The Comet Assay in Toxicology 2nd Edition

Issues in Toxicology

Series Editors:

Professor Diana Anderson, *University of Bradford, UK* Dr Michael D. Waters, *Michael Waters Consulting, N. Carolina, USA* Dr Timothy C. Marrs, *Edentox Associates, Kent, UK*

Advisor to the Board:

Professor Alok Dhawan, CSIR-Indian Institute of Toxicology Research, Lucknow, India

Titles in the Series:

- 1: Hair in Toxicology: An Important Bio-Monitor
- 2: Male-mediated Developmental Toxicity
- 3: Cytochrome P450: Role in the Metabolism and Toxicity of Drugs and other Xenobiotics
- 4: Bile Acids: Toxicology and Bioactivity
- 5: The Comet Assay in Toxicology
- 6: Silver in Healthcare
- 7: In Silico Toxicology: Principles and Applications
- 8: Environmental Cardiology
- 9: Biomarkers and Human Biomonitoring, Volume 1: Ongoing Programs and Exposures
- 10: Biomarkers and Human Biomonitoring, Volume 2: Selected Biomarkers of Current Interest
- 11: Hormone-Disruptive Chemical Contaminants in Food
- 12: Mammalian Toxicology of Insecticides
- 13: The Cellular Response to the Genotoxic Insult: The Question of Threshold for Genotoxic Carcinogens
- 14: Toxicological Effects of Veterinary Medicinal Products in Humans: Volume 1
- 15: Toxicological Effects of Veterinary Medicinal Products in Humans: Volume 2
- 16: Aging and Vulnerability to Environmental Chemicals: Age-related Disorders and their Origins in Environmental Exposures
- 17: Chemical Toxicity Prediction: Category Formation and Read-Across
- 18: The Carcinogenicity of Metals: Human Risk Through Occupational and Environmental Exposure
- 19: Reducing, Refining and Replacing the Use of Animals in Toxicity Testing
- 20: Advances in Dermatological Sciences
- 21: Metabolic Profiling: Disease and Xenobiotics
- 22: Manganese in Health and Disease
- 23: Toxicology, Survival and Health Hazards of Combustion Products
- 24: Masked Mycotoxins in Food: Formation, Occurrence and Toxicological Relevance

- 25: Aerobiology: The Toxicology of Airborne Pathogens and Toxins
- 26: Chemical Warfare Toxicology, Volume 1: Fundamental Aspects
- 27: Chemical Warfare Toxicology, Volume 2: Management of Poisoning
- 28: Toxicogenomics in Predictive Carcinogenicity
- 29: Human Stem Cell Toxicology
- 30: The Comet Assay in Toxicology, 2nd Edition

How to obtain future titles on publication:

A standing order plan is available for this series. A standing order will bring delivery of each new volume immediately on publication.

For further information please contact:

Book Sales Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK Telephone: +44 (0)1223 420066, Fax: +44 (0)1223 420247 Email: booksales@rsc.org Visit our website at www.rsc.org/books Published on 07 October 2016 on http://pubs.rsc.org | doi:10.1039/9781782622895-FP001

The Comet Assay in Toxicology 2nd Edition

Edited by

Alok Dhawan

CSIR-Indian Institute of Toxicology Research, Lucknow, India Email: alokdhawan@iitr.res.in

Diana Anderson

University of Bradford, UK Email: d.anderson1@bradford.ac.uk

Issues in Toxicology No. 30

Print ISBN: 978-1-78262-287-1 PDF eISBN: 978-1-78262-289-5 EPUB eISBN: 978-1-78262-915-3 ISSN: 1757-7179

A catalogue record for this book is available from the British Library

© The Royal Society of Chemistry 2017

All rights reserved

Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry or the copyright owner, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page.

The RSC is not responsible for individual opinions expressed in this work.

The authors have sought to locate owners of all reproduced material not in their own possession and trust that no copyrights have been inadvertently infringed.

Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK

Registered Charity Number 207890

For further information see our web site at www.rsc.org

Printed in the United Kingdom by CPI Group (UK) Ltd, Croydon, CR0 4YY, UK

Preface

This book is the first of its kind to be devoted exclusively to the Comet assay and its applications as an important tool in current toxicology. This multiauthor book will serve as both a reference and a guide for investigators in the biomedical, biochemical and pharmaceutical sciences. Specialists from the fields of genetic toxicology and human epidemiology, with first-hand knowledge of their chosen sub-specialities, have contributed to this peerreviewed scientific venture.

The simplicity, rapidity, versatility and ease of application of the Comet assay have made it a favourite amongst researchers and it is now also gaining acceptance amongst regulators. It can be used with all single cells from prokaryotes and eukaryotes, plants and animals, including humans, both somatic and germ cells. It is also a relatively inexpensive assay to perform.

The book is divided into different sections, reflecting the range of interest in the exploitation of this assay. It begins with an introductory section reviewing the genesis of the assay for those new to the technique, and details the various fields in which it finds wide acceptance. This sets the scene by explaining why the assay has become the most sensitive and sought after assay in modern toxicology.

There is a section that describes the protocols being followed to assess various types of DNA damage in different cell types. The third section brings together the specific applications of the assay in diverse areas ranging from genetic toxicity testing to human monitoring and environmental toxicology. The last section considers strategies for the conduct of the assay using *in vitro* and *in vivo* systems, based on internationally accepted guidelines. The book draws to be a close with an assessment of image-analysis principles and the statistics used for evaluating the data generated by the assay.

© The Royal Society of Chemistry 2017

Issues in Toxicology No. 30

The Comet Assay in Toxicology, 2nd Edition

Edited by Alok Dhawan and Diana Anderson

Published by the Royal Society of Chemistry, www.rsc.org

Preface

This book is a culmination of over fifteen years of active collaboration and friendship between the editors and provides a good basic understanding of issues relating to the assay.

> Alok Dhawan Diana Anderson

Contents

Section I: Genesis of Comet Assay

Chapter 1	The Comet Assay: A Versatile Tool for Assessing DNA					
_	Damage					
	Mahima Bajpayee, Ashutosh Kumar and Alok Dhawan					
	1.1 Introduction	3				
	1.1.1 Bacteria	5				
	1.2 Plant Models	5				
	1.2.1 The Comet Assay in Lower Plants and Fungi	5				
	1.2.2 The Comet Assay in Higher Plants	8				
	1.3 Animal Models	10				
	1.3.1 Lower Animals	10				
	1.4 Higher Animals	18				
	1.4.1 Vertebrates	18				
	1.5 The Specificity, Sensitivity and Limitations of the					
	Comet Assay	32				
	1.6 Conclusions	34				
	References	35				
	Section II: Various Procedures for the Comet Assay					
Chapter 2	High-throughput Measurement of DNA Breaks and					
	Oxidised Bases with the Comet Assay	67				
	Amaya Azqueta, Isabele Campos Costa-Amaral and					
	Andrew R. Collins					
	2.1 Introduction	67				

Issues in Toxicology No. 30

The Comet Assay in Toxicology, 2nd Edition

Edited by Alok Dhawan and Diana Anderson

[©] The Royal Society of Chemistry 2017

Published by the Royal Society of Chemistry, www.rsc.org

	2.2	Metho	ods for Measuring DNA Oxidation Damage	69
	2.3	Enzyn	ne Specificity	71
	2.4	Applic	eations	73
	2.5	Protoc	col	76
		2.5.1	Equipment	76
		2.5.2	Supplies	76
		2.5.3	Reagents, Buffers and Enzymes	77
		2.5.4	Procedure	78
	Ack	nowled	gements	87
	Refe	erences		87
Chapter 3	Mic	roplate	based Comet Assay	93
	Elize	abeth D	. Wagner and Michael J. Plewa	
	3.1	Introc	luction	93
	3.2	Micro	plate Comet Assay	94
	3.3	Drink	ing-water Disinfection Byproducts	94
	3.4	Chine	se Hamster Ovary Cells	96
	3.5	CHO	Cell Microplate Comet Assay Protocol	96
		3.5.1	CHO Cell Treatment	96
		3.5.2	Preparation of Comet Microgels	97
		3.5.3	Comet Microscopic Examination	98
		3.5.4	Normalisation of CHO Cell Comet Data and Statistical Analysis	99
	3.6	Utility	of the Microplate Comet Assay in Comparing	
		Classe	es of DBPs	101
		3.6.1	Microplate Comet Analysis of the	
			Haloacetonitriles	102
		3.6.2	Microplate Comet Analysis of the	
			Haloacetamides	103
		3.6.3	Comparison of SCGE Genotoxic Potency	
			Values of the Haloacetonitriles and	
			Haloacetamides	105
	3.7	Advan	tages of the Mammalian Cell Microplate	
		Come	t Assay	105
	Ack	nowled	gements	106
	Refe	erences		106
Chapter 4	The	Use of	Higher Plants in the Comet Assay	112
	Tom Mici	las Gich hael I. I	ner, Irena Znidar, Elizabeth D. Wagner and Plewa	
	1 1	Intro	duction	110
	4.1	Intro		112

xi

	4.2	4.2 Differences between the Animal and Plant			
		Comet Assay	113		
	4.3	Cultivation and Treatment of Plants for the			
		Comet Assay	113		
		4.3.1 Onion (Allium cepa)	113		
		4.3.2 Tobacco (Nicotiana tabacum)	114		
		4.3.3 Broad Bean (Vicia faba)	114		
		4.3.4 Plants Used for <i>In situ</i> Studies	114		
	4.4	Isolation of Nuclei from Plant Tissues	115		
		4.4.1 Isolation of Nuclei <i>via</i> Protoplast			
		Formation	115		
		4.4.2 Isolation of Nuclei by Mechanical			
		Destruction of the Cell Wall	115		
	4.5	Preparation of Comet Assay Slides	115		
	4.6	DNA Unwinding and Electrophoresis	116		
	4.7	DNA Staining	117		
	4.8	Reading the Slides, Expressing DNA Damage,			
		Statistics	117		
	4.9	Comet Assay Procedure	118		
	4.10	Reagents, Media, Buffers	119		
	4.11	Equipment and Software	121		
	4.12	Determination of Toxicity	121		
	4.13	Correlation between the DNA Damage Evaluated			
		by the Comet Assay and Other Genetic Endpoints	100		
	4.4.4	in Plants	122		
	4.14	The Utility of the Comet Assay for Genotoxic	100		
	4 4 5	Studies in the Laboratory	122		
	4.15	Compet Assay with Irradiated Food of Plant Origin	120		
	4.10	Connet Assay with Inadiated Food of Plant Origin	127		
	4.17 Abbr	eviations	127		
	Dofor		120		
	Kelei	ences	120		
Chapter 5	Methods for Freezing Blood Samples at -80 °C for DNA				
	Damage Analysis in Human Leukocytes				
	Narei	ndra P. Singh and Henry C. Lai			
	5.1	Introduction	134		
	5.2	Materials and Methods	135		
		5.2.1 Protocol I	135		

 5.2.1
 Protocol I
 135

 5.2.2
 Protocol II
 136

 5.2.3
 Fresh Blood
 136

Contents

	 5.2.4 Fresh Blood Stored on Ice Prior to Freezing 5.2.5 Image and Data Analysis 5.3 Results and Discussion References 	136 137 137 141
Chapter 6	Development and Applications of the Comet-FISH Assay for the Study of DNA Damage and Repair <i>Valerie J. Mckelvey-Martin and Declan J. Mckenna</i>	143
	 6.1 Introduction 6.2 The Comet-FISH Assay Procedure 6.3 Applications of the Comet-FISH Assay 6.3.1 Discovery of the Comet-FISH Assay 6.3.2 Using Comet-FISH to Measure DNA Damage 6.3.2 Using Comet-FISH to Measure DNA Damage 	143 144 149 149 149
	 6.3.3 Using Comet-FISH to Quantify DNA Repair 6.3.4 Summary of Studies 6.4 Limitations of Comet-FISH Assay 6.4.1 Practical Difficulties 6.4.2 Imaging Difficulties 6.4.3 Interpretation of Results 6.5 Conclusion References 	155 156 157 157 157 158 159 159
Chapter 7	Detection of DNA Damage in Different Organs of the Mouse <i>Ritesh Kumar Shukla, Mahima Bajpayee and Alok Dhawan</i>	164
	 7.1 Introduction 7.2 The Alkaline Comet Assay in Multiple Organs of Mice 7.2.1 Chemicals and Materials 7.2.2 Methodology 7.3 Conclusions Acknowledgements References 	164 165 166 169 172 173 173
Chapter 8	Detection of DNA Damage in Drosophila Ashutosh Kumar, Mahima Bajpayee and Alok Dhawan	177
	 8.1 Introduction 8.2 General Protocol for the Assessment of DNA Damage Using the Alkaline Comet Assay 8.2.1 Chemicals and Materials 8.2.2 Preparation of Reagents 	177 178 178 180

Contents				xiii
		8.2.3	Preparation of Agarose Coated (Base) Slides	
			for the Comet Assay	181
		8.2.4	Preparation of Microgel Slides for the	
			Comet Assay	181
		8.2.5	Electrophoresis of Microgel Slides	182
		8.2.6	Evaluation of DNA Damage	183
	8.3	The Al	kaline Comet Assay in Drosophila	
		melan	ogaster	183
		8.3.1	Chemicals and Materials	184
		8.3.2	Methodology	184
	8.4	Conclu	ision	187
	Ackn	owledg	gements	188
	Refer	ences		188
		Sectio	n III: Applications of Comet Assay	
Chapter 9	The (Comet	Assay: Clinical Applications	195
-	М. М	. Piper	akis, K. Kontogianni and S. M. Piperakis	
	9.1	Introd	uction	195
	9.2	The Co	omet Assay Methodology	196
	9.3	Clinica	al Studies	197
	9.4	Discus	ssion and Conclusions	229
	Refer	ences		230
Chapter 10	Appli	cation	s of the Comet Assay in Human	
	Biom	onitor	ing	238
	Andre	ew R. C	Collins and Maria Dusinska	
	10.1	Bior	nonitoring and Biomarkers – An Introduction	238
	10.2	The	(Modified) Comet Assay	239
	10.3	Gui	delines for Biomonitoring Studies	240
	10.4	Bior	nonitoring with the Comet Assay: Special	
		Con	siderations	241
		10.4	.1 Surrogate and Target Cells; The Use of	
			White Blood Cells	242
		10.4		242
		10.4		243
		10.4	.4 What Affects the Background Level of	
			DNA Damage?	244
	10.5	DNA	A Damage as a Marker of Environmental	
		Exp	osure and Risk	244
	10.6	DNA	A Repair as a Biomarker of Individual	
		Suse	ceptibility	245

Contents				
	\sim	+ 101	0.10	+0
		rii	РN	18

	10.7	Protoco	ls	246
	1007	10.7.1	Protocol for Blood Sample Collection and	- 10
			Long-term Storage of Lymphocytes for	
			the Measurement of DNA Damage and	
			Repair	246
		10.7.2	Comet Assav – Determination of DNA	
			Damage (Strand Breaks and Oxidised	
			Bases)	249
		10.7.3	In vitro Assays for DNA Repair	252
	10.8	Solution	ns, <i>etc.</i>	254
		10.8.1	Lysis Solution	254
		10.8.2	Buffer F (Enzyme Reaction Buffer for	
			FPG, Endonuclease III, and In vitro	
			BER Assay)	254
		10.8.3	Buffer $F + Mg$ (Used for <i>In vitro</i>	
			NER Assay)	254
		10.8.4	Buffer A (Used in <i>In vitro</i>	
			Repair Assays)	254
		10.8.5	Triton Solution	255
		10.8.6	Ro 19-8022 (Photosensitiser)	255
		10.8.7	Electrophoresis Solution	255
		10.8.8	Neutralising Buffer	255
		10.8.9	Agarose	255
		10.8.10	Enzymes	255
	10.9	Analysi	s and Interpretation of Results	256
		10.9.1	Quantitation	256
		10.9.2	Calculation of Net Enzyme-sensitive Sites	257
		10.9.3	Calibration	257
		10.9.4	How to Deal with Comet Assay Data	
			Statistically	257
	10.10	Conclus	sions	258
Acknowledgements		ents	258	
	Refere	ences		259
Chapter 11	Come	t Assay in	1 Human Biomonitoring	264
-	Mahar	ra Valvera	le and Emilio Rojas	
	11.1	Introduc	tion	264
	11.2	Human 1	Monitoring	265
	11.3	Environr	nental Exposure	268
	11.4	Lifestyle	Exposure	273
	11.5	Occupati	onal Exposure	276

Contents			XV	
	11.6	Reviews	288	
	11.7	Usefulness of the Comet Assay in Human		
		Monitoring	291	
	11.8	Conclusions	292	
	Refer	rences	293	
Chapter 12	Use o	of Single-cell Gel Electrophoresis Assays in Dietary		
	Inter	vention Trials	314	
	Arme	n Nersesyan, Christine Hoelzl, Franziska Ferk,		
	Miros	slav Mišík, Halh Al-Serori, Tahereh Setayesh and		
	Siegfi	ried Knasmueller		
	12.1	Introduction	314	
	12.2	Different Endpoints	315	
	12.3	Experimental Design of Human Studies	315	
	12.4	Indicator Cells and Media	318	
	12.5	Conventional SCGE Trials With Complex Foods		
		and Individual Components—The Current State of		
		Knowledge	319	
		12.5.1 Definition of the Quality Score (QS)	319	
	12.6	Use of SCGE Trials to Detect Protection Against		
		DNA-reactive Carcinogens	319	
	12.7	Use of SCGE-experiments to Monitor Alterations of		
		the DNA-repair Capacity (Base- and		
		Nucleotide-excision Repair)	333	
	12.8	What Have We Learned From Intervention Studies		
		So Far?	333	
	12.9	Future Perspectives	337	
		12.9.1 Hot Topics	337	
		12.9.2 Detection of Antioxidants	338	
		12.9.3 Standardization	338	
		12.9.4 Search for Mechanistic Explanations	339	
		12.9.5 Interpretation Problems	339	
	Refer	rences	341	
Charter 12	The	Application of the Compt Agent in Agentic		
Unapter 13	The Application of the Comet Assay in Aquatic			
		onnicity	354	
	G. FT	еплии, 1. г. Беип ини Б. г. Lyons		
	13.1	Introduction	354	
	13.2	Protocols, Cell Types and Target Organs	356	

	13.3	Applicat	tion of the Comet Assay to Invertebrate	
		Species		357
		13.3.1	Freshwater Invertebrates	357
		13.3.2	Marine Invertebrates	358
	13.4	Applicat	tion of the Comet Assay to Vertebrate	
		Species		359
		13.4.1	Freshwater Vertebrates	359
		13.4.2	Marine Vertebrates	360
	13.5	Conclus	sions	361
	Refere	ences		361
Chapter 14	The A	lkaline (Comet Assay in Prognostic Tests for Male	
	Intert	ility and	Assisted Reproductive Technology	
	Outco	omes		369
	Sheen	a E. M. L	ewis and Ishola M. Agbaje,	
	14.1	Introdu	ction	369
	14.2	Sites of	DNA Damage in Sperm	370
		14.2.1	Oxidative Stress, a Major Cause of DNA	
			Damage	371
		14.2.2	Oxidative Stress, Antioxidant Therapies	372
		14.2.3	Sperm DNA Damage Tests	372
		14.2.4	Modifications to the Alkaline Comet Assay	
			for Use with Sperm	373
		14.2.5	Sperm DNA Adducts and their	
			Relationship with DNA Fragmentation	375
	14.3	Can Spe	erm DNA Integrity Predict Success?	
		Relation	ships with Assisted Conception Outcomes	376
	14.4	Clinical	ly Induced DNA Damage	377
		14.4.1	Cryopreservation	378
		14.4.2	Vasectomy	379
	14.5	A Major	Barrier to Progress	379
	14.6	Opportu	inities and Challenges – The	
		Establis	hment of Clinical Thresholds and the	
		Integrat	ion of DNA Testing into Clinical Practice	379
	Ackno	owledgen	nents	380
	Refere	ences		380
Chapter 15	The C	omet Ass	say in Sperm—Assessing Genotoxins in Male	
	Germ Cells			
	Adolf	Baumgar	tner, Aftab Ali, Charmaine Normington and	
	Diana	Anderso	n	
	15.1	Introdu	ction	390

Contents			xvii
	15.2	The Comet Assay (Single-cell Gel Electrophoresis)	391
	15.3	The Use of Sperm with the Comet Assay	392
		15.3.1 Human Sperm	392
		15.3.2 Sperm DNA and the Comet Assay	393
		15.3.3 Modifying Existing Comet Protocols for	
		Somatic Cells for Use with Sperm	394
		15.3.4 The Two-tailed Sperm Comet Assay	396
		15.3.5 The Sperm Comet Assay and the Use of	
		Repair Enzymes	397
		15.3.6 Assessing the Sperm Comet	398
		15.3.7 Comet–FISH on Sperm	398
		15.3.8 Cryopreserved Versus Fresh Sperm	399
		15.3.9 Viability Considerations	400
		15.3.10 Statistical Analysis	400
	15.4	Utilizing Male Germ Cells with the Comet Assay	401
		15.4.1 <i>In vivo</i> Comet Assay	401
		15.4.2 In vitro Comet Assay	417
	15.5	The Sperm Comet Assay Versus Other Assays Used	
		in Reproductive Toxicology	418
	15.6	Conclusion	418
	Refer	ences	420
Chapter 16	Geno	toxic Effects in Peripheral Blood and Sperm	
I	in Hu	mans in Healthy Individuals and Those	
	with 1	Disease States	457
	Diana	Anderson, Adolf Baumgartner and Mojgan Najafzadeh	
	16.1	Introduction	457
	16.2	Assessing Ecotoxins and Novel Compounds	460
		16.2.1 Assessing Ecotoxins	460
		16.2.2 Novel Compounds	460
	16.3	Basic Research into DNA Damage and Repair	465
	16.4	Human Biomonitoring and Molecular	
	_	Epidemiology	466
	Refer	ences	473
Section	on IV:	Regulatory, Imaging and Statistical Considerations	
Chapter 17	Appli	cation of the Comet Assay in Nanotoxicology	479

Maria Dusinska, Elise Rundén-Pran, Naouale El Yamani, Lise M. Fjellsbø and Andrew Collins

17.1	Introdu	iction	479
	17.1.1	Nanotechnology and Nanomaterials	479

		17.1.2	Nanomaterials and Genotoxicity	480
		17.1.3	Comet Assay for Genotoxicity Testing of	
			Nanomaterials	480
	17.2	Experir	nental Design and Methodological	
		Consid	erations	482
		17.2.1	Physico-chemical Characterization of	
			Nanomaterial Dispersion	482
		17.2.2	<i>In vitro</i> Models for Detecting Genotoxicity	
			of NMs with the Comet Assay	483
		17.2.3	Exposure Time	483
		17.2.4	Selection of Concentration Range	483
		17.2.5	Positive and Negative Controls and	
			Reference Standards	484
		17.2.6	Possible Interference of the Comet Assay	
			with the Nanomaterials	485
		17.2.7	Cytotoxicity Assessment as Part of	
			Genotoxicity Testing	486
	17.3	Comet	Assay Protocol	486
		17.3.1	Preparation of Reagents, Positive Controls,	
			and Enzymes	486
		17.3.2	Procedure	488
	17.4	Statisti	cal Analyses of the Data	493
	17.5	Final R	emarks	494
	Ackno	owledge	ments	494
	Refer	ences		494
Chapter 18	Come	et Assay	- Protocols and Testing Strategies	498
	Andre	eas Hartr	nann and Günter Speit	
	18.1	Introdu	action	498
	18.2	Applica	tions of the <i>In vivo</i> Comet Assay for	
		Regula	tory Purposes	499
	18.3	Recom	mendations for Test Performance	500
		18.3.1	Genetic Endpoint of the	
			Comet Assay	500
		18.3.2	Basic Considerations for	
			Test Protocol	501
		18.3.3	Selection of Tissues and	
			Cell Preparation	502
		18.3.4	Image Analysis	503
		18.3.5	Assessment of Cytotoxicity – A Potential	
			Confounding Factor	504
		18.3.6	Ongoing Validation Exercises	504

Contents				xix
	18.4	Applica	ations of the <i>In vivo</i> Comet Assay for	
		Regula	tory Purposes	505
		18.4.1	Follow-up Testing of Positive In vitro	
			Cytogenetics Assays	505
		18.4.2	Follow-up Testing of Tumourigenic	
			Compounds	506
		18.4.3	Assessment of Local Genotoxicity	507
		18.4.4	Assessment of Germ Cell Genotoxicity	507
		18.4.5	Assessment of Photogenotoxicity	508
		18.4.6	Genotoxicity Testing of Chemicals	509
	18.5	Conclu	sions	510
	Refer	rences		511
Chapter 19	Imag	ing and	Image Analysis in the Comet Assay	515
I	Mark	Browne	8 5 5	
	19.1	Introdu	action	515
		19.1.1	Experimental Design and Applications	516
	19.2	Comet	Sample Preparation	516
	19.3	Comet	Fluorescence Staining and Visualization	517
	19.4	Fluores	scence Microscopy for Comet Imaging	519
		19.4.1	Light Sources	519
		19.4.2	Epifluorescence Light Path	523
		19.4.3	Fluorescence Filter Sets	523
		19.4.4	Microscope Objectives	525
		19.4.5	Beam-splitter and C-mount Adapter	526
	19.5	Image	Detection—CCD, EMCCD and CMOS	
		Camera	as	527
		19.5.1	Practical Matters	531
	19.6	Image	Processing and Comet Scoring	533
		19.6.1	Image Analysis	534
		19.6.2	Segmentation	535
		19.6.3	Identifying Comet Head and Tail	538
		19.6.4	Analysis of the Comet, Head and Tail	
			Distributions	539
		19.6.5	Comet Analysis – Other Approaches	542
	19.7	How M	any Cells, How Many Replicates?	543
		19.7.1	Data Storage and GLP Compliance	543
		19.7.2	Presentation and Preparation for Analysis	544
		19.7.3	Statistical Analyses	547
		19.7.4	Data Storage and Management	547
	19.8	Conclu	sions	548
	Refer	ences		548

XX		0	Contents
Chapter 20	Statist David	ical Analysis of Comet Assay Data P. Lovell	551
	20.1	Introduction	551
	20.2	Experimental Design and Statistical Analysis	552
	20.3	Study Design	553
	20.4	Endpoints	554
	20.5	The Experimental Unit and Experimental Design	558
	20.6	Statistical Methods	560
	20.7	Use of Control Groups	564
	20.8	Assessment of Results	565
	20.9	Multiple Comparison Issues	566
	20.10	Power and Sample Size	569
	20.11	OECD Guidelines	570
	20.12	JaCVAM Validation Study	571
	20.13	Human Studies	572
	20.14	Standardization and Inter-laboratory	
		Comparisons	574
	Refere	nces	575
Subject Ind	ex		581

Section I: Genesis of Comet Assay

Published on 07 October 2016 on http://pubs.rsc.org | doi:10.1039/9781782622895-00001

CHAPTER 1

The Comet Assay: A Versatile Tool for Assessing DNA Damage

MAHIMA BAJPAYEE,^a ASHUTOSH KUMAR^b AND ALOK DHAWAN^{*°}

^a Shakti Sadan, 8, Arya Nagar, Lucknow – 226004, India; ^b Institute of Life Sciences, Ahmedabad University, University Road, Ahmedabad – 380009, India; ^c CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, P.O. Box – 80, Lucknow – 226001, India *Email: alokdhawan@iitr.res.in

1.1 Introduction

Toxic substances and newer chemicals being added each year into the environment have led to increasing pollution of ecosystems as well as deterioration of air, water and soil quality. Excessive agricultural and industrial activities also adversely affect biodiversity, threatening the survival of species in a particular habitat as well as posing disease risks to humans. Some of the chemicals, *e.g.* pesticides and heavy metals, may cause deleterious effects in somatic or germ cells of the sentinel species as well as non-target species. Hazard prediction and risk assessment of chemicals, therefore, becomes imperative for assessing the genotoxic potential of chemicals before their release into the environment or for commercial use as well as to evaluate DNA damage in flora and fauna affected by contaminated or polluted

© The Royal Society of Chemistry 2017

Issues in Toxicology No. 30

The Comet Assay in Toxicology, 2nd Edition

Edited by Alok Dhawan and Diana Anderson

Published by the Royal Society of Chemistry, www.rsc.org

habitats. The Comet assay has been widely accepted as a simple, sensitive and rapid tool for assessing DNA damage and repair in individual eukaryotic as well as some prokaryotic cells, and it has increasingly found application in diverse fields ranging from genetic toxicology to human epidemiology.

This review is an attempt to comprehensively examine the use of the Comet assay in diverse cell types from bacteria to humans, to assess the DNA-damaging potential of chemicals and/or environmental conditions. Sentinel species or bioindicator organisms in a particular ecosystem are the first to be affected by adverse changes in their environment. Determination of DNA damage in these organisms provides information about the genotoxic potential of their habitat at an early stage. This would allow for intervention strategies to be implemented for prevention or reduction of deleterious health effects in the sentinel species as well as in humans.

Ostling and Johanson¹ (in 1984) were the first to quantify DNA double stranded breaks in cells using a microgel electrophoresis technique, known as the single cell gel electrophoresis (SCGE) or Comet assay. Later, the assay was adapted by Singh et al.,² using alkaline conditions, which could assess both double- and single-strand DNA breaks as well as alkali-labile sites expressed as frank strand breaks in the DNA. Since its inception, the assay has been modified at various steps (cell isolation, lysis, electrophoresis, staining) to make it suitable for detecting various kinds of damage in different cells.^{3,4} The assay is, now, a well established, simple, versatile, rapid, visual, and a sensitive, extensively used tool to assess DNA damage and repair, quantitatively as well qualitatively in individual cell populations.⁵ Some other lesions of DNA damage such as DNA crosslinking (e.g. thymidine dimers) and oxidative DNA damage may also be assessed using lesion-specific antibodies or specific DNA repair enzymes in the Comet assay. It has gained wide acceptance as a valuable tool in fundamental DNA damage and repair studies,³ genotoxicity testing⁶ and human biomonitoring.^{7,8} The field of ecotoxicology also provides a potential for use of Comet assay in natural ecosystems and has recently been reviewed to include the common experimental models used for studies, developments and/or modifications in protocols and improvements for future tests.9

Relative to other genotoxicity tests, such as chromosomal aberrations, sister chromatid exchanges, alkaline elution and the micronucleus assay, the advantages of the Comet assay include its demonstrated sensitivity for detecting low levels of DNA damage (one break per 10^{10} Daltons of DNA), requirement for small number of cells (~10 000) per sample, flexibility to use proliferating as well as non-proliferating cells, low cost, ease of application and the short time needed to complete a study. It can be conducted on cells that are the first site of contact with mutagenic/carcinogenic substances (*e.g.* oral and nasal mucosal cells). The data generated at the single-cell level allows for robust types of statistical analysis.

A limitation of the Comet assay is that aneugenic effects,¹⁰ and epigenetic mechanisms of indirect DNA damage such as effects on cell-cycle checkpoints are not detected. The other drawbacks such as single-cell data (which

The Comet Assay: A Versatile Tool for Assessing DNA Damage

used in fields ranging from molecular epidemiology to genetic toxicology. The present review deals with various models ranging from bacteria to humans, used in the Comet assay for assessing DNA damage (Figure 1.1).

1.1.1 Bacteria

Singh *et al.*¹¹ first used the Comet assay to assess the genetic damage in bacteria treated with 12.5–100 rad of X-rays. In the study, DNA double-strand breaks in the single electrostretched DNA molecule of *Escherichia coli* JM101 were determined using the neutral Comet assay. A significant increase in DNA breaks was induced by a dose as low as 25 rad, which was directly correlated to X-ray dosage (Table 1.1). The study supported the hypothesis that the strands of the electrostretched human DNA in the Comet assay represented individual chromosomes.

A modified version of the above Comet assay was used to assess the genotoxicity of antibacterial clay mineral mixture (CB) in *Escherichia coli*. CB leachate caused a significant increase in the double strand breaks in the bacterial cells, showing antimicrobial-mediated genotoxicity and suggesting the use of CB as an alternative bactericidal therapeutic.¹²

1.2 Plant Models

Plant bioassays are important tests which help detect genotoxic contamination in the environment. Plant systems can provide information about a wide range of genetic damage, including gene mutations and chromosome aberrations. Genotoxicity assessment in roots of plants like *Vicia faba*, *Nicotiana* and *Allium cepa*, have been widely conducted.^{14,15} However, during the last decade, the plant Comet assay has been extensively applied to plants (leaves, shoots and roots) to detect DNA damage arising due to chemicals, radiation and heavy metals in polluted soil and comprehensively reviewed¹⁶ (Table 1.1).

1.2.1 The Comet Assay in Lower Plants and Fungi

1.2.1.1 Fungi

Schizosaccharomyces pombe has been used as a model organism to investigate DNA damage due to chlorinated disinfectant, alum and polymeric coagulant mixture in drinking water samples.³⁹ The authors observed significantly higher (P<0.001) DNA damage in chlorinated water (*i.e.* tap water) when compared with untreated (negative control) or distilled water (laboratory control). Hahn and Hock⁴⁰ used mycelia of Sordaria macrospora grown and treated with a variety of DNA-damaging agents directly on agarose

Figure 1.1 Schematic diagram of the use of comet assay in assessing DNA damage in different models from bacteria to humans. Reproduced from A. Dhawan, Comet assay: a reliable tool for the assessment of DNA damage in different models, *Cell Biol. Toxicol.*, 2009, 25(1), 5–32, © Springer Science + Business Media B.V. 2008. With permission of Springer.

б

Model	Agent tested	Cells used	DNA damage ^a	Ref.
Bacteria				
Escherichia coli JM101	X-rays	Whole organism <i>in vivo</i>	1	11
-	Clay mineral mixture (CB)	Whole organism in vivo	1	12
	Engineered nanoparticles	Whole organism in vivo	Ť	13
Plant models				
Saccharomyces cerevisiae	Engineered nanoparticles	Whole organism <i>in vivo</i>	1	13
-	Cr(III)-citrate	Whole organism in vivo	1	17
	Amaranth, Allura red azo dyes	Whole organism in vivo	1	18
	Food additives	Whole organism in vivo	1	19
Euglena gracilis	Organic pollutants	Whole organism in vivo	1	20
Chlamydomonas reinhardtii	Chrysoidine	Whole organism in vivo	1	21
-	Paraquat herbicide	Whole organism in vivo	1	22
Rhodomonas	UV (ŪVA and UVB) radiation	Whole organism <i>in vivo</i>	Ť	23
Vicia faba	Arsenic	Root tip meristematic cells	↑	24
	Lead	Root tip meristematic cells	↑	25
	Organic pollutant	Root tip meristematic cells	↑	26
Tobacco (Nicotiana tabacum)	Ethyl methanesulphonate (EMS) and <i>N</i> -ethyl- <i>N</i> -nitrosourea (ENU), maleic hydrazide (MH).	Whole roots in vivo	Ť	27
	<i>o</i> -Phenylenediamine (<i>o</i> -PDA), hydrogen peroxide and ethyl methanesulphonate (EMS)	Isolated root nuclei	-	28
	Heavy metal (Cd, Cu, Pb and Zn)	Leaf nuclei	↑	29
	Polychlorinated biphenyls	Leaf nuclei	↑	30
	Urban air pollutants	Leaf nuclei	Ť	31
	TiO_2 nanoparticles	Leaf nuclei	Ť	32
Potato plants (<i>Solanum</i>	Heavy metal (Cd, Cu, Pb and Zn)	Nuclei from leaf tissue	Ť	29
tuberosum var. Korela)	Potato virus	Nuclei from leaf tissue	↑	33
Castor beans (<i>Ricinus communis</i>)	Air pollution	Leaf cells	Slight ↑	34
Phaeseolus vulgaris	Uranium	Root or shoot cells	-	35
Pisum sativum	Cr(vi)	Roots and leaves	↑	36
Bacopa monnieri L.	Ethyl methanesulphonate, methyl methanesulphonate Cadmium	Nuclei isolated from roots and leaves	↑ dose- and time- dependent roots > leaves	37
Duckweed (Lemna)	Industrial waste water	Leaves	↑	38

Table 1.1 Comet assay for assessment of DNA damage—Bacteria and plants.

^{*a*}↑ Significant increase in DNA damage; – no DNA damage reported. Data from A. Dhawan, *Cell Biol. Toxicol.*, 2009, **25**(1), 5–32.

 $\overline{}$

minigels for the assessment of genotoxicity using the Comet assay. This model allowed for the rapid and sensitive detection of DNA damage by a number of chemicals simultaneously. Few studies of the Comet assay in *Saccharomyces cerevisiae* have been reported, possibly due to the presence of the cell wall and the small amount of cellular DNA, however, it has been optimized as a model system to study oxidative DNA damage and repair,^{41,42} as well as genotoxicity of chemicals^{13,17,18} and food additives.¹⁹

1.2.1.2 Algae

Algae are aquatic unicellular plants, which provide information regarding the potential genotoxicity of the water in which they grow. Being singlecelled organisms, they can be used as a model for risk assessment monitoring of environmental pollution of aquatic environments using the Comet assay. The freshwater green algae species. Pseudokirchneriella subcapitata and Nannocloris oculata revealed DNA damage by the insecticide Chlorpyriphos and fungicide Tebuconazole at low concentrations.43 The unicellular green alga Chlamydomonas reinhardtii has shown DNA damage due to known genotoxic chemicals^{21,44} and the herbicide paraquat²² and also demonstrated that oxidative stress was better managed by the algal cells under light than dark conditions.44 The Comet assay successfully evaluated chemicallyinduced DNA damage and repair in Euglena gracilis and the responses were found to be more sensitive than those of human lymphocytes under the same treatment conditions.⁴⁵ The ease of culturing and handling *E. gracilis* as well as its sensitivity makes it a useful tool for testing the genotoxicity of chemicals and monitoring environmental pollution and it can be used as a part of bioassay for ecotoxicology studies. E. gracilis demonstrated increased genotoxicity in Comet assay parameters due to organic extracts from Taihu Lake (China), and has thus been selected as a bioindicator organism to provide early warning of organic pollutants.²⁰ A modified version of the Comet assay was used as an alternative technique to assess DNA damage due to UV radiation in Rhodomonas sp. (Cryptophyta), a marine unicellular flagellate.23

1.2.2 The Comet Assay in Higher Plants

Recently there has been an increase in the use of the Comet assay in higher plants to study DNA damage and repair, to understand the effects of genotoxicity of pollutants and the environment. The effect of various stressors on DNA damage in plants, the correlation of the DNA damage with cellular responses¹⁶ and DNA repair^{46,47} have been reviewed and recommendations regarding the method have also been made for increasing the reliability and throughput of the Comet assay in plants.⁴⁸

Vicia faba has been widely used for the assessment of DNA damage using the Comet assay. Strand breaks and abasic (AP) sites in meristematic nuclei of *V. faba* root tips were studied by the neutral and alkaline Comet assay.^{49,50}

The Comet Assay: A Versatile Tool for Assessing DNA Damage

The alkaline electrophoresis procedure was found to be most sensitive at low doses, while the neutral electrophoresis procedure yielded an optimal dose-response curve within a wider dose range. Angelis *et al.*⁴⁹ also suggested that the Comet assay was able to detect a phenomenon resembling clastogenic adaptation at molecular level. *Vicia faba* used as a bioindicator plant has shown increased DNA damage due to inorganic arsenic in water (correlated with abnormal molecular changes at 20 and 30 mg l⁻¹ concentration),²⁴ lead (due to oxidative stress at 10 μ M concentration),²⁵ and persistent organic pollutant-containing agricultural soils from Tlaxcala, Mexico.²⁶

Gichner and Plewa⁵¹ developed a sensitive method for isolation of nuclei from leaf tissue of *Nicotiana tabacum*, which, due to its high resolution and constant low tail moment values for negative controls, could be incorporated in *in situ* plant environmental monitoring.⁵¹ The Comet assay has been used to study the effect of alkylating agents in tobacco seedlings.⁵² A small but significant increase in DNA damage compared with controls was noted in heterozygous tobacco and potato plants grown on soil contaminated with heavy metals.²⁹ The tobacco and potato plants with increased DNA damage were also found to be severely injured (inhibited growth, distorted leaves), which may be associated with necrotic or apoptotic DNA fragmentation. Detection of concentration-dependent genotoxicity of urban air pollutants in leaf nuclei³¹ and titanium dioxide (TiO₂) nanoparticles,³² in *Nicotiana* using the Comet assay has shown it to be useful for environmental monitoring.

No DNA damage was observed in the root or shoot cells of *Phaeseolus vulgaris* treated with different concentrations of uranium.³⁵ Cr(vi) showed concentration-dependent increases in DNA damage as detected by Comet assay and complemented by flow cytometry in leaves and roots of *Pisum sativum*, revealing clastogenic action of chromium.³⁶ The alkaline Comet assay was used to measure DNA damage and repair in the model plant *Arabidopsis* and rye grass exposed to X-rays.⁴⁷ Rapid and slow phases of repair were observed for acute exposures of 5 and 15 Gy, and a possible explanation of homologous repair (HR) of double-strand breaks during the slow phase was proposed.⁴⁷ For the first time Comet–fluorescence *in situ* hybridization (FISH) was conducted in the model plant species *Crepis capillaris* following exposure of seedlings to maleic hydrazide (MH), demonstrating 5S rDNA in the tail of the Comets, and suggesting Comet–FISH as a tool for environmental monitoring.⁵³

The major drawback with plant models was the fact that exposure needs to be given through the soil and it is difficult to say whether the result demonstrates synergies with other chemicals in the soil or non-availability of the toxicant due to its soil binding affinity. To circumvent this disadvantage, Vajpayee *et al.*,³⁷ used *Bacopa monnieri* L., a wetland plant, as a model for the assessment of ecogenotoxicity using the Comet assay. *In vivo* exposure to cadmium (0.01–500 μ M) for 2, 4 and 18 h resulted in dose- and timedependent increases in DNA damage in the isolated roots and leaf nuclei, with roots showing greater DNA damage than leaves. *In vitro* (acellular) exposure of nuclei from leaves of *B. monnieri* to 0.001–200 μ M cadmium resulted in significant (P < 0.05) levels of DNA damage. Another bioindicator plant duckweed (*Lemna*) was used to study effects of industrial wastewater samples from environmental monitoring sites along the river Sava (Croatia) and showed a marked increase in DNA damage.³⁸

Reviews of the use of Comet assay in higher plants have been recently published which discuss protocols and its use in environmental genotoxicity research,⁵⁴ as well as applications in DNA repair studies and mutation breeding.⁵⁵ These studies revealed that DNA damage measured in plants using the Comet assay is a good model for *in situ* monitoring and screening of genotoxicity of polluted environments. Higher plants can also be used as an alternative first-tier assay system for the detection of possible genetic damage resulting from polluted waters or effluents due to industrial activity or agricultural run offs.

1.3 Animal Models

Animal models have long been used to assess the safety or toxicity of chemicals and finished products. With the advancements in technology, use of knockouts and transgenic models has become common for mimicking the effects in humans. The Comet assay has globally been used for assessment of DNA damage in various animal models.

1.3.1 Lower Animals

The Comet assay has been used in a unicellular protozoan and invertebrates for establishing the safety of the environment in which these species are found (Table 1.2)

1.3.1.1 Protozoan

Tetrahymena thermophila is a unique unicellular protozoan, with both somatic and germ nucleus present in the same cell, and is widely used for genetic studies due to its well characterized genome. Therefore it was validated as a model organism for assessing DNA damage using a modified Comet assay protocol standardized with known mutagens such as phenol, hydrogen peroxide and formaldehyde.⁵⁶ The method was then used for the assessment of genotoxic potential of influent and effluent water samples from a local municipal wastewater treatment plant.⁵⁶ The method provided an excellent, low level detection of genotoxicants and proved to be a costeffective and reliable tool for genotoxicity screening of waste water. Ecological risk assessment of the organic pollutant dechlorane plus (DP) was conducted in Tetrahymena using the Comet assay, which showed its potential genotoxicity at high levels.⁵⁷ Melamine was found to be highly toxic to the Tetrahymena genome which also caused apoptosis.⁵⁸ An acellular Comet assay in Tetrahymena has also been used to study the genotoxicity of TiO₂ nanoparticles.59

1.3.1.2 Invertebrates

Various aquatic (marine and freshwater) and terrestrial invertebrates have been used for genotoxicity studies employing the Comet assay (Table 1.2) which have also been reviewed.^{9,93,125,126} Cells from haemolymph, embryos, gills, digestive glands and coelomocytes from mussels (*Mytilus edulis*), zebra mussel (*Dreissena polymorpha*), clams (*Mya arenaria*) and polychaetes (*Nereis virens*), have been used for ecogenotoxicity studies using the Comet assay. DNA damage has also been assessed in earthworms and fruit fly (*Drosophila*). The Comet assay has been employed to assess the extent of DNA damage at polluted sites in comparison to reference sites in the environment and, in the laboratory, it has been used as a mechanistic tool to determine pollutant effects and mechanisms of DNA damage.⁷⁸

1.3.1.2.1 The Comet Assay in Mussels. Adverse effects of contaminants in the aquatic environment have been studied in freshwater and marine mussels as they are important pollution indicator organisms. These sentinel species provide the potential for environmental biomonitoring of aquatic environments which they inhabit. The Comet assay in mussels can be used to detect a reduction in water quality caused by chemical pollution.^{75,127} Mytilus edulis has been widely used for Comet assay studies to evaluate DNA strand breaks in gill and digestive gland nuclei due to polycyclic aromatic hydrocarbons (PAHs) including benzo[a]pyrene (B[a]P),⁷⁰ and oil spills with petroleum hydrocarbons.⁹² However, the damage returned to normal levels, after continued exposure to high dose (20 ppbexposed diet) of B[a]P for 14 days. This was attributed to an adaptive response in mussels to prevent the adverse effects of DNA damage.⁷⁰ Repairable DNA damage with B[a]P was also observed with *Mytilus* galloprovincialis and the green lipped mussels (Perna viridis).⁸⁵ Effects of ionizing radiation, due to anthropogenic addition of radionuclides in aquatic environment, have been found to alter DNA damage and RAD 1 genes in *Mytilus* tissues.⁷³ Since the biomonitoring of the indicator organisms in situ may cause time constraints and not all samples may be processed at the same time, the cryopreservation of samples for later analysis in laboratory would be beneficial. Kwok et al.¹²⁸ used different media for this study and found that preserved haemocytes samples of Mytilus may be stored at cryogenic temperatures for a month without change in DNA damage for analysis in Comet assay.¹²⁸

Inter-individual variability, including seasonal variations in DNA damage have been reported from some studies, both in laboratory and field,^{71,130,131} hence baseline monitoring has to be carried out over long time intervals. Haemocytes of freshwater Zebra mussel *Dreissena polymorpha* have shown temperature-dependent DNA damage showing that the mussels are sensitive to changes in water temperatures,⁶⁴ and monitoring ecogenotoxicity with these species should account for variations in temperatures. The Comet assay in haemocytes of *D. polymorpha* was used as a

Model	Agent tested	Cell used	DNA damage ^a	Ref.	12
Tetrahymena thermophila	Phenol, hydrogen peroxide and formaldehyde, influent and effluent water samples	Whole animal <i>in vivo</i>	↑	56	-
	Dechlorane plus (DP)	Whole animal <i>in vivo</i>	↑	57	
	Melamine	Whole animal <i>in vivo</i>	↑	58	
	Titanium dioxide nanoparticles	Acellular	↑	59	
Invertebrates bivalves					
Freshwater bivalve zebra mussel	Polybrominated diphenyl ethers (PBDEs)	Haemocytes	$\uparrow\uparrow$	60	
(Dreissena polymorpha)	Sodium hypochlorite and chlorine dioxide) and peracetic acid	Haemocytes	↑	61	
	NSAIDS (diclofenac, ibuprofen and paracetamol)	Haemocytes	↑	62	
	Pentachlorophenol	Haemocytes	↑	63	
	Varying temperatures	Haemocytes	Ť	64	
	Polluted waters	Haemocytes	↑	65	
Mytilus edulis	Cadmium (Cd)	Gills	_	66	
2	Styrene	Haemolymph cells	↑	67	
	Tritium	Haemocytes	Ť	68	
	Marine waters (Denmark), French Atlantic Coast	Haemocytes	↑	69	
	Polycyclic aromatic hydrocarbons	Gill and haemolymph	↑	70	
	Seasonal variation	Gill and haemocytes	Ť	71	
	C60 fullerene and fluoranthene	Haemocytes	Concentration- dependent ↑ alone and ↑↑ together	72	
	Ionizing radiation	Haemocytes	↑ Į	73	
	Tamar estuary waters (England)	Haemocytes	↑ at site of high Cr concentration	74	
Mytilus galloprovincialis	Environmental stress	Haemocytes	↑	75	
5 5 1	Copper oxide and silver nanoparticles	Haemolymph cells	ŕ	76	
	Titanium dioxide nanoparticles	Haemocytes	†	77	0
Freshwater mussels	1.	<i></i>			ıap
Unio tumidus	Polyphenols	Digestive gland cells	↑	78, 79	ntei
	Base analogue 5-Fluorouracil (FU)	Haemocytes	↑	80	r 1

 Table 1.2
 Comet assay for assessment of DNA damage—Animal models (Invertebrates).

Chapter 1

Unio pictorum Golden mussel	Base analogue 5-Fluorouracil (FU) Guaíba Basin water	Haemocytes Haemocytes	$\uparrow \uparrow$	80 81
Bivalve mollusc (Scapharca inaequivalvis)	Organotin compounds (MBTC, DBTC and TBTC)	Erythrocytes	↑	82
Vent mussels (<i>Bathymodiolus azoricus</i>) Green-lipped mussels	Hydrostatic pressure change	Haemocytes and gill tissues	Î	83, 84
Perna viridis	Benzo[<i>a</i>]pyrene	Haemocvtes	↑	85
Perna canaliculus	Cadmium	Haemocytes	\uparrow	86
Freshwater mussel (<i>Utterbackia imbecillis</i>)	Chemicals used in lawn care (atrazine, glyphosate, carbaryl and copper)	Glochidia	Ť	87
Oyster (Crassostrea gigas)	Cryopreservation	Spermatozoa	↑	88
	Diuron (0.05 μ g l ⁻¹), glyphosate	Spermatozoa	↑ . –	89
Manila clam (Tapes semidecussatus)	Sediment-bound contaminants	Haemolymph, gill and digestive gland	†´	90, 91
Clams				
Mya arenaria	Petroleum hydrocarbons	Haemocytes and digestive gland cells	-	92
Ruditapes decussatus	PAH	Gills	↑	93
Farthworms				
Eisenia foetida	Soil from industrialized contaminated areas	Coelomocytes	↑	04
Eisenia joettaa	Soliment from polluted river	Coolomogytos	↓ ↑	94
	Waste water irrigated soil	Coolomogytos	↓ ↑	95
	Commercial parathion	Sporm colle	↓ ↑	90
	Imidealamid and DL 5040	Sperin cens	↓ ★	97
	DALL conteminated coil and hudrogen	Elegentes	↓ ★	98
	peroxide, Cadmium (<i>in vitro</i>)	Eleocytes		99
	Nickel chloride	Coelomocytes	Ť	100
	Dechlorane plus	Coelomocytes and Spermatogenic cells	↑	101
	Ionizing radiation (in vivo and in vitro)	Coelomocytes	↑	102
	Radiation and mercury	Coelomocytes	↑ synergistic effect	103
	Nickel and deltamethrin, with humic acid	Coelomocytes	↑, synergistic effect, damage ↓ with humic acid	104

Table 1.2(Continued)

Model	Agent tested	Cell used	DNA damage ^a	Ref.
	Lead and BDE209	Coelomocytes	↑ alone, antagonistic effect	105
Eisenia hortensis	Cobalt chloride	Coelomocytes	↑ dose-dependant	106
Aporrectodea longa (Ude)	Soil samples spiked with benzo[<i>a</i>]pyrene (B[<i>a</i>]P) and/or lindane	Intestine and crop or gizzard cells	↑ intestine > crop	107
Other invertebrates				
Fruit fly (Drosophila melanogaster)	Ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), <i>N</i> -ethyl- <i>N</i> -nitrosourea (ENU) and cyclophosphamide (CP)	Gut and brain cells of first instar larvae	↑	108, 109
	Cypermethrin	Brain and anterior midgut cells	↑	110
	Leachates of industrial waste	Gut and brain cells of first instar larvae	↑	108
	Cisplatin	Midgut cells	↑	111
	Hexavalent chromium	Larval haemocytes	$\uparrow\uparrow$	112
	Zinc oxide nanoparticles	Larval haemocytes	↑ at high dose.	113
	Copper oxide nanoparticles,	Larval haemocytes	\uparrow	114
	Cadmium selenium (CdSe) quantum dots	Larval haemocytes	\uparrow	115
Grasshoppers (Chorthippus brunneus)	Different polluted sites	Larval brain cells	↑↑ in heavy polluted site	116
	Paraquat (<i>in vitro</i> , <i>in vivo</i>)	Larval brain cells	↑ time dependent	117
Sea urchins (<i>Strongylocentrotus droebachiensis</i>)	Dispersed crude oil	Coelomocytes	↑ concentration- dependent	118
Grass shrimp, (<i>Paleomonetes</i> pugio)	UV, benzo[<i>a</i>]pyrene, and cadmium	Embryos	↑ damage and decreased repair	119
107	Estuarine sediments	Hepatopancreas	\uparrow	120
	Coal combustion residues	Hepatopancreas	Ť	121
Sea anemone (Anthopleura elegantissima)	Hydrogen peroxide ethylmethanesulphonate (EMS) or benzo[<i>a</i>]pyrene (B[<i>a</i>]P)	Blood cells	† dose response	122
Marine invertébrate (Donax faba)	Pesticide Chlorpyriphos and fungicide Carbendazime	Gill, body and foot cells	↑	123
Polychaete (Nereis diversicolor)	Nano-, micro- and ionic-Ag	Coelomocytes	↑↑ Nano >micro >ionic	124

^{*a*}↑ Significant increase in DNA damage, ↑↑ highly significant increase in DNA damage; ↓ decrease in DNA damage; – no DNA damage reported.

15

tool in determining the potential genotoxicity of water pollutants,^{60–63} and Klobucar *et al.*⁶⁵ suggested that haemocytes from caged, non-indigenous mussels could be used for Comet assay for monitoring genotoxicity of freshwater. The hOGG1 enzyme was used in the Comet assay to evaluate 8-oxo-2'-deoxyguanosine (8-oxo-dG) as a marker of oxidative DNA damage in *D. polymorpha*.¹²⁹

DNA damage and repair studies in vent mussels, *Bathymodiolus azoricus*, have been carried out to study the genotoxicity of naturally contaminated deep-sea environment.^{83,84} The vent mussels demonstrated similar sensitivity to environmental mutagens to that of coastal mussels and thus could be used for ecogenotoxicity studies of deep sea waters using the Comet assay. Villela *et al.*¹³² used the golden mussel (*Limnoperna fortunei*) as a potential indicator organism for freshwater ecosystems due to its sensitivity to water contaminants.

In vitro Comet assay has also been used in cells of mussels, which can be used to screen genotoxic agents destined for release or disposal into the marine environment. Dose-responsive increases in DNA strand breakages were recorded in digestive gland cells¹³³ haemocytes¹³⁴ and gill cells¹³⁴ of *M. edulis* exposed to both direct-acting (hydrogen peroxide and 3-chloro-4-(dichloromethyl)-5-hydroxy-2[*5H*]-furanone) and indirect-acting (B[*a*]P, 1-nitropyrene, nitrofurantoin and *N*-nitrosodimethylamine) genotoxicants. Digestive gland cells^{78,135} and haemocytes⁸⁰ of *Unio tumidus* were also used for *in vitro* studies of DNA damage and repair by different compounds.

1.3.1.4 The Comet Assay in Other Bivalves

Coughlan *et al.*⁹⁰ showed that the Comet assay could be used as a tool for the detection of DNA damage in clams (Tapes semidecussatus) as biomonitor organisms for sediments. Significant DNA strand breaks were observed in cells isolated from haemolymph, gill and digestive gland from clams exposed to polluted sediment.^{90,91} Comet assay was used for the assessment of sperm DNA quality of cryopreserved semen in Pacific oyster (Crassostrea gigas) as it is widely used for artificial fertilization.⁸⁸ The Comet–FISH assay, conducted in haemocytes of C. gigas, was shown to have potential for detecting DNA damage of target genes, induced by toxicant exposure and to allow better understanding of the impact of genotoxicity on animal physiology and fitness.¹³⁶ Gielazyn et al.¹³⁷ demonstrated the use of lesionspecific DNA repair enzyme formamidopyrimidine glycosylase (Fpg) to enhance the usefulness and sensitivity of the Comet assay in studying oxidative DNA damage in isolated haemocytes from oyster (Crassostrea virginica) and clam (Mercenaria mercenaria). The herbicide diuron induced significant DNA damage in oyster spermatozoa at 0.05 μ g l⁻¹ upwards while its environmental concentrations significantly affected embryo-larval development, showing deleterious effects of herbicide in non-target organisms.⁸⁹

The Comet assay detecting DNA strand breaks has demonstrated that higher basal levels of DNA damage are observed in marine invertebrates, hence the protocol followed in these animals should be considered for biomonitoring the ecogenotoxicity of a region.¹³⁸

1.3.1.5 The Comet Assay in Earthworms

The Comet assay applied to earthworms is a valuable tool for monitoring and detection of genotoxic compounds in terrestrial ecosystems^{94–105} (Table 1.2). Since the worms feed on the soil they live in, they are a good indicator of the genotoxic potential of the contaminants present in the soil and thus used as a sentinel species.

Coelomocytes from *Eisenia foetida* have been used for biomonitoring purposes, to assess DNA damage in worms exposed to soil samples from industrialized contaminated areas⁹⁴ and sediment samples from polluted river systems.⁹⁵ Ecogenotoxicity studies have shown dose dependent DNA strand breaks caused by insecticide⁹⁷ and pesticides⁹⁸ in *E. foetida* as well as *Pheretima* species¹³⁹ demonstrating that pesticides could also have adverse effects on non-target species. Ionizing radiation affects the soil ecology, as it induced oxidative damage in spermatogenic cells of *E. foetida* and also reduced reproduction at dose rates at or >4 mGy h^{-1.102} Radiation with exposure to mercury produced synergistic effects and increased damage to DNA.¹⁰³ Humic acid was found to alleviate nickel- and deltamethrin-induced toxicity in earthworms, and could be used to reduce oxidative damage to DNA, lipids and proteins.¹⁰⁴ Medicinal therapy using peloids (natural mud), despite usually being beneficial, may also pose a risk of toxic effects as was seen in a study with *E. foetida* exposed to peloids.¹⁴⁰

In vitro exposure of primary cultures of coelomocytes to nickel chloride as well as exposure of whole animals either in spiked artificial soil water or in spiked cattle manure substrates exhibited increased DNA strand breaks due to the heavy metal.¹⁰⁰ The eleocytes cells, a subset of coelomocytes produced increased DNA strand breaks under both *in vitro* and *in vivo* conditions and could be used a sensitive biomarker for genotoxicity in earthworms.⁹⁹ Another earthworm *Aporrectodea longa* (Ude), when exposed to soil samples spiked with B[*a*]P and/or lindane demonstrated genotoxicity in the intestinal cells to be more sensitive to the effect of the toxicants than the crop or gizzard cells.¹⁰⁷

Fourie *et al.*¹⁴¹ used five earthworm species (*Amynthas diffringens, Aporrectodea caliginosa, Dendrodrilus rubidus, Eisenia foetida* and *Microchaetus benhami*) to study genotoxicity of cadmium sulphate, with significant DNA damage being detected in *E. foetida* followed by *D. rubidus* and *A. caliginosa.* The study showed the difference in sensitivity of species present in an environment and its influence on the genotoxicity risk assessment. Hence for environmental biomonitoring, specific species have to be kept in mind to reduce false negative results.

1.3.1.6 The Comet Assay in Drosophila

The simple genetics and developmental biology of *Drosophila melanogaster* has made it the most widely used insect model. It has been recommended as an alternate animal model by the European Centre for the Validation of Alternative Methods¹⁴² and evolved into a model organism for toxicological studies.^{143,144} *D. melanogaster* has been used as an *in vivo* model (Table 1.2) for assessment of genotoxicity^{108–115} and oxidative DNA damage¹⁴⁵ as well as for *in vitro* studies¹⁴⁶ using the Comet assay. Cisplatin induced adducts in *D. melanogaster* are influenced by conditions of nucleotide excision repair, and this correlates well with DNA damage as seen in Comet assay.¹⁴⁷ Recently, the Comet assay in *Drosophila* as an *in vivo* model has been used to assess the genotoxicity of zinc, copper and cadmium nanomaterials, which have demonstrated oxidative DNA damage.^{113–115}

The studies in *Drosophila* have shown it to be a good alternative to animal models for the assessment of *in vivo* genotoxicity of chemicals using the Comet assay.

1.3.1.7 The Comet Assay in Other Invertebrates

Nereis virensa, a polychaete, plays an important role in the distribution of pollutants in sediments due to its unique property of bioturbation. These worms are similar to earthworms in soil and can be used for genotoxicity assessment of sediments. They have been used to study sediment-associated toxicity of silver nanoparticles, and bioaccumulation in the body was also shown.¹²⁴ Genotoxicity of intracoelomically injected B[*a*]P was assessed in worm coelomocytes using Comet assay, however, *Nereis* species was not found to be suitable for assessing PAH genotoxicity due to their lack of metabolic capability to convert B[*a*]P to its toxic metabolite.¹⁴⁸

DNA damage was assessed in neuroblast cells of brains of first instars of grasshoppers (*Chorthippus brunneus*) exposed to various doses of zinc from a polluted site, to understand the mechanism of toxicity in the insects due to industrial pollutants.¹⁴⁹ Comet assay parameters in brain cells of larvae originating from eggs of grasshoppers from different polluted sites have shown an association between increased DNA damage and heavy environmental pollution.¹¹⁶ Paraquat caused increased DNA damage in brain cells in both *in vitro* and *in vivo* administrations.¹¹⁷

Chronic exposure to coal combustion residues from coal-fired electrical generation in estuarine grass shrimp, *Palaemonetes pugio*, caused DNA damage in hepatopancreatic cells of adult shrimps as compared with the reference shrimp as seen in the Comet assay.¹²¹ The Comet assay in planarians is an important test for environmental monitoring studies since these are simple organisms with high sensitivity, low cost and a high proliferative rate.¹⁵⁰ The genotoxic potential of polluted waters from Diluvio's Basin, Norflurazon, a bleaching herbicide¹⁵¹ and copper sulfate¹⁵² was evaluated in planarians, where, significant increases in primary DNA damage were

observed in these species. These studies have also demonstrated the use of the Comet assay in biomonitoring diverse environmental conditions utilizing sentinel species.

1.4 Higher Animals

1.4.1 Vertebrates

Studies of vertebrate species where the Comet assay is used have included fishes, amphibians, birds and mammals. Cells (blood, gills, kidneys and livers) of different fishes, tadpoles and adult frogs, as well as rodents have been used for assessing *in vivo* and *in vitro* genotoxicity of chemicals, and human biomonitoring has also been carried out employing the Comet assay (Table 1.3).

1.4.1.1 The Comet Assay in Fishes

Various fishes (freshwater and marine) have been used for environmental biomonitoring, as they are endemic organisms, which serve as sentinel species for a particular aquatic region, to the adverse effects of chemicals and environmental conditions. The Comet assay has found wide application as a simple and sensitive method for evaluating *in vivo* as well as *in vitro* DNA damage in different tissues (gills, liver and blood) of fishes exposed to various xenobiotics in the aquatic environment (Table 1.3).

The basal level of DNA damage detected in the Comet assay has been shown to be influenced by various factors, such as the temperature of water in erythrocytes of mullet and sea catfish,^{156,157} age and gender in dab (*Limanda limanda*¹⁷⁹), exhaustive exercise¹⁵⁴ and seasonal changes¹⁵⁵ in chub. Therefore, these factors should be accounted for during environmental biomonitoring studies. The high intra-individual variability may also affect the sensitivity of the assay.¹⁷⁹ The protocol and experimental conditions used for the Comet assay for monitoring marine ecosystems may lead to differences in the results obtained. Also, chemical and mechanical procedures to obtain cell suspensions may lead to additional DNA damage.³¹⁸ Anaesthesia did not contribute towards DNA damage *in vivo* in methyl-methanesulfonate (MMS)-treated fishes and the anaesthetic benzocaine did not alter the DNA damage in erythrocytes after *in vitro* exposure to MMS or H₂O₂.³¹⁹ Hence keeping in mind animal welfare, multi-sampling of the same fish can be conducted. Recently, nanomaterials toxicity has gained importance in aquatic toxicology as nanomaterials synthesis and use has increased. Its impact on the aquatic environment and on fishes needs to be elucidated and this calls for development and implementation of protocols for nanomaterial genotoxicity in ecotoxicology.³²⁰⁻³²²

In vitro studies on fish hepatocytes,^{182,185} primary hepatocytes and gill cells¹⁸⁶ as well as established cell lines (with metabolic competence^{189–191}) using the Comet assay have also been conducted to assess the genotoxicity of

Model	Agent tested	Cell used	DNA damage ^a	Ref.
Fishes				
Chub (Leuciscus cephalus)	PAHs, PCBs, organochlorine pesticides (OCPs), and heavy metals	Hepatocytes	↑	153
	Exhaustive exercise	Erythrocytes	<u>↑</u>	154
	Seasonal change at polluted sites.	Gills, liver, blood	↑ in spring/autumn, gills and liver>blood	155
Estuarine mullet (<i>Mugil</i> sp.) and sea catfish (<i>Netuma</i> sp.)	Organochlorine pesticides and heavy metals	Erythrocytes	Î	156
	High temperature	Erythrocytes	\uparrow	157
Fresh water teleost (<i>Mystus vittatus</i>)	Endosulfan	Gill, kidney and erythrocytes	↑ in all cells	158
Fresh water murrel (<i>Channa punctatus</i>)	Tannery effluent in Ganges, India	Gills	Î	159
Tilapia (Oreochromis niloticus)	Antibiotics Florfenicol (FLC) and oxytetracycline (OTC)	Blood erythrocytes	Î	160
Eastern mudminnow (<i>Umbra pygmaea</i> L.)	Rhine water for 11 days	Blood erythrocytes	↑	161
Neotropical fish <i>Prochilodus</i> <i>lineatus</i>	Diesel water soluble fraction acute (6, 24 and 96 h) and subchronic (15 days) exposures, Cypermethrin, <i>in vivo</i>	Erythrocytes	Ţ	162
	Ethyl methanesulfonate, hydrogen peroxide (<i>in vitro</i>)	Epithelial gill cells	↑ <i>in vivo</i> and <i>in vitro</i>	163
Freshwater goldfish (Carassius	Technical herbicide Roundup (glyphosate)	Erythrocytes	↑↑ dose-dependent	164
auratus)	ADDB and PBTA-6	Erythrocytes	↑ dose-dependent	165
Turbot (Scophthalmus maximus L.)	Sediment collected from polluted sites in Cork Harbour (Ireland)	Hepatocytes	↑	166
	PAH by different routes	Erythrocytes	\uparrow by all routes	167
Zebra fish (Danio rerio)	Methyl methanesulphate	Gill, gonads and liver cells	↑ in all cells	168
Brazilian flounder (<i>Paralichthys</i> orbignyanus)	Contaminated estuary waters	Blood cells	$\uparrow \uparrow$	169

 Table 1.3
 Comet assay for assessment of DNA damage-Animal models (Vertebrates).

19

	A second damada J		DNA laura a	Def
Model	Agent tested	Cell used	DNA damage ^a	Ref.
European flounder (<i>Platichthys flesus</i>)	Different estuaries, seasons and genders	Blood cells	↑	170
Carp (Cyprinus carpio).	Disinfectants	Erythrocyte	1	171
	NSAID-manufacturing plant effluent	Erythrocyte	1	172
Armoured catfish (<i>Pterygoplichtys anisitsi</i>)	Diesel and biodiesel	Erythrocytes	↑	173
Trout (Oncorhynchus mykiss)	Cryopreservation (Freeze-thawing)	Spermatozoa	Slight ↑	174
European eel (Anguilla anguilla)	Benzo[<i>a</i>]pyrene, Arochlor 1254, 2-3-7-8- tetrachlorodibenzo- <i>p</i> -dioxin and beta- naphthoflavone	Erythrocytes	↑ ⁻	175
	Herbicides-Roundup, Garlon	Erythrocytes	Î	176
Eelpout (Zoarces viviparus)	Oil spill (PAH)	Nucleated erythrocytes	↑.	177
Gilthead sea bream (Sparus aurata)	Copper	Erythrocytes	$\uparrow \uparrow$	178
Dab (<i>Limanda limanda</i>)	PAHs and PCBs polluted waters of English channel Gender and age	Blood cells	↑ in adults and males	179
Hornyhead turbot (<i>Pleuronichthys verticalis</i>)	Sediments collected from a natural petroleum seep (pahs)	Liver cells	↑	180
In vitro				
Carp (Cyprius carpio)	Organic sediment extracts from the North Sea (Scotland)	Leukocytes	↑	181
Trout (Oncorhynchus mykiss)	Cadmium	Hepatocytes	1	182
	Tannins	Erythrocytes	\downarrow	183
	Diaryl tellurides and ebselen (organoselenium)	Erythrocytes	\downarrow	184
	Oil sands processed water, (PAH and naphthnic acids)	Hepatocytes (<i>in vitro</i>)	↑	185
Zebrafish (Danio rerio)	Surface waters of German rivers, Rhine and Elbe	Hepatocytes and gill cells	\uparrow	186
Danio rerio (ZFL) hepatocyte cell line	Biodiesel	Hepatocytes	↑	187
Rainbow trout hepatoma cell line (RTH-149)	Water samples from the polluted Kishon river (Israel)	Liver	↑	188

Chapter 1

20

Rainbow trout gonad (RTG-2) cell line	4-nitroquinoline- <i>N</i> -oxide <i>N</i> -methyl- <i>N</i> '-nitro- <i>N</i> -nitrosoguanidine, benzo[<i>a</i>]pyrene, nitrofurantoin, 2-acetylaminofluorene, dimethylnitrosamine, and surface waters	Gonad	↑ dose dependent response	189
Rainbow trout liver (RTL-W1) cell line	2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) Coal tar run off water	Epitheloid liver Epitheloid liver	Slight ↑ ↑	190 191
Amphibians				
Amphibian larvae (Xenopus laevis and Pleurodeles waltl)	Cadmium (CdCl ₂)	Erythrocytes	↑ concentration and time dependent	192
	Captan (<i>N</i> -trichloromethylthio-4-cyclohexene- 1,2-dicarboximide)	Erythrocytes	↑ concentration and time dependent	193
Amphibian larva (Xenopus laevis)	Benzo[<i>a</i>]pyrene, ethyl and methyl methanesulfonate	Erythrocytes	-	194
	Aqueous extracts of five sediments from French channels	Erythrocytes	Î	195
Toad (Bufo raddei)	Petrochemical (mainly oil and phenol) polluted area	Liver cells and erythrocytes	↑	196
Southern toad (Anaxyrus terristris)	Low-dose-rate ionizing radiation	Red blood cells	↓ at ≥21 mGy	197
Toad (Xenopus laevis, and Xenopus tropicalis)	Bleomycin induced DNA damage and repair	Splenic lymphocytes	↑ DNA damage in X. tropicalis > X. laevis	198
Xenopus laevis, and Xenopus tropicalis			DNA repair in X. laevis > X. tropicalis	
Tadpoles of <i>Rana N. Hallowell</i>	Imidacloprid [1-(6-chloro-3-pyridylmethyl)- N-nitro-imidazolidin-2-ylideneamine] and RH-5849 [2'-benzoyl-l'- <i>tert-</i> butylbenzovlhydrazinel]	Erythrocytes	↑	199
Tadpoles (Rana hexadactyla)	Sulfur dyes (Sandopel Basic Black BHLN, Negrosine, Dermapel Black FNI, and Turquoise Blue) used in the textile and tannery industries	Erythrocytes	↑↑	200
Tadpoles of Bullfrog (<i>Rana catesbeiana</i>)	Herbicides AAtrex Nine-O (atrazine), Dual- 960E (metalochlor), Roundup (glyphosate), Sencor-500F (metribuzin), and Amsol (2,4-D amine)	Erythrocytes	↑ ↑	201

Table 1.3(Continued)

Model	Agent tested	Cell used	DNA damage ^a	Ref.
Tadpole Rana clamitans Rana pipiens	Agricultural regions Industrial regions	Erythrocytes	↑ industrial regions > agricultural regions	202
Tadpoles (Rana limnocharis)	Cadmium (CdCl ₂)	Erythrocytes	↑ Ţ	203
	Sodium arsenite	Whole blood	Ť	204
Eurasian marsh frog (<i>Pelophylax ridibundus</i>)	Pollution in the different lakes in central Anatolia, Turkey.	Blood cells	↑	205
Anuran amphibian (<i>Hypsiboas faber</i>)	Heavy metal, in coal open-cast mine	Blood cells	Î	206
Frog tadpoles (<i>Dendropsophus minutes</i>)	Agrochemicals	Blood cells	↑	207
In vitro				
Xenopus laevis	high peak-power pulsed electromagnetic field	Erythrocytes	↑ due to rise in temperature	208
Birds				
Wild nestling white storks (<i>Ciconia ciconia</i>)	Heavy metals and arsenic	Blood cells	↑ correlated with arsenic	209
()	Toxic acid mining waste rich in heavy metals	Blood cells	↑ ↑	210-212
Black kites (<i>Milvus migrans</i>)	Heavy metals and arsenic	Blood cells	↑ correlated with copper and cadmium	209
	Toxic acid mining waste rich in heavy metals	Blood cells	↑ (2–10 fold)	210, 212
Turkey	Short term storage	Sperm	↑ ↑	213
Green finches	Paraquat	Blood	↑ oxidative damage	214
Broiler chicken	Deoxynivalenol (DON) and mycotoxin	Blood lymphocytes	↑ by DON, ↓ by mycotoxin	215
Turkey and chicken	Aflatoxin B1	Foetal liver cells	↑ Ĭ	216
Chicken	T-2 toxin and deoxynivalenol (DON)	Spleen leukocytes	↑	217
Chicken	Storage conditions (4 °C)	Liver and breast muscle cells	↑ liver cells > breast muscle cells	218
Japanese quails	GSM 900 MHz cellular phone radiation	Embryo cells	↑	219

Chapter 1

 22

Rodents				
Aldh2 knockout mice	Ethanol	Hepatic cells	↑ oxidative damage	220
B6C3F1 mice	Vanadium pentoxide	Lung cells	-	221
C57Bl/6 mice	Straight and tangled multi-walled carbon nanotubes	Lung cells	↑ dose dependent	222
<i>p53^{+/-}</i> mice	Melphalan	Liver, bone marrow, peripheral blood and the distal intestine	DNA crosslinks in all cells tested	223
SKH-1 mice	UV A + Fluoroquinolones (clinafloxacin, lomefloxacin, ciprofloxacin) UVA + 8-methoxypsoralene (8-MOP) Age dynamics	Epidermal cells	<pre>↑↑ for fluoroquinolones ↓ for MOP</pre>	224
Dyslipidemic <i>ApoE^{-/-}</i> mice	Ageing	Aorta, liver and lung	↑ Oxidative damage in liver, – in lung or aorta	225
	Diesel exhaust particles	Aorta, liver and lung	↑ Oxidative damage in liver, – in lung or aorta	226
Balb/c mice	Trypanosoma cruzi infection	Peripheral blood, liver, heart and spleen cells	↑ in heart and spleen	227
CD-1 mice	Lead acetate	Nasal epithelial cells, lung, whole blood, liver, kidney, bone marrow, brain and testes	↑ in all organs on prolonged exposure; – in testes	228
Swiss albino mice	Sanguinarine alkaloid, argemone oil	Blood, bone marrow cells and liver	↑ dose dependent in blood and bone marrow	229, 230
	Cypermethrin	Brain, liver, kidney, bone marrow, blood, spleen, colon	Î	231
	Steviol	Stomach cells, hepatocytes, kidney and testicle cells	Î	232
	Apomorphine	Brain cells	-	233

 23

Table 1.3(Continued)

Model	Agent tested	Cell used	DNA damage ^a	Ref.
	8-oxo-apomorphine-semiquinone	Brain cells	↑	233
	Ethanol, grape seed oligomer and polymer procyanidin fractions	Brain cells	↓ ethanol-induced protection by grape seed	234
	Nonylphenol and/or ionizing radiation	Liver, spleen, femora, lungs and kidneys	 ↑ in all organ of males, kidney only in females. ↓ with radiation in males, ↑ in female mice 	235
Male CBA mice	Pesticide formulations (Bravo and Gesaprim)	Hepatic cells, bone marrow cells spleen cells	↑ ↑	236
Isogenic mice	Sulfonamide, protozoan parasite <i>Toxoplasma</i> gondii	Peripheral blood cells, liver cells and brain cells	↑ in peripheral blood cells	237
Cirrhotic rats	Rutin and quercetin	Bone marrow cells	↑↑ ↑ with DDN glugidal	238
Male Sprague-Dawley rats	propanediol (BMP), 2-nitroanisole (2-NA), benzyl isothiocyanate (BITC), uracil, and melamine	officiary bladders	 with BBN, glychol and BMP, with 2-NA, BITC, uracil and melamine 	239
In vitro				
FE1 Muta Mouse lung epithelial cell line.	Carbon black	Lung epithelial cell line.	↑	240
Rat Alveolar type II epithelial cells	Cigarette smoke	Lung cells	↑	241
L5178Y mouse lymphoma cells	Ketoprofen, promazine, chlorpromazine, dacarbazine, acridine, lomefloxacin, 8-methoxypsoralen, chlorhexidine, titanium dioxide, octylmethoxycinnamate	Lymphoma cells	Positive with phototoxic compound	242

 24

Murine primary cultures of brain cells and a continuous cell line of astrocytes	Xanthine and xanthine oxidase, hydrogen peroxide, Superoxide dismutase, catalase, or ascorbic acid.	Brain cells	\downarrow by antioxidants	243
Chinese hamster ovary (CHO) cell line	Endosulfan	Ovary cells	1	244
	Cypermethrin, pendimethalin, dichlorovous	Ovary cells	1	245
Humans clinical				
Breast cancer patients and controls	Radiosensitivity	Peripheral blood mononuclear cells	↑↑ and reduced DNA repair	246, 247
Breast cancer patients and controls	Radiotherapy and/or chemotherapy treatment	Peripheral blood mononuclear cells	↓ post treatment	248
Papillary thyroid cancer (PTC) patients	Basal DNA damage	Peripheral blood lymphocytes	Î	249
Children	Exposed to air pollution	Oral mucosa cells	↑	250
Normal individuals	Chlorhexidine	Buccal epithelial cells and peripheral blood lymphocytes	Î.	251
Non-small cell lung cancer (NSCLC) patients	Chemotherapy, Platinum based derivatives for therapy	Lung cells	\uparrow in patients	252
Ataxia telangiectasia heterozygote	X-irradiation	Peripheral leukocytes	↑ (~3 times higher) in patients	253
Nijmegen breakage syndrome (NBS) patients	X-irradiation	Peripheral blood mononuclear cells	↑ in patients	254
Alzheimer disease patients	-	Peripheral blood mononuclear cells	\uparrow in patients	255
Breast cancer patients	-	Peripheral blood mononuclear cells	\uparrow in patients	256
Type 2 diabetes mellitus and	Oxidative DNA damage	Peripheral blood cells	1	257
healthy males	Exercise training	Peripheral blood cells	in patients	258
Cancer (testicular cancer, lymphoma and leukaemia) patients	DNA integrity	Spermatozoa	Decreased DNA integrity	259

The Comet Assay: A Versatile Tool for Assessing DNA Damage