assay in Earthworms

The Comet assay applied to earthworms is a valuable tool for monitoring and detection of genotoxic compounds in terrestrial ecosystems^{61,66} (Table 1.1). Since the worms feed on the soil they live in, they are a good indicator of the genotoxic potential of the contaminants present in the soil and thus used as a sentinel species. Verschaeve *et al.*⁶⁰ demonstrated a dose–response effect with the extent of DNA damage in coelomic leucocytes (coelomocytes) of

earthworms (*Eisenia foetida*) from soil treated with different chemicals as an indicator of soil pollution.

Coelomocytes from E. foetida demonstrated increased DNA damage when worms were exposed to soil samples from polluted coke oven sites,⁶¹ or industrialised contaminated areas⁶² and even sediment samples from polluted river system.⁶³ An insecticide, parathion, produced DNA-strand breaks at all time points and doses in the sperm cells of E. foetida⁶⁵ while dose-effect relationships were displayed by two pesticides, Imidacloprid and RH-5849 in the same species.⁶⁶ showing that pesticides could also have adverse effects on nontarget species. In vitro exposure of coelomocytes primary cultures to nickel chloride as well as whole animals either in spiked artificial soil water or in spiked cattle manure substrates exhibited increased DNA-strand breaks due to the heavy metal.⁶⁸ The eleocytes cells, a subset of coelomocytes produced increased DNA-strand breaks under both in vitro and in vivo conditions and could be used a sensitive biomarker for genotoxicity in earthworms.⁶⁷ Another earthworm, Aporrectodea longa (Ude), when exposed to soil samples spiked with B[a]P and/or lindane demonstrated genotoxicity in the intestinal cells to be more sensitive to the effect of the toxicants than the crop/gizzard cells.69

Fourie et al.²¹⁶ used five earthworm species (Amynthas diffringens, Aporrectodea caliginosa, Dendrodrilus rubidus, Eisenia foetida and Microchaetus benhami) to study genotoxicity of sublethal concentrations of cadmium sulfate, with significant DNA damage being detected in *E. foetida* followed by *D. rubidus* and *A. caliginosa*. The study showed the difference in sensitivity of species present in an environment and its influence on the genotoxicity risk assessment. Hence, for environmental biomonitoring, specific species have to be kept in mind to reduce false-negative results.

1.4.1.5 The Comet Assay in Drosophila

The simple genetics and developmental biology of *Drosophila melanogaster* has made it the most widely used insect model and has been recommended as an alternate animal model by the European Centre for the Validation of Alternative Methods.²¹⁷ Recently, *Drosophila* has evolved into a model organism in toxicological studies.^{218,219} *D. melanogaster* has also been used as an *in vivo* model for assessment of genotoxicity using the Comet assay^{70–72,206} (Table 1.1). Neuroblast cells of third instar larvae, DNA repair deficient in nucleotide excision repair (mus201) and a mechanism of damage bypass (mus308), have been used for mechanistic studies.²⁰⁶

Third instar larvae of *D. melanogaster* (Oregon R +) were validated for genotoxicity assessment using a modified Comet assay.^{70,71} Since the cells of *Drosophila* are smaller than mammalian cells, modifications in the Comet assay were done, *e.g.* higher concentration of agarose (for the smaller size of *Drosophila* cells), removal of DMSO from lysing solution (DMSO is toxic to the cells) and lower electrophoresis time (for improved performance of the assay). This modified protocol was validated in gut and brain cells using

well-known alkylating agents, *i.e.* ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), N-ethyl-N-nitrosourea (ENU) and cyclophosphamide (CP) that were mixed in standard *Drosophila* diet and produced a significant dose-dependent response.^{70,71} Cypermethrin, a synthetic pyrethroid, even at low concentrations (at 0.002 ppm) and leachates of industrial waste produced significant dose-dependent increases in DNA damage in the brain ganglia and anterior mid gut of *D. melanogaster*.^{71,72} Results from the Comet assay have also shown a direct correlation between the concentrations of cisplatin adducts and DNA damage in somatic cells of *D. melanogaster*.⁷³

In vitro studies using *Drosophila* S2 cells demonstrated that the ectopically expressed DNA glycosylases (dOgg1 and RpS3) reduced the oxidised guanosine (8-OxoG), but contributed to increased DNA degradation due to one of the constituents of the DNA repair system.²²⁰

The studies in *Drosophila* have shown it to be a good alternative to animal models for the assessment of *in vivo* genotoxicity of chemicals using the Comet assay.

1.4.1.6 The Comet Assay in Other Invertebrates

Nereis virensa, a polychaete, plays an important role in the distribution of pollutants in sediments due to their unique property of bioturbation. These worms are similar to earthworms in soil and can be used for genotoxicity assessment of sediments. Intracoelomic injection of B[a]P was given to the worms and the Comet assay was conducted on coelomocytes.²²¹ *Nereis* species was, however, not found to be suitable for assessing PAH genotoxicity probably due to its lack of metabolic capability to convert B[a]P to its toxic metabolite.²²¹

DNA damage was assessed in neuroblast cells of brains of 1st instars of grasshoppers (*Chorthippus brunneus*) exposed to various doses of zinc from a polluted site to understand the mechanism of toxicity in insects due to industrial pollutants.²²²

The estuarine grass shrimp, *Palaemonetes pugio*, exposed to coal-combustion residues from coal-fired electrical generation, were studied for DNA damage using the Comet assay. Chronic exposure caused DNA damage in hepatopancreatic cells of adult shrimps as compared to the reference shrimp.⁷⁷ The Comet assay in planarians is an important test for environmental monitoring studies since these are simple organisms with high sensitivity, low cost and a high proliferative rate.²²³ The genotoxic potential of water from Diluvio's Basin was evaluated in planarians, where an increase in pollutants towards the basin led to an increase in the DNA damage in these species.²²³ A significant increase of primary DNA damage was observed in planarian cells due to a Norflurazon, a bleaching herbicide²²⁴ and copper sulfate,²²⁵ when compared to the control animals.

These studies have also shown the use of the Comet assay in biomonitoring diverse environmental conditions utilising sentinel species.

1.5 Higher Animals

1.5.1 Vertebrates

Studies of vertebrate species where the Comet assay is used include fishes, amphibians, birds and mammals. Cells (blood, gills, kidneys and livers) of different fishes, tadpoles and adult frogs, as well as rodents have been used for assessing *in vivo* and *in vitro* genotoxicity of chemicals, and human biomonitoring has also been carried out employing the Comet assay (Table 1.1).

1.5.1.1 The Comet Assay in Fishes

Various fishes (freshwater and marine) have been used for environmental biomonitoring, as they are endemic organisms, which serve as sentinel species for a particular aquatic region to the adverse effects of chemicals and environmental conditions. The Comet assay has found wide application as a simple and sensitive method for evaluating *in vivo* as well as *in vitro* DNA damage in different tissues (gills, liver, blood) of fishes exposed to various xenobiotics in the aquatic environment (Table 1.1).

Environmental biomonitoring to assess the water quality in rivers has been carried out in hepatocytes of chub,⁷⁹ erythrocytes of mullet (*Mugil* sp.), sea catfish (Netuma sp.^{81,82}), bullheads (Ameiurus nebulosus) and carp (Cyprinus *carpio*^{90,226}). The basal level of DNA damage has been shown to be influenced by various factors, such as the temperature of water in erythrocytes of mullet and sea catfish,^{81,82} age and gender in dab (*Limanda limanda*⁴³), and exhaustive exercise in chub.⁸⁰ Therefore, these factors should be accounted for during environmental biomonitoring studies. The sensitivity of the assay may be affected by high intraindividual variability.⁴³ The protocol and experimental conditions used for the Comet assay for monitoring marine ecosystems may lead to differences in the results obtained.⁹² The use of chemical and mechanical procedures to obtain cell suspensions may also lead to DNA damage.²²⁷ Anesthesia did not contribute towards DNA damage in vivo in methyl methanesulfonate (MMS) treated fishes and the anesthetic benzocaine did not alter the DNA damage in ervthrocytes after *in vitro* exposure to MMS or H₂O₂.²²⁸ Hence keeping in mind animal welfare, multi sampling in the same fish can be conducted.

In vitro studies on fish hepatocytes,⁹⁹ primary hepatocytes and gill cells¹⁰³ as well as established cell lines (with metabolic competence²²⁹) using the Comet assay have also been conducted to assess the genotoxicity of chemicals in water samples. The antioxidant potential of indolinic and quinolinic nitroxide radicals,¹⁰⁰ tannins¹⁰¹ and low concentrations (<10 μ M) of diaryl tellurides and ebselen – an organoselenium compound¹⁰² – in oxidative DNA damage has been studied in nucleated trout (*Oncorhynchus mykiss*) erythrocytes for use of these compounds in biological systems. Kammann *et al.*⁹⁸ demonstrated the Comet assay in isolated leukocytes of carp as an *in vitro* model for evaluating genotoxicity of marine sediment extracts and increased sensitivity of the

method with use of the DNA repair inhibitor, 1-beta-D-arabinofuranosylcytosine (ara C). The Comet assay with fish cell lines may be a suitable tool for *in vitro* screening of environmental genotoxicity, however, the metabolising capabilities of the cell line need to be taken into account.

Cryopreservation has been shown to induce DNA-strand breaks in spermatozoa of trout,^{93,230} sea bass (*Dicentrarchus labrax*²³¹) and gilthead sea bream (*Sparus aurata*²³⁰). The DNA damage was prevented by the addition of cryopreservants such as BSA and dimethyl sulfoxide.²³¹ These studies have demonstrated the sperm Comet assay as a useful model in determining the DNA integrity in frozen samples for commercially cultured species.

The above studies have shown the usefulness of the Comet assay in fishes as a model for monitoring genotoxicity of aquatic habitats.

1.5.1.2 The Comet Assay in Amphibians

The Comet assay in amphibians has been carried out at adult and larval stages for ecogenotoxicity of aquatic environments and studies since 1999 have been well reviewed by Cotelle and Ferard.²⁰³ The animals chosen for the Comet assay act as sensitive bioindicators of aquatic and agricultural ecosystems (Table 1.1). The animals were either collected from the site (*in situ*) or exposed to chemicals under laboratory/natural conditions.

Erythrocytes from tadpoles of two species *Rana clamitans* and *Rana pipiens* have been used for the assessment of genotoxicity of water bodies as in situ sentinel organisms for environmental biomonitoring.¹¹⁵ R. clamitans tadpoles collected from agricultural regions showed significantly higher (P < 0.001) DNA damage than tadpoles collected from sites of little or no agriculture. Similarly *R. pipiens* tadpoles collected from industrial sites showed significantly higher (P < 0.001) DNA-strand breaks than samples from agricultural areas. The higher levels of DNA damage may be due to the pesticides used in the agricultural region. Variation in DNA damage due to sampling time¹¹⁵ and during various metamorphosis states²³² was also observed. Hence, for biomonitoring environmental genotoxicity using the Comet assay, pooling of early tadpole phases could be helpful. Studies have also been conducted on caged tadpoles in areas where the indigenous population is not present, due to ecological imbalance from pollution. Rana clamitans and the American toad (Bufo americanus) tadpoles were caged at the polluted reference site and demonstrated significant (P < 0.05) increases in DNA damage, relative to control tadpoles in the laboratory.²³³ These results demonstrated that caged tadpoles could be used for monitoring genotoxicity of water habitats that do not support the survival of tadpoles, e.g. large lakes and aquatic areas near high industrial activity.

Huang *et al.*¹¹⁰ have shown the genotoxicity of petrochemicals in liver and erythrocytes of toad *Bufo raddeis*. DNA damage was found to be positively correlated to the concentration of petrochemicals in liver, pointing to the fact that liver is the site for metabolism and may be a good marker for studying genotoxicity of compounds that require metabolic activation. The effect of

polyploidy on bleomycin-induced DNA damage and repair in *X. laevis* (pseudotetraploid) and *Xenopus tropicalis* (diploid) was studied using the Comet assay.¹¹¹ The *X. tropicalis* was more sensitive with a lower capacity for repair than *X. laevis*, showing that polyploidy protects DNA damage and allows rapid repair, and hence these species may be used as a good model for DNA damage and repair studies.

1.5.1.3 The Comet Assay in Birds

There are few studies involving the Comet assay in birds (Table 1.1). Genetic damage due to a mining accident involving heavy metals has been reported in free-living, nestling white storks (*Ciconia ciconia*) and black kites (*Milvus migrans*) from southwestern Spain,^{117–120} however, species-specific and intraspecies differences were observed. Faullimel *et al.*¹²³ showed that the neutral Comet assay could be used to study the impact of freezing and thawing on DNA integrity in breast fillets and liver cells of frozen chicken. Frankic *et al.*¹²² reported that T-2 toxin and deoxynivalenol (DON) induced DNA fragmentation in chicken spleen leukocytes that was abrograted by dietary nucleotides. Kotlowska *et al.*¹²¹ have demonstrated increased DNA fragmentation in turkey sperm after 48 h of liquid storage which might be helpful in evaluating the DNA integrity for artificial insemination.

1.5.1.4 The Comet Assay in Rodents

Mice and rats have been widely used as animal models for the assessment of *in vivo* genotoxicity of chemicals using the Comet assay (Table 1.1). The *in vivo* Comet assay has been accepted by the UK Committee on Mutagenicity Testing of Chemicals in Food, Consumer Products and Environment¹⁰ as a test for assessing DNA damage, and is recommended for follow-up testing of positive *in vitro* findings. A positive result in the *in vivo* Comet assay assumes significance if mutagenic potential of a chemical has already been demonstrated *in vitro*. Within a battery of tests, the Comet assay finds a place as a supplemental *in vivo* test that has been accepted by international guidelines.²³⁴ There are specific guidelines for the performance of the Comet assay *in vivo* for reliable results.^{235–237}

Multiple organs of mouse/rat including brain, blood, kidney, lungs, liver, bone marrow have been utilised for the comprehensive understanding of the systemic genotoxicity of chemicals.^{133,134,238,239} The most important advantage of the use of Comet assay is that DNA damage in any organ can be evaluated without the need for mitotic activity and DNA damage in target as well as nontarget organs can also be seen.²³⁹ Comprehensive data on chemicals representing different classes, *e.g.* PAHs, alkylating compounds, nitroso compounds, food additives, *etc.* that caused DNA-strand breaks in various organs of mice was compiled by Sasaki *et al.*^{239,240} The mouse or rat organs exhibiting

increased levels of DNA damage were not necessarily the target organs for carcinogenicity. Therefore, for the prediction of carcinogenicity of a chemical, organ-specific genotoxicity was necessary but not sufficient.²⁴⁰ The Comet assay can be used as an *in vivo* test apart from the cytogenetic assays in haematopoietic cells and also for those compounds that have poor systemic bioavailability.

Different routes of exposure in rodents have been used, *e.g.* intraperitoneal,^{131,133} oral^{241,242} and inhalation^{130,243} to study the genotoxicity of different chemicals. The route of exposure is an important determinant of the genotoxicity of a chemical due to its mode of action.¹³⁴ The *in vivo* Comet assay helps in hazard identification and assessment of dose–response relationships as well as the mechanistic understanding of a substance's mode of action. Besides being used for testing the genotoxicity of chemicals in laboratory-reared animals, the Comet assay in wild mice can be used as a valuable test in pollution monitoring and environmental conservation.²⁴⁴

The *in vivo* Comet assay in rodents is an important test model for genotoxicity studies, since many rodent carcinogens are also human carcinogens, and hence this model not only provides an insight into the genotoxicity of human carcinogens but is also suited for studying their underlying mechanisms.

1.5.1.5 The Comet Assay in Humans

The Comet assay is a valuable method for detection of occupational and environmental exposures to genotoxicants in humans and can be used as a tool in risk assessment for hazard characterisation^{6,8,245,246} (Table 1.1). The DNAdamage assessed by the Comet assay gives an indication of recent exposure and at an early stage where it could also undergo repair²⁴⁷ and thus it provides an opportunity for intervention strategies to be implemented in a timely manner. The assay can be conducted in the same population after removal of genotoxicant/dietary intervention to detect the extent of reduction in DNA damage. The assay is a noninvasive technique compared to other DNA-damage techniques (chromosomal aberrations, micronucleus), which require larger samples (~ 2 -3 ml) as well as a proliferating cell population (or cell culture). Human biomonitoring using the Comet assay is advantageous since it is rapid, cost effective, with easy compilation of data and concordance with cytogenetic assays.²⁴⁸

The assay has been widely used in studying DNA damage and repair in healthy individuals,^{3,194,249,250} in clinical studies^{31,251,252} as well as in dietary intervention studies,^{155,158,253–255} and in monitoring the risk of DNA damage resulting from occupational,^{161,256–258} environmental,^{187,259} oxidative DNA damage,^{177,260} exposures or lifestyle.^{185,261} White blood cells or lymphocytes are the most frequently used cell type for the Comet assay in human biomonitoring studies.^{248,262,263} However, other cells have also been used, *e.g.* buccal cells,²⁶⁴ nasal,²⁶⁵ sperm,^{191,266–268} epithelial^{269–271} and placental cells.²⁷²

The Comet assay has been used as a test to predict the risk for development of diseases (renal cell carcinoma, cancers of the bladder, oesophagus and lung) due to susceptibility of the individual to DNA damage.^{149,273–275} The *in vitro* Comet assay is proposed as an alternative to cytogenetic assays in early genotoxicity/photogenotoxicity screening of drug candidates²⁷⁶ as well for neurotoxicity. Certain factors like age, diet, lifestyle (alcohol and smoking) as well as diseases have been shown to influence the Comet assay parameters and for interpretation of responses these factors need to be accounted for during monitoring human genotoxicity.^{277,278}

Human biomonitoring studies using the Comet assay provide an efficient tool for measuring human exposure to genotoxicants, thus helping in risk assessment and hazard identification.

1.6 The Specificity, Sensitivity and Limitations of the Comet Assay

The Comet assay has found worldwide acceptance for detecting DNA damage and repair in prokaryotic and eukaryotic cells. However, there are issues relating to the specificity, sensitivity and limitations of the assay that need to be addressed by genetic toxicologists before it gets accepted in the regulatory framework including interlaboratory validation of *in vitro* and *in vivo* Comet assay.

The variability in the results of the Comet assay is largely due to its sensitivity and minor differences in the conditions of various laboratories as well as the effect of confounding factors in human studies (lifestyle, age, diet, interindividual and seasonal variation). Prospective cohort studies have not been conducted to find the predictive value of the Comet assay in human biomonitoring, further limiting its application.⁸ Cell to cell, gel to gel, culture to culture, animal to animal variability as well as use of various image-analysis systems or visual scoring²⁷⁹ and use of different Comet parameters, *e.g.* Olive tail moment and tail (%) DNA, are the other factors contributing to interlaboratory differences in the results.

The limitation of the Comet assay is that it only detects DNA damage in the form of strand breaks. The alkaline (pH > 13) version of the assay assesses direct DNA damage or alkali-labile sites, while specific classes of DNA damage including base oxidation DNA adduct formation cannot be measured. The specific and sensitive detection of these lesions requires the use of lesion-specific enzymes.³ These enzymes are bacterial glycosylase/endonuclease enzymes, which recognise a particular type of damage and convert it into a break that can then be measured in the Comet assay. Hence, broad classes of oxidative DNA damage, alkylations, and ultraviolet light-induced photoproducts can be detected with use of endonuclease III, while oxidised purines are detected with formamidopyrimidine DNA glycosylase (FPG). Modifications have been made in the protocol to specifically detect double-strand breaks (neutral Comet

assay²⁸⁰), single-strand breaks (at pH 12.1,²⁸¹), DNA crosslinking (decrease in DNA migration due to crosslinks²⁸⁰) and apoptosis.²⁸⁰ The neutral Comet assay also helps to distinguish apoptosis from necrosis as evidenced by the increased Comet score in apoptotic cells and the almost zero Comet score in necrotic cells.²⁸² An adaptation of the Comet assay was also developed that enables the discrimination of viable, apoptotic and necrotic single cells.²⁸³ Use of proteinase-K specifically removes DNA–protein crosslinking, leading to increased migration but would not affect the DNA–DNA crosslinking, thereby indicating a specific type of lesion.²⁸⁰

Tail (%) DNA and Olive tail moment give a good correlation in genotoxicity studies and since most studies have reported these Comet parameters, it has been recommended that both these parameters should be applied for routine use. Since the OTM is reported as arbitrary units and different image-analysis systems give different values, tail (%) DNA is a considered a better parameter.²⁸⁵

It is therefore required that the *in vitro* and *in vivo* testing be conducted according to the Comet assay guidelines, and appropriately designed multi-laboratory international validation studies be carried out.

Guidelines for the *in vitro* as well as *in vivo* Comet assay have been formulated.^{235,236} Recently, issues relating to study design and data analysis in the Comet assay were discussed by the International Workgroup on Genotoxicity Testing (IWGT), where particular attention was given to the alkaline version (pH > 13) of the *in vivo* Comet assay and recommendations were made for a standardised protocol, which would be acceptable to international agencies.²³⁷ It was decided that a single dose should be replaced with multiple dosing to avoid misinterpretation of data, isolated cells or nuclei could be used for the studies, cytotoxicity should be tested in the cells to prevent mechanisms of apoptosis/necrosis from interfering with the results, and scoring of comets could be carried out both manually as well as with image-analysis systems. Consensus was also reached on the need for an international validation study to stringently evaluate the reliability and accuracy of the *in vivo* Comet assay (as well as *in vitro* versions). These recommendations are also aimed at reducing the variability arising in interlaboratory studies.

Since *in vivo* Comet assay has been accepted as the first tier screening assay for assessment of DNA damage in rodents by the Committee on Mutagenicity, UK,¹⁰ international validation studies are underway supported by the European Centre for Validation of Alternative Methods (ECVAM), Japanese Centre for Validation of Alternative Methods (JaCVAM), US Interagency Coordinating Committee on Validation of Alternative Methods (ICCVAM), US National Toxicology Program Interagency Centre for Evaluation of Alternative Toxicological Methods (NICEATM) and Japanese Environmental Mutagen Society.²³⁷

There has been only one multilaboratory validation study in the European countries that has been conducted to study the FPG sensitive sites and background level of base oxidation in DNA using the Comet assay, in human lymphocytes.²⁸⁴ It was found that half of the laboratories demonstrated a