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Preface

In the present volume, General Methods in Biomarker Research and Their
Applications, we have sections on

• General Aspects: Techniques and Overviews

• Specific Analytes and Their Application

• Pregnancy and Life Events

• Nutrition, Metabolism, and Environmental Health

• Cardiovascular System, Lung, and Kidney

• Brain, Neurology, and Associated Conditions

• Cancer, Immune Function, Inflammation, and Other Conditions

• Further Knowledge

While the Editors recognize the difficulties in assigning particular chapters to

particular sections, the book has enormously wide coverage and includes the

following areas, analytes, and conditions: high-throughput methods, mass spec-

trometry, lipidomics, toxicogenomics, pharmacogenomics, personalized medicine,

glycome, flow cytometry, creatinine, creatine, paraffin–embedded tissue, macro-

phage inflammatory protein-1 alpha (MIP-1 alpha)/CCL3, pfetin, pentraxin 3,

salivary amylase, urinary hydrogen peroxide, guanylyl cyclase C, isoprostanes,

cyclophilin A, oxidative stress, FABP3, fetal membranes, the menopause, nutri-

tional studies, 1-hydroxypyrene, environmental health, pediatric heart surgery,

necrosis, myocardial remodeling, serum collagen, galectin-3, natriuretic peptides,

heat shock proteins, YKL-40, imaging, hemostatic markers, chronic obstructive

pulmonary disease (COPD), klotho, chronic and polycystic kidney diseases,

exosomes, depression, psychosis, Parkinson’s disease, amyotrophic lateral sclero-

sis, multiple sclerosis, brain injury, micro-RNAs, S100B, gold nanoparticles, can-

cer, immunogenic salivary proteins, inflammasome proteins, urinary tract disease,

allergic rhinitis, and graft-versus-host disease. Finally, the last chapter is devoted to

locating resource material for biomarker discovery and applications. The chapters

are written by national or international experts and specialists.
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This book is specifically designed for clinical biochemists, scientists, epidemi-

ologists, doctors, and nurses, from students to practitioners at the higher level. It is

also designed to be suitable for lecturers and teachers in health care and libraries as

a reference guide.

April 2015

London

Victor R. Preedy

Vinood B. Patel
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Series Preface

In the past decade, there has been a sea change in the way disease is diagnosed and

investigated due to the advent of high-throughput technologies and advances in

chemistry and physics, leading to the development of microarrays, lab on a chip,

proteomics, genomics, lipomics, metabolomics, etc. These advances have enabled

the discovery of new and novel markers of disease relating to autoimmune disor-

ders, cancers, endocrine diseases, genetic disorders, sensory damage, intestinal

diseases, and many other conditions too numerous to list here. In many instances,

these developments have gone hand in hand with the discovery of biomarkers

elucidated via traditional or conventional methods, such as histopathology, immu-

noassays, or clinical biochemistry. Together with microprocessor-based data anal-

ysis, advanced statistics, and bioinformatics, these markers have been used to

identify individuals with active disease as well as those who are refractory or

have distinguishing pathologies.

Unfortunately, techniques and methods have not been readily transferable to other

disease states, and sometimes, diagnosis still relies on a single analyte rather than a

cohort of markers. Furthermore, the discovery of many new markers has not been put

into clinical practice partly because of their cost and partly because some scientists are

unaware of their existence or the evidence is still at the preclinical stage. There is thus

a demand for a comprehensive and focused evidence-based text and scientific litera-

ture that addresses these issues. Hence the book series Biomarkers in Disease:
Methods, Discoveries, and Applications. It imparts holistic information on the scien-

tific basis of health and biomarkers and covers the latest knowledge, trends, and

treatments. It links conventional approaches with new platforms. The ability to

transcend the intellectual divide is aided by the fact that each chapter has

• Key Facts (areas of focus explained for the lay person)

• Definitions of Words and Terms
• Potential Applications to Prognosis, Other Diseases, or Conditions
• Summary Points

The material in Potential Applications to Prognosis, Other Diseases, or Con-
ditions pertains to speculative or proposed areas of research, cross-transference to

vii



other diseases or stages of the disease, translational issues, and other areas of wide

applicability.

The series is expected to prove useful for clinicians, scientists, epidemiologists,

doctors and nurses, and also academicians and students at an advanced level.

April 2015

London

Victor R. Preedy
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lier, France

Michele Mussap Laboratory Medicine Service, IRCCS AOU San Martino-IST,

University-Hospital, Genoa, Italy

Naja Dam Mygind Department of Cardiology, Cardiac Catheterization Labora-

tory 2014, Faculty of Health Sciences, The Heart Centre, Rigshospitale, Copenha-

gen University Hospital, Copenhagen, Denmark

Kazufumi Nakamura Department of Cardiovascular Medicine, Okayama Uni-

versity Graduate School of Medicine, Dentistry and Pharmaceutical Sciences,

Okayama, Japan

Emmanuel E. Ndille Laboratoire Maladies Infectieuses et Vecteurs: UMR 224

CNRS-IRD-UM1-UM2, Institut de Recherche pour le Développement, Montpel-
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Abstract

Recently introduced high-throughput technologies are producing unprecedented

volumes of biomedical data available for mining and analysis. The early pre-

dictions of the imminent breakthroughs in our understanding of human diseases

and making predictive diagnostics easy, however, turned out to be largely over

optimistic.
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We argue that this situation is not coincidental, but rather is caused by the

statistical properties of the data collected. A typical high-throughput biological

dataset is deeply imbalanced: the data matrix includes many measured quantities

or “levels” in a relatively small number of subjects. Thus, any attempt to analyze

these datasets would be undermined by so-called “Dimensionality Curse” that

may be solved by removing a majority of variables. The feature selection aimed

at increasing the classification power may be done using data mining or

correlation-based approaches. In this chapter, both theory-driven and data-

driven approaches to deal with complexity in biological systems are discussed

in details.

Key Facts of Biomarker Discovery and Validation

The finding of truly novel standalone biomarker with acceptable sensitivity and

specificity for the detection of given disease is an extremely rare event.

The requisite traits of sensitivity and specificity are not inherent to the function-

ing of biological molecules but rather accidental.

Interindividual variability in the baseline levels of biomarkers is an inherent

problem for biomarker-based detection of human pathologies.

The problem of relatively low sensitivity and specificity of newly discovered

biomarkers is commonly solved by combining them into biomarker panels.

The typical sources for novel biomarkers to be incorporated into the biomarker

panel are massive datasets produces by modern pipelines of biomarker discovery

collectively known as OMICS approaches.

In many cases, the biomarker panels suffer from relatively low reproducibility of

results when tested in independently collected sets of samples.

Typically, the lack of consistency in independently discovered sets of bio-

markers is attributed to the differences in profiling technologies, underlying genetic

variation in populations of patients, and variability in data normalization and other

steps of the data processing.

An extraction of relevant information from the datasets with high dimensionality

is a difficult task.

The Biomarkers: the Definition and the Conceptual Shortfall

. . .while the individual man is an insoluble puzzle, in the aggregate he becomes a mathe-

matical certainty. You can, for example, never foretell what any one man will do, but you

can say with precision what an average number will be up to. Individuals vary, but

percentages remain constant. So says the statistician.

Sir Arthur Conan Doyle, “The Sign of the Four” (1890)

Biomarkers are objective indicators of certain, often abnormal, biological states,

including pathogenic processes, or pharmacologic responses to a therapeutic inter-

vention. Biomarkers can serve many unique purposes, including screening for early

4 B. Veytsman and A. Baranova



signs of the disease in community-based settings, confirmation of the diagnoses,

monitoring effects of the treatments, or the progression of the disease and predic-

tion of clinical outcomes.

Common perception of “biomarkers” implies that there are some biological

molecules, relative concentrations of which may change due to, or in association

with, pathogenic process. To date, the quantification of various molecules in

biological fluids and tissues remains the primary mean to find novel biomarkers.

However, the finding of truly novel standalone biomarker with acceptable sensi-

tivity and specificity for the detection of given disease is an extremely rare event.

The ideal molecular marker would be one that is inherently related to the patho-

genic process. However, the requisite traits of sensitivity and specificity are not

inherent to the functioning of biological molecules but rather accidental. Indeed,

from the natural selection standpoint, it is difficult to imagine that these kinds of

traits may be supported and improved. The latter is especially true for tumor

biomarkers. In tumor-bearing body, any biomarker molecule expressed out of tissue

context or overproduced by tumor cell may also moonlight as tumor antigen.

Because of that, cells overexpressing the biomarker become a subject of strong

negative selection in the microevolutionary process and got eliminated from tumor

cell population.

Another inherent problem for biomarker-based detection of human pathologies

is interindividual variability in the baseline levels of these biomarkers. Speaking

generally, human populations are far from being homogeneous, both in its under-

lying genetics structure that is known to affect baseline expression of biomarker-

encoding genes and in its environmental exposures that influence the prevalence of

infraclinical or chronic illnesses in profiled individuals. Well-adapted reference

interval is a prerequisite to proper interpretation of biomarker quantification results.

However, it seems that in many cases this interval should be adjusted to age,

gender, ethnicity, or BMI. Improper classification of laboratory readout as falling

within the reference interval may lead to a false negative. The best example of this

kind is an inverse correlation of prostate-specific antigen (PSA) and body mass

index (BMI) that is further impacted by age (Gray et al. 2004). In obese candidates

for curable treatment, i.e., patients in their fifth and sixth decades, the use of proper

BMI-PSA adjustment of reference interval results in higher sensitivity in screening

that alleviates misleadingly low measured PSA for early biopsy detection of

prostate cancer (Hekal and Ibrahiem 2010).

Biomarker Panels

The conventional technique that overcomes the problem of relatively low sensitiv-

ity and specificity of newly discovered biomarkers is to combine them into bio-

marker panels. The logic under the assumption of better multi-analyte performance

is as follows. Complex human diseases develop perturb more than one molecular

network; if each of these networks would be represented by its own biomarker, the

combined panel would be more robust. The typical sources for novel biomarkers to
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be incorporated into the biomarker panel are massive datasets produces by modern

pipelines of biomarker discovery collectively known as OMICS approaches.

In short, these approaches aim at more or less precise quantitative measurement

of as many same-class biomolecules as possible. In that, transcriptomics ascertains

the mRNAs expressed within given tissue, proteomics – the proteins or, rather, the

peptides comprising these proteins and metabolomics – the set of small molecules

such as metabolic intermediates, messengers, and other compounds found within a

biological sample.

However, in many cases, the biomarker panels suffer from relatively low

reproducibility of results when tested in independently collected sets of samples.

This is especially true for the mRNA biomarkers identified by microarray experi-

ments. Additionally, when different research groups embark on discovery of bio-

markers for the same disease, they rarely arrive on the same list of candidate

molecules. In fact, the comparison of the predictive gene lists discovered by

different groups revealed very small overlap. A striking example of this kind

would provide a mere three-gene overlap between two well-regarded and, in one

case, already commercialized, prognostic signatures for breast carcinoma, 76-gene

identifier described by Wang et al. (2005), and 70-gene set MammaPrint (van ’t

Veer et al. 2002).

Typically, the lack of consistency in independently discovered sets of bio-

markers is attributed to the differences in profiling technologies, underlying genetic

variation in populations of patients, and variability in data normalization and other

steps of the data processing. However, it seems that there are larger problems with

existing approaches to high-throughput biomarker discovery that could not be shrug

off to technical or even biological variation. One recent study showed that even the

use of the same dataset may produce more than one gene list, sometimes of equal

predictive power (Ein-Dor et al. 2005). The would-be biomarker panels composed

of genes within these gene lists correlate with survival and cannot be truly distin-

guished from one another solely on their performance (that means that there were

no true “leader” or “best performing” signature). When the signatures were tested

over different subsets of patients, their relative performance scores fluctuated

strongly (Ein-Dor et al. 2005). In other words, the robustness of the predictive

gene signatures was low, and the membership in a prognostic list was not indicative

of the involvement of analyte in the pathophysiology of the underlying disease.

The Perils of Combinatorial Approach to Biomarker Development

To understand the roots of the problems that result from combinatorial approach to

discovery and validation of biomarkers, let us consider first the standard framework

for diagnostic criteria. We plan to measure some parameter p (say, the serum level

of certain biomolecule) that is somehow related to the disease D. Both the patient

and the physician expect diagnostic guidance by binary answers: either “yes, you

have D” or “no, you do not have this disease.” We know that the elevated level of

p signifies the disease, so if p is small, then the patient probably is free ofD, and if it
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is large, then patient probably suffers from D. That means that continuously

distributed levels of the biomarker molecule have to be dichotomized. We can

quantify this in the following way: establish some cutoff value pc such as patients

with p >= pc are diagnosed with D and patients with P < Pc are not.
In this approach there are two kinds of errors: we tell a patient she has not

D, while in fact she has (a false negative), or we can tell a patient she has D, while
she has not (a false positive). Accordingly we measure sensitivity or true-positive

rate (TPR) of our test (one minus the probability to get a false negative) and its

specificity (one minus the probability to get a false positive). The probability to get

a false positive or false-positive rate (FPR) is therefore 100 % minus specificity.

It is easy to construct a 100 % sensitive test: let us just tell everybody they have

D, so we never have a false negative. Conversely, a test that tells everybody, “you

are absolutely healthy” has 100 % specificity. The problem is the first test is not

specific at all (0 % specificity), and the second one is 0 % sensitive. Returning to the

cutoff pc, our first test corresponds to pc ¼ �1, while our second test to pc ¼ 1.

Sometimes the parameter p is defined in such way that 0 � p � 1. In this case the

100 % sensitive test corresponds to pc ¼ 0, while the 100 % specific test corre-

sponds to pc ¼ 1.

Obviously, both tests described above are totally impractical. One should prefer

to utilize some “reasonable” value of pc that would simultaneously provide for good

specificity and good sensitivity. Of course, now we are stuck with the criteria of

“goodness.” One of the common approaches is based on the so-called receiver

operating curve (ROC), which plots true-positive rate versus false-positive

rate (Fig. 1).

To understand the use of this curve, let us consider the following test: suppose

that instead of measuring biomarkers, we throw a dice and tell some patients that

they have or not have the disease using a random guess. This test would randomly

Fig. 1 A typical ROC curve.

TPR: true-positive rate; FPR:
false-positive rate
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classify the patients with no regard to their actual health, hence, the fraction of

people with the disease would be the same in both groups, and the TPR of this test

would be equal to its FPR. The ROC curve for this test is the straight line between

the points (0,0) and (1,1) (the 45� line on Fig. 1).

However, clinicians shall hope that biomarker tests would perform better than

just throwing a dice. This hope is reflected in expectation that either TPR of the test

would be higher than that of the random test at the same FPR or FPR would be

lower than that of the random test at the same TPR. In other words, the TPR vs. FPR

curve would be drawn above the 45� line on Fig. 1. One can imagine a curve below

this line: it describes a truly malicious test, which is worse than the random guess!

We are not going to discuss such tests below.

The ROC curve must start in the point (0,0) and end in the point (1,1). On this

curve, FPR = 0 corresponds to TPR = 0 and FPR = 1 corresponds to TPR = 1.

In case of two different tests detecting the same disease, the test with an ROC curve

that is completely above the ROC curve for another test is definitely better than the

second: for every FPR, we achieved an increase in TPR. This argument is very

straightforward and easy to understand. However, real ROC curves may not be

convex (i.e., not all straight segments joining two points on the curve lie under it);

that means that the test may be redesigned and improved. Indeed, let us choose two

points corresponding to the parameter p values equal to p1 and p2. Then by

randomly selecting either p1 or p2 as cutoffs for our prediction, we can obtain all

points on the segment connecting these points. If the segment is above the curve

connecting the points, this redesigned test is better than the original one. This shows

that we need to consider only tests with a convex ROC above the 45� line.
There are two different problems related to the ROC framework. First,

how to select the “better” one out of two non-convex tests and, thus, two ROC

curves? Second, if we manage to select the “better” test, which cutoff value pc – or,
which is the same thing, which point on the ROC curve, should be chosen as a

cutoff?

To solve the first problem, it is customary to compare areas under curve (AUC)

defined as the areas between the curve and the 45� line. By convention we say that

test A is better than test B if the AUC for test A is greater than that for test B.

The ideal test would allow us to choose a cutoff value with 100 % sensitivity and

100 % specificity, so its ROC curve includes the point (0,1). There is only one

convex curve between the points (0,0) and (1,1) that includes this point: the

combination of two straight segments, one vertical and one horizontal. For

this curve the area under the curve is 1/2. On the other hand for the fully random

test the area is zero. For any other test AUC is between 0 and 1/2. For these tests, the

selection of a cutoff always involves a trade between falsely classifying subjects

into diseased or as non-diseased categories. The choice of the cutoff depends on the

intended use of biomarker or panel of biomarkers, the population in which it is to be

used, and the relative costs of making the error. Essentially, what may be an

appropriate cutoff for a particular biomarker used for the screening of susceptible

populations may be totally inappropriate when the same test is used to confirm

diagnosis made by physician.

8 B. Veytsman and A. Baranova



The criteria for choosing pc depend on what exactly do we want to optimize.

Dependent on intended application, we may choose to maximize an accuracy of the

prediction or to minimize costs associated with false-positive or false-negative

outcomes. Thorough review of traditional options can be found in the review by

Bartlett et al. (2012) that utilized Alzheimer’s disease diagnostics as an example.

The Perils of Feature Selection

Note that in this approach we implicitly assume that we know which biomarker to

use for the diagnostics of the disease. In fact, the choice of the proper parameter to

be inputted into the model (a candidate biomarker) is a separate and very difficult

problem. In some cases, our understanding of the pathogenesis may help: if we

know that anemia manifests in the lower count of red blood cells, then the count of

these cells is a natural biomarker. In other cases we may try data mining: we can

make a panel of putative tests, attempt to validate them all, and choose the one that

is closely correlated with the disease. However, this latter approach suffers from the

observation bias: every day many researchers attempt to observe some correlations,

and only these that were actually observed end up in publications. Thus, when a

large number of observations remain not reported, a good correlation might be just a

statistical fluke that is due to so-called multiple comparison problem plaguing

biomarker research. On the other hand, if a biomarker is not selected as model

input, it is “lost” forever as it could not be retrieved later.

It is important to understand that the naı̈ve idea “lets input them all” is not a

proper solution. Attempts of to analyze the data with the dimensionality

(the number of variable features) higher than the number of individual measure-

ments for each feature may end up in so-called over-fitting of the model. Over-fit

models may perfectly deal with the set of samples during the initial analysis, but do

not perform in the independently collected sample sets. In fact, if the number of

variables is high enough, a good separation of the classes may be achieved even for

sets of classifiers chosen randomly (Venet et al. 2011). This problem is

widely known as “dimensionality curse,” and it is typically solved by removing a

majority of variables, a feature selection that increases the classification power

(Mayer et al. 2011; Saeys et al. 2007). This feature selection problem is paramount

for high-throughput datasets where a researcher cannot intuitively grasp several

thousand parameters. To aid an analysis, several algorithms help to identify and

interpret the patterns within the data were developed, for example, principal

components analysis, clustering, or multidimensional scaling. To develop

multiplexed biomarkers tests, the visualization of the data is not required; however,

it helps to gain confidence with a particular set of data.

Another way to explain the “curse of dimensionality” is to discuss the sparsity of

data in a space of many dimensions.

Consider a panel of Ng biomarkers. We “train” the test on Np patients. What is

the probability that the data for a new, (Ng +1)-st patient are “close” to the data for

some of the patients in the training set? To answer this question we need to define a
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model of “closeness.” Suppose each of our biomarkers varies between �1 and +1.

We will define the “distance” as a simple Euclidean distance in the Ng-dimensional

space and will define the patients “close” if the distance between the corresponding

points is less than 1. For simplicity we will further assume that these points are

uniformly distributed in the Ng-dimensional hypercube (the calculations for Gauss-

ian distribution are more complex, but give the same result). The volume of the

hypercube is 1. If we envelope each point in the training set in a sphere of

radius 1, then the total volume of these spheres, not counting overlaps, is NpVs,

where Vs is the volume of a unit ball in the Ng-dimensional sphere, equal to

Vs ¼ πNg=2

Γ Ng=2þ 1
� �

Γ being the Γ -function. Therefore, the probability is less than

P < NpVs

For a low dimensional space, the right-hand side of this equation is usually

above 1. Indeed, two random circles of radius 1 almost always cover a unit square

(Fig. 2a). However, the situation completely changes in highly dimensional spaces

(Fig. 2b) due to the fact that Gamma function in the denominator of Vs grows much

faster than the exponential function. In a 20-dimensional space Vs = 0.026, and we

need more than three dozen nonoverlapping unit spheres to cover the unit square.

For a 100-dimensional space Vs = 2.4*10�40: there is no way two random points

would “resemble” each other.

This means that the probability that a new patient would “resemble” any patient

in the training set diminishes with an increase in the number of biomarkers in

the panel and vanishes when it reaches the size that is typical for OMICS. For large

Ng the volume of the unit ball becomes incredibly small (Fig. 2b). Hence, the

Fig. 2 (a) Two random unit circles completely cover unit square; (b) volume of a unit sphere in an

Ng-dimensional space
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probability that a new patient “resembles” any patient in the training set vanishes if

the number of biomarkers in the panel is large.

Bayesian Approach to Deal with High Dimensionality

A modern approach to analyze datasets with high dimensionality is based on the

Bayesian ideas. In that we start from the prevalence of the disease. If we do not

perform any test, the a priori probability for a patient to have the disease D is equal

to the prevalence (PR), and the a priori probability not to have the disease is1� PR.

Suppose we chose the cutoff value pc. It means that for p � pc we assume the test to

be positive, and for P < Pc we assume it to be negative. We can calculate the

probability Pp to have the disease if the test is positive (sometimes called positive

prediction value). Indeed, TPR and FPR are in fact the conditional probabilities to

get the parameter p � pc if the patient has the disease or if she does not. Therefore,
according to the general rules of Bayesian estimators Sinay (1992), the a posteriori
probability to have a disease if the test is positive is

Pp ¼ PR � TPR
PR � TPRþ 1� PRð Þ � FPR (1)

Similarly the probability to not have the disease if the test is negative (negative
prediction value) is

Pn ¼ 1� PRð Þ � 1� FPRð Þ
PR � 1� TPRð Þ þ 1� PRð Þ � 1� FPRð Þ (2)

We want to increase both positive and negative prediction values. One way to look

at this is to associate costs with errors: suppose that the cost of treating the disease

when it is in fact absent is cn and the cost of not treating the disease when it is

present is cp. Then we want to minimize the function

F ¼ 1� Pp

� � � cp þ 1� Pnð Þ � cn ! min (3)

What happens if instead of one parameter p we have n different parameters

p1, p2, p3,. . ., pn for each patient? Geometrically this means using an n-dimensional

vector p. How can we use this vector for the prediction?

The simplest idea is “flattening” the space. Let f pð Þ ¼ f p1, p2, . . . , pnð Þ be a

scalar function of n variables. Then we can just pretend this is our new parameter

and use the one-dimensional theory for making prediction. So we need to find both

the function f and the optimal cutoff fc.
When the number of parameters is small, the choice is relatively easy: in the

simplest case we just make a linear combination of parameters and choose the

parameters in the way that produces the best results for the group of patients with

the known diagnosis. This is the training of our test. After the training stage we get

the optimal combination of measurements to apply to the new patients.
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Many questionnaire-based tests use this idea for patients’ screening. The med-

ical practitioner fills the response sheet by checking the boxes, one box per

symptom. The test instructions say, “A patient has the disease D if she has at

least three of six symptoms below.” In this case, each symptom is a discrete

parameter with only two possible values (1 if symptom is observed, 0 otherwise).

In most cases all coefficients in the linear combination are just 1: we count the

number of parameters equal to 1. The result is simple and adequate enough for

preliminary screening.

The Perils of Multiparametric Datasets Reduction

However, when the number of parameters becomes large, the situation changes

dramatically. Suppose we can get expressions of several hundred thousand genes.

We know these expression values for many healthy patients and many patients with

the disease. Can we combine the expressions result into a predictive expression?

One of the approaches involves data mining: let us look at the measurement

results and extract the most predictive combination. However, there is an important

limitation for this approach. Information theory tells us that the amount of infor-

mation we extract from the results obtained on Np patients is proportional to Np.

A linear formula combining Ng gene expressions has the amount of information

proportional to Ng. It means that to generate a reliable test we need to initially
profile many more patients than genes: Np >> Ng. These simple considerations

were corroborated by the calculation by Ein-Dor et al. (2006), which leads to the

same sad requirement – namely, thousands of patient’s samples to be tested in order

to deduce the robust list of biomarkers. In many cases, this luxury cannot be

afforded. Even in case of more or less common diseases, like breast carcinoma,

the collection of requested amounts of high-quality samples presents a substantial

burden. For rare diseases, this approach may be simply not feasible.

However, there are certain techniques that allow to decrease the number of

parameters we are about to input into the test. For example, we can measure the

individual correlation of each candidate biomarker with the outcome in the training

set and then shrink the biomarker list to include only those that have the highest

correlations. We can look at the correlations between all the candidate biomarkers,

and for each group of highly correlated parameters, leave only one “typical

representative.” For example, one may remove the expression levels for genes

co-regulated by the same transcription factor (and leave the value for this master

regulator), or delete all but one mass-spectrometry peaks that represent peptides

derived from the same protein (Pyatnitskiy et al. 2010). These and others, even

more sophisticated techniques, are reviewed by McDermott et al. (2013).

Let us suppose we successfully dealt with biomarker discovery phase by reduc-

ing and then ranking the list of features according to likelihoods they could serve as

viable inputs into predictive models. However, the “dimensionality curse”

discussed above is eager to produce one more nontrivial problem. Suppose we

select two different training sets, both being drawn from the same set of patients
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profiled using one or another high-throughput biomarker discovery platform. If the

set of discovered biomarkers is robust, we would expect that both training datasets

would produce comparable results. An experiment of this kind was performed by

Ein-Dor et al. (2005) using a single breast cancer dataset that was analyzed by a

single method. However, the training datasets were randomly assembled and

different in each analysis trial. The outcome of this study was most frustrating:

the resultant sets of biomarkers were not unique; in fact, they were strongly

influenced by the subset of patients used for training. In other words, if we start

from different groups of patients, we get completely different results.

There is a hope that the situation could be saved by hypothesizing that different

sets of biomarkers are not “intrinsically different.” Indeed, if two genes belong to

the same pathway, then the changes in the expression levels for either of them could

be useful as biomarkers reflecting the state of activation in this pathway. In other

words, these genes are interchangeable as biomarkers: an anomaly in the expression

of any of them signifies a problem with this pathway. This is akin to the typical

representative method for highly correlated parameters: it does not matter which

parameter from the group is chosen, since the parameters in the group are highly

correlated.

If this hypothesis is true, then when we start from different training sets, we get

different sets of genes in the tests, but the corresponding pathways must be roughly

the same. This prediction is testable and was tested by Drier and Domany (2011).

Here the authors took two different biomarker sets proposed for diagnostics of

breast cancer. They identified the pathways and calculated the overlap between

pathways discovered. As it could be expected, the proliferation pathway was

present in both sets, a trivial finding at best. However, the overlap in other pathways

was negligible. Hence, the robustness of the traditional techniques to discover

reliable biomarkers in high-throughput manner remains very doubtful.

Of course, it is not clear whether the results obtained while using cancer datasets

are directly applicable to other diseases. Still the results by Drier and Domany

(2011) are disquieting. It seems that our current techniques are dealing with the

noise in the samples rather than with the signal. In any case, it is clear that we are

dealing with complex biological systems that built upon a multitude of the variables

with unknown significance of their individual weights.

Theory-Driven and Data-Driven Approaches to Deal
with Complex Systems

Speaking generally, there are two approaches to deal with a complex system: theory

driven and data driven. In the first approach, we rely on our understanding of

underlying processes to select variables that are most relevant to the process we

study. In biological terms, that means that we attempt to discern suitable candidate

biomarkers from non-robustly ranked lists of biological molecules by analyzing

underlying biological pathways and selecting these most relevant to pathogenesis of

the disease we study. Unfortunately, our knowledge of biological processes is far
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from being perfect, and what we consider nonoverlapping pathways may turn out to

be related, and we may miss suitable biomarker due to incorrectness of our

judgment. Additionally, for some diseases we do not have any reliable information,

a good example would be a genetic disease for which the causative gene has not

been discovered yet. These considerations limit application of theory driven, also

known as knowledge-based approaches for biomarker discovery.

In the second one we start with as little preconceptions as possible. Say, ancient

physician would add the astrological information to his observations of symptoms.

His understanding of the disease included the influence of stars and planets on its

course. We, on the other hand, know that stars and planets are not relevant and thus

exclude astrological data from the set of our parameters. As evident from above,

both the ancient physician and the modern scientist adhered to the theory-driven

approach. Their underlying theories were different, though. A purely data-driven

approach would be to start with as much data as possible, including astronomical

ephemerides, and let the correlations show that the latter are not relevant. At the

first glance, this approach is a fallacy, as why should we include the data that

we know are not relevant. We should bear in mind that the analyses we perform are

not without costs, even if these costs are purely computational in its nature.

However, data-driven or hypothesis-free approaches are very powerful as

they truly do not require any data on intricate ropes that make biological

systems tick.

While it is clear that the data-driven approach is indispensable in validating the

theories, it is not so straightforward to use it for generating them. In one recent

study, the usefulness of hypothesis-free approach was demonstrated for

multidimensional mining of global collections of high-throughput public data that

integrated, independently correlated, and ranked the data derived from over 4,000

experiments comprising 25,000 signatures (Kupershmidt et al. 2010). In this par-

ticular case, the replication of observed correlations across multiple independent

datasets allowed researchers to generate a number of meaningful hypotheses

concerning the development of brown adipose, a tissue compartment with high

relevance to obesity, metabolic syndrome, and other human pathologies.

In short, to formulate a meaningful hypothesis that is relevant to a complex

system, we need a huge amount of data. As discussed above, information theory

tells us that the number of samples should be much greater than the dimensionality

of the system. For biomarkers a sample is a patient, and dimensionality is the

number of candidate genes. This means that data-driven approach requires huge

training sets with thousands of patients (Ein-Dor et al. 2006). The bootstrapping

methods of prefiltering the data cannot solve this problem. The situation is similar

to that in thermodynamics: one can make very sophisticated thermal machines, but

their efficiency still cannot exceed the theoretical limit set by the laws of thermo-

dynamics. In the same way, while we can improve the performance, fundamental

laws of information theory do not allow us to get meaningful conclusions

about thousands of genes based on the data from hundreds of patients. This

means that to get robust predictions we cannot use data alone: we must add some

assumptions about underlying biological processes and blend them with the
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data (McDermott et al. 2013). The quality of these assumptions is an important

issue. There is a significant hope that it will improve with an accumulation of

biological data and its subsequent interpretation.

To overcome these problems, many practical tests, the biomarker-based tests,

combine laboratory measurements of certain analytes with demographic or other

physically scorable parameters, for example, age, ethnicity, BMI, or the blood

pressure. However, the heterogeneity of the dataset provides additional challenges.

These new parameters may be highly correlated with the candidate biomarkers, and

these correlations must be accounted for in the analysis as selection biases. For

example, the probability that a person would seek medical help is closely correlated

with social status, age, and often with ethnicity. Thus, demographic factors may

provide misleading clues. As a general rule, the performance of good biomarker

shall be consistent across genders and ethnic groups.

Conclusion

Harnessing the power of high throughput is widely used for the discovery of the

next generation of biomarkers. Mining of various “omics” profiles also holds a

significant promise to improve our understanding of the biology of health and

disease. However, the road to this bright and shiny future is full of statistical

traps that may preclude an extraction of relevant information from the datasets

with high dimensionality. Those who embark on this journey should be aware of

perils.

Summary Points

– This chapter focuses on the common pitfalls in biomarker discovery and

validation.

– Biomarker panels suffer from relatively low reproducibility of results when

tested in independently collected sets of samples.

– Proper application of ROC curves allows maximizing accuracy of the prediction

or minimizing costs associated with false-positive or false-negative outcomes.

– Attempts of to analyze the data with the dimensionality (the number of variable

features) higher than the number of individual measurements for each feature

may end up in so-called over-fitting of the model.

– Complex biological systems are built upon a multitude of the variables with

unknown significance of their individual weights.

– “Dimensionality curse” is typically solved by removing a majority of variables.

This feature selection increases the classification power. Feature selection may

be done using data mining or correlation-based approaches.

– Theory-driven and data-driven approaches to deal with complexity in biological

systems are discussed.
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