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For centuries, extremely toxic chemicals have been 
used in wars, conlicts, terrorist and extremist activities, 
malicious poisonings, and executions. Natural toxins 
from plants or animals were one of the earliest forms 
of chemical warfare agents (CWAs). These were used 
to coat arrowheads and were commonly referred to as 
“arrow poisons.” Ancient use of some CWAs and riot 
control agents (RCAs) dates back to the ifth century bc, 
during the Peloponnesian War, when the Spartans used 
smoke from burning coal, sulfur, and pitch to tempo-
rarily incapacitate and confuse occupants of Athenian 
strongholds. The Spartans also used bombs made of 
sulfur and pitch to overcome the enemy. The Romans 
used irritant clouds to drive out adversaries from hid-
den dwellings. In the ifteenth century, Leonardo da 
Vinci proposed the use of an arsenic sulide powder as 
a chemical weapon. Modern use of CWAs and RCAs or 
incapacitating agents dates back to World War I (WWI).

With advancements in science and chemistry in the 
19th century, the possibility of chemical warfare increased 
tremendously. The irst full-scale use of CWAs began 
in April 1915, when German troops launched a poison 
gas attack in Ypres, Belgium, using 168 tons of chlorine 
gas, killing approximately 5000 Allied (British, French, 
and Canadian) soldiers. During WWI, the deployment 
of CWAs, including toxic gases (chlorine, phosgene, 
cyanide, and mustard), irritants, and vesicants in mas-
sive quantities (approximately 125,000 tons), resulted 
in approximately 90,000 fatalities and 1.3 million non- 
fatal casualties. The majority of deaths during WWI were 
a result of exposure to chlorine and phosgene gases. 
During the Holocaust, the Nazis used carbon monoxide 
and the insecticide Zyklon-B, which contains hydrogen 
cyanide, to kill several million people in extermination 
camps. Poison gases were also used during the Warsaw 
Ghetto Uprising in 1943. In November 1978, religious 
cult leader Jim Jones murdered more than 900 men, 
women, and children with cyanide.

C H A P T E R 
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Before, during, and after World War II, anticholines-
terase organophosphate (OP) nerve agents/gases were 
developed in Germany, the United States, the United 
Kingdom, and Russia. They were also produced in large 
volumes in many other countries. During the “Cold 
War” period, they were maximally produced and stock-
piled. These nerve agents have been used in wars and by 
dictators, extremists, cult leaders, and terrorist groups 
as chemical weapons of mass destruction (CWMD) on 
many occasions. In 1980, Iraq attacked Iran using mus-
tard gas and OP nerve gas. During the period of the Iraq 
and Iran conlict (1980–1988), Iran sustained 387 attacks 
and more than 100,000 troops were victims, as were a 
signiicant number of civilians. Thousands of victims 
still suffer from long-term health effects. Soon after the 
end of the Iraq–Iran war in 1988, the brutal dictator of 
the Iraqi regime, Saddam Hussein, used multiple CWAs 
against the Kurdish minorities in a Halabja village, kill-
ing more than 10% of the town’s 50,000 residents. To 
date, mustards have been used in more than a dozen 
conlicts, killing and inlicting severe injuries in millions 
of military personnel and civilians.

During the Persian Gulf War, exposure to OP nerve 
agents occurred from the destruction of munitions con-
taining 8.5 metric tons of sarin/cyclosarin housed in 
Bunker 73 at Khamisyah on March 4, 1991, and during 
additional destruction of these nerve agents contained 
in rockets in a pit at Khamisyah on March 10, 1991. 
Although exposure levels to nerve agents were too low 
to produce signs of acute toxicity, military personnel 
serving in and around the Khamisyah area still suffer 
from long-term adverse health effects, most notably 
“Gulf War Syndrome.” In 1996, approximately 60,000 
veterans of the Persian Gulf War claimed to suffer from 
“Gulf War Syndrome” or “Gulf Veterans’ Illnesses,” 
possibly because of low-level exposure to nerve agents, 
mustard, pyridostigmine bromide, and pesticides. 
Exposed veterans had an increased incidence of chronic 
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myelocytic leukemia and increased risk of brain cancer 
deaths compared with unexposed personnel.

In the mid 1990s, two terrorist attacks by a fanatic 
religious cult Aum Shinrikyo (Supreme Truth), known 
as Aleph since 2000, took place in Japan (Matsumoto in 
1994 and Tokyo Subway in 1995). In both incidents, the 
OP nerve agent sarin was used as a CWA. An estimated 
70 tons of sarin was manufactured by Aum Shinrikyo 
in Kamikuishiki, Japan. Although the total fatality 
count involved not more than 20 civilians, injuries were 
observed in more than 6000 and millions were terriied. 
These acts of chemical terrorism were unprecedented 
and the impact propagated not only throughout Japan 
but also throughout the entire world. In the past few 
decades, many incidents have also occurred with bio-
toxins such as ricin and anthrax. Publicity surrounding 
frequent recent use attributable to easy access and copy-
cat crimes increase the possibility of future use of these 
chemicals and biotoxins, thus warranting advancement 
in emergency preparedness planning at the federal, 
state, and local government levels.

It is interesting to note that toxic chemicals have been 
used by governmental authorities against rebels or civil-
ians. In the 1920s, Britain used chemical weapons in Iraq 
“as an experiment” against Kurdish rebels seeking inde-
pendence. Winston Churchill strongly justiied the use of 
“poisoned gas against uncivilized tribes.” The Russian 
Osnaz Forces used an aerosol containing fentanyl anes-
thetic during the Moscow theater hostage crisis in 2002. 
RCAs were frequently used in the United States in the 
1960s to disperse and control crowds.

At present, more than 25 countries and possibly many 
terrorist groups possess CWAs, and many other coun-
tries and terrorist groups are seeking to obtain them 
because of their easy access. Some of these agents are 
stockpiled in enormous quantities and their destruction 
and remediation are not only expensive but also associ-
ated with signiicant health risks. There is also the pos-
sibility of accidental release of CWAs or CWMD at the 
sites of their production, transportation, dissemination, 
and deployment. The intentional or accidental release 
of highly toxic chemicals, such as the nerve agent VX 
(Dugway Proving Ground, Utah, USA, 1968), Agent 
Orange (Vietnam, 1961–1972), PBB (Michigan, USA, 
1973), dioxin (Seveso, Italy, 1976), and methyl isocyanate 
(Bhopal, India, 1984), has caused injuries in more than 
one million people and deaths in several thousands. A 
1968 accident with VX nerve gas killed more than 6000 
sheep in the Skull Valley area of Utah.

After September 11, 2001, the chances for the use of 
CWMD by extremist and terrorist groups, such as Al 
Qaeda, have been greater than ever, thus presenting great 
risks to humans, domestic animals, and wildlife in many 
parts of the world. On November 26, 2008, Pakistani 
Islamic terrorists attacked Mumbai City in India at 10 

different sites, including two luxury hotels, a Jewish cen-
ter, a train station, hospitals, and cafes. Approximately 
200 innocent people died and approximately 300 people 
were injured by bullets and smoke. It is more likely that 
terrorist groups such as these may use toxic industrial 
chemicals (agents of opportunity) either in this way or as 
a precursor for more deadly CWMD. At present, many 
countries have established Defense Research Institutes 
with two major missions: (i) to understand the toxicity 
proile of CWAs/CWMDs and (ii) to develop strategic 
plans for prophylactic and therapeutic countermeasures. 
By the turn of the twenty-irst century, the United States 
established the Department of Homeland Security. 
Many other countries also developed similar governing 
branches and agencies at the state and national levels 
to protect people and property from terrorist attacks. 
Among chemical, biological, and radiological weapons, 
the possibility of CWMD is more likely because of their 
easy access and delivery system. It is important to men-
tion that understanding the toxicity proile of CWAs/
CWMD is very complex, because these chemical com-
pounds are of a diverse nature and, as a result, treatment 
becomes very dificult or, in some cases, impossible.

In the past, many accords, agreements, declarations, 
documents, protocols, and treaties have been signed at 
the international level to prohibit the development, pro-
duction, stockpiling, and use of CWAs, yet dictators and 
terrorists produce and/or procure these chemicals to 
harm or kill enemies, create havoc, and draw national and 
international attention. In 1907, The Hague Convention 
outlawed the use of chemical weapons; however, during 
WWI, many countries used these chemicals. The irst 
international accord on the banning of chemical war-
fare was agreed upon in Geneva in 1925. Despite the 
General Protocol, the Japanese used chemical warfare 
against China in 1930. In 1933, the Chemical Weapon 
Convention banned the development, possession, and 
use of CWAs. The document was signed and imple-
mented by more than 100 countries. However, during 
WWII many chemicals of warfare were developed, pro-
duced, and used by several countries. In 1993, another 
global convention banning the production and stockpil-
ing of CWAs was signed by more than 100 countries.

It is highly likely that these agents will be used in 
wars, conlicts, and terrorist attacks with malicious 
intent. In such scenarios, these extremely toxic agents 
continuously pose serious threats.

This irst edition of Handbook of Toxicology of Chemical 
Warfare Agents was prepared to offer the most compre-
hensive coverage of every aspect of the deadly toxic 
chemicals that can be used as CWAs/CWMD. In addi-
tion to the chapters on radiation, several chapters were 
included on deadly biotoxins (ricin, abrin, strychnine, 
anthrax, and botulinum toxins) that can be weaponized 
in chemical, radiological, and biological warfare. Many 
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special and unique topics were offered that were not 
covered in other books. This was the irst book to offer 
detailed target organ toxicity in the area of toxicology. In 
every chapter, all factual statements were substantiated 
with appropriate references.

Since the publication of the irst edition of this hand-
book, concerns regarding the use and misuse of CWAs 
and biological warfare agents (BWAs) are greater than 
ever before. The delayed health effects from CWAs used 
during the Iraq–Iran conlict of the 1980s, during the 
sarin subway attacks in Japan and during the irst Gulf 
War in the 1990s are still not well-understood. Recently, 
the Syrian government stockpiled more than 1300 metric 
tons of chemical agents, including sarin, VX, and sulfur 
mustard. In August 2013, the Syrian military repeatedly 
attacked civilians with chemical weapons, including 
sarin. More than 1300 people died and thousands were 
injured. Again, during April 11–13, 2014, Syrian military 
forces attacked civilians in Hama province with chlo-
rine gas, killing and injuring an unaccounted number 
of people. Of course, the Syrian government has denied 
use of either sarin or chlorine gas.

The second edition of the Handbook of Toxicology of 
Chemical Warfare Agents is prepared to meet today’s chal-
lenges of academicians and lay persons alike. The format 
used is user-friendly and easy to understand. Stand-
alone chapters on individual chemical and biological 
agents, target organ toxicity, biosensors and biomarkers, 
risks to humans, animals, and wildlife, and prophylactic 

and therapeutic countermeasures are just a few of the 
many novel topics covered in this volume. The chap-
ters are enriched with historical background as well as 
the latest information and up-to-date references. With 
76 chapters, this book serves as a reference source for 
biologists, toxicologists, pharmacologists, forensic sci-
entists, analytical chemists, local/state/federal oficials 
in the Department of Homeland Security, Department of 
Defense, Defense Research Establishments, Department 
of Veterans Affairs, physicians at medical and veterinary 
emergency care units of hospitals, poison control centers, 
medical and veterinary diagnostic laboratories, environ-
mentalists and wildlife interest groups, researchers in 
the areas of nuclear, chemical, and biological agents, and 
college and university libraries.

Contributors to the chapters in this book are the most 
qualiied scientists in their particular areas of CWAs and 
BWAs. These scientists are from around the globe and 
are regarded as authorities in the ields of pharmacology, 
toxicology, and military medicine. The editor sincerely 
appreciates the authors for their dedicated hard work and 
invaluable contributions to this volume. The editor grate-
fully acknowledges Robin B. Doss and Michelle A. Lasher 
for their technical assistance. Finally, the editor remains 
indebted to Molly McLaughlin, Rhys Grifiths, and Kristine 
Jones, the editors at Elsevier, and Caroline Johnson, Susan 
McClung and Heather Turner in the production depart-
ment of Elsevier for their immense contributions to this 
book.
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The opinions and assertions contained herein are the 
private views of the authors, and are not to be construed 
as relecting the views of the US Department of Defense, 
the US Air Force, or the US Department of Health and 
Human Services.

INTRODUCTION

The employment of chemicals in war has a long his-
tory (Silvagni et al., 2002; Romano et al., 2008). Just as the 
use of chemicals brought about tremendous advances 
in society, the concept of using chemicals to help win 
wars has been pursued for centuries (Joy, 1997; Smart, 
1997). There are many examples of the exploitation of 
chemicals in warfare and conlict dating back to ancient 
times. Primitive humans may have been the irst to use 
chemical compounds in both hunting and battle sce-
narios. The use of smoke from ires to drive animals 
or adversaries from caves may have been the earliest 
use of chemical weapons. Natural compounds derived 
from plants, insects, or animals that were observed to 
cause sickness or death were likely used by our distant 
ancestors in attempts to gain or maintain superiority 
(Hammond, 1994). Natural toxins from plants or ani-
mals on arrowheads, as well as the poisoning of water or 
food, could increase casualties and cause fear in oppos-
ing military forces or civilian populations. These early 
uses of chemicals paved the way for more lethal chemical 
weapons. For example, in the fourth century bc, smoke 
containing sulfur was used in the war between Sparta 
and Athens (Joy, 1997). Chinese manuscripts indicate 
arsenic-based compounds were used in battle (Joy, 1997). 
A few hundred years later, toxic smoke was employed 
by the Romans in Spain (Coleman, 2005). During the 
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second siege of Constantinople, the Byzantine emperor 
Leo III used “Greek ire” in his quest for military vic-
tory (Coleman, 2005). During the ensuing years, there 
were many instances of the limited and attempted use 
of chemicals and toxins on the battleield. Many of these 
examples may have been inluenced by the intentional 
poisonings occurring in civilian settings (Joy, 1997; 
Smart, 1997; Newmark, 2004; Coleman, 2005). The earli-
est known treaty to ban poisons in warfare was signed 
between the French and Germans in the seventeenth cen-
tury (Smart, 1997). In the siege of Groningen, European 
armies employed incendiary devices to release bella-
donna, sulfur, and other compounds. This led to the 
Strasbourg Agreement in 1675, which prohibited poison 
bullets (Smart, 1997; Coleman, 2005).

As science and chemistry advanced in the nineteenth 
century, the possibilities of chemical warfare increased 
exponentially. Advancements were made in indus-
trial applications of sulfur, cyanide, and chlorine (Joy, 
1997). In addition, the concept of delivering chemicals 
via projectiles was introduced. During the Crimean 
War, the British refused to use cyanide-based artillery 
shells against the Russians on the grounds that it was a 
“bad mode of warfare” (Smart, 1997). This was an early 
example of the ethical questions surrounding chemical 
use in warfare that continued into the twentieth cen-
tury (Vedder and Walton, 1925). During the US Civil 
War, both the Northern and Southern armies seriously 
considered using various chemicals in their pursuit of 
operational victories (Smart, 1997). Early attempts at 
international treaties met with mixed results. The United 
States prohibited any use of poison during the Civil War. 
The Brussels Convention on the Law and Customs of 
War of 1874 prohibited poisons or poison-related arms 
(Smart, 1997). The irst Peace Conference at the Hague 
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prohibited projectiles illed with asphyxiating or delete-
rious gases (Smart, 1997). The employment of chemicals 
as asphyxiating warfare agents was vigorously discussed 
there (Joy, 1997). However, some countries, including the 
United States, were not signatories to this agreement. 
Arguments again were made against chemicals based on 
moral grounds. However, counterarguments were made 
based on the assumption that chemicals lead to death 
without suffering (Vedder and Walton, 1925; Joy, 1997; 
Coleman, 2005). Individuals who advocated chemicals 
did not view their use as an unfair advantage; rather, 
it was just one of a series of technological advances 
which, if mastered, could provide strategic, operational, 
and tactical advantages on the battleield. The second 
Peace Conference at the Hague, held eight years later, 
prohibited both poisons and poisoned weapons (Smart, 
1997). The British use of picric acid–illed shells dur-
ing the Boer War and the Japanese use of arsenical rag 
torches in the Russo-Japanese War further illustrate that 
chemical warfare was considered by some a legitimate 
form of warfare at the turn of the twentieth century 
(Smart, 1997). During the early twentieth century, tech-
nological advancements in the chemical industry made 
the possibility of sustained military operations using 
chemicals a realistic possibility. The murder of Archduke 
Franz Ferdinand at Sarajevo in June 1914, which sparked 
World War I, set the stage for what would become the 
irst widespread use of chemical weapons to date (Harris 
and Paxman, 2002).

THE FIRST SUSTAINED USE OF 
CHEMICALS AS AGENTS OF WAR

The talk and rhetoric of the late nineteenth century 
should have prepared the countries on both sides of 
World War I for chemical warfare. However, that was not 
the case (Smart, 1997). World War I clearly demonstrated 
the deadly and destructive nature of chemicals in mod-
ern warfare. Both sides of the war experimented with 
novel forms of warfare, including chemical weapons, 
and followed the lead of their adversary (Hay, 2000). It 
is little wonder that this war is known as the “chemist’s 
war” (Fitzgerald, 2008). Initially, the French used gas 
grenades with little effect, followed by the German use 
of shells illed with tear gas (Joy, 1997). The Germans, 
capitalizing on their robust chemical industry, produced 
shells illed with dianisidine chlorosulfate (Smart, 1997). 
These shells were used in October 1914 against the British 
at Neuve-Chapelle, but with little effect. In the winter of 
1914–1915, the Germans ired 150-mm howitzer shells 
illed with xylyl bromide (Smart, 1997). These shells 
were ired on both the eastern and western fronts, with 
disappointing effects. Despite this inauspicious start, 
efforts were continued to develop new uses of chemical 

warfare. It would soon be evident that chemical weap-
ons would be devastating on the battleield (Coleman, 
2005; Tucker, 2006). In late 1914, Fritz Haber, a German 
scientist who later won the Nobel Prize in Chemistry, 
proposed the possibility of releasing chlorine gas from 
cylinders (Joy, 1997). Chemical warfare was attractive to 
Germans for two reasons: the shortage of German artil-
lery shells and the ability to defeat the trench system of 
the enemy (Smart, 1997). After consideration and debate, 
the Germans released chlorine in April 1915 at Ypres, 
Belgium (Coleman, 2005). The German military was not 
prepared for the tremendous operational advantage the 
chlorine release provided, however. It did not take long 
for the British and French forces to respond in kind to the 
German offensive (Vedder and Walton, 1925; Joy, 1997; 
Smart, 1997; Coleman, 2005). In the fall of 1915, a British 
oficer, William Livens, introduced a modiied mortar 
(Figure 2.1) that could project gas-illed shells of chlorine 
or phosgene, the two agents of choice at that time (Joy, 
1997). Both chlorine and phosgene caused extreme respi-
ratory problems to those soldiers who were exposed to 
them (Vedder and Walton, 1925; Joy, 1997; Smart, 1997; 
Coleman, 2005; Hurst et al., 2007) (Figure 2.2).

As the United States entered the war in the spring of 
1917, an obvious concern of its military command was 
the effect of chemical warfare on standard operations. 
Chemistry departments at universities were tasked with 
investigating and developing novel chemical agents 
(Joy, 1997). Protective equipment (Figure 2.3) and basic 
studies of the biological effects of chemical agents were 
assigned to the US Army Medical Department (Joy, 1997). 
In the fall of 1917, the army began to build an indus-
trial base for producing chemical agents at Edgewood 
Arsenal, MD (Joy, 1997). As the effects of chlorine and 
phosgene became diminished by the advent of gas 
masks (Figure 2.4), the Germans turned to dichlorethyl 
sulide (mustard) at Ypres against the British (Joy, 1997). 
As opposed to the gases, mustard remained persistent in 

FIGURE 2.1 British Livens Projector, western front, World War I.
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the area, and contact avoidance was the major concern 
(Joy, 1997). It is worth noting that almost 100 years after 
it was irst used on the battleield, mustard still has no 
effective treatment; research continues into developing 
effective therapeutics (Babin et al., 2000; Baskin et al., 
2000; Casillas and Kiser, 2000; Hay, 2000; Schlager and 

Hart, 2000; Hurst et al., 2007; Romano et al., 2008). It has 
been estimated that there were over 1 million chemical 
casualties (Figure 2.5) of World War I, with almost 8% 
being fatal (Joy, 1997). The Russians on the eastern front 
had a higher percentage of fatalities than other countries 
in the war, primarily due to the later introduction of a 
protective mask (Joy, 1997). The relatively low rate of 
chemical deaths in World War I demonstrated the most 
insidious aspect of the use of such weapons—namely, 
the medical and logistical burden that it placed on the 
affected army. The eventual Allied victory brought a 
temporary end to chemical warfare. In 1919, the Treaty 
of Versailles prohibited the Germans from producing or 
using chemical weapons.

FIGURE 2.2 Australian infantry in trench with gas masks donned, 
Ypres, Belgium, September 1917.

FIGURE 2.3 US Army captain wearing a gas mask in training, 1917.

FIGURE 2.4 World War I soldier and horse, both wearing gas 
masks.

FIGURE 2.5 British soldiers temporarily blinded by tear gas await-
ing treatment at the Battle of Estaires, April 1918.
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INITIAL COUNTERMEASURES

The concept of a protective mask against chemical 
attack dates back over 500 years, to Leonardo da Vinci 
(Smart, 1997). By the mid-nineteenth century, protective 
masks were proposed in the United States and Europe 
for both industrial and military use. The modern gas 
mask was developed by the Germans with sodium thio-
sulfate- and bicarbonate-soaked pads, and it was used 
during World War I (Joy, 1997). The French and English 
soon followed with their own versions of gas masks (Joy, 
1997). In 1916, the Germans introduced a mask that incor-
porated a canister through which the soldiers breathed 
(Joy, 1997). Initially, the American forces in World War I 
used gas masks obtained from allies already ighting in 
the war (Smart, 1997). In 1918, the Americans introduced 
Richardson, Flory, and Kops (RFK) mask, a modiied ver-
sion of the British mask. In addition, masks were devel-
oped for the animals, such as horses, that supported the 
war efforts. Decontamination efforts during World War I 
were rudimentary and included chemical neutralization 
and aeration of clothing and equipment. Although the 
need to detect chemical agents was clearly identiied, very 
little progress was made during World War I. Medical 
treatment included removal of the patient from the source, 
decontamination, and palliative care (Smart, 1997).

EVENTS AFTER WORLD WAR I

By the time World War I ended, the world had been 
introduced to chemical warfare on an unprecedented 
level. While some groups thought that humanity had 
learned a lesson about the cruel nature of chemical war-
fare, others prudently went to work on improving chem-
ical defenses (Vedder and Walton, 1925). The thoughts 
of many professional military oficers were that future 
wars would be fought under the new paradigm of chem-
ical warfare (Vedder and Walton, 1925; Vedder, 1926; 
Smart, 1997). New gas masks were developed, and train-
ing in chemical environments was introduced (Vedder 
and Walton, 1925; Vedder, 1926; Joy, 1997). Textbooks 
and manuals, such as those written by US Army Colonel 
Edward B. Vedder (Figure 2.6), were introduced into 
the military medical community (Vedder and Walton, 
1925). In addition, the civilian medical community 
gained valuable insight into toxicology from the events 
of World War I (Vedder, 1929; Johnson, 2007). Despite 
the irsthand experience with chemical warfare, some 
countries, including the United States, struggled to fund 
their offensive and defensive programs adequately dur-
ing demobilization (Smart, 1997).

It did not take long for chemical warfare to appear 
in other conlicts. Chemical agents were used to sub-
due rioters and suppress rebellions. For example, the 

British used chemical agents to suppress uprisings in 
Mesopotamia in the early 1920s by dropping bombs in 
cities throughout the area (Coleman, 2005). The Soviet 
Union used chemical agents to quell the Tambov peasant 
rebellion in 1921, and France and Spain used mustard-
gas bombs to subdue the Berber rebellion in the 1920s 
(Werth et  al., 1999). Italy and Japan used mustard in 
several small regional conlicts (Joy, 1997). The Italian 
conlict in Ethiopia was particularly noteworthy because 
mustard was sprayed and dropped from planes, and 
some experts think that the agent’s use contributed sig-
niicantly to the Italian victory (Smart, 1997). This use 
demonstrated the contemporary belief that chemicals 
were viable alternatives to traditional combat.

The Japanese also used chemical weapons during the 
1930s against regional foes. Mustard gas and the vesicant 
lewisite were released against Chinese troops and were 
also used in Southeast Asia (Coleman, 2005). Lewisite 
is an arsine that was usually produced as an oily brown 
liquid that was said to smell like geraniums (Spiers, 1986; 
Hammond, 1994). It was developed in the United States 
by Winford Lee Lewis in 1918 and was found to be effec-
tive at penetrating clothing. The United States produced 
approximately 20,000 tons of lewisite but only used small 
quantities of the chemical in World War I (Coleman, 2005). 
Dimercaprol, more commonly called British antilewisite, 
was developed as an effective treatment for the vesicant 
(Goebel, 2008). In the period between the two world wars, 
mustard was a key part of defensive planning (Coleman, 

FIGURE 2.6 Captain Edward B. Vedder, the “father” of the 
United States Army Medical Research Institute of Chemical Defense 
(USAMRICD).
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2005). New stores of mustard were produced in many 
countries. Work continued on many fronts to improve pro-
tective equipment. For example, the US Chemical Warfare 
Service introduced the M1A2 mask, an improvement on 
the M1 mask (Smart, 1997). In the Geneva Protocol of 
1925, 16 of the world’s major nations pledged never to 
use gas as a weapon of warfare; however, it was not 
ratiied in the United States until 50 years later, in 1975 
(Hammond, 1994). There has long been vigorous debate 
on the merits of treaties with nations that balance military 
needs against the potential irrational concept of chemical 
warfare (Vedder, 1926).

WORLD WAR II

In the lead-up to World War II, the Germans forever 
changed chemical warfare with the discovery of the 
organophosphorus nerve agents (Goebel, 2008). These 
agents inhibit cholinesterase enzymes in the nerve syn-
apse responsible for the breakdown of the neurotrans-
mitter acetylcholine (ATSDR, 2008). This results in the 
accumulation of the neurotransmitter in the synapse 
and overstimulation of the nervous system. This can 
result in subsequent respiratory failure and death 
(ATSDR, 2008).

In 1936, Gerhard Schrader, a German chemist work-
ing on the development of insecticides for IG Farben, 
developed a highly toxic organophosphate compound, 
which he named tabun (Hersh, 1968; Hammond, 1994). 
Schrader and an assistant became casualties of their dis-
covery when a drop of the neurotoxicant was spilled in 
the lab, exposing both of them (Tucker, 2006). Had the 
amount of tabun spilled been greater, both researchers 
would have certainly succumbed to the effects of the 
poison. Tabun was the irst of a series of compounds 
termed nerve gases (Coleman, 2005). The correct termi-
nology, however, is nerve agents, as these substances are 
not gases; rather, they are liquids dispersed as ine aero-
sols. Tabun was extremely toxic in small amounts, and 
it was invisible and virtually odorless (Tucker, 2006). 
The compound could be inhaled or absorbed through 
the skin. These characteristics made it too dangerous 
to be used as an insecticide by farmers. German law 
required that any discovery having potential military 
applications be reported to military oficials (Tucker, 
2006). Schrader was not overly excited about producing 
chemical agents for the military; however, the Germans 
placed him in a secret military research facility with the 
emphasis on producing these nerve agents and discov-
ering new agents (Tucker, 2006). Subsequently, Schrader 
and his team of researchers discovered a more lethal 
organophosphate compound similar to tabun, which he 
named sarin in honor of the team members: Schrader, 
Ambrose, Rudriger, and van der Linde (Coleman, 2005).

At the onset of World War II, both the Allies and 
the Germans anticipated that chemical agents would be 
deployed on the battleield (Tucker, 2006). This expecta-
tion intensiied research into the development of new 
agents, delivery systems, and methods of protection 
(Figures 2.7 and 2.8). The Allied forces were unaware of 
the Germans’ new nerve agent, tabun, at the beginning 
of the war. The German Army advanced very rapidly 
across Europe using their Blitzkrieg method of maneu-
vering.  As a result, German military leaders were reluc-
tant to use  chemical weapons, fearing that their forces 
would lose momentum waiting for contaminated areas 

FIGURE 2.7 Gas mask production—Detroit, Michigan, 1942.

FIGURE 2.8 A private trains using protective gear during World 
War II.
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to clear. (Tucker, 2006). Nevertheless, the Germans pro-
duced and stockpiled large amounts of nerve agents 
throughout the war (Spiers, 1986). The production of 
these organophosphate agents was complex, required 
custom equipment, and was hazardous to those involved 
in its production (Tucker, 2006). If workers got exposed, 
they would be dunked in a bath of sodium bicarbonate 
(Harris and Paxman, 2002; Goebel, 2008). It is also inter-
esting to note that some members of the German work-
force were given rations containing higher percentages 
of fat (Harris and Paxman, 2002). This was done because 
authorities observed that workers with higher-quality 
rations seemed protected against exposure to low levels 
of tabun. Many detainees were used in the manufacture 
and testing of chemical agents in Germany (Harris and 
Paxman, 2002; Tucker, 2006). It is not known how many 
chemical casualties resulted from prisoners of war being 
forced to work at producing nerve agents, but some 
fatalities were documented. The discovery of tabun and 
sarin was followed by the discovery of soman in 1944 by 
Richard Kuhn and Konrad Henkel at the Kaiser Wilhelm 
Institute for Medical Research (Tucker, 2006). This class 
of nerve agents is collectively termed “G” agents; the G 
stands for German, since German researchers discovered 
this class of compounds. A second letter is included as 
the speciic identiier of each compound: GA (tabun), GB 
(sarin), GD (soman), and GF (cyclosarin) (ATSDR, 2008). 
These agents were mass-produced by the Nazi regime 
throughout the war, but they were not used (Tucker, 
2006). There has been considerable debate about why 
the Germans did not employ their chemical weapons 
in World War II. While it may never be known con-
clusively, several possible reasons include lack of intel-
ligence regarding the German superiority in chemical 
weapons, fear of retaliation, and Adolf Hitler’s personal 
exposure to chemical agents on the battleield in World 
War I (Harris and Paxman, 2002; Tucker, 2006).

Other chemical agents that had been produced during 
and following World War I were still being produced. On 
December 2, 1943, German planes sank several American 
ships off the coast of Italy. At least one of the ships con-
tained mustard, which was to be used in retaliation if 
the Germans unleashed a large-scale chemical weapons 
attack (Tucker, 2006). Many casualties resulted from expo-
sure to the mustard, some of which included civilian mer-
chant seamen (US Navy, 2008). The presence of the agent 
on the ship was classiied, resulting in physicians incor-
rectly treating many of the victims (Tucker, 2006).

POST–WORLD WAR II

By the conclusion of World War II, both the Allies 
and Germany had stockpiled large amounts of chemi-
cal agents (Tucker, 2006). The Allied forces divided up 

the stockpiles of agents discovered in German facilities. 
Following the end of the war, many of the Allied coun-
tries continued to conduct research on the German nerve 
agents. The rise of the Soviet Union as a power and 
adversary prompted the United States and other coun-
tries to continually search for novel chemical and bio-
logical warfare agents (Tucker, 2006). The research and 
resources that were allotted for these efforts were not 
trivial, even though they were often overshadowed by 
the research and development of thermonuclear weap-
ons (Hersh, 1968; Goebel, 2008).

The post–World War II era ushered in the nuclear age. 
Some felt the age of chemical warfare was over (Smart, 
1997), but subsequent events would prove this to be a 
hasty conclusion. In the United States, research on the 
G-series agents and medical countermeasures against 
these agents was accomplished by the late 1940s. Research 
and intelligence gathering was further hastened by the 
impressive gains that the Soviet Union made in chemi-
cal warfare capability in the years after World War II. By 
the early 1950s, production of sarin had been initiated in 
the United States (Smart, 1997). At nearly the same time, 
Ranajit Ghosh, a chemist at the British company Imperial 
Chemical Industries plant, developed a new organophos-
phate compound to use as a potential insecticide (Tucker, 
2006). Like with Gerhard Schrader, this compound was 
deemed too toxic to be used in the ield as a pesticide. 
The compound was sent to researchers in Porton Down, 
England, synthesized, and developed into the irst of a 
new class of nerve agents, the V agents (Goebel, 2008). 
Like the G agents, the V agents have a second letter des-
ignation: VE, VG, VM, and VX (Coleman, 2005). Of these, 
VX was the most common. The V series of agents are 
generally more toxic than the G agents (ATSDR, 2008). In 
a deal brokered between the British and US governments, 
the British traded the VX technology for the thermonu-
clear weapons technology of the United States (Tucker, 
2006). The United States produced and stockpiled large 
quantities of VX after that (Hersh, 1968; Hammond, 1994).

Throughout the 1950s and 1960s, advancements were 
made in the production and delivery of chemical weap-
ons to include sarin and VX (Smart, 1997). While work 
on improving masks continued, a renewed concern was 
the inability to detect nerve agents. Several prototypes 
were developed in the mid-1950s. Great advancements 
were made in the therapeutics of agents that inhibited 
the enzyme acetylcholinesterase (Taylor, 2006; Gupta, 
2008; Klaassen, 2008). Atropine was introduced in the 
early 1950s. Oximes were added as an adjunct to speed 
up reactivation of the enzyme (Smart, 1997). The auto-
injector was developed to overcome user fear of self-
injection of atropine. Major advances were made in the 
use of chemical weapons in artillery (Figure 2.9). For 
example, the United States developed both short- and 
long-range rockets illed with chemical agents. But it 
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disposed of stockpiles of its chemical weapons in the 
late 1960s in an operation termed CHASE (which stood 
for “cut holes and sink ’em”) in the sea (Coleman, 2005). 
In 1969, nerve agent stockpiles were discovered in US 
depots in Japan after several US military members 
became ill while doing maintenance (Tucker, 2006). This 
stockpile, which had been kept secret from the Japanese, 
created an uproar that later resulted in the disposal of 
the agents in the Johnston Atoll in the Paciic Ocean.

Defensive equipment, such as improved ield alarms 
and drinking tubes for gas masks, were introduced in the 
1960s (Smart, 1997). Great strides were also made in col-
lective protection during the 1960s and 1970s. Although 
not used extensively since World War I, chemical agents 
have nonetheless been used for military purposes. The 
Egyptians allegedly used mustard and possibly nerve 
agents in the North Yeman civil war in the 1960s (Joy, 
1997; Smart, 1997). This was the irst reported use of 
nerve agents in armed conlict. There were allegations 
that chemical agents were used by the Vietnamese in 
Laos and Kampuchea in the late 1970s (Coleman, 2005). 
In the Vietnam War, the United States used defoliants 
and tear gas, and the Soviet Union was accused of using 
chemical agents in their war in Afghanistan (Joy, 1997).

INCAPACITANTS AND TOXINS

Incapacitating agents have long been considered an 
intermediate between chemical and traditional warfare. 
The Germans investigated the military use of lacrimators 

in the 1880s followed shortly thereafter by the French 
(Smart, 1997). The English and French considered using 
lacrimators in World War I (Smart, 1997). Japanese forces 
used tear gas against the Chinese in the late 1930s. The 
US Army used riot control agents and defoliants in the 
Vietnam War (Smart, 1997). The defoliant known as Agent 
Orange was later potentially linked to several forms of 
cancer (Stone, 2007). During the 1950s and 1960s, the 
United States had an active incapacitant program (Smart, 
1997). These agents were thought of as more humane 
than traditional chemical agents because the intent was 
not to kill. These agents were designated K agents and 
included tetrahydrocannabinol and lysergic acid (Smart, 
1997). One of the most extensively studied incapacitating 
agents was 3-quinuclidinyl benzilate, designated BZ by 
the US Army (Ketchum, 2006). Like many incapacitating 
agents, BZ was not adopted due to dificulty producing 
reproducible effects, unwanted side effects, latency in its 
effects, and dificulty in producing a dissemination that 
was free of smoke (Smart, 1997; Ketchum, 2006).

There have been multiple attempts to use the tox-
ins from plants and living organisms to develop viable 
weapon systems. Two that are noteworthy are ricin and 
botulinum toxin. Ricin, a very potent toxin derived from 
the castor bean plant, has been recognized as a potential 
biological weapon since World War I. While the British 
were developing the V agents, US military researchers pat-
ented a procedure for purifying ricin (Harris and Paxman, 
2002). The development of a method of disseminating 
ricin as a chemical weapon proved problematic, which 
made its use very limited. In 2003, ricin was detected on 
an envelope processed in a postal facility in Greenville, 
South Carolina. Postal workers did not develop symp-
toms of ricin exposure, and the individual who mailed 
the letter remains at large (Shea, 2004). The development 
and use of botulinum neurotoxin as a biological weapon 
was initiated at least 60 years ago (Smart, 1997; Arnon 
et  al., 2001). In the 1930s, during Japan’s occupation of 
Manchuria, the Japanese biological warfare group Unit 
731 purportedly fed cultures of Clostridium botulinum to 
prisoners, killing them. The US Army biological weapons 
program produced botulinum neurotoxin during World 
War II in response to Germany’s biological weapons pro-
gram (Coleman, 2005). In fact, more than 100 million tox-
oid vaccine doses were prepared in time for the D-Day 
invasion of Normandy (Arnon et al., 2001).

RECENT EXPERIENCE

The 1980s proved to be a very signiicant time for the 
employment of chemical weapons on the battleield. In 
1980, Iraq invaded Iran (Smart, 1997). The Iraqi armed 
forces, advised by the Soviet Union, possessed chemi-
cal agents and were trained in their use. The war was 

FIGURE 2.9 Testing for leaks at sarin production plant, 1970.
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unequivocally barbarous, and neither side gained an 
advantage. In many ways, this war had similarities to 
World War I. By 1983, Iran formally protested to the 
United Nations (UN) about the Iraqi use of chemi-
cal agents. The general consensus was that Iraq used 
mustard agents and possibly tabun in this war (Figure 
2.10). It is estimated that 5% of Iranian casualties, total-
ing approximately 45,000, can be attributed to chemical 
agents; the Iraqi Army used chemical agents against the 
Kurdish minority in northern Iraq as well; and Libya 
was suspected of using chemical agents when it invaded 
Chad in 1986 (Smart, 1997).

The late 1980s also saw improvements in defensive 
equipment, such as the M40 gas mask developed by the 
United States (Smart, 1997). Other advancements were 
made in collective protection, decontamination, and detec-
tion. In 1984, US president Ronald Reagan issued a state-
ment calling for an international ban on chemical weapons 
(Tucker, 2006). Subsequently, on June 1, 1990, President 
George H.W. Bush and Soviet leader Mikhail Gorbachev 
signed a treaty banning the production of chemical weap-
ons and initiated the destruction of the stockpiles of both 
nations (Tucker, 2006). In 1993, the Chemical Weapons 
Convention was convened and signed, and it was imple-
mented in 1997 (Hammond, 1994). As of 2008, the vast 
majority of UN member states had joined the Chemical 
Weapons Convention (OPCW, 2008).

In 1990, the Iraqi Army invaded neighboring Kuwait. 
Subsequently, the United States, at the request of Saudi 
Arabia, led a coalition to send forces to the area (Smart, 
1997). These forces were the largest to operate in a potential 
chemical environment since World War I. They were pro-
vided with atropine autoinjectors, an acetylcholinesterase 
reactivator, and a nerve agent pretreatment (pyridostig-
mine bromide). Fortunately, chemical weapons appar-
ently were not used in this conlict, although multiple 
false alarms were reported. The failure of the Iraqi military 

to use chemical weapons could be attributed to fear of 
retaliation, breakdown of communication, changing wind 
patterns, the surprising speed of the coalition attack, or 
the fact that Iraqi chemical infrastructure was attacked 
during the initial portion of the conlict. Since the conlict 
ended, many coalition veterans have reported a myriad of 
symptoms that have been commonly referred to as Gulf 
War syndrome. The etiology of this syndrome is unclear 
despite multiple epidemiological studies (Coleman, 2005). 
The most recent example of chemical weapons use is the 
ongoing Syrian civil war (Pellerin, 2013).

TERRORIST USE

One of the reasons why chemical weapons have been 
used relatively infrequently in combat over the past cen-
tury is the fear of retaliation by opposing countries. In 
less organized asymmetrical conlicts, this fear is not as 
dangerous. At the same time, the potential exploitation 
of chemical weapons by terrorists is of great worldwide 
concern. The appeal of these weapons to terrorists lies 
largely in the fact that many of these chemical agents 
are cheap and relatively easy to produce, transport, and 
release. These characteristics, along with the fear asso-
ciated with the idea of a chemical attack, make chemi-
cals an ideal weapon for terror attacks (Romano and 
King, 2001). In 1974, Muharem Kurbegovic attacked 
several public buildings with irebombs in California 
and claimed to have developed sarin and some other 
nerve agents (Tucker, 2006). The search of his home 
resulted in the discovery of various precursor materials 
for chemical agents and a large amount of sodium cya-
nide. In 1994, the Aum Shinrikyo, a Japanese religious 
cult, carried out several attacks both in the subway and 
in residential areas using sarin produced by the cult’s 
members (Tucker, 2006). A total of 19 people were killed, 
and over 6,000 received medical attention. Some of those 
who sought medical attention may have done so due 
to a fear of exposure. Psychological stress is a common 
aftermath of a chemical or biological attack (Romano 
and King, 2001). In the twenty-irst century, chemicals 
that once had been used exclusively by the military have 
reemerged as contemporary threats. In the fall of 2006, 
Al Qaeda and associated groups used chlorine combined 
with traditional car and truck bombings to spread panic 
in Iraq (Garamone, 2007). These attacks were followed 
by similar incidents in the subsequent months.

CONCLUDING REMARKS AND  
FUTURE RESEARCH

So long as there are legitimate uses for chemicals in 
our society, the risk of chemical agents in conlict and 

FIGURE 2.10 Aftermath of Iraqi chemical weapon attack (1980s).
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terrorist activity will always be present. Research con-
tinues across the globe for better detection, protection, 
and treatment of chemical agents. While many countries 
have denounced and indeed are signatories to various 
treaties to limit the use and production of chemical war-
fare agents, nonstate and terror organizations are under 
no such restrictions. Luckily, chemical weapon use has 
been limited in both warfare and less formal conlicts. 
As we progress into the twenty-irst century, the use of 
established chemical warfare agents is a real possibil-
ity. The potential use of legitimate industrial chemicals 
(e.g., the Iraqi burning of petroleum ields in the irst 
Gulf War) and the potential synthesis of new agents 
should also be recognized. History has demonstrated 
that chemicals have been used in both organized and 
asymmetrical conlicts, and preparations for defense and 
therapy for such encounters is prudent. Chemicals rep-
resent a unique force multiplier that simply cannot be 
ignored in the twenty-irst century.
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INTRODUCTION

The threat of chemical weapons (CWs), used 
either by States or Parties to the Chemical Weapons 
Convention (CWC; Convention on the Prohibition of 
the Development, Production, Stockpiling, and Use of 
Chemical Weapons and on their Destruction) or by ter-
rorists, has never attracted so much public attention as it 
has in the past 10 years. Despite the existing legal docu-
ments dealing with prohibition of CWs, for example, 
Geneva Protocol 1925 and CWC, some incidents of the 
use of CWs in different conlicts and terroristic attacks 
have been observed. Moreover, alleged use of CWs was 
noted during the period from 1925 to the present. It must 
be emphasized that the theoretical and practical basis for 
production, storage, and use of CWs still exists. Also, it 
must be clearly stated that CWs are applicable at any 
time, in any place, and in large quantities.

CWs consist of chemical warfare agents (CWAs) and 
the means to deliver to the target. They are characterized 
by high effectiveness for use against large targets and 
are known as area weapons or silent weapons. They are 
relatively low-cost and it is possible to achieve destruc-
tion of everything that is living while avoiding destruc-
tion of materials and buildings. They are also called 
the nuclear weapons of poor countries—“poor man’s 
nuclear weapon.” It should be pointed out that the use of 
CWs is connected with the use or release of toxic chemi-
cals; thus, chemical warfare can be considered part of 
generally observed situations in which toxic chemicals 
are used or released and inluence the environment and 
humankind.

A number of causal reasons for these events exist but, 
apart from accidents connected with the release of toxic 
chemicals from a natural source (e.g., volcanoes), the 
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factors shown in Figure 3.1 or their combinations can 
be involved.

For military purposes a number of chemicals were 
tested, but only a few are contained in military arse-
nals. However, according to the deinition in the CWC, 
any toxic chemical intended for military use must be 
considered a CW; in other words, the aim is to limit the 
designation of the compound in question for use as a 
CW. However, it is possible for terrorists to choose any 
chemicals with high toxicity.

BACKGROUND

The use of toxic chemicals against humankind is as 
old as any warfare conlict. The use of the poisoned 
arrow against humans—not animals—can be considered 
as the beginning of chemical warfare and is character-
ized as the intentional use of chemicals.

At the very beginning, chemical warfare was more 
closely connected with ire. “Greek ire” was an excellent 
naval weapon because it would loat on water and set 
ire to the wooden ships. There are other examples from 
history; for example, toxic smoke was used in China in 
2000 bc. In Thucydides’ History of the Peloponnesian War 
(the ifth century bc war between Athens and Sparta), 
we ind the irst description of chemical warfare—the 
formation of toxic sulfur oxide by burning sulfur. In 
the year 184 bc, Hannibal of Carthage used baskets 
with poisonous snakes against his enemy. Both Socrates 
and Hamlet’s father were poisoned with koniin. Aqua 
Toffana containing arsenic was also a known poison in 
ancient Italy. Leonardo da Vinci proposed a powder of 
arsenic sulide in the ifteenth century. There are many 
more examples of the use of CWAs (Bajgar et al., 2007b). 
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Modern history shows us that terrorists have used other 
chemicals, such as ricin (Bulgarian G. Markov was poi-
soned in 1978) or dioxin (the President of Ukraine Viktor 
Andriyovych Yushchenko was poisoned in 2004).

In a region of Bohemia, a “form” of CW was used as 
early as 600 years ago. It was in 1422 when the castle of 
Karlstein, the property of King Charles IV, was besieged 
and 1822 kegs containing the cesspools of the streets of 
Prague were hurled into the castle. Allegedly, the stench 
in the castle was unbearable. According to historical 
sources, the castle defenders were probably intoxicated 
with hydrogen sulide released from the contents of the 
cesspools and therefore showed typical symptoms of 
poisoning (Bajgar, 2006).

There were some attempts to prohibit CWs by interna-
tional agreement or law. Most of the early attempts were 
bilateral or unilateral agreements directed at the use of 
poisons. These included the 1675 agreement between 
France and Germany, signed in Strasbourg, to ban the 
use of poison bullets.

The irst international attempt to control chemical and 
biological weapons took place in Brussels in 1874, when 
the International Declaration was signed and included a 
prohibition against poison and poisoned arms. Despite 
the irst and second Brussels and Hague Conventions 
(1899 and 1907 signatories agreed not to use projectiles 
that could spread asphyxiating or deleterious gases), 
the world witnessed the application of chemicals dur-
ing warfare to an unprecedented extent during World 
War I (WWI). A brief summarization of the events con-
nected with the use/release of toxic chemicals is given 
in Table 3.1.

MILITARY USE OF CWS

The intentional use of CWs for military purposes 
can be found in both global and local conlicts. A 
typical example is the warning “Gas! Gas!” This was 
common in WWI and it is well-known from the E.M. 
Remarque novel All Quiet on the Western Front in 
which Remarque suggestively describes a chemical 
attack with chlorine.

During WWI, many chemicals were used, includ-
ing mustard and asphyxiating and irritant agents. 
Approximately 45 types (27 more or less irritating and 
18 lethal) of toxic chemicals were used. During the lat-
ter part of 1914, irritants were used by Germany and 
France; the effect was insubstantial. In late 1914, Nobel 
Prize winner Fritz Haber of the Kaiser Wilhelm Physical 
Institute in Berlin (chemical synthesis of ammonium 
in 1918) came up with the idea of creating chlorine, 
although this idea of using toxic chemicals in war was 
expressed by Admiral Dundonald as early as 1855. 
Chemical warfare really began in 1915, when German 
troops launched the irst large-scale poison gas attack 
at Ypres, Belgium, on April 22, using 6000 cylinders 
to release 168 tons of chlorine gas, killing 5000 British, 
French, and Canadian soldiers. The date is recognized as 
“the birthday of modern chemical warfare,” and there-
after the belligerent parties frequently used chemical 
gases against each other. Phosgene was introduced by 
Germany in late 1915. Soon after the irst chlorine attack, 
the Allies used primitive emergency protective masks. In 
May 1916, the Germans started using diphosgene, while 
the French tried hydrogen cyanide 2 months later and 
cyanogen chloride the same year. The irst time mustard 
gas was used by German troops was July 12, 1917. After 
its use near Ypres, it was also called yperit.

By the end of the WWI, approximately 124,200 tons 
of CWAs (chlorine, phosgene, mustard, etc.) had been 
released, causing at least 1.3 million casualties, of which 
more than 90,000 were fatal. The threat of the use of 
CWAs led to the development of protective means not 
only for humans but also for horses and dogs. The effec-
tiveness of CWs in comparison with classic munition 
was evident: 1 ton of classic explosives caused 4.9 casu-
alties; 1 ton of chemical munition caused 11.5 casualties; 
and 1 ton of yperite caused 36.4 casualties (Bajgar, 2006).

THE PERIOD BETWEEN WORLD WAR I 
AND WORLD WAR II

The terrible casualties of CWs used during WWI 
and the dangerous consequences for humans and the 
environment led to the signing of the “Geneva Protocol 
for the Prohibition of the Use in War of Asphyxiating, 
Poisonous and other Gases and Bacteriological Methods 
of Warfare” on June 17, 1925. This is recognized as one 
of the unique and famous international treaties on the 
prohibition of CWs. However, it neither comprises pro-
visions for effective veriication nor prohibits develop-
ment, stockpiling, and transfer of CWs. Moreover, no 
deinition of CWs was included. Despite the provisions 
of the Geneva Protocol, during 1935 to 1936 Italian 
troops used CWs during their invasion of Abyssinia 
(Ethiopia). This irst major use of CWs after WWI came 

Necessary condition: existence of toxic agent

production, processing, stockpiling, transport

(for both intentional and unintentional use) 

↓

USE, RELEASE

↓ ↓

intentional unintentional 

military or local conflicts,

terrorism or sabotage

unrestrained catastrophes,

incidental events, failure of 

human factor or techniques

FIGURE 3.1 Possible reasons for release/use of toxic chemicals.
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TABLE 3.1 Some Milestones Related to the Use/Release of CWs and Toxic Chemicals

Year(s) Event

2000 bc Toxic smoke in China inducing sleep

Fourth century bc Spartacus—toxic smoke

184 bc Hannibal—baskets with poison snakes

1168 Fustat (Cairo) —use of “Greek ire”

1422 Bohemia region—cesspools (H2S)

1456 Belgrade—rats with arsenic

Nineteenth century Admiral Dundonald—proposed the use of chemicals in war

1914–1918 WWI—start of chemical war

1918–1939 Development of new CWs and protective means

June 17, 1925 Geneva Protocol

December 23, 1936 Lange and Kruger—synthesis of tabun

1940–1945 Concentration camps—cyanide

1943 Synthesis of sarin

1943 Hoffmann and Stoll—synthesis of LSD-25

1945 Kuhn—synthesis of soman

1950 V agents are begun

1961–1968 Production of VX

1961–1971 Vietnam War—herbicides (impurity dioxin)

1962 BZ was introduced into military arsenals

1970 Bicyclic phosphates considered as potential CWAs

1976 Seveso—release of dioxin

1980 Some rumors on intermediate volatility agent

1984 Bhopal incident—release of methylisocyanate

1985 Decision on production of binary CWs

1986, 1987 Demonstration of USA CWs (Tooele) and Soviet Union CWs 
(Shikhany) to the CD in Geneva

1987 Production of binary CWs

1988 Halabja—use of mustard

1980–1990 Rumors of new nerve agent Novichok

1989 Conference on chemical disarmament, Paris

1991 Persian Gulf War—veteran’s syndrome

1992 BZ military stocks of the USA were destroyed

1992 Finalization of the rolling text of the CWC at the CD—Geneva

1993 Signing CWC in Paris

1993 Preparatory Commission on OPCW

1994 CWs of Iraq were destroyed

1994 Aum Shinrikyo—sarin attack in Matsumoto

1995 Aum Shinrikyo—sarin attack in Tokyo

April 29, 1997 CWC—entry into force; establishment of OPCW in The Hague

2000 Research on nonlethal weapons intensiied

2002 Moscow theater—Fentanyl derivatives used against terrorists

April 29, 2012 CWs of the State Parties to the CWC will be destroyed but it was 
prolonged; this period varies from 2015 to 2023 years.

August 2013 Syria—use of sarin
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after October 3, 1935, when Mussolini launched an inva-
sion of this country. Despite the Geneva Protocol (Italy 
had ratiied in 1928), the Italians used mustard gas with 
horrible effects. Later, CWs were used between Japan 
and China during 1937 to 1945. The Japanese attacked 
Chinese troops with mustard gas and lewisite. The 
Japanese, in addition to their biological program, had 
an extensive CWs program and were producing agent 
and munitions in large quantities by the late 1930s.

WORLD WAR II

Despite the storing and stockpiling of CWs by the 
great powers engaged in World War II (WWII), these 
fatal weapons were not practically used (except small 
examples) during WWII (probably because of the fear 
of massive retaliatory use of CWs). An example of 
intentional use, but not during military conlict, was 
the killing of prisoners in concentration camps in Nazi 
Germany. The agent irst used in the camps was carbon 
monoxide, followed by the more “effective” hydrogen 
cyanide released from Zyklon B. Some experiments 
with aconitine-impregnated shells and some other toxic 
compounds including biological agents were tested on 
prisoners.

However, during WWII, an important step in the 
preparation of the most dangerous CWA was observed 
in Germany. In Schrader’s group, organophosphates 
(OPs) were synthesized, primarily with the aim of 
obtaining more effective insecticides. Between 1934 and 
1944, Schrader’s team synthesized approximately 2,000 
OPs, including two well-known OP compounds, para-
thion and paraoxon. As early as 1935, the government 
of Nazi Germany insisted that Schrader switch the pri-
mary aim from OP insecticides to CWAs. At present, 
OPs are widely used in agriculture, medicine (human 
and veterinary), and industry. These compounds also 
include nerve agents (the most toxic compounds of the 
OP group). Nerve agents such as sarin, tabun, soman, 
and VX are the main compounds of CWAs. The Germans 
were also the greatest producers of nitrogen mustard 
and produced approximately 2,000 tons of HN-3.

This part of history is well-known (Koelle, 1963, 1981; 
Bajgar, 2006; Tuorinsky, 2008; Klement et al., 2013). First 
synthesis of OP was described in the second half of 
the eighteenth century. For a long time the irst OP 
(its toxicity was described later) was considered to be 
TEPP, which was synthesized by Clermont (1854–1855). 
Philippe de Clermont was a well-known chemist in 
Sorbonna. Charles Adolph Wurtz dedicated his work 
to the synthesis of esters of pyrophosphoric acid. These 
data were speciied by Petroianu (2008), and thus he con-
tributed to the discovery that the irst synthesis of this 
OP—TEPP—was performed by Vladimir Moshnin of 

Moscau. These data are depicted in the work of Patočka 
(2010). New trends in the synthesis of nerve agents have 
been described by Halamek and Kobliha (2011).

Tabun was synthesized in 1936, followed by others 
(sarin at the end of WWII, followed by soman), and 
production of these agents for the military in large quan-
tities and their stockpiling were recognized after WWII 
in Dyhernfurth, Poland (e.g., stocks of tabun and some 
quantities of sarin). The technology was subsequently 
transferred to Russia, and research and development of 
new OP nerve agents was continued. During this period, 
British and American scientists were evaluating the toxic 
properties of DFP.

THE PERIOD AFTER WORLD WAR II 
AND THE COLD WAR

At the end of WWII, many Allied nations seized the 
CWs. Most of the CW manufacturing plants in Germany 
were taken over and moved to new sites in Russia, 
such as the military area of Shikhany. This “takeover” 
prompted other states to begin even more research of 
CWs. Despite the Allies’ own research into CWs, very 
important technologies and “know-how” were obtained 
from Nazi Germany for both the United States and the 
former Soviet Union.

The interest in CW technology was probably one rea-
son for the change of the future border: according to 
Churchill’s history of WWII, the proposed future bound-
ary between Poland and Germany had been primarily 
agreed to consist, in part, of the Oder River lowing to the 
Baltic Sea, and its tributary, the Neisse River. Before their 
conluence, the Neisse consisted of two branches, the 
East Neisse and the West Neisse. The East Neisse should 
be the boundary, resulting in slightly more territory for 
Germany. Stalin held for the West Neisse and progress 
was delayed. No one knows why Stalin was so insistent 
in this matter. The reason was probably very simple: the 
small town of Dyhernfurth (now Brzeg Dolny), a few 
kilometers north of Breslau (Wroclaw) in the disputed 
territory, contained a factory for the production of nerve 
agents. It was estimated that when Dyhernfurth was 
captured it contained stockpiles of 12,000 tons of tabun, 
600 tons of sarin, and an unknown amount of soman. 
Presumably, the factory was dismantled and, along with 
their stockpiles, transported to the Soviet Union (Koelle, 
1981). It has been documented that the Soviets were 
ready to conduct a chemical attack and their research 
and development of CWs were intensiied.

In the United States during the 1950s, the chemi-
cal corporations concentrated on the weaponization 
of sarin. At the same time, they became interested in 
developing CWs that incapacitated rather than killed 
the targets. Mescaline and its derivatives were studied 
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but without practical output. Five years later, the new 
project “Psychochemical Agents” (later K-agents) was 
established. The objective was to develop a nonlethal but 
potent incapacitant. Nonmilitary drugs like LSD-25 and 
tetrahydrocannabinol were also examined. None of these 
agents was found to be of military importance. The irst 
and only incapacitant was BZ, developed in 1962; how-
ever, its stocks were destroyed in 1992, as declared by 
the US delegation to the Conference on Disarmament in 
Geneva (Document of CD, 1991). These agents, intended 
not to kill but to induce incapacity, are covered under the 
class of nonlethal weapons (Hess et al., 2005).

In the former Soviet Union as a whole during 1940–
1945, approximately 110,000 tons of irst-generation toxic 
chemicals were produced, and most of them were yper-
ite, lewisite, and irritating agents. Second-generation 
CWs were composed of nerve agents such as sarin, 
soman, V agents, and, to a lesser degree, tabun. The 
development of new third-generation CWs comprised 
traditional and nontraditional CWs, for example, blister 
and irritant agents and nerve gases, including new types 
such as Novichok 5, whose exact chemical structure is 
unknown, although some assessments have been made 
(Bajgar, 2006). It could be a nerve agent having high 
toxicity, and its effects are dificult to treat using com-
mon antidotes.

An example of the unintentional use of CWs has also 
been observed. In March 1968, thousands of dead sheep 
were discovered in the Skull Valley area in Arizona 
in the United States. This area was adjacent to the US 
Army’s Dugway open-air testing site for CWs. Nerve 
gas had drifted out of the test area during aerial spraying 
and killed the sheep. One year later, on July 8, 1969, the 
Army announced that 23 US soldiers and one civilian 
had been exposed to sarin in Okinawa during the clear-
ing of sarin-illed bombs (Sidell and Franz, 1997).

There are a number of examples of localized conlicts 
during which CWs have been intentionally used but 
cannot be veriied: from 1951 to 1952 during the Korean 
War; in 1963, the Egyptians used mustard bombs against 
Yemeni royalists in the Arabian peninsula; during the 
Indo-China War (see Vietnam War); in 1970, in Angola, 
antiplant agents were almost certainly used; and in for-
mer Yugoslavia, there were rumors of the use of psy-
chotomimetic agents.

Iraq–Iran and Afghanistan War

On September 22, 1980, Iraq launched its invasion 
against Iran. There has been mention of the large-scale 
use of CWAs in the Iran–Iraq war. In November 1983, 
Iran informed the United Nations that Iraq was using 
CWs against Iranian troops. Soon after, the use of CWs 
was unleashed. In addition, mustard and tabun were 
used. It is well-known that the Iraqi Government used 

these agents against its own citizens, more conspicu-
ously at Halabja in March 1988. The CWs attack was the 
largest against a civilian population in modern times. 
More than 100,000 Iranians were poisoned with CWAs; 
sulfur mustard was the most frequently used and has 
induced a number of delayed complications in Iranian 
veterans (pulmonary, dermal, ocular, immune system 
depression, reproduction, malignancy, etc.) (Afshari and 
Balali-Mood, 2006). Other localized conlicts involving 
alleged use of CWs are described in detail in an exten-
sive review (Robinson, 1971).

The Soviet Union probably used mustard (and nerve 
gas) in Afghanistan. The Afghanistan war was consid-
ered the Soviet Union’s “Vietnam.” The use of CWs was 
described by Sidell and Franz (1997). The use of CWs 
by Soviet forces was also signiicant and has been con-
irmed against unprotected subjects. Despite the use of 
CWs, the withdrawal of Soviet troops from Afghanistan 
was realized at the beginning of 1989.

Vietnam War

After WWII, the main use of CWs was recorded dur-
ing 1961 to 1972, when the US Army used defoliants. The 
herbicide Agent Orange was used during the Vietnam 
War and led to the injury of more than one million 
Vietnamese and Americans. Agent Orange (a mixture of 
2,4-dichlorophenoxy acetic acid and 2,4,5-trichlorophe-
noxy acetic acid) contained the chemical contaminant 
dioxin as an impurity that caused many deaths on both 
sides. There were other herbicide mixtures such as Agent 
White (2,4-D and picloram) and Agent Blue (cacodylic 
acid). The biological effects of dioxin were described by 
Sofronov et  al. (2001). The irst major operation of this 
type was conducted over the Ca Mau peninsula during 
September–October 1962. The areas sprayed with defoli-
ants were ive-times larger and 10-times larger in 1965 
and 1967, respectively. The scale of the use of defoliants 
was approximately in proportion to the overall involve-
ment of US troops. In 1970, herbicides and defoliants were 
used in tens of tons, especially 2,4,5-T. The area sprayed 
enlarged from 23 km2 in 1962 to 22,336 km2 in 1969. The 
area exposed to spraying was assessed to be 58,000 km2 
and the number of people exposed was assessed to be 
more than one million; there were more than 1000 deaths. 
In addition to defoliants used to destroy vegetation con-
cealing the North Vietnamese, the United States used tear 
gas for clearing tunnels and bunkers. The irritants CS, 
CN, and DM were reported to be used. The total CS pro-
cured was approximately 7,000 tons from 1963 to 1969.

Development of VX Agent

VX was synthesized in the 1960s on the basis of the 
results of Tammelin and Aquilonius (Tammelin, 1957; 
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Aquilonius et al., 1964). The manufacturing of VX began 
in the United States in 1961. Construction of the United 
States’ VX agent production plant at Newport, Indiana, 
was completed in 1961, when the irst agent was pro-
duced. The production facility only operated for 7 years 
and was placed on standby in 1968 (Smart, 1997).

During the same period, Soviet scientists devel-
oped the so-called Russian VX (VR, RVX, R 033) (Kassa 
et  al., 2006; Kuca et  al., 2006). The chemical structure 
of VX was unknown for a long time. Therefore, some 
attempts to resolve this question have been made 
(Bajgar, 1968). Because of these ambiguities and dif-
iculties in synthesis, model V agent [EDMM, O-ethyl 
S-(2-dimethylaminoethyl) methylphosphonothioate] 
was initially used in the Eastern Block to study anti-
dotal treatment. Another structural analog of VX known 
as Chinese VX (CVX) was also developed and studied 
(Eckert et al., 2006).

A very important step in the development in CWs 
has been the production of “binary munitions,” in which 
the inal stage of synthesis of the agent from precursors 
is performed in the munition (bomb, shell, or warhead) 
immediately before or during delivery to the target. In 
the 1950s, armed forces had begun looking at binary 
weapons. Until this time, CWs were unitary—the toxic 
agent was illed in the munition and then stored ready 
to be used. The binary concept—mixing or storing two 
less toxic chemicals and creating the nerve agent within 
the weapon—was safer during storage. The production 
of binary projectiles began on December 16, 1987, at the 
Pine Bluff Arsenal in Arkansas.

PERSIAN GULF WAR

On August 2, 1990, Saddam Hussein sent Iraqi troops 
into Kuwait, allegedly in support of Kuwaiti revolution-
aries who had overthrown the emirate. Iraq was known 
to have a large stockpile of CWs during its conlict with 
Iran and conirmed that they would use CWs.

President George H.W. Bush ordered US forces 
to be sent to Saudi Arabia at the request of the Saudi 
Government (Operation Desert Shield); this was the 
build-up phase of the Persian Gulf War. As a conse-
quence, in 1996, almost 60,000 veterans of the Persian 
Gulf War claimed certain medical problems related to 
their war activities. Some were caused by exposure to 
nerve agents (released after the bombing and destruc-
tion of the sarin production facility). Unexplained “Gulf 
War Syndrome” with low-dose exposure to CWAs was 
suggested as a possible cause. Extensive research failed 
to ind any single case of the problem. However, some 
health effects, including alterations to the immune sys-
tem 3 months after the exposure to low concentrations 
of sarin, were demonstrated (Kassa et  al., 2001, 2003). 

In the desert, during the autumn and winter of 1990–
1991, the threat of chemical warfare became very real 
to allied military personnel. It was demonstrated by the 
UN Commission that major Iraqi agents were mustard, 
tabun, sarin, and cyclosarin. Mustard agent was rela-
tively pure, but nerve agents were a complex mixture of 
the agent and degradation products. During the period 
from June 1992 to June 1994, the Commission’s Chemical 
Destruction Group destroyed 30 tons of tabun, 70 tons 
of sarin, and 600 tons of mustard, which were stored in 
bulk and in munitions.

Suddenly, it became clear to the whole world that 
there were countries with CWs and biological weapons, 
and there were other countries that might obtain or pro-
duce them.

SYRIA

The conlict in Syria has been the last conlict in which 
the use of CWs was conirmed by the UN Mission (UN, 
2013). Nerve agent sarin was used in an attack on the 
Ghouta area of Damascus (August 21, 2013). It is not the 
intention of this chapter to evaluate political situations; 
however, it was not possible to decide exactly who used 
sarin (current government or FSA) against civilian vic-
tims. First complex reactions were published in October 
2013 in the CBRNe World (Higgins, 2013; Johnson, 2013; 
Kaszeta, 2013; Winield, 2013). For the Mission, there 
were not ideal conditions: dificult political situation, 
chaotic scene, and timing that was not ideal. However, 
the report was well-structured and conclusions were 
clear: sarin was present in some samples and rocket 
remains, and selected survivors showed symptoms sup-
porting sarin exposure (Johnson, 2013).

There are different data regarding the number of vic-
tims, initially varying from hundreds to thousands. The 
Syrian Observatory for Human Rights reported more 
than 500 deaths and thousands of patients displaying 
“neurotoxic symptoms,” including civilian people and 
children. Medicine Sans Frontiers said at least 3600 
patients had these symptoms and, of those patients, 355 
had died. UN Mission selected 36 from 80 survivors who 
met the criteria established by the Mission. Symptoms 
consistent with organophosphate intoxication were 
observed: decreased consciousness (78%), dyspnea 
(61%), blurred vision (42%), eye irritation or inlamma-
tion (22%), lacrimation (8%), miosis (14%), salivation 
(22%), vomiting (22%), and convulsion (19%). Johnson 
(2013) did not mention the postmortem samples or data 
regarding dead persons. Treatment of victims and the 
course of poisoning, including laboratory results, have 
not been speciied. However, laboratory examinations 
would be useful, as in case of Tokyo victims (Polhuis 
et al., 1997). It would be possible to use other methods 
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of laboratory diagnoses of nerve agent intoxication, as 
described previously (Noort et  al., 2009; Schans van 
der, 2009; Bajgar, 2013). Autopsies of victims were not 
conducted but would have been useful, as would post-
mortem examinations of dead animals. Regarding CWs 
of Syria, they will be destroyed under the supervision 
of Organization for Prohibition of Chemical Weapons 
(OPCW) (for Syria, CWC entered into force on October 
14, 2013) and with international assistance.

UNINTENTIONAL USE OF TOXIC 
CHEMICALS

There are two main accidents connected with the 
release of toxic chemicals. In July 1976, in Seveso, Italy, 
more than 40,000 people were exposed to dioxin, a persis-
tent and highly toxic chemical. The irst signs were skin 
lesions appearing on children, and after some months 
there was evidence of chloracne. Health consequences 
have been observed from that time to the present. The 
Seveso accident was possibly the most systematically 
studied dioxin contamination incident. A similar con-
tamination of one building of the Spolana company 
in Neratovice (a town in the former Czechoslovakia) 
was also observed (Bajgar et  al., 2007a; Pelclová et  al., 
2011). Another example, the Bhopal accident, is prob-
ably the greatest industrial disaster in history. In 1984, 
on December 2 and 3, water inadvertently entered the 
methylisocyanate storage tank (containing approxi-
mately 40 tons of this chemical). As a result, methyliso-
cyanate was released into the surrounding area. There 
was no warning. Many people who inhaled high con-
centrations of toxic gas asphyxiated because of exten-
sive lung damage. Approximately 150,000 people were 
intoxicated (50,000 seriously poisoned) and more than 
2500 people died (Bajgar, 2006).

TERRORIST USE OF CWS

Terrorists have expressed an interest in nerve agents 
and have deployed them in attacks on unprotected 
civilians (Rotenberg and Newmark, 2003). A Japanese 
religious cult, Aum Shinrikyo, independently manufac-
tured numerous chemical and biological agents. The irst 
such attack with sarin occurred in Matsumoto in 1994 
and in the Tokyo subway in 1995. Thousands of people 
were affected and dozens of people died (Ohtomi et al., 
1996; Nagao et al., 1997; Okomura et al., 1998; Yokoyama 
et al., 1998). In Matsumoto (1994), 600 people were poi-
soned and hospitalized and seven died (Morita et  al., 
1995; Nakajima et al., 1997; Yoshida, 1994). The attack in 
the Tokyo subway (1995) resulted in 5500 people seek-
ing hospital evaluation and 12 deaths (Bajgar, 2006). An 

interesting terroristic act was described by Tsuchihashi 
et al. (2005)—a fatal intoxication with VX administered 
percutaneously.

Nerve agents belong to the group of OPs. These 
compounds in the form of pesticides are commercially 
available and are used in agriculture, which can lead 
to professional, suicidal, or accidental intoxication. The 
mechanism of action, diagnosis, and treatment of intoxi-
cation with OP pesticides and nerve agents are very 
hot topics at present. Moreover, some principles of the 
effects, diagnosis, and therapy are very similar for OP 
and highly toxic nerve agents; therefore, the principle of 
action and effective treatment can be applied in general 
for the civilian sector, too.

The use of these chemicals was observed in Moscow 
in 2002. The Moscow theater hostage crisis was the 
seizure of a crowded theater on October 23, 2002 by 
approximately 40 armed Chechen militants who claimed 
allegiance to the separatist movement in Chechnya. 
They took 850 hostages and demanded the withdrawal 
of Russians from Chechnya and an end to the Chechnya 
war. The leader of the terrorists was 22-year-old Movsar 
Baraev. After 2.5 days of waiting, Russian forces used 
an unknown gas pumped into the ventilation system. 
Oficially, 39 terrorists and at least 129 of the hostages 
(nine of them foreigners) were killed. Some estimates 
have put the civilian death toll at more than 200. It was 
thought that the security services used an aerosol of 
a CWA, irst assessed as BZ, but later it was speciied 
that an aerosol anesthetic of the Fentanyl type was used 
(Bajgar and Fusek, 2006).

In the hospitals, the survivors were cut off from any 
communications with the outside and their relatives 
were not allowed to visit them. An incorrect list of hospi-
tals for victims was released. The main problem was the 
lack of information about those dealing with the iden-
tiication and characterization of the chemical used and 
the unavailability of known antidotes (e.g., naloxon) by 
medical staff treating the victims (Bajgar et al., 2007a). It 
appeared from this event that there were compounds not 
explicitly enumerated in the CWC and therefore not con-
trolled by this Convention. Fentanyl can be considered 
as a nonlethal weapon (a group of so-called calmatives) 
and these chemicals can also be used to incapacitate ani-
mals; of course, its use against humans is not excluded 
(Bajgar, 2006; Hess et al., 2005).

NEGOTIATIONS

Although the Cold War was continuing, the political 
situation led to increased activities in international nego-
tiations. At the Conference on Disarmament in Geneva, 
some attempts to negotiate a ban of CWs were begun, 
irst as the ad hoc Working Group, and later as the ad hoc 
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Committee on Chemical Weapons with the mandate to 
negotiate the text of a convention banning CWs.

The discussions in Geneva were more intensive from 
1987 and, in 1992, the elaboration of the so-called rolling 
text of future CWCs was inished. During these negotia-
tions, the text of future Conventions (“rolling text”) was 
enlarged: the inal report (CD/342) of February 2, 1983 
contained 23 pages; the same report of August 23, 1985 
(CD/636) had 46 pages; and CD/952 of August 18, 1989 
contained 134 pages. Simultaneously with the Geneva 
negotiations, in September 1989, the Memorandum of 
Understanding between the Governments of the United 
States and the USSR regarding a bilateral veriication 
experiment and data exchange related to prohibition of 
CWs, otherwise known as the Wyoming Meeting, started 
negotiations between two main possessors of CWs. 
These countries also contributed to the negotiations in 
Geneva: they demonstrated their CWs to the Conference 
on Disarmament in the United States in November 1986 
(Tooele) and in the USSR in October 1987 (Shikhany). The 
inal document of the Convention is approximately 200 
printed pages. The Convention was then agreed on in 
New York at the UN General Assembly and signed in 
Paris in 1993. The CWC (Convention on the Prohibition 
of the Development, Production, Stockpiling, and Use of 
Chemical Weapons and on their Destruction) entered into 
force on April 29, 1997, 180 days after the deposit of the 65th 
instrument of ratiication of the Convention by Hungary. 
At this time, 87 countries ratiied the CWC and became 
original States Parties to the Convention. Simultaneously, 
the OPCW in The Hague started its work of supervising 
the destruction of CW stocks and monitoring the world’s 
chemical industry to prevent future misuse. There are 
many activities of the OPCW, for example, training of the 
inspectors for control of destruction of CWs including 
their medical protection, research, and supported activi-
ties, solving problems due to practical implementation 
of the CWC, control of chemical and military facilities, 
and other activities. Russia and the United States were 
unlikely to meet the inal stockpile destruction deadline 
of April 29, 2012. By the middle of 2008, 183 signing States 
and 194 recognizing States had adhered to the Convention 
(Davey, 2008). However, there are still States that are 
nonsignatories to the Convention. CWs have a long and 
ancient history. A lack of CW use in WWII suggested that 
“gas warfare” had ended. However, further development 
and the utility of chemicals in Vietnam and in terrorist 
attacks have maintained a military interest in CWs.

Current information of OPCW provides the status of 
the destruction of CWs. April 29, 2012 was suggested to 
be the prolonged period for CW destruction. Seven State 
Parties declared they possessed CWs (Albania, India, 
Iraq, South Korea, Libya, Russia, and the United States). 
The stocks of Albania, India, and South Korea were 
destroyed. Until this date, 73.72% of all declared CWs 

(the sum of 71,195.086 tons) were destroyed (Streda, 
2013). On the basis of the Conference of the State Parties 
(16th Session, December 2011), the destruction period 
was prolonged for Russia (2015), Libya (2016), and the 
United States (2023). Simultaneously, CW-producing 
facilities were also destroyed or dismantled—13 State 
Parties declared 70 of these facilities (Bosnya and 
Hercegovina, China, France, India, Iraq, Iran, Japan, 
South Korea, Libya, Russia, Serbia, Great Britain, and 
the United States) and 43 of these objects were destroyed 
and 21 were dismantled for peaceful purposes.

It is clear that the use (incidental or otherwise) of toxic 
chemicals has impacts on different spheres of human exis-
tence, such as state structures and infrastructure, econom-
ics, psychic and public behavior, and the environment. 
Toxic chemicals are a great consumer of natural sources, 
both renewable and nonrenewable. They also consume 
raw materials and energy and, as a consequence, cause 
pollution of the environment and lead to deiciency of raw 
materials throughout the world and therefore an unequal 
distribution of the world’s natural sources. The impact 
on the psychology of humankind is also important, fol-
lowing either chemical wars (both global and local) or 
use of these chemicals by terrorists. The development of 
new technologies is equally important because they inlu-
ence, positively and negatively, further human develop-
ment. Research in this direction not only can contribute 
to “improvement” of chemicals to obtain more effective 
CWAs but also can improve our knowledge of basic sci-
ences (toxicology, neuropharmacology, etc.) and allow us 
to better understand physiological functions in general. It 
is appropriate to recall the history of cholinesterases and 
their inhibitors. The existence of cholinesterases was pre-
dicted by H.H. Dale in 1914, 14 years before acetylcholine 
was demonstrated as a natural constituent of animal tis-
sues. This research approach was changed during WWII 
and cholinesterases acquired a special signiicance in the 
context of chemical warfare and nerve agents (Silver, 
1974). Another publication in this area (Koelle, 1963) can 
be considered as the irst to deal with anticholinester-
ase agents including CWAs—nerve agents. One can only 
hope that in the future the only physiological and phar-
macological research will be performed in a nonmilitary 
framework, but that may not be the case.

CONCLUDING REMARKS AND  
FUTURE DIRECTION

The threat of the use (either military or terroristic) of 
CWAs (and other toxic chemicals) still exists. The mili-
tary use of these agents is limited, but their terroristic 
use is unlimited. The spectrum of these agents is very 
large and the ability to be prepared against the use of 
toxic chemicals is necessary.
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4

INTRODUCTION

The Tokyo subway sarin attack occurred in 1995. Prior 
to the disaster in Tokyo, Matsumoto sarin attack happened 
on June 27 in 1994 in Matsumoto city, Nagano Prefecture 
at the center of Japan main land. Sarin was dispersed into 
the open air using an electric heater fan to direct it to the 
target apartment. Eventually, eight people died and 660 
were injured. In addition to these injured patients, one 
woman exposed to sarin died after 14 years hospitaliza-
tion. This was the irst terrorist attack using sarin on the 
general public in the world, an incident which served as 
a wake-up call for anti–nuclear, biological, and chemical 
(NBC) terrorism policy throughout the world. In the 10 
years since the attack, efforts to combat NBC terrorism 
have focused on rapid and effective measures to respond 
to attacks employing nerve agents such as sarin.

SARIN TOXICITY AND MECHANISM  
OF ONSET

Sarin is an organophosphate compound. Within the 
context of chemical weapons, organophosphates are col-
lectively referred to as “nerve agents,” of which sarin, 
tabun, soman, and O-ethyl S-[2-(diisopropylamino)
ethyl] methylphosphonothioate (VX) are examples. 
Organophosphates inhibit the enzyme acetylcholin-
esterase (AChE), which degrades acetylcholine (ACh), 
a neurotransmitter substance that acts locally on nerve 
synapses. Once organophosphates bind to the phos-
phorylate AChE to inhibit its activity, ACh accumulates 
at nerve terminals, resulting in enhanced ACh activity at 
receptor sites. ACh effects can be functionally classiied 
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based on their site of action and can have muscarinic, 
nicotinic, and central nervous system (CNS) effects. 
These effects cause the major symptoms associated with 
an acute organophosphate toxicity. Muscarinic effects 
increase parasympathetic nerve activity and cause 
miosis, visual disturbances (accommodation disorder), 
increased salivary and bronchial secretions, broncho-
spasm, bradycardia, and increased gastrointestinal peri-
staltic activity (e.g., abdominal pain, nausea, vomiting, 
and diarrhea). Nicotinic effects, due to hyperstimulation 
of neuromuscular junctions, cause fasciculations, muscle 
weakness, and respiratory paralysis, and increased sym-
pathetic nerve activity leads to miosis, sweating, tachy-
cardia, and hypertension. CNS effects due to ACh, when 
severe, include anxiety, headaches, excitement, ataxia, 
somnolence, disorientation, coma, and seizures.

Well-known symptoms of sarin toxicity include mio-
sis, hypersecretions, bradycardia, and fasciculations. 
However, the mechanism of organophosphate toxic-
ity seems to involve conlicting actions. For example, 
mydriasis or miosis, and bradycardia or tachycardia 
may occur. Acute respiratory insuficiency is the most 
important cause of immediate death. Early symptoms 
include (i) tachypnea due to increased airway secre-
tions and bronchospasm (a muscarinic effect), (ii) 
peripheral respiratory muscle paralysis (a nicotinic 
effect), and (iii) inhibition of respiratory centers (a 
CNS effect), all of which lead to severe respiratory dei-
ciency. If left untreated at this stage, death will result. 
Cardiovascular symptoms may include hypertension or 
hypotension. Various arrhythmias can also occur, and 
caution is required when the QT interval is prolonged. 
In particular, if hypoxemia is present, fatal arrhythmias 
may occur with intravenous administration of atropine 
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sulfate, which means that this drug should be given 
intramuscularly to victims of sarin poisoning. Common 
gastrointestinal symptoms of this poisoning include 
nausea, vomiting, and diarrhea.

An intermediate syndrome lasting 1–4 days after sarin 
exposure appears to exist (De Bleecker, 1992). This is due 
to prolonged AChE inhibition, and it is associated with 
acute respiratory muscle paralysis, motor nerve paraly-
sis, and cervical lexor and proximal muscle paralysis. 
Recumbent patients who have dificulty raising the head 
and neck require particular care. However, the interme-
diate syndrome has not been reported with nerve agent 
toxicity in animals or humans (Sidell, 1997), although 
this syndrome is well documented in humans following 
large exposure to organophosphate and carbamate pes-
ticides (Gupta, 2005; Paul and Mannathukkaran, 2005; 
Gupta and Milatovic, 2012). The cause of the intermedi-
ate syndrome may be toxicity due to massive organo-
phosphate exposure or inadequate treatment of such 
exposure (intestinal decontamination, antidote admin-
istration, and respiratory management). In organophos-
phate-induced delayed neuropathy (OPIDN), seen 2–3 
weeks after exposure and characterized by distal muscle 
weakness without fasciculation, the pathophysiology is 
not well understood. OPIDN was irst reported in the 
1930s due to contamination of Jamaican ginger (nick-
named Jake) by organophosphates. This incident (so-
called ginger jake paralysis) caused lower limb paralysis 
in about 20,000 victims. OPIDN symptoms have also 
recently been reported in Matsumoto and Tokyo sub-
way sarin victims (Sekijima et al., 1997; Himuro et al., 
1998). Inhibition and aging of neuropathy target esterase 
plays a role in OPIDN, but despite several basic research 

studies, the detailed pathophysiology has not yet been 
established, making OPIDN dificult to treat.

OVERVIEW OF THE TOKYO SUBWAY 
SARIN ATTACK

The attack took place during the morning rush hour, 
at about 8 a.m. on March 20, 1995, the day before the 
Spring Equinox holiday. The attack was carried out by 
members of a cult known as Aum Shinrikyo to distract 
police from carrying out a raid on the group’s head-
quarters. The terrorist target was government buildings 
in Kasumigaseki in the heart of Tokyo. Most ofices in 
Kasumigaseki open for business at 9:30 a.m., but the 
early-morning rush hour was unusually heavy because 
it was a Monday. Some believe that the time of 8 a.m. was 
chosen because some cult members had inside infor-
mation about the government ofices. Police suspected, 
based on an undercover investigation that they were 
conducting, that Aum Shinrikyo was manufacturing 
sarin for use in a terror attack, but few people, even 
within the police department, were aware of this fact. 
The police did not have personal protective equipment 
(PPE), which meant that they had to borrow PPE and 
receive training on use of the equipment from the Self-
Defense Forces. Members of the Self-Defense Forces were 
alerted to some of Aum Shinrikyo’s planned activities, 
but the general public, including healthcare providers 
and ire department personnel, knew nothing of these 
activities (Figure 4.1).

According to a subsequent police report, the terrorists 
placed sarin in ive subway trains in the following way. 

FIGURE 4.1 Scene from a sarin attack at Tsukiji station.
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Approximately 600 g of sarin at a concentration of 33% 
was mixed with hexane and N, N-diethylaniline and 
placed in a nylon/polyethylene bag. Five terrorists then 
wrapped the bags in newspaper, punctured the bags 
with the tips of their umbrellas, and left the bags on the 
trains. In this way, the sarin seeped out of the bags and 
vaporized, but no other active means of dispersal were 
used. In this sense, as well as the relatively low number 
of deaths, the Tokyo subway sarin attack was not con-
sidered a full-scale attack.

Of the bags of sarin used in the attack, two bags were 
not punctured. These bags were returned to the police lab-
oratory for analysis. At Kasumigaseki, one of the subway 
stations on the Chiyoda subway line, two station employ-
ees collapsed and died on the platform after they cleaned 
and removed one of the bags that didn’t get punctured, 
even though they were wearing gloves. The number of 
victims of this attack varies depending on the source, but 
all known information conirms that 12 people died in the 
attack, and it is generally believed that at least 5,500 vic-
tims suffered mild to serious injuries. Fireighting agencies 
estimate 5,642 victims, and the police, 3,796 victims, while 
oficial igures released by the subway company put the 
total number of victims at 5,654. This includes the 12 who 
died (10 passengers, 2 employees), those hospitalized (960 
passengers, 39 employees), and those treated for minor 
injuries (4,446 passengers, 197 employees).

Thus, the way in which we use the lessons learned 
from this attack will affect our ability to deal adequately 
with future terrorist attacks using sarin, which could be 
even greater and more serious with respect to the num-
ber of victims. Can we really assume that only 12 of the 
approximately 5,500 victims died because the Japanese 
medical system was particularly well prepared for such 
an eventuality? Probably not. It is more likely that the rel-
atively small number of fatalities was due to the low con-
centration of sarin and the passive means of dispersing 
it. From this perspective, the Matsumoto sarin attack one 
year earlier was more aggressive than the Tokyo subway 
sarin attack. In a trial after the Matsumoto incident, it was 
revealed that a 70% concentration of sarin was actively 
volatilized using an electric heater and dispersed using 
an electric fan. A total of 7 victims died and 660 were 
injured and one victim died 14 years after sarin exposure. 
In other words, if the Tokyo subway sarin attack had been 
conducted using the same means as those employed in 
the Matsumoto sarin attack, the number of fatalities may 
have been 50 or 60. So humanity has not yet experienced 
the effects of a full-scale sarin attack in a major city.

Even if it did not rise to the level of a major attack, 
this incident was the irst chemical terrorist attack in a 
large city. There were few irst-responders who could even 
have conceived of such an attack, let alone be prepared to 
rapidly evacuate victims from the subway stations. Many 
passengers who had dificulty walking rushed out of the 

trains and onto the subway platform and fell down, which 
would have increased their exposure to the sarin permeat-
ing the stations. In addition, the site to which many of the 
victims were inally evacuated at ground level, where they 
could lie down, was close to an air exhaust vent from the 
subway below, so the exposure continued.

The irst call for an ambulance came 9 minutes after 
the 8 a.m. attack, with the irst report of a “victim with 
seizures at Kayabacho Station.” By 8:15 a.m., the reports 
of victims started to increase. Around this time, the ire 
department received a report from Tsukiji Station stat-
ing that “an explosion occurred and several people were 
injured.” Calls for ambulances eventually came from 
19 subway stations, and after 8:30 a.m., victims began 
to pour into local clinics and hospitals. According to 
the Tokyo Fire Department, 5,493 people were treated 
at 267 medical institutions in Tokyo, and 17 people 
were treated at 11 medical institutions outside Tokyo.  
Among the victims, 53 were seriously injured (Ieki, 
1997). Another source states that a total of 6,185 people 
were treated at 294 medical institutions (Chigusa, 1995). 
The discrepancy in the number of victims reported by 
different agencies attests to some of the confusion at the 
time. St. Luke’s Hospital received the largest number of 
victims (640 on the day of the attack), probably because 
of its close proximity to the Hibiya line, where a large 
number of victims were located, and because of a report 
on television stating that “St. Luke’s Hospital has the 
antidote for treatment.”

EMERGENCY TREATMENT OF SARIN 
TOXICITY

The standard treatment for sarin toxicity includes (i) 
maintaining the airway, (ii) assisting breathing, and (iii) 
supporting circulation. In victims of the Tokyo subway 
sarin attack, endotracheal intubation was performed fre-
quently. However, in the Matsumoto sarin attack, endo-
tracheal intubation was more dificult to do in many 
victims because of airway hypersecretion and broncho-
spasm. This difference in symptoms is attributable to 
the 70% concentration and the active means by which 
the sarin was dispersed at Matsumoto, as opposed to 
the much lower 33% concentration and passive means 
of dispersal employed in Tokyo. Dr. Frederick Sidell, 
an expert on chemical terrorism in the United States, 
advocated decontamination, drugs, airway, breathing, 
and circulation (DDABC) as the basic treatment for 
nerve agent poisoning. Even if the advised emergency 
treatment is followed, initial efforts to achieve adequate 
ventilation may be in vain. Efforts to achieve adequate 
ventilation should be made after at least initial adminis-
tration of atropine to control the buildup of airway secre-
tions and bronchoconstriction (Sidell, 1997). If healthcare 



I. INTRODUCTION, HISTORICAL PERSPECTIVE AND EPIDEMIOLOGY

4. THE TOKYO SUBWAY SARIN ATTACK: ACUTE AND DELAYED HEALTH EFFECTS IN SURVIVORS30

professionals learn from the Matsumoto attack, they can 
better recognize early parasympathetic nervous symp-
toms, including miosis, hypersecretion, and rhinorrhea, 
as common indications of chemical terrorism due to 
nerve agents, and therefore be able to institute appro-
priate treatment with antidotes in time. In large-scale 
disasters with many victims, treatment is often deferred 
in those with cardiopulmonary arrest (CPA; so-called 
black tag). However, at St. Luke’s Hospital, one in three 
persons with CPA and two patients with respiratory 
arrest made a full recovery and were discharged. This 
high rate of recovery and return to the community is 
unlike that seen in other types of disasters. Therefore, 
if medical resources are available, all victims of a sarin 
attack should be aggressively treated, including cardio-
pulmonary resuscitation (CPR) when necessary.

The global standard for the treatment of sarin toxicity 
is the administration of (i) atropine, (ii) an oxime agent 
like 2-PAM, and (iii) diazepam (Medical Letter, 2002).

Recommended doses of atropine are 2 mg in patients 
with mild symptoms that are primarily ocular, but with-
out respiratory symptoms or seizures; 4 mg in patients 
with moderate symptoms, including respiratory symp-
toms such as dyspnea; and 6 mg in patients with severe 
symptoms, including seizures and respiratory arrest. 
The standard administration route should be intramus-
cular. As mentioned previously, intravenous administra-
tion of atropine in the treatment of severe symptoms 
such as hypoxemia can induce ventricular ibrillation; 
thus, intramuscular administration is advised. Oxime 
agents such as 2-pralidoxime methiodide (2-PAM), or 
2-formyl-1-methylpyridinium iodide oxime should 
also be given. The recommended dose for 2-PAM in 

moderate and severe cases of inhalation, or for liquid 
exposure to a nerve agent, is 1 g by intravenous infusion 
over 20–30 min. Further continuous administration of 
500 mg/h may also be required in severe cases. Since the 
rate of aging of the nerve agent–enzyme bond is corre-
lated with time until 2-PAM is administered, if the aging 
half-life of sarin is 5 h, then 2-PAM must be administered 
before this time. The oxime of choice for sarin and VX is 
2-PAM, but asoxime chloride (HI-6) should be used for 
soman and obidoxime for tabun. Seizures are treated 
with diazepam. This three-drug combination (atropine, 
2-PAM, and diazepam) is the global recommendation for 
sarin toxicity, and autoinjectors are available in several 
countries (Vale et al., 2006) (Figure 4.2).

After the Tokyo subway sarin attack, St. Luke’s 
Hospital, which treated 640 victims, used about 700 
ampules of 2-PAM and 2,800 ampules of atropine 
(Okumura et al., 1998). This calculates out to 550 mg of 
2-PAM and 2.2 mg of atropine per victim. The route of 
administration was intravenous in all cases, with a total 
dose of 1.5–9 mg of atropine in severe cases (Okumura 
et al., 1996); this range of dose relects the low concen-
tration and passive means of sarin dispersal used in the 
Tokyo attack.

However, in Tokyo, no one was saved by administra-
tion of 2-PAM; conversely, no one died because they did 
not receive it. In other words, if the victims’ survival was 
the ultimate goal, there was no clinical evidence that 
2-PAM was effective. The only reported inding was a 
more rapid return of plasma pseudocholinesterase levels 
to normal in patients who received 2-PAM, as compared 
to those who did not. But in terms of long-term prog-
nosis, this does not rule out the effectiveness of oxime 

FIGURE 4.2 Sarin victims at St. Luke’s International Hospital.
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