
Computational Systems Pharmacology and Toxicology

 
Pu

bl
is

he
d 

on
 0

1 
M

ar
ch

 2
01

7 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

37
31

-F
P0

01



Issues in Toxicology

Series editors:
Diana Anderson, University of Bradford, UK
Michael D. Waters, Michael Waters Consulting, USA
Timothy C. Marrs, Edentox Associates, UK

Editorial advisor:
Alok Dhawan, CSIR-Indian Institute of Toxicology Research, Lucknow, India

Titles in the Series:
1: Hair in Toxicology: An Important Bio-Monitor
2: Male-mediated Developmental Toxicity
3: �Cytochrome P450: Role in the Metabolism and Toxicity of Drugs and 

other Xenobiotics
4: Bile Acids: Toxicology and Bioactivity
5: The Comet Assay in Toxicology
6: Silver in Healthcare
7: In Silico Toxicology: Principles and Applications
8: Environmental Cardiology
9: �Biomarkers and Human Biomonitoring, Volume 1: Ongoing Programs 

and Exposures
10: �Biomarkers and Human Biomonitoring, Volume 2: Selected Biomarkers 

of Current Interest
11: Hormone-Disruptive Chemical Contaminants in Food
12: Mammalian Toxicology of Insecticides
13: �The Cellular Response to the Genotoxic Insult: The Question of Thresh-

old for Genotoxic Carcinogens
14: �Toxicological Effects of Veterinary Medicinal Products in Humans: Vol-

ume 1
15: �Toxicological Effects of Veterinary Medicinal Products in Humans: Vol-

ume 2
16: �Aging and Vulnerability to Environmental Chemicals: Age-related Disor-

ders and their Origins in Environmental Exposures
17: Chemical Toxicity Prediction: Category Formation and Read-Across
18: �The Carcinogenicity of Metals: Human Risk Through Occupational and 

Environmental Exposure
19: Reducing, Refining and Replacing the Use of Animals in Toxicity Testing
20: Advances in Dermatological Sciences
21: Metabolic Profiling: Disease and Xenobiotics
22: Manganese in Health and Disease
23: Toxicology, Survival and Health Hazards of Combustion Products
24: �Masked Mycotoxins in Food: Formation, Occurrence and Toxicological 

Relevance
25: Aerobiology: The Toxicology of Airborne Pathogens and Toxins

 
Pu

bl
is

he
d 

on
 0

1 
M

ar
ch

 2
01

7 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

37
31

-F
P0

01
View Online

http://dx.doi.org/10.1039/9781782623731-fp001


26: Chemical Warfare Toxicology, Volume 1: Fundamental Aspects
27: Chemical Warfare Toxicology, Volume 2: Management of Poisoning
28: Toxicogenomics in Predictive Carcinogenicity
29: Human Stem Cell Toxicology
30: The Comet Assay in Toxicology, 2nd edition
31: Computational Systems Pharmacology and Toxicology

How to obtain future titles on publication:
A standing order plan is available for this series. A standing order will bring 
delivery of each new volume immediately on publication.

For further information please contact:
Book Sales Department, Royal Society of Chemistry, Thomas Graham House, 
Science Park, Milton Road, Cambridge, CB4 0WF, UK
Telephone: +44 (0)1223 420066, Fax: +44 (0)1223 420247
Email: booksales@rsc.org
Visit our website at www.rsc.org/books

 
Pu

bl
is

he
d 

on
 0

1 
M

ar
ch

 2
01

7 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

37
31

-F
P0

01
View Online

http://dx.doi.org/10.1039/9781782623731-fp001


        

 
Pu

bl
is

he
d 

on
 0

1 
M

ar
ch

 2
01

7 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

37
31

-F
P0

01
View Online

http://dx.doi.org/10.1039/9781782623731-fp001


Computational Systems 
Pharmacology and Toxicology

Edited by

Dale E. Johnson
University of Michigan, USA
Email: daleej@umich.edu

Rudy J. Richardson
University of Michigan, USA
Email: rjrich@umich.edu

 
Pu

bl
is

he
d 

on
 0

1 
M

ar
ch

 2
01

7 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

37
31

-F
P0

01
View Online

http://dx.doi.org/10.1039/9781782623731-fp001


Issues in Toxicology No. 31

Print ISBN: 978-1-78262-332-8
PDF eISBN: 978-1-78262-373-1
EPUB eISBN: 978-1-78801-120-4
ISSN: 1757-7179

A catalogue record for this book is available from the British Library

© The Royal Society of Chemistry 2017

All rights reserved

Apart from fair dealing for the purposes of research for non-commercial purposes or for 
private study, criticism or review, as permitted under the Copyright, Designs and Patents 
Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may 
not be reproduced, stored or transmitted, in any form or by any means, without the prior 
permission in writing of The Royal Society of Chemistry or the copyright owner, or in 
the case of reproduction in accordance with the terms of licences issued by the Copyright 
Licensing Agency in the UK, or in accordance with the terms of the licences issued by the 
appropriate Reproduction Rights Organization outside the UK. Enquiries concerning 
reproduction outside the terms stated here should be sent to The Royal Society of  
Chemistry at the address printed on this page.

Whilst this material has been produced with all due care, The Royal Society of Chemistry 
cannot be held responsible or liable for its accuracy and completeness, nor for any  
consequences arising from any errors or the use of the information contained in this 
publication. The publication of advertisements does not constitute any endorsement by 
The Royal Society of Chemistry or Authors of any products advertised. The views and 
opinions advanced by contributors do not necessarily reflect those of The Royal Society  
of Chemistry which shall not be liable for any resulting loss or damage arising as a result 
of reliance upon this material.

The Royal Society of Chemistry is a charity, registered in England and Wales, Number 
207890, and a company incorporated in England by Royal Charter (Registered No. 
RC000524), registered office: Burlington House, Piccadilly, London W1J 0BA, UK, 
Telephone: +44 (0) 207 4378 6556.

For further information see our web site at www.rsc.org

Printed in the United Kingdom by CPI Group (UK) Ltd, Croydon, CR0 4YY, UK

 
Pu

bl
is

he
d 

on
 0

1 
M

ar
ch

 2
01

7 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

37
31

-F
P0

01
View Online

http://dx.doi.org/10.1039/9781782623731-fp001


vii

Issues in Toxicology No. 31
Computational Systems Pharmacology and Toxicology
Edited by Dale E. Johnson and Rudy J. Richardson
© The Royal Society of Chemistry 2017
Published by the Royal Society of Chemistry, www.rsc.org

Preface

Our motivation for bringing about a book on systems computational  
pharmacology and toxicology was a natural development from teaching 
courses on these subjects, first at the University of California in Berkeley 
and later at the University of Michigan in Ann Arbor. Our courses and this 
book address a critical need to modernize pharmacology and toxicology—to 
transform these fields from descriptive disciplines to predictive sciences. 
This transformation is necessary, because classic descriptive approaches 
are far too inefficient and expensive to assess the medical efficacy or toxicity 
of the many thousands of synthetic chemicals or natural products to which 
humans and other species are or will be exposed.

Not long ago, the approaches set forth in this book were either not possible  
or performed by specialists using such tools as quantum mechanics and 
mainframe computers. Now, because of rapid advances in technology, 
software, and theory, coupled with the public availability of large chemical 
and biomedical data sets through the internet, it is possible for non-specialist 
bench scientists to undertake sophisticated molecular modeling, bioinfor-
matics, cheminformatics, and systems biology procedures on desktop 
computers as well as mobile devices, including to some extent electronic 
tablets and smart phones. Thus, powerful computational tools have become 
highly accessible, but knowing how and when to use the right tools in the 
right way can be a daunting task. This book seeks to make the job easier to 
understand and implement.

Recognizing that we now have the capability to understand pharmacological 
and toxicological effects at multiple biological levels, our book highlights the 
process of integrating the elements of complex phenomena into a systems  
approach. Thus, whereas inverse docking and pharmacophore mapping can 
identify molecular targets of candidate drugs or toxicants, intelligent 
mining of databases can identify networks of genes and proteins involved 
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Prefaceviii

in the system-wide biological responses to chemicals. A pharmacological or 
toxicological effect may begin with atomic-level binding, but ultimately the 
intact organism responds in a holistic manner. It is necessary to continually 
readjust our focus by many orders of magnitude to encompass the spectrum 
from molecular orbitals to human populations.

The tools and models discussed in the book hold tremendous promise 
for advancing applied and basic science, streamlining drug efficacy and 
safety testing, and increasing the efficiency and effectiveness of risk assess-
ment for environmental chemicals. The content of chapters is designed to 
provide readers with an understanding of the basic principles and current 
methods of computational pharmacology and toxicology. These principles 
and approaches are discussed in several chapters in order to show how to 
connect chemicals with diseases and associated genes, and how to create 
pharmacology/toxicology connectivity maps or networks.

Vital to these expositions of principles and methods are illustrations of 
modeling and/or predicting potential pharmacological or toxicological 
effects from multiple properties. These characteristics include chemical 
structure, inference from similar compounds, in silico target identification, 
exposure, bioaccumulation, environmental persistence, biomarkers, and 
networks of biological pathways affected by a chemical.

Systems toxicology approaches used in the safer design of chemicals and 
identification of safer alternatives, which are major parts of global green 
chemistry initiatives, are also discussed, along with the concept of the 
adverse outcome pathway and modeling approaches for hazard identification 
and risk assessments for large numbers of environmental chemicals for 
which supporting data are sparse.

The book also expands the conventional boundaries of research and 
development of pharmaceutical agents. Thus, traditional Chinese medicines 
that include recipes containing several pharmacologically active phytochem-
icals are becoming role models of polypharmacy research.

The final chapter describes an inquiry-based computational toxicology 
course. Students work in small cooperative groups and are given tools, data, 
and basic concepts to solve toxicity-related environmental, public health, 
and/or disease-oriented problems in novel ways. Several case studies serve 
both to educate the reader and to provide material for teaching.

As co-editors, we are each involved in research and education on the topics  
covered in the book. We have authored or co-authored several of the chapters 
ourselves, and the other chapters have been written by experts recruited 
from around the world.

Dale E. Johnson and Rudy J. Richardson
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1.1  �Introduction
The science and practical field of toxicology has been changing dramatically 
over the last 15–20 years, transitioning into a more systems biology and net-
work-based approach.1–4 Several factors have been involved, including the 
developing genomics era where the understanding of genetic changes has 
enhanced the ability to understand diseases and chemically-induced toxic-
ities at the molecular level. The genomics era has also ushered in “omics” 
technologies and approaches such as transcriptomics, metabolomics, 
proteomics, and epigenomics, which have changed the way we view mech-
anisms of toxicity and the perturbation of biological systems that lead to 
adverse outcomes.5 These advances have been coupled with the public avail-
ability of large datasets of information and new modeling approaches that 
have enhanced the ability to understand toxicological events and effects at 
multiple biological levels.6 Since our scientific approaches, inquiries, and 
visions aimed at understanding toxicological events and outcomes have 
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Chapter 12

been broadened tremendously, this reinforces our need for new and better 
ways to assess toxicity and risk. The large numbers of uncharacterized chem-
icals already present in the environment and new chemicals that continue 
to enter it has required hazard and risk assessments to be made with very 
few data. These factors have had a major influence on the need to accelerate 
new approaches and move away from an overdependence on in vivo animal 
testing and make better use of computational, molecular, and in vitro tools.6,7 
The identification of the majority of toxic events in in vivo animal toxicology 
studies rely on high-dose exposure to the animals and default linear extrap-
olation procedures,8 with the incorporation of newer technologies absent in 
the vast majority of animal studies. This has been considered a shortcom-
ing in risk assessment and several weaknesses in this process include the 
comparative shape of the dose–response relationship after relevant levels of 
human exposure, whether biological and/or toxicological thresholds do in 
fact exist and for what toxicological endpoints, and potential population 
variability in response.5

1.2  �Systems Toxicology
Accordingly, research in toxicology has moved into a new systems-ori-
ented phase called systems toxicology, which involves the study of complex 
molecular response networks initiated by exposure (both intentional and 
unintentional) to chemical substances. At the heart of systems toxicology 
approaches are the development and usage of quantitative mechanistic mod-
els that create a predictive toxicology aspect relevant to all toxicology fields, 
including drug research and development and environmental research. 
The overall approach involves the integration of classical toxicology with 
the quantitative analysis of large networks of chemically-induced molecu-
lar and functional changes, which occur across multiple levels of biological 
organization.5 Examples of key influential events in this transition since the 
year 2000 include the release of human genome sequencing data including 
specific signal transduction domains, the development and issuance of the 
report Toxicity Testing in the Twenty-first Century by the National Research 
Council (NRC),9 which has influenced all sectors of the toxicology field, and 
the development and publication of the adverse outcome pathway (AOP) 
approach,6,10,11 which has highlighted the realities that exist as the science 
moves away from an overdependence on in vivo testing and makes greater 
use of computational, molecular, and focused in vitro tools. Additional driv-
ers of change include the European Union (EU) report from the Scientific 
Committee on Health and Environmental Risks, the EU’s Registration, Eval-
uation, Authorisation and Restriction of Chemical Substances (REACH) pro-
gram, and the International Programme on Chemical Safety (IPCS).7,12 The 
paradigm shift can also be seen in the drug research and development sector, 
but rather than focusing on drugs during late stages of development or on 
marketed drugs, the systems-related efforts are positioned at the front end 
of research, both on safer chemical design and extensive target research. 
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3Systems Biology Approaches in Pharmacology and Toxicology

While the drug industry is required to conduct animal toxicology studies by 
regulatory agencies and international guidelines, the major effort underway 
is to determine chemical liabilities early in the drug discovery pipeline, both 
to reduce the time and cost of failures later in the process, but also to avoid 
costly failures once a drug reaches the market.5 Currently, there is an Inter-
national Consortium for Innovation and Quality in Pharmaceutical Develop-
ment (IQ), where several pharmaceutical and biotechnology companies have 
created a Nonclinical to Clinical Translational Database (WG1) to allow anal-
ysis of the reliability and potential limitations of nonclinical data in predict-
ing clinical outcomes, including the evaluation of conventional biomarkers 
of toxicity.13 Current screening approaches applied to the front end of drug 
research are described below.

1.3  �Chemical Toxicities
1.3.1  �Single-Target Toxicity Concepts
The science and practice of toxicology over the past several decades have 
consistently used classic toxicological approaches, such as in vivo and in 
vitro toxicology studies, combined with predictive toxicological method-
ologies. The desired endpoints of the in vivo animal research efforts have 
been the determination of a toxic dose where a chemical could be shown 
to induce pathologic effects after a specified duration of treatment or expo-
sure. Where appropriate, these studies have included the estimate of the 
lowest observed adverse effect level, the no observed adverse effect level, 
and the maximally tolerated dose (MTD).5,14 These adverse effect level 
estimates are traditionally used in drug research and development to pre-
dict the first dose in humans and to predict margins of safety estimates 
based on delivered dose and/or internal exposure from pharmacokinetic/
pharmacodynamic (PK/PD) modeling with extrapolations into clinical 
trial subjects. By regulatory requirements, all potential drugs undergoing 
research and development will undergo both in vitro and in vivo studies, 
and, if the compound reaches the clinical trial stage successfully, data 
from human exposure to judge the adequacy of nonclinical data in pre-
dicting clinical outcomes. Uncertainties in these estimates include the 
definition of adverse, which is specific for each organ system in each 
study and typically determined by the study pathologist; the accuracy of 
cross-species extrapolations (particularly rodent-to-human); and the true 
definition of risk–benefit for each individual drug. However, the genera-
tion of classical toxicology data does not assure the accurate prediction of 
potential human toxicity. Sundqvist and colleagues15 have reported on a 
human dose prediction process, supplemented by case studies, to integrate 
uncertainties into simplified plots for quantification. Drug safety is recog-
nized as one of the primary causes of attrition during the clinical phases 
of development; however, in numerous instances the actual determination 
of serious adverse effects only occurs after the drug reaches the market.  

 
Pu

bl
is

he
d 

on
 0

1 
M

ar
ch

 2
01

7 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

37
31

-0
00

01
View Online

http://dx.doi.org/10.1039/9781782623731-00001


Chapter 14

In the United States, ∼2 million patients are affected with drug-mediated 
adverse effects per year, of which ∼5% are fatal.16 This places drug toxicity 
as one of the top five causes of death in the United States, and the costs to 
the health care system worldwide are estimated at US$40–50 billion per 
year.16 In drug development there are always risk–benefit considerations, 
which will weigh any potential toxicity against the benefit expected to be 
gained by a patient taking the drug. An example of the uncertainty of these 
estimates can be seen in the methods used for carcinogenicity testing and 
evaluation for drug approval. The design of these studies rely on high-dose 
exposure to animals and default linear extrapolation procedures, while  
little consideration is given to many of the new advances in the toxicological 
sciences.17 Carcinogenicity studies are typically 2-year studies in rodents 
conducted with three dosage groups (low, mid, and high dose) and one or 
two concurrent control groups. Dose levels are established from previous 
studies, such as 13-week toxicity studies, where a MTD has been estimated. 
Each group in the carcinogenicity study has 60–70 animals of each sex, and 
the analysis of whether there is a potential carcinogenicity concern is based 
on an analysis of each tumor in each tissue or organ system individually 
by gender; certain tumors are combined via standardized procedures for 
statistical analysis. The analysis uses the historical database from the labo-
ratory where the studies are conducted to determine whether each tumor is 
considered common or rare, using the background incidence of 1% as the 
standard. Common tumors are those with a background incidence of 1% 
or over and rare tumors are those with a background incidence below 1%. 
In the statistical analysis, p-values for rare and common tumors are evalu-
ated for pair-wise significance at 0.05 (for rare) and 0.01 (for common). The 
rare vs. common tumor classification is an arbitrary tumor threshold and 
adjustments to the specific classifications by individual tumor, which can 
occur from laboratory to laboratory and via analyses of different control 
groups, can have consequences in the overall tumor evaluation outcome.8 
Applying a “weight of evidence” approach into the evaluation procedures, 
particularly during regulatory review, attempts to alleviate some of the 
uncertainties; however, after more than 50 years of on-going experience, 
these studies still fail to bring the 21st century mindset to carcinogenic-
ity testing. The classic toxicological process for drug development assumes 
that a chemical interacts with a higher affinity to a single macromolecule 
(the toxicological target), and therefore a single biological pathway may 
be perturbed at the initial target modulation. This would be followed by 
downstream activation of secondary and possibly tertiary pathways that 
result in the tissue or organ effect as indicated by key biomarkers.2 In this 
concept, the magnitude of toxicological effects are related to the concen-
tration of altered molecular targets (at the site of interest), which in turn is 
related to the concentration of the active form of the chemical (parent com-
pound or metabolite) at the site where the molecular targets are located. 
Also included in this concept is the unique susceptibility of the organism 
exposed to the compound.
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5Systems Biology Approaches in Pharmacology and Toxicology

1.3.2  �Toxicological Profiling for Potential Adverse Reactions
Predictive toxicology efforts in drug research and development involve the 
use of multiple sources of legacy data including data generated by chemical 
and pharmaceutical companies and data submitted to regulatory agencies. 
These efforts have led to the “data warehouse” model which includes data 
generated through high throughput and targeted screening, and in vitro and 
in vivo toxicology studies on thousands of compounds and structural ana-
logues. In a majority of cases these data also include findings from clinical 
trials where an experimental drug was tested on humans.

The information is applied in a “backward” fashion to predict potential 
findings where data do not yet exist or where decisions are being made 
on new potential drug candidates. Bowes and colleagues18 have described 
a pharmacological profiling effort by four large pharmaceutical compa-
nies: AstraZeneca, GlaxoSmithKline, Novartis, and Pfizer. The companies 
suggest that ∼75% of adverse drug reactions can be predicted by studying 
pharmacological profiles of candidate drugs. The pharmacological screen-
ing identifies primary effects related to the intended action of the candi-
date drug, whereas identification of secondary effects due to interactions 
with targets other than the primary (intended) target could be related to 
off-target adverse events. The groups have identified 44 screening targets 
including 24 G-protein coupled receptors, eight ion channels, six intracel-
lular enzymes, three neurotransmitter transporters, two nuclear receptors, 
and one kinase. These types of screening data are used in the data ware-
house model, typically configured in a proprietary fashion within each 
company. Other collaborative efforts have been developed and data from 
these sources would also be incorporated.

Blomme and Will19 have reviewed the current and past efforts by the phar-
maceutical industry to optimize safety into molecules at the earliest stage 
of drug research. They conclude that new and emerging technologies in the 
past two decades have had limited impact on nonclinical attrition rates asso-
ciated with safety issues. In addition, they point out that front-loading series 
of toxicology assays to “kill early, kill often” have been challenged due to high 
false-positive rates and an overall low positive predictive value. The primary 
issue cited is the lack of information on an efficacious exposures (PK/PD) 
and the fact that the assays are more likely to represent hazard identifica-
tion and not risk assessment. Therefore, it is suggested that these data be 
used as alerts rather than discontinuance criteria. In a more systems toxi-
cology approach, a large effort is now being directed towards understanding 
the extent of pharmacological modulation of both precedented and unprec-
edented targets in relation to potential safety liabilities and developing tech-
nologies to determine achievable therapeutic windows. Blomme and Will19 
discuss efforts at AbbVie and Pfizer where target safety assessments are 
explored. The assessments include the biology of the target, tissue expres-
sion maps, messenger RNA and proteins, human genetic data, phenotypes 
from genetically engineered animal models, historical data from on-going 
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Chapter 16

and past clinical trials targeting similar targets and associated pathways, 
extensive datamining via biomedical databases, and in silico simulation of 
the various consequences of target modulation. The majority of systems 
research in drug safety use specific toxicities as the starting point. Ivanov 
and colleagues20 discuss the use of specific methods to counteract ventricu-
lar tachyarrhythmia (VT). While the in vitro HERG potassium channel assay 
is used universally as a predictor of VT, this is only one mechanism of action 
and other targets must also be identified and explored. These researchers 
have used the following approach: (1) creation of VT positive and negative 
compound libraries; (2) in silico prediction of extensive drug–target interac-
tion profiles of chemical libraries identifying potential VT-related targets; 
(3) gene ontology and pathway enrichment on these potential VT targets to 
elucidate potential biological processes; (4) creation of a cardiomyocyte reg-
ulatory network based on general and heart-specific signaling and regula-
tory pathways; and (5) simulation of the changes in the regulatory network 
caused by the inhibition at each node in order to define potential VT-related 
targets. These are the type of studies that lead to more refined in vitro and in 
silico assessments of potential drug adverse effects at the early stage of drug 
research.

Verbist and colleagues21 have outlined another type of systems toxicol-
ogy proposal at Janssen involving QSTAR (quantitative structure-transcrip-
tion-assay relationships) by integrating high-throughput gene expression 
profiling data; chemical information, particularly detailed analogue analysis; 
and bioassay data. Using several compounds from a single chemical scaffold 
targeting PDE10A, a target of pharmacological interest at Janssen, changes 
in tubulin gene expression were identified in a subset of compounds. There-
fore a screening process was developed involving multiple cell lines, gene 
expression profiling, in vitro micronucleus assays, and high-content imaging 
to show microtubule aggregates as compared to other phenotypes. Besides 
the chemical series of interest, known positive and negative compounds 
were included in the process. This study presents a valuable proof-of- 
concept of how to link and potentially improve the risk assessment in early 
drug discovery using several technologies in a drug research systems  
toxicology approach.

1.3.3  �Toxicological Concepts for Safer Chemical Design
Voutchkova and colleagues22 have outlined an extensive framework for safer 
chemical design using multiple data and modeling resources. These types of 
data generation and modeling approaches are the basis of the process for a 
green chemistry model for specific series of chemicals used or proposed for 
use as reagents, solvents, or chemical intermediates in chemical synthesis. 
The simplified scheme involves a model building process, where chemical 
structures of interest are evaluated for chemical motifs (structural alerts) 
known to be associated with human health or environmental hazards, chemicals 
are clustered into hazard categories and specific high- or higher-throughput 

 
Pu

bl
is

he
d 

on
 0

1 
M

ar
ch

 2
01

7 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

37
31

-0
00

01
View Online

http://dx.doi.org/10.1039/9781782623731-00001


7Systems Biology Approaches in Pharmacology and Toxicology

and targeted assays are identified for each hazard category. Analogue series 
directly applicable to the chemistry under evaluation are prepared or 
obtained and screened in the relevant assays. With homologous or structur-
ally similar series, local chemical-toxicity models can be developed, validated 
and incorporated into the initial computational screening process. This 
general method can be applied to any specific hazard, any series of chem-
icals, and any assay methodology. Examples of hazard categories include 
carcinogenicity; reproductive and developmental; mutagenicity; neurotoxic-
ity; endocrine disruption; cardiovascular; dermatotoxicity; digestive system 
toxicity; hematotoxicity; hepatotoxicity; immunotoxicity; muscular toxicity; 
nephrotoxicity; ocular toxicity; ototoxicity; respiratory toxicity; persistence in 
the environment; bioaccumulative in the environment; toxic to water organ-
isms; water contaminant; and air pollutant. Structural motif alert and expert 
predictions can be achieved using OpenTox,23 an open access system used 
to predict potential hazards from chemical structures and known chemical 
motifs associated with human health and environmental endpoints, and 
Derek from Lhasa,24 a rule-based expert system that de-convolutes a chemical 
structure into sub-structural fragments and addresses potential toxicity con-
sistent with the above hazard categories. The software is also used to create 
specific local expert predictions from screening data. Meteor (Lhasa) predicts 
potential metabolites and the metabolite structures can be used in Derek 
predictions. This type of inquiry is highly useful for establishing basic infor-
mation for rank-ordering compounds, as in early candidate selection, and in 
the process of safer chemical synthesis. Multiple screening approaches have 
been used for evaluation of chemical toxicity using high-throughput tech-
nology and multiple assays. These include the United States Environmental 
Protection Agency (EPA) ToxCast program25 where over 2000 chemicals have 
been evaluated in over 700 high-throughput assays. This is a section of the 
Tox21 testing program, a collaboration among EPA, the National Institutes 
of Health (NIH), including the National Center for Advancing Translational 
Sciences at the National Toxicology Program at the National Institute of Envi-
ronmental Health Sciences, and the United States Food and Drug Admin-
istration. The Tox21 program involves high-throughput screening of more 
than 10 000 environmental chemicals and approved drugs using more than 
100 assays. All data are publicly available, as discussed later. Wink and col-
leagues26 discuss a quantitative high-content imaging in vitro process to elu-
cidate chemical interactions with cellular adaptive stress response pathways 
to gain a better insight into chemical toxicities at a phenotypic cellular level. 
The key to their reported technology is a panel of reporter cell lines to mon-
itor multiple key nodes of the adaptive stress response pathways. Examples 
include cellular redox homeostasis, unfolded protein response, endoplas-
mic reticulum damage, inflammatory signaling, and DNA damage response. 
These assays hold the potential to be incorporated into multiple large-scale 
screens to evaluate health-related chemically-induced biological phenomena 
in drug research as well as hazard identification.
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Chapter 18

1.3.4  �Biomarkers
Biomarkers are typically used to define the onset, continuation, and 
either positive or negative characteristics of the induced biological effects 
of the drug (chemical) under research. Biomarkers have been classified 
as biomarkers of exposure, susceptibility, and outcome. The definition of  
biomarker as used in drug discovery and development is a characteristic 
that is objectively measured and evaluated as an indicator of normal bio-
logical processes, pathogenic processes, or pharmacologic response(s) to 
a therapeutic intervention.27 In pharmacological studies, where a relevant 
therapeutic target is identified and pursued, biomarkers are developed that 
correlate with the proof of concept for the drug candidate. Biomarkers are 
developed to show (1) that a desired modulation of the target occurs as 
anticipated by the chemical therapeutic; (2) that the chemical-induced tar-
get modulation produces a desired biological effect; (3) that the induced 
biological effect alters the disease under study; and (4) that there may be 
increased susceptibility to the therapeutic candidate by certain individu-
als, such as those based on pharmacogenetic predispositions. In toxicology 
studies, biomarkers are objectively measured and evaluated as indicators 
of (1) normal biological processes; (2) pathogenic processes; (3) pharmaco-
logic response(s) to a therapeutic intervention, which in some cases could 
mean excessive or nonspecific pharmacologic activity; and (4) exposure–
response relationships. Pharmacogenetic markers are also studied from 
a toxicological standpoint, particularly in relation to drug metabolism. In 
environmental research and risk assessment, biomarkers are frequently 
referred to as indicators of human or environmental hazards. Discover-
ing and implementing new biomarkers for toxicity caused by exposure 
to a chemical from a therapeutic intervention or in some cases through 
unintentional exposure continues to be pursued through the use of animal 
models to predict potential human effects, from human studies (clinical or 
epidemiological) or from biobanked human tissue samples, or the combi-
nation of these approaches.27 In addition, several omics technologies such 
as transcriptomics, metabolomics, and proteomics have added an import-
ant aspect to biomarker research.12 More recently, epigenomics, which is 
the study of changes in gene activity not attributed to DNA sequence alter-
ations, has been shown to have increased importance in disease causality 
research.12 These technologies and data produced, along with large data-
sets of high-throughput screening data, essentially changed the process of 
defining biomarkers. The process of discovering or inferring biomarkers 
through computational means involves the identification or prediction of 
the molecular target(s) of the chemical, which in many cases can be sec-
ondary or undesirable targets and the association of these targets with 
perturbed biological pathways. The integration of these approaches with 
the quantitative analysis of chemically induced molecular and functional 
changes has brought to fruition the goals originally outlined in the 2007 
NRC report.9
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9Systems Biology Approaches in Pharmacology and Toxicology

1.4  �Environmental Toxicology
The concepts of environmental chemical toxicity are different to the con-
cepts of drug toxicity, as with environmental exposures there are only risk 
considerations, with virtually no benefit associated with chemical exposure. 
Currently there are more than 80 000 chemicals on the market and/or reach 
the environment, and ∼2000 new chemicals are introduced each year. Unlike 
drugs, for the majority of these compounds, there is limited or inadequate 
toxicological information with which to make rational evaluations of risk.2 
Where information exists or is associated from similar structures of anal-
ogous compounds, a risk assessor may arrive at various hazard reference 
values, such as a derived no-effect level, to estimate an acceptable level of 
protection of human or wildlife health and the environment.5 Depending 
on the context and urgency of the risk assessment, which could include the 
classification of a chemical in terms of hazard severity and risk management 
assessment, several assumptions must be made which could cause the level 
of uncertainty to increase.

1.4.1  �Adverse Outcome Pathway
The concept of the AOP was a necessary enhancement to the Toxicity Testing 
in the Twenty-first Century report, made to more adequately support ecologi-
cal risk assessment.6 After the first publication in 2010, and subsequent pub-
lications by scientists at the EPA,10,11 the AOP concept and developing case 
studies have become a primary force in the progression of the computational 
systems toxicology approach in environmental risk assessment. Unlike work 
in drug discovery and development, which always has a confidential busi-
ness information component and therefore results are not fully publically 
available, AOPs are developed in a fully open-access mode and are supported 
by publicly available databases updated by EPA scientists. The AOP con-
cept highlights existing knowledge that links the direct molecular initiating 
event, of which in theory is the interaction or modulation of a molecular bio-
molecule or target with a xenobiotic, and an adverse outcome at a biological 
organization that spans multiple levels of biological organization including 
the following general examples from Ankley and colleagues.6 These events 
are outlined below.
  
	 (1)	� Macro-molecular interactions, such as receptor–ligand interac-

tions including agonism and antagonism, DNA binding, and protein 
oxidation.

	 (2)	� Cellular responses, such as gene activation, protein production, alter-
ations in signaling, and protein depletion.

	 (3)	�O rgan responses, such as disrupted homeostasis, alterations in tissue 
development and/or function, and altered physiology.

	 (4)	�O rganism responses, such as mortality, impaired reproductive and 
developmental function, and development of diseases, such as cancer.
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	 (5)	�P opulation responses, such as alterations in the structure of a popu-
lation and potential extinction of species within regional and global 
environments.

  
In defining the key aspects of an AOP, macro-molecular interactions (1) 

are considered the initiating event, which is called “anchor 1”, and the organ 
and population responses (4 and 5) are considered adverse outcomes at the 
organism or population level, collectively called “anchor 2”. The aspects of 
connecting the initiating events to outcomes can take various forms, depend-
ing on the chemical itself and the amount of information available, includ-
ing in vivo, in vitro, and computational sources. These various linkages also 
help to define key assays and technologies to enhance information collection 
and usage for each individual AOP. Ankley and colleagues6 provide five case 
studies that illustrate these points. Events occurring in the information flow 
between the molecular initiating event and adverse outcome are called inter-
mediate events.28 When an intermediate event represents a biological event 
that is necessary for an adverse outcome to occur and is quantitatively mea-
surable, it is considered to be a key event. In a systems toxicology approach, 
key event relationships between adjacent molecular initiating events, key 
events and adverse outcomes help define alternative approaches to assess 
environmental hazards. In a signaling pathway, this could be upstream or 
downstream events that help define more suitable assays or test systems and 
provide a faster quantitative evaluation of potential adverse outcomes. One of 
the challenges in the AOP process is to define or estimate the exposure of the 
xenobiotic in the relevant species under consideration for risk assessment.

1.4.2  �Expanding Exposure Concepts
As discussed earlier, measurement of exposure, toxicokinetics, system-
ically and importantly, at the critical site of action (anchor 1) is an essen-
tial piece of information. Unlike pharmaceutical compounds, it is highly 
unlikely that there would ever be controlled human toxicokinetics data for 
industrial and environmental chemicals.29 Extrapolating toxicokinetic mod-
els from in vitro data has been used with pharmaceutical compounds, and 
this is termed in vitro to in vivo extrapolation methodology. These models 
have been used with some success for environmental and industrial chem-
icals using high-throughput toxicokinetics (HTTK) models. Several exam-
ples of HTTK methodology have been published, including lecture series 
by scientists from the United States EPA, the National Center for Compu-
tational Toxicology, and the Hamner Institutes for Health Sciences.29,30 The 
primary methodology is termed “reverse dosimetry”, which uses concentra-
tions that produce bioactivity in in vitro assays to estimate doses (mg kg−1 
per day) sufficient to produce steady-state plasma concentrations (Css) in 
µM. These approaches assume 100% bioavailability and a linear relationship 
between Css and dose. Another approach, called probabilistic reverse dosim-
etry approaches for estimating exposure distributions (PROcEED)30 uses 
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biomarkers of exposure, such as blood and urine levels from biomonitoring 
studies, to model the most likely exposure concentrations—or intake doses 
or dose levels—experienced by the study participants that would result in 
the concentrations measured. These modeling procedures are considered a 
work in progress (as of early 2016); however, they represent a critical piece of 
the puzzle in chemical-associated environmental risk assessment. Certain 
drivers of the in vivo toxicokinetics process may be inaccurately estimated 
by in vitro assays such as extra-hepatic metabolism (particularly when using 
in vitro hepatic cell lines), secretion in bile and enterohepatic recirculation, 
absorption and bioavailability, and active transport in several tissues includ-
ing renal and hepatic. In addition, a process to include metabolites into the 
high-throughput screening process for all chemicals will be a necessary part 
of the functional HTTK process.29

1.4.3  �Exposome
The exposome is currently defined as the totality of all human environmen-
tal exposures (exogenous and endogenous) from conception to death.31 
The National Institute of Environmental Health Sciences32 has developed 
a broad definition of environmental exposures, which includes chemical 
exposures, diet, physical activity, stress, pre-existing disease, and the use 
of substances that could lead to addictive consequences. The concepts of 
measuring all exposure events over time is certainly difficult, particularly 
considering the dynamic aspects of exposures leading to adverse outcomes; 
however, much effort is being given to establishing biomarkers related to the 
exposome on both a population and individual basis. These biomarkers are 
being evaluated for refining exposure assessments in risk assessments; pro-
viding correlations leading to exposure–disease associations, particularly in 
data from epidemiological studies; the potential identification of suscepti-
ble individuals or groups; using human data rather than extrapolations from 
animal data; and potentially identifying interventions in reducing certain 
exposures and/or treating the adverse outcome.32 One of the major efforts 
to define and understand environmental exposures is the published bio-
monitoring studies, National Health and Nutrition Examination Survey, 
from the Centers for Disease Control and Prevention National Center for 
Health Statistics. The Fourth National Report on Human Exposure to Environ-
mental Chemicals with updated tables33 provides national (USA) biomonitor-
ing data (serum and urinary levels) on 265 chemicals from subsets of the 
population. The website contains details of data sources and data analysis, 
interpretation of report data, and chemical and toxicological information. 
Bell and Edwards34 have described a workflow, a frequent itemset mining 
approach, to identify relationships between chemicals and health biomark-
ers and disease. Currently, the most complete information source for toxi-
cology information and exposure identification, including the exposome, is 
the Toxin and Toxin-Target Database31 (T3DB; www.t3db.ca). The details of 
T3DB are discussed in Chapter 2.
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1.5  �Systems and Network Pharmacology
Systems pharmacology is defined as a translational science that aims to 
examine all the biological activities in the body related to internal exposure 
of a drug or drug candidate and the resultant drug responses and phar-
macological activities.35 Systems pharmacology uses both experimental 
approaches and computational analyses to examine and understand drug 
action across multiple levels including molecular, cellular, tissue, and whole 
organisms36 with consideration to the presence of several interacting path-
ways.37 The field has grown and developed rapidly because of the emergence 
of omics technologies and network analysis capabilities, and the increased 
number of computer scientists, engineers, and mathematicians involved 
in addressing and solving complex biological problems.35 In an NIH white 
paper by the Quantitative Systems Pharmacology (QSP) workshop group in 
2011, QSP was defined as providing an integrated approach to determining 
and understanding mechanisms of action of drugs and drug candidates in 
preclinical models (in vitro and in vivo) and in patients eventually receiving 
the drugs.38 The stated goals were to create a knowledge base to facilitate 
the change of complex cellular networks in pre-determined ways with mono 
and/or combination therapies; maximize therapeutic benefit by altering 
the pathophysiology of the disease being treated; and minimize toxicity.38 
Given that the mammalian signaling and regulatory pathways are complex, 
drug–target interactions can potentially lead to adverse effects due to the 
propagation of signal flow to distal effectors (off-targets) in multiple cells 
and tissues.39 However, using complex pharmacological and toxicological 
network analyses, both positive and negative effects can be predicted. Zhao 
and Iyengar39 have identified key questions that highlight the importance 
of identifying and pursuing a systems pharmacology approach in drug 
research as a starting point: (1) what are characteristics of specific diseases 
where drugs modulating a single target may not provide therapeutic efficacy; 
(2) how do adverse events arise from intra- and intercellular networking; (3) 
how does the genomic status of an individual relate to potential drug efficacy 
particularly when poly-pharmacy (combination) is anticipated; (4) how do 
combinations of targets and/or signaling nodes in complex diseases predict 
efficacious outcomes with drug combinations; and (5) can detailed usage of 
the interactome and genetic status of an individual predict therapeutic effi-
cacy or toxicity? Practically, systems pharmacology allows the application of 
model-based thinking during target selection and target validation before a 
lead compound is selected for development.40 QSP models can incorporate 
details of single and multiple drug plasma concentrations, systems biology 
models, pertinent regulatory networks and motifs of upstream and down-
stream loops including feedback and feedforward processes, and individual 
genomic and epigenetic characteristics important for individualized patient 
therapies.41 Visser and colleagues42 describe the use of QSP models and the 
creation of a flexible tool kit at Merck, which has enhanced key drug discov-
ery and development decisions. The tool kit includes PK/PD models, disease 
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models, comparator models, model-based meta-analysis approaches, clini-
cal trial design simulations, criteria for quantitative decision-making, and 
overall performance metrics. As an example, these approaches have been 
used to quantify anticancer drug synergy in resistant cells and predicting 
effective drug combinations. Models have also been effective in predicting 
and understanding positive off-target activities that could require early risk–
benefit considerations. These activities include endocrine disruptors, per-
oxisome proliferator-activated-receptor-agonists, 5-HT2B serotonin receptor 
agonists, and ligand-gated ion channel protein agonists.43 An example of 
a tool for simulation and evaluation of QSP models, is the MatVPC, which 
incorporates visual predictive checks as a diagnostic to evaluate the struc-
tural and stochastic parts of a QSP model.44 Biliouris and colleagues44 illus-
trate the use with three models: (1) a three-compartment pharmacokinetics 
model with oral and intravenous bolus dosing; (2) a two-compartment phar-
macokinetics model with multidose intravenous infusion; and (3) a pharma-
codynamics model describing the time-course of body weight. Zhang and 
colleagues41 describe a Sobol sensitivity analysis that determines how much 
of the variability in QSP models relates to each input parameter including 
the interactions of multiple parameters as they relate to the overall model 
output variability. This is a highly important aspect of QSP model building, 
refinement, and use, as it identifies the important and influential param-
eters that drive model output and, therefore, the inherent uncertainty of 
model predictions.

1.5.1  �Secondary Pharmacology and Off-Target Effects
Secondary pharmacology has been described as off-target pharmacology 
where a drug interacts with other targets as well as the intended target, and 
multi-target drug research where drugs can interact effectively with multiple 
targets increasing the therapeutic efficacy in certain diseases.36,45–49 These 
effects can provide both beneficial and adverse outcomes, and in some cases 
these drug qualities define several adverse effects seen with drugs in devel-
opment and those marketed. Liu and colleagues49 proposed a drug surveil-
lance network for adverse drug reaction prediction through the integration 
of chemical compound signatures; biological targets including proteins, 
transporters, and enzymes, along with pathways; and phenotypic properties. 
Wang and colleagues45 report on a protein pharmacology interaction net-
work database, PhIN, where users can generate interacting target networks 
within and across human biological pathways by defining shared chemical 
compounds or scaffolds using a defined activity cutoff. The database also 
defines interactions between human–virus and virus–virus pathways. The 
database contains ∼1 350 000 compounds; ∼9400 targets with more than 
12 400 000 activity measurements (as of March 2015). This type of database 
provides information and evidence-based predictions of chemical structures 
that interact with multiple targets, which would be useful in multi-target 
drug design and side effect predictions.
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1.5.2  �Prediction of Potential Adverse Effects
A predictive pharmaco-safety network has been proposed by Cami and col-
leagues,50 where known drug–safety relationship networks are combined 
with adverse event information and detailed biological network informa-
tion on several drugs as a means to predict likely but prospectively unknown 
adverse events. In this approach more directed surveillance programs can 
be instituted for drugs under development and those marketed. A multi-
ple evidence fusion method for both approved and novel molecules was 
developed by Cao and colleagues51. In this approach the authors assumed 
that drug behavior at different biological levels would provide predictive 
information on adverse effects, and that semantic relationships between 
adverse reactions would aid in predicting new or unknown adverse reactions 
for certain drugs. They also found that drug–adverse-effect networks would 
allow the inference of unknown associations. These evaluations used similarity  
measures with drug and adverse event pairs. The authors concluded that 
these methods are inherently beneficial especially in drug discovery during 
target selection, drug repositioning, and multi-target inquiry and development. 
In addition, the methods provide a better focus for large-scale clinical trials, 
and more focused post-marketing drug surveillance.50–52

1.6  �Conclusions
Systems biology approaches as applied to the fields of toxicology and phar-
macology have increased our abilities to both visualize and understand com-
plex chemical–biological interactions at the molecular, organ, susceptible 
individual, and species levels. Applying quantitative mechanistic models 
into a network-based analysis has not only improved our knowledge base 
on both chemically-induced pharmacological and toxicological effects, but 
also has allowed new approaches to emerge that rely less on in vivo animal 
testing. The ever growing abundance of databases and tools have caused the 
practitioners of toxicology, in particular, to step forward out of the proverbial 
animal toxicity box and approach solutions to problems in new ways. This 
has improved the understanding of adverse events, hazards, and risk assess-
ment in all related fields: research and development of therapeutics; envi-
ronmental, workplace, and household chemical exposures; and the design of 
safer chemicals in green chemistry endeavours.
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2.1  �Introduction
Several authors have published reviews of the application of systems biology 
approaches to toxicology, all of which require the use of multiple data sets and 
resources to draw novel inferences about mechanisms and modes of action 
of chemicals on biological targets, networks, and systems. These approaches 
include those in therapeutics research, particularly in understanding and 
predicting adverse drug reactions, and sometimes environmental or eco-
toxicology approaches where information on the chemical(s) in question is 
sparse.1–7 As discussed by Sturla and colleagues5, the core objective of systems 
toxicology is to uncover and hopefully elucidate mechanisms that causally 
link exposure to active substances with chemically induced adverse events 
and disease. The process requires the collection of quantifiable experimental 

 
Pu

bl
is

he
d 

on
 0

1 
M

ar
ch

 2
01

7 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

37
31

-0
00

19



Chapter 220

data typically coupled with extensive information gained by processing large 
sets of data positioned within biological networks and pathways. These data 
are garnered from accessible databases to allow the reflection of molecular 
changes in the context of cellular, tissue-level, or physiological changes that 
are linked to disease phenotypes or adverse events at the organism level.7 
Several authors have published lists of relevant databases for toxicology data, 
both for therapeutic and environmental research.1,8–10 Accordingly, systems 
toxicology relies heavily on computational approaches to manage, analyze, 
and interpret these data with the ultimate goal to aid in the development 
of predictive in silico models that can be used in risk assessment. Computa-
tional systems toxicology has the following major areas of focus.6

  
	 (1)	�A nalyzing the massive amounts of in vitro and in vivo data contained 

in databases generated by multiple methods and correlating structural 
features of the compounds with levels of exposure and outcome.

	 (2)	�R epresenting the relevant mechanisms leading to an adverse out-
come as biological network models that describe the normal state 
and the causal effect of their perturbations upon exposure to chemical 
compounds.

	 (3)	� Quantifying the dose-dependent and time-resolved perturbations of 
these biological networks their overall biological impact upon expo-
sure and assessing risk.

	 (4)	� Building and validating adequate computational models with predic-
tive power that can be applied to risk assessment.

  
In the adverse outcome pathway model, the sequence of events that lead 

to an adverse outcome span multiple levels of biological organization,8 but 
always contain a molecular initiating event, which is defined as the initial 
interaction between a chemical molecule and a biomolecule or biosystem 
that can be causally linked to an outcome via a pathway.8 In the therapeu-
tics toxicology field, systems pharmacology, an emerging interdisciplinary 
field combining network and chemical biology, provides important tools to 
uncover and understand adverse drug reactions and may mitigate the draw-
backs of traditional methods. In particular, network analysis allows research-
ers to integrate heterogeneous data sources and quantify the interactions 
between biological and chemical entities. Recent work in this area has com-
bined chemical, biological, and large-scale observational health data to pre-
dict adverse drug reactions in individual patients and global populations.11

As mentioned in Chapter 1, several factors have been involved in the rapid 
changes seen in the toxicology field, including the understanding of genetic 
changes, which have enhanced the ability to understand diseases, and chem-
ically-induced toxicities at the molecular level. “Omics” technologies and 
approaches such as transcriptomics, metabolomics, proteomics, and epig-
enomics have changed the way mechanisms of toxicity and the perturba-
tion of biological systems that lead to adverse outcomes are viewed.5 These 
advances have been coupled with the public availability of large data sets of 
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21Databases Facilitating Systems Biology Approaches in Toxicology

information and new modeling approaches that have enhanced the ability 
to understand toxicological events and effects at multiple biological levels.6 
Since scientific approaches, inquiries, and visions aimed at understanding 
toxicological events and outcomes have been broadened tremendously, this 
reinforces the need for new and better ways to assess toxicity and risk.

2.2  �Categorized Lists of Databases for Systems 
Toxicology

The following list includes free on-line data sources and tools placed into 
categories based on source and content.

2.2.1  �TOXNET Databases (Including Those with Direct Links 
from TOXNET)

TOXicology Data NETwork (TOXNET)12 is a central website hub with links to 
several toxicology data files that report on several chemicals, primarily those 
of toxicological and environmental concern. The breadth of information 
includes chemical nomenclature and current literature that gives evidence 
and/or speculation on a chemical’s toxicological effects.
  

●● HSDB13 (Hazardous Substances Data Bank) Peer-reviewed toxicology data 
for >5000 hazardous chemicals. Data can be searched by relevance or 
filter by larger category groupings: human health effects, emergency 
medical treatment, animal toxicity studies, metabolism/pharmaco-
kinetics, pharmacology, environmental fate/exposure, environmen-
tal standards & regulations, chemical/physical properties, chemical 
safety & handling, occupational exposure, standards, manufacturing/
use information, laboratory methods, special references, synonyms 
and identifiers, and administrative information. Additional features 
of HSDB include “review status tags” that indicate the level of quality 
review: peer reviewed, QC reviewed (quality control review that has not 
yet been officially reviewed), and un-reviewed (statements that do not 
necessarily need scientific review). A complete list of chemicals in the 
HSDB is available at https://sis.nlm.nih.gov/enviro/hsdbchemicalslist.
html.

●● TOXLINE14 5 million references from specialized journals, government 
reports, meeting abstracts, and other relevant collections of toxicology 
information. The collection of information includes biochemical, phar-
macological, physiological, and toxicological effects of drugs and other 
chemicals.

●● ChemIDPlus15,16 Dictionary of >400 000 chemicals including names, 
synonyms, and structures; a chemical searching system generated 
from more than 100 sources. National Library of Medicine databases 
serve as its primary source of information; however, it also compiles 
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Chapter 222

information from the Canadian Domestic Substances List, European 
Inventory of Existing Commercial Chemical Substances (EINECS), 
Environmental Protection Agency (EPA) Toxic Substances Control Act 
(TSCA) Chemical Substance Inventory, the SUPERLIST set of regulatory 
resources, and other internet databases such as EPA Substance Registry 
System, the Food and Drug Administration (FDA) Drugs@FDA system, 
International Agency for Research on Cancer (IARC), National Institute 
of Allergy and Infectious Diseases (NIAID), and the National Institute of 
Standards and Technology (NIST) Chemistry WebBook. All chemicals 
are searchable by name, synonym, Chemical Abstracts Service (CAS) 
registry number, molecular formula, classification code, locator code, 
structure, and/or physical properties. Two versions of ChemIDplus 
exist: ChemIDplusLite15 and ChemIDplusAdvanced.16 ChemIDplusLite 
provides chemical information searching and links to other resources. 
Unlike ChemIDplusAdvanced, ChemIDplusLite does not require plugins 
or applets. As such, ChemIDplusAdvanced has more advanced search 
capabilities. The default structure editor is Marvin for JavaScript (Che-
mAxon) that allows a user to download a single structure Mol file in 
ChemIDplus. This applet enables users to conduct advanced chemical 
structure queries (substructure search, similarity search, exact struc-
ture search, flex search, and flexplus search), and filter similar and 
substructure chemical scaffolds. Structure descriptors include InChI™ 
(International Chemical Identifier), InChIKey, and SMILES™ (simpli-
fied molecular input line entry system) notations, all of which may be 
downloaded. InChiKeys link to other search engines to find a struc-
ture in other systems. Both Lite and Advanced ChemIDplus records are 
updated daily. Although ChemIDplus no longer supports Chime (it’s 
previous free chemical display application), another structure-drawing 
package, Accelrys Draw No Fee, is now publicly accessible.

●● LactMed17 drugs and lactation database lists drugs and other chemicals 
to which breastfeeding mothers may be exposed. It includes informa-
tion on the levels of such substances in breastmilk and infant blood, 
and the possible adverse effects in the nursing infant. Suggested thera-
peutic alternatives to those drugs are provided, where appropriate. All 
data are derived from the scientific literature and fully referenced.

●● DART18 Developmental and Reproductive Toxicology Database and ref-
erences. It provides >200 000 journal references covering teratology and 
other aspects of developmental and reproductive toxicology. DART is 
created from a search profile using PubMed.

●● TOXMAP19 TOXMAP is a geographic information system from the Divi-
sion of Specialized Information Services of the US National Library 
of Medicine that uses maps of the United States to show the amount 
and location of toxic chemicals released into the environment. Users 
can visually explore data derived from the EPA's Toxics Release Inven-
tory (TRI), which provides information on the releases of toxic chemi-
cals into the environment as reported annually by industrial facilities 
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23Databases Facilitating Systems Biology Approaches in Toxicology

around the United States. TOXMAP also contains information from the 
EPA's superfund program, as well as some non-EPA datasets such as the 
US Census and National Cancer Institute health data.

●● TRI20 Toxics Release Inventory. Annual environmental releases of more 
than 600 toxic chemicals by US facilities as reported annually to the 
EPA by US industrial and federal facilities. TRI's data reports, beginning 
with the 1987 reporting year, contain information about the types and 
amounts of toxic chemicals that are released each year to the air, water, 
land and by underground injection, as well as information on the quan-
tities of toxic chemicals sent to other facilities for further waste man-
agement In agreement with the Pollution Prevention Act of 1990, source 
reduction and recycling data are also included in TRI.

●● Household Products Database21 Potential health effects of chemicals in 
>10 000 common household products. Information is also available for 
some industrial-grade products. Products can be searched by brand 
name, product type, manufacturer, ingredient/chemical, and by health 
effects. The record for each product shows the ingredients as reported 
by the manufacturer. For many products, a link to the manufacturer’s 
material safety data sheet is provided, which includes more information 
such as handling, disposal, and health effects.

●● Haz-Map22 Links jobs and hazardous tasks with occupational diseases 
and their symptoms, in which causality from chemical and/or biolog-
ical agents has been established based on current scientific evidence.

●● IRIS23 Integrated Risk Information System. IRIS contains data in support of 
human health risk assessment, including hazard identification and dose–
response assessments of more than 550 chemicals (as of mid-2014) that 
evaluate information on health effects (cancer and non-cancer) resulting 
from exposure to environmental contaminants. IRIS data are reviewed by 
EPA scientists several times a year and represents EPA consensus.

●● ITER24 International Toxicity Estimates for Risk. Risk information for 
more than 600 chemicals of environmental concern from authoritative 
groups worldwide. ITER integrates data from Centers for Disease Con-
trol Agency for Toxic Substances and Disease Registry, Health Canada, 
RIVM, US EPA, IARC, NSF International, and independent parties offer-
ing peer-reviewed risk values. It is compiled by Toxicology Excellence 
for Risk Assessment (TERA) and its records that are updated multiple 
times a year. The Risk Information Exchange (RiskIE; http://www.alliance-
forrisk.org/RiskIE.htm) is a companion database to ITER. It includes 
in-progress or recently completed risk assessment projects. RiskIE is 
a database of notifications about a variety of human health risk assess-
ment projects that are underway or recently completed. Projects listed 
on RiskIE are both chemical- and nonchemical-specific, and range from 
many types of risk value development to risk methods document devel-
opment. RiskIE currently tracks >4000 in-progress or recently com-
pleted risk assessment projects conducted by 35 different organizations 
representing 13 different countries.
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Chapter 224

●● ALTBIB25 Resources on Alternatives to the Use of Live Vertebrates in Bio-
medical Research and Testing.

●● CCRIS26 Chemical Carcinogenesis Research Information System. Car-
cinogenicity and mutagenicity test results for >8000 chemicals (no lon-
ger updated).

●● CPDB27 Carcinogenic Potency Database. Standardized analyses of 
the results of 6540 chronic, long-term animal cancer tests (no longer 
updated).

●● GENE-TOX28 Genetic Toxicology Data Bank. Peer-reviewed genetic toxi-
cology test data for more than 3000 chemicals (no longer updated).

2.2.2  �US EPA Chemical Toxicity Databases
Chemical safety research data are made publicly available, including rapid, 
automated (high-throughput) chemical screening data; aggregated public 
sources of chemical toxicity data; animal toxicity studies; chemical expo-
sure data and prediction models; and high quality chemical structures and 
annotations.
  

●● ToxCast and Tox21 Data29 Data on >2000 chemicals evaluated in more 
than 700 high-throughput assays.

●● ACToR30 ACToR (Aggregated Computational Toxicology Resource) is the 
EPA's online warehouse of all publicly available chemical toxicity data 
and can be used to find all publicly available data about potential chem-
ical risks to human health and the environment.

●● ToxRefDB31 The Toxicity Reference Database (ToxRefDB) contains thou-
sands of animal toxicity testing results, currently on 474 chemicals.

●● DSSTox32 DSSTox provides the accurate mapping of bioassay and physi-
cochemical property data associated with chemical substances to their 
corresponding chemical structures.

●● CHAD33 Consolidated Human Activity Database; exposure and time-use 
studies. Data can be downloaded.

●● CPCat34 The Chemical and Product Categories database; catalogs the 
use of >40 000 chemicals and their presence in different consumer 
products.

●● iCSS Dashboard35 Developing tool expected to be the online portal for all 
chemical research data and studies.

2.2.3  �National Toxicology Program Databases
●● CEBS36 The Chemical Effects in Biological Systems database houses 

data of interest to environmental health scientists. CEBS is a public 
resource, and has received depositions of data from academic, indus-
trial, and governmental laboratories. CEBS is designed to display data 
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25Databases Facilitating Systems Biology Approaches in Toxicology

in the context of biology and study design, and to permit data integra-
tion across studies for novel meta-analysis. Users are required to install 
scripts for using Adobe Flex applications with JAWS.

●● DrugMatrix37 Comprehensive results of thousands of highly controlled 
and standardized toxicological experiments in which rats or primary 
rat hepatocytes were systematically treated with therapeutic, industrial, 
and environmental chemicals at both non-toxic and toxic doses.

●● ToxFx38 An automated toxicogenomics analysis application utilizing 
toxicogenomic signatures, specially curated biochemical pathways, and 
other relevant data to interpret toxicity-related transcriptomic data and 
present the results as a detailed, customized report.

●● Historical Control Databases39–41 Historical control data from NTP toxic-
ity studies. Tumor incidences and growth and survival curves for con-
trol animals from NTP's 2 year carcinogenesis studies are summarized 
by species, sex, route of administration, and vehicle. The historical con-
trols for the genetically modified models are also reported.

●● NICEATM LLMA Database42 (NTP Interagency Center for the Evaluation 
of Alternative Toxicological Methods) Analyses to evaluate the useful-
ness of the murine local lymph node assay (LLNA) to identify potential 
skin sensitizers.

2.2.4  �Additional Toxicity Databases
●● T3DB43 The Toxin and Toxin Target Database is a bioinformatics resource 

that as its future name, Toxic Exposome Database, implies, is specifi-
cally designed to capture information about the toxic exposome. The 
focus of the T3DB is providing mechanisms of toxicity and target pro-
teins for each toxin interactively linked in both directions. It is also fully 
searchable and supports extensive text, sequence, chemical structure, 
and relational query searches. The user can also hyperlink information 
into other databases without re-entering chemical information. The 
database currently houses 3673 toxins described by 41 733 synonyms, 
including pollutants, pesticides, drugs, and food toxins, which are linked 
to 2087 corresponding toxin target records. Altogether there are 42 471 
toxin and toxin target associations. Each toxin record (ToxCard) con-
tains more than 90 data fields and holds information such as chemical 
properties and descriptors, toxicity values, molecular and cellular inter-
actions, and medical information. This information has been extracted 
from >18 143 sources which include other databases, government doc-
uments, books, and scientific literature. It is both modeled after and 
closely linked to the Human Metabolome Database and DrugBank.

●● FAERS44 Adverse Effects Reporting system of post-market safety surveil-
lance for all approved drug and therapeutic biological products.

●● SIDER45(Side Effect Resource) Information on marketed drugs and their 
recorded adverse drug reactions.
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●● VAERS46 (Vaccine Adverse Event Reporting System).
●● JECDB47 (Japan Existing Chemical Data Base) Safety examination of 

existing chemicals and safety programs in Japan.
●● Offsides48 Finds different associations from adverse events reported 

during clinical trials before drug approval. The Offsides database is a 
resource of 438 801 off-label—those effects not listed on the FDA's offi-
cial drug label—side effects for 1332 drugs and 10 097 adverse events.

●● Twosides49 A resource of polypharmacy side effects for pairs of drugs. 
This database contains 868 221 significant associations between 59 220 
pairs of drugs and 1301 adverse events. These associations are limited 
to those that cannot be clearly attributed to either drug alone.

●● DITOP50 A comprehensive database providing Drug-Induced Toxicity 
Related Protein information. The related toxicities include overdose tox-
icity, idiosyncratic toxicity, drug–drug interactions, and genetic toxicity.

2.2.5  �Chemical–Gene–Protein Databases
●● CTD51 Comparative Toxicogenomics Database. Provides access to sci-

entific data describing relationships between chemicals, genes, and 
human diseases. The database contains curated data that describes 
cross-species interactions for chemical–gene, chemical–protein, and 
gene–disease. KEGG (Kyoto Encyclopedia of Genes and Genomes) and 
Reactome pathway data describe known molecular interaction and 
reaction networks. These data are integrated with chemicals, genes, and 
diseases in CTD to provide insights into molecular networks that may 
be affected by chemicals, and possible mechanisms underlying environ-
mental diseases. CTD has a hierarchical arrangement of interactions 
that characterize physical, regulatory, and biochemical interactions. 
This vocabulary comprises 70 terms, including actions (e.g. “binds to”, 
“imports”), operators that describe the degree of a chemical's effect (e.g. 
“increases”), and qualifiers that specify the form of the gene or chemi-
cal involved in an interaction (e.g. “protein” or “chemical metabolite”, 
respectively). The chemical category integrates a chemical subset of the 
Medical Subject Headings (MeSH®), the hierarchical vocabulary from 
the US National Library of Medicine. The information about chemicals 
includes chemical structures, curated interacting genes and proteins, 
curated and inferred disease relationships, and enriched pathways 
and functional annotations. CTD contains curated and inferred chem-
ical–disease and gene–disease associations. Inferred associations are 
established via CTD-curated chemical–gene interactions and infer-
ence scores are calculated for all inferred relationships. In gene–gene 
interactions, CTD represents gene–gene interactions from BioGRID 
(see later) that consist of genetic and protein interactions curated from 
primary literature for all major model organisms by BioGRID curators. 
These interactions are available for each gene and reference, and for 
the inference networks underlying each chemical–disease association. 
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27Databases Facilitating Systems Biology Approaches in Toxicology

In addition, the user can generate pathways for custom collections of 
genes using the set analyzer tool. Several other databases and tools that 
associate chemicals–genes–diseases use CTD as the primary source of 
information.

●● ChemDIS52 A chemical–disease inference system based on chemical–
protein interactions.

●● STITCH53 (Search Tool for Interacting Chemicals) A resource to explore 
known and predicted interactions of chemicals and proteins. Chemi-
cals are linked to other chemicals and proteins by evidence derived 
from experiments, databases, and the literature.

●● String54 Protein–protein interactive networks.
●● Chemprot55 A publicly available compilation of chemical–protein–dis-

ease annotation resources that enables the study of systems pharma-
cology for a small molecule across multiple layers of complexity from 
molecular to clinical levels.

●● Human Protein Atlas56 An interactive database and visualization tool for 
the human proteome based on antibody methods and transcriptomics 
analysis across all major tissues and organs of the human body.

●● BioGrid57 (Biological General Repository for Interaction Datasets) A 
searchable interaction repository with data compiled through compre-
hensive curation efforts. Includes protein and genetic interactions and 
post-translational modifications from major model organisms. All data 
can be freely downloaded.

2.2.6  �Pathway-Network Databases
●● KEGG58 KEGG is a database resource for understanding high-level func-

tions and utilities of the biological system, such as the cell, the organ-
ism and the ecosystem, from molecular-level information, especially 
large-scale molecular datasets generated by genome sequencing and 
other high-throughput experimental technologies. The KEGG home 
page has links to several data-oriented entries including: KEGG pathway 
maps, BRITE functional hierarchies, KEGG modules, ortholog groups, 
genomes, genes and proteins, small molecules, glycans, biochemical 
reactions, enzymes, human diseases, drugs, and health information 
resources. There are also several analytical tools including mapping 
tools, pathogen checker of antimicrobial resistance genes, sequence 
similarity search, and chemical similarity search. The KEGG is a  
primary source of information for most databases that include pathway 
information.

●● Reactome59 Reactome is a curated and peer-reviewed pathway database 
that provides intuitive bioinformatics tools for visualization, interpre-
tation, and analysis of pathway knowledge. Data mining and analysis 
tools include a pathway browser, tools that merge information into a 
portal, species comparisons, cystoscope plug-in, small molecule search, 
and literature citation searching.
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●● Cytoscape60 Software platform for visualizing molecular interaction 
networks and biological pathways. Networks can be integrated with 
annotations, gene expression profiles, and other data. Additional fea-
tures include apps, formerly called plug-ins (mostly free) which allow 
network and molecular profiling, different layouts, and connection with 
databases. Cytoscape links are frequently available with several other 
databases.

●● Pathway Commons61 Pathway Commons stores and disseminates 
knowledge about biological pathways: >42 000 pathways and 1 350 000 
interactions from 22 data sources.

●● NDEx62 The Network Data Exchange provides an open-source frame-
work where scientists and organizations can share, store, manipulate, 
and publish biological network knowledge.

2.2.7  �Chemistry, Structural Alert, and QSAR Databases and 
Tools

●● PubChem63 Provides information on the biological activities of small 
molecules. PubChem is organized as three linked databases within the 
National Center for Biotechnology Information’s Entrez information 
retrieval system. These are PubChem Substance, PubChem Compound, 
and PubChem BioAssay. PubChem also provides a fast chemical struc-
ture similarity search tool.

●● ChemSpider64 ChemSpider is a free chemical structure database provid-
ing fast text and structure search access to over 50 million structures 
from hundreds of data sources.

●● ChemProp65 Several modules including structural alerts for electrophilic 
reactivity.

●● CORAL66Quantitative structure–property relationships (QSPR)/quantita-
tive structure–activity relationships (QSAR) analysis for several toxicity 
endpoints.

●● OECD Toolbox67 QSAR toolbox for grouping chemicals into categories.
●● TEST68 The Toxicity Estimation Software Tool allows users to easily esti-

mate the toxicity of chemicals using QSAR methodologies.
●● Virtual Computational Chemistry Laboratory69 On-line cheminformatics 

tools to calculate chemical properties including A Log P.
●● Danish (Q)SAR Database70 This Danish (Q)SAR database is a repository 

of estimates from over 70 (Q)SAR models for 166 072 chemicals. The (Q)
SAR models encompass endpoints for physicochemical properties, fate, 
eco-toxicity, absorption, metabolism and toxicity.

●● Advaitabio: iPathwayGuide71 presents an advanced pathway analysis 
platform for high-throughput sequencing data.

●● LAZAR72 (Lazy Structure–Activity Relationships) Takes a chemical struc-
ture as input and provides several toxicity predictions. LAZAR is built on 
top of OpenTox www.opentox.org/.
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29Databases Facilitating Systems Biology Approaches in Toxicology

●● Toxtree73 Toxtree is a full-featured and flexible user-friendly open source 
application, which is able to estimate toxic hazard by applying a deci-
sion-tree approach. Toxtree could be applied to datasets from various 
compatible file types. User-defined molecular structures are also sup-
ported—they could be entered by SMILES, or by using the built-in 2D 
structure diagram editor. Toxtree currently has the following plug-ins:

  
–– Cramer rules and Cramer rules with extensions
–– Verhaar scheme and modified verhaar scheme
–– skin irritation prediction
–– eye irritation prediction
–– START biodegradation and persistence
–– Benigni/Bossa rulebase for mutagenicity and carcinogenicity
–– in vitro mutagenicity (Ames test) alerts by ISS
–– structure alerts for the in vivo micronucleus assay in rodents (ISSMIC)
–– structural alerts for functional group identification (ISSFUNC)
–– structure alerts for identification of Michael acceptors
–– structure alerts for skin sensitization reactivity domains
–– DNA binding alerts
–– Protein binding alerts
–– Kroes thresholds of toxicological concern decision tree
–– SMARTCyp: cytochrome P450-mediated drug metabolism and meta

bolites prediction
  

●● CAESAR74 QSAR models supporting the REACH legislation including 
bioconcentration, skin sensitization, carcinogenicity, and developmen-
tal toxicity.

●● ToxAlerts75 A web-based platform for collecting and storing toxicologi-
cal structural alerts from literature and for virtual screening of chemical 
libraries to flag potentially toxic chemicals and compounds that can cause 
adverse side effects. An alert is uniquely identified by a SMARTS template, 
a toxicological endpoint, and a publication where the alert was described. 
Additionally, the system allows storing complementary information such 
as name, comments, and mechanism of action, as well as other data.

●● Online Chemical Database76 The Online Chemical Modeling Environ-
ment is a web-based platform that aims to automate and simplify the 
typical steps required for QSAR modeling. The platform consists of two 
major subsystems: the database of experimental measurements and 
the modeling framework. A user-contributed database contains a set of 
tools for easy input, search and modification of thousands of records. 
Includes chemical property predictions, ToxAlert screening, and opti-
mization of different properties with MolOptimizer.

●● ToxRead77 Software to assist in making reproducible read-across evalua-
tions. The software shows similar chemicals to the input chemical, struc-
tural alerts, and other relevant features in common between chemicals.
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2.2.8  �Drug and Drug Target Databases
●● DrugBank78 The DrugBank database is a bioinformatics and chemin-

formatics resource that contains detailed drug data with correlating 
comprehensive drug target, including sequence, structure, and path-
way information. The database includes >8000 drug entries including 
approved small molecules, biologics, nutraceuticals, and >6000 exper-
imental drugs. DrugBank is the source of drug information for most 
databases that incorporate drug information.

●● TTD79 (Therapeutic Target Database) A database that provides informa-
tion about the known and explored therapeutic protein and nucleic acid 
targets, the targeted disease, pathway information, and corresponding 
drugs directed at each target. Included are links to all relevant databases 
where detailed information exists.

●● Chemmapper80 An online platform to predict polypharmacy effects and 
mode of action for small molecules based on 3D similarity computation. 
ChemMapper collects >350 000 chemical structures with bioactivities 
and associated target annotations (as well as >3 000 000 non-annotated 
compounds for virtual screening).

●● Pharmmapper81 An updated integrated pharmacophore-matching 
platform with statistical methods for potential target identification. 
A pharmacophore database extracted from all targets in TargetBank, 
DrugBank, BindDB, and PDTD (Tripos mol2 or MDL SDF formats).

●● PDTD82 (Potential Drug Target Database) A dual function database of 
known and potential drug targets focusing on targets with known 3D 
structures. PDTD contains 1207 entries covering 841 known and poten-
tial drug targets with structures from the Protein Data Bank. This is con-
nected to a docking program, Tarfisdock83 that docks a small molecule 
into protein targets in PDTD (mol2 formats).

●● PK/DB84 (Database for pharmacokinetic properties) was designed with 
the aim of creating robust databases for pharmacokinetic studies and 
in silico absorption, distribution, metabolism, and excretion (ADME) 
prediction. The database contains high-quality data for structurally 
diverse compounds associated with known ADME properties, includ-
ing human oral bioavailability, human intestinal absorption, plasma 
protein binding, blood–brain barrier, among others. PK/DB manages 
1389 compounds incorporating structurally diverse drug-like and lead-
like molecules which represent 4141 pharmacokinetic measurements, 
including five validated models for in silico ADME prediction.

●● BindingDB Binding Database85 is a database of measured binding affin-
ities, focusing chiefly on the interactions of protein considered to be 
drug-targets with small, drug-like molecules. The database contains 
1 233 342 binding data, for 6352 protein targets and 541 006 small mole-
cules. There are 2907 protein–ligand crystal structures with BindingDB 
affinity measurements for proteins with 100% sequence identity, and 
7392 crystal structures for proteins with 85% sequence identity.
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