The Carcinogenicity of Metals Human Risk through Occupational and Environmental Exposure

Issues in Toxicology

Series Editors:

Professor Diana Anderson, University of Bradford, UK

Dr Michael D Waters, Integrated Laboratory Systems, Inc, N Carolina, USA

Dr Martin F Wilks, University of Basel, Switzerland

Dr Timothy C Marrs, Edentox Associates, Kent, UK

Titles in the Series:

- 1: Hair in Toxicology: An Important Bio-Monitor
- 2: Male-mediated Developmental Toxicity
- 3: Cytochrome P450: Role in the Metabolism and Toxicity of Drugs and other Xenobiotics
- 4: Bile Acids: Toxicology and Bioactivity
- 5: The Comet Assay in Toxicology
- 6: Silver in Healthcare
- 7: In Silico Toxicology: Principles and Applications
- 8: Environmental Cardiology
- 9: Biomarkers and Human Biomonitoring, Volume 1: Ongoing Programs and Exposures
- 10: Biomarkers and Human Biomonitoring, Volume 2: Selected Biomarkers of Current Interest
- 11: Hormone-Disruptive Chemical Contaminants in Food
- 12: Mammalian Toxicology of Insecticides
- 13: The Cellular Response to the Genotoxic Insult: The Question of Threshold for Genotoxic Carcinogens
- 14: Toxicological Effects of Veterinary Medicinal Products in Humans: Volume 1
- 15: Toxicological Effects of Veterinary Medicinal Products in Humans: Volume 2
- 16: Aging and Vulnerability to Environmental Chemicals: Age-related Disorders and their Origins in Environmental Exposures
- 17: Chemical Toxicity Prediction: Category Formation and Read-Across
- 18: The Carcinogenicity of Metals: Human Risk through Occupational and Environmental Exposure

How to obtain future titles on publication:

A standing order plan is available for this series. A standing order will bring delivery of each new volume immediately on publication.

For further information please contact:

Book Sales Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK

Telephone: +44 (0)1223 420066, Fax: +44 (0)1223 420247

Email: booksales@rsc.org

Visit our website at www.rsc.org/books

The Carcinogenicity of Metals Human Risk through Occupational and Environmental Exposure

Alan B. G. Lansdown

Imperial College London, UK Email: a.lansdown@imperial.ac.uk

RSCPublishing

Issues in Toxicology No. 18

ISBN: 978-1-84973-718-0 ISSN: 1757-7179

A catalogue record for this book is available from the British Library

© Alan Lansdown 2014

All rights reserved

Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry or the copyright owner, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page.

The RSC is not responsible for individual opinions expressed in this work.

Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK

Registered Charity Number 207890

For further information see our web site at www.rsc.org

- I should like to dedicate this publication to my grandchildren, Emma, Rosie, Molly, Caroline and Christopher. Whatever aspirations they may develop in the future, I hope that their endeavours will bring personal rewards and satisfaction as have come my way in the study of metals over more than 40 years.
- This volume is also dedicated to my wife, Veronica, who has given me loving support and friendship throughout my endeavours.

I acknowledge with sincere gratitude the fruitful conversations and constructive criticism provided by many friends and acquaintances at the former Charing Cross and Westminster Medical School, Birkbeck College and the British Industrial Biological Research Association.

Foreword

The ancient Egyptians had knowledge of the dangers of antimony, copper, crude arsenic and lead, and, in a number of cultures in the last three millennia, minerals have been used as poisons. A more clearly defined role for the wide-spread effects of these elements on human health and in disease states has been identified and characterised during the last two centuries. Initially, the need for a particular element was often discovered by observations of deficiency states in particular locations (iodine for goitre, as an example) but as a wider interest in comparative epidemiology developed, conditions induced by large local excesses of particular minerals were also identified and could be attributed to the effects of this excess (arsenic in drinking water in central Europe, say). Observations relating to the effects of therapeutic interventions had also shown that mercury and its salts, gold and silver, all used in manner that was hoped to confer benefit, may all cause evident human toxicity.

That we need many minerals in varying amounts is clear for reasons set out in early chapters of this book. As with vitamins, it is also clear that an excessive intake can be harmful – and that acute and chronic toxicity may result from exposure to excessive intake. These exposures may occur for a number of reasons and from varied sources, many of which have been recognised in comparatively recent times.

Occupational disease (wrist drop in painters) was recognised as a marker of toxic exposure and helped to define the cause of the toxic effects seen. In a clear historical example, mining of uranium-bearing ore in Schneeberg (Germany) and Jachimov (Czechoslovakia) both for metals and the manufacture of uranium dyes had been carried out for centuries and was known to be associated with lung disease – both pulmonary fibrosis and carcinoma of the lung, although this distinction was not evident to contemporary observers when the link was published in 1879. The development of industry and of industrial processes together with the gradual development of health care relating to those

Issues in Toxicology No. 18 The Carcinogenicity of Metals: Human Risk through Occupational and Environmental Exposure By Alan B. G. Lansdown © Alan Lansdown 2014 Published by the Royal Society of Chemistry, www.rsc.org working in industry and better record keeping relating to workers and the local environment (an often undervalued element in identifying causality in disease processes) made clear that industrial development has produced well-defined problems such as the presence of organic mercury compounds in effluvia (Minamata Bay).

Associations of a different kind, relating to long-term exposures and to exposures to levels of toxin that did not produce acute illness or evident direct toxicity, were harder to identify. Although potentially carcinogenic actions of minerals were often investigated after singular associations between occupations and uncommon tumours had been identified, modern methods of diagnosis and record keeping were needed to provide the means to question potential causality between exposures and common tumours. These associations would often promote a search for pathogenetic mechanisms by experimentation.

Epidemiological research is a valuable weapon in identifying apparently causative factors in disease. Although causes may be defined in a number of ways, in pragmatic terms it is clear that if the elimination of a causal factor results in a change in disease incidence, its relevance to public health is evident. This is what epidemiological research has sought to achieve in the field of exposure to minerals examined in this book. But the epidemiological approach has its dangers and before constructing a hypothesis, it should be remembered that the strength of any association, consistency of results in different studies and consistent experimental evidence are the most powerful discriminants in examining links. Experimental work must be constructed around a hypothesis of action that is clearly defined for it to be capable of translation between species, say.

This book is a comprehensive survey of a major health concern (carcinogenesis) relating to the use of minerals. It considers all those elements about which human health concerns have been thought to exist, having defined a view of carcinogenicity that is internationally adopted in regulatory circles and which is clearly set out in initial chapters.

> Sir Colin Berry Emeritus Professor of Pathology, Queen Mary's College, London, UK

Preface

Metals have played a decisive role in the development of human civilisations from earliest times. They have shaped developments in engineering, science and medicine and in the past century many Nobel Laureates were founded on research using metals. Marie Curie focussed her early research on the magnetic properties of steel but was later to perform fundamental research into the radioactivity of metals and the properties of uranium. Paul Ehrlich made notable contributions to the understanding of cancer and introduced the arsenic-related therapy Salvarsan as one of the first effective cures for syphilis and other infections prevalent at the time. Countless other memorable contributions could be included, but whilst we accept the value of metals and metalloid elements in industry and medicine, since the 1950s at least, clinicians, environmentalists and toxicologists have become aware that few substances in daily use or to which humans are exposed in daily life or in occupational environments and in medicine are entirely safe, and that a modicum of risk arises through excessive exposure, abuse or accident.

The present review re-evaluates epidemiological and occupational health studies, experimental studies in animals and *in vitro* experiments relating to the toxicity of metal and metalloid elements for which evidence of carcinogenicity has been presented. Human carcinogenic risk is substantiated in relation to arsenic, beryllium, thorium, chromium, radioactive elements, probably lead, and some nickel and cobalt compounds, and respirable silica particles, but the carcinogenicity of iron, aluminium, titanium, tungsten, antimony, bismuth, mercury, *cis*-platin, precious metals, and certain related compounds in humans is unresolved. The toxicity and carcinogenicity of each element is specific but correlates poorly with its position in the Periodic Table. Carcinogenicity differs according to the valency of the ion and its ability to interact with and penetrate membranes in target cells and to bind, denature or induce mutations by genotoxic or epigenetic mechanisms. The influence of lifestyle, environmental

Issues in Toxicology No. 18

The Carcinogenicity of Metals: Human Risk through Occupational and Environmental Exposure By Alan B. G. Lansdown

[©] Alan Lansdown 2014

Published by the Royal Society of Chemistry, www.rsc.org

contaminants and human factors in the interpretation of epidemiological studies is discussed. Further studies are indicated to investigate the interaction between xenobiotic elements and genotype as an explanation for regional variations in population response. The relevance of experimental studies in isolation in predicting human risk through metal exposures is questioned. *In vitro* studies in mammalian cell lines and bacterial reversion tests provide evidence that certain metals and metalloid elements are capable of inducing mutagenic and clastogenic changes, but they provide limited information on target organ susceptibility, inherent protective mechanisms within the intact body or immunomodulation.

Alan B. G. Lansdown Imperial College London

Contents

Chapter 1	Introduction		
	1.1	Introduction	1
	1.2	Metals as Nutrients	3
	1.3	Diagnosis of Carcinogenicity	6
	1.4	Mechanisms of Carcinogenicity as Applied to Metals	
		and Metalloid Elements	8
	1.5	Epidemiological Evidence	9
	1.6	Lifestyle Factors	10
	1.7	Laboratory Models and Diagnosis	11
	Refe	erences	13
		Part 1: Elements of Importance as Nutrients	
Chapter 2	Iro	n	21
	2.1	Introduction	21
	2.2	Iron in Human Nutrition	23
	2.3	Occupational Exposures and Carcinogenic	
		Risk in Haematite Mining	25
	2.4	Iron Overload and Hereditary Haemochromatosis	28
	2.5	Iron–Dextran	29
	2.6	Experimental Studies	30
	Refe	erences	32
Chapter 3	Zinc		
	3.1	Introduction	36
	3.2	Zinc in Nutrition	39

Issues in Toxicology No. 18

The Carcinogenicity of Metals: Human Risk through Occupational and Environmental Exposure By Alan B. G. Lansdown

© Alan Lansdown 2014

Published by the Royal Society of Chemistry, www.rsc.org

ζ.
5

	3.3 3.4 3.5 Refe	Zinc in Cell Biology Toxicity and Carcinogenicity 3.4.1 Experimental Studies in Animals 3.4.2 Human Epidemiological and Case studies Conclusions	41 44 45 47 48 49		
Chapter 4	Chromium and Chromates				
	41	Introduction	53		
	$\frac{4.1}{4.2}$	Chromium as a Trace Metal	55		
	т.2 ДЗ	Absorption of Chromium	57		
	т.5	4.3.1 Dietary Intake	57		
		4.3.2 Dermal Absorption	58		
		4.3.3 Inhalation	59		
	44	Chromium and Chromates as a Cause of Cancer	60		
	7.7	4.4.1 Current Legislation	60		
		442 Clinical and Epidemiological Evidence of	00		
		Chromium-related Carcinogenicity	60		
		4 4 3 Experimental Studies	66		
	4.5	Mechanisms of Cr(vi)-induced Carcinogenicity	69		
	Refe	References			
Chapter 5	Cobalt and Nickel				
	5.1	Introduction	76		
	5.2	Cobalt	77		
		5.2.1 Nutritional Requirements and Metabolism	78		
		5.2.2 Industrial Uses and Human Exposure	80		
		5.2.3 Toxicity and Carcinogenicity	81		
		5.2.4 Conclusions on the Carcinogenicity of Cobalt	87		
	5.3	Nickel	88		
		5.3.1 Nickel as a Nutrient	89		
		5.3.2 Industrial Use and Human Exposure	90		
		5.3.4 Toxicity and Carcinogenicity	92		
		5.3.5 Conclusions on the Carcinogenicity of Nickel	100		
	Refe	erences	101		
Chapter 6	Calcium, Strontium, Magnesium and Copper				
	6.1	General Introduction	108		
	6.2	Calcium	108		
		6.2.1 Human and Animal Nutrition	110		
		6.2.2 Occupational and Industrial Exposure	111		
		r r r r r r r r r r r r r r r r r r r			
		6.2.3 Cell Biology and Homeostatic Regulation	112		

xii

Contents

Contents				X111
	6.3	Stron	tium	116
		6.3.1	Industrial Use and Human Exposure	117
		6.3.2	Strontium in Human Nutrition	118
		6.3.3	Cytology and Intracellular Management	118
		6.3.4	Carcinogenicity	119
	6.4	Magn	lesium	121
		6.4.1	Magnesium as a Nutrient	121
		6.4.2	Industrial Uses and Human Exposure	122
		6.4.3	Cell Biology	123
		6.4.4	Toxicology and Carcinogenicity	125
	6.5	Copp	er	128
		6.5.1	Copper in Human Nutrition	129
		6.5.2	Industrial Uses and Human Exposure	131
		6.5.3	Cell Biology	131
	D	6.5.4	Toxicity and Carcinogenicity	132
	Ref	erences		133
Chanter 7	Mir	or Tra	ce Flements: Manganese Vanadium	
Chapter /	Mo	lvbdenu	m. Tin	141
		J	,	
	7.1	Gener	ral Introduction	141
	7.2	Mang	anese	142
		7.2.1	Industrial Uses and Human Exposure	143
		7.2.2	Mutagenicity and Carcinogenicity	144
	7.3	Vanao	dium	145
		7.3.1	Industrial Use and Human Exposure	146
		7.3.2	Vanadium as a Nutrient	147
		7.3.3	Cytotoxicity and Mutagenicity	147
		7.3.4	Carcinogenicity	148
	/.4	Moly	bdenum	149
		7.4.1	Molybdenum as a Nutrient	150
		7.4.2	Mutagenicity and Cancinggenicity	151
	75	7.4.3 Tin	Mutagementy and Caremogementy	152
	1.5	751	Tin as a Nutrient	155
		7.5.1	Industrial Uses and Human Exposure	150
		7.5.2	Cytotoxicity and Carcinogenicity	157
	Ref	erences	Cytotoxicity and Caremogeneity	150
Chapter 8	The Metalloid Elements, Selenium and Silicon			
	8.1	Gene	ral Introduction	165
	8.2	Seleni	um	166
	0.2	8.2.1	Industrial Uses and Human Exposure	167
		8.2.2	Selenium in Nutrition	168
		8.2.3	Cytological Effects and Mutagenicity	170

Conton	t a
Comen	US

XIV				Contents
		8.2.4	Carcinogenicity	171
		8.2.5	Summary	174
	8.3	Silicon		175
	0.0	831	Silicon as a Human Nutrient	176
		832	Silicon Silica and Silicates in Industry	1,0
		0.0.2	and Human Exposure	178
		833	Cytotoxicity and Carcinogenicity	180
		834	Silicones	185
	Refe	rences	Sincones	188
	Dent	3 . V	1. 4. There are a CNI - NL 4. 4 1 37 - Lee	
	Part	2: Xeno	biotic Elements of No Nutritional Value	100
Chapter 9	Alu	minium	and Zirconium	199
	9.1	Genera	l Introduction	199
	9.2	Alumin	nium	199
		9.2.1	Industrial Use and Human Exposure	200
		9.2.2	Cytotoxicity and Carcinogenicity	202
	9.3	Zircon	ium	206
		9.3.1	Industrial and Commercial Applications	
			and Human Exposure	207
		9.3.2	Cytotoxicity, Mutagenicity and	
			Carcinogenicity	208
	Refe	rences		211
Chapter 10	Cadmium and Mercury			216
			·	
	10.1	Gener	ral Introduction	216
	10.2	Cadm	lium	217
		10.2.1	Industrial Use and Human Exposures	218
		10.2.2	Canaina generacia	210
	10.2	Mana	Carcinogenesis	219
	10.5		Iry Industrial Use and Human Expansion	223
		10.3.1	Cutatavisity Mutagenisity and	221
		10.3.2	Cytotoxicity, Mutagenicity and	220
	Dafa	ranaaa	Carcinogenicity	229
	Rele	233		
Chapter 11	Lead			242
	11.1	Intro	luction	242

11.1	Introduction	242
11.2	Occupational, Industrial and Environmental	
	Exposures	244
11.3	Absorption and Metabolism	246
11.4	Cytotoxicity, Mutagenicity and Carcinogenicity	247

xiv

Contents

	11.5 Refer	11.4.1 11.4.2 11.4.3 Conclus ences	<i>In Vitro</i> Studies Experimental Animal Studies Human Case and Epidemiological Studies ions	247 248 251 258 259	
Chapter 12	Tungs	sten (Wol	fram) and Hard Metals	266	
	12.1 12.2 12.3	Introdu Industri Toxicolo	ction al Use and Human Exposure ogy and Carcinogenicity of Tungsten and	266 268	
	12.4	Related Compounds 4 Epidemiological Evidence for the Carcinogenicity			
		of Hard	Metals	273	
	12.5	Conclus	ions	274	
	Refer	ences		275	
Chapter 13	Precie	ous Meta	ls: Silver, Gold and Platinum-related Metals	278	
	13.1	Introdu	ction	278	
	13.2	Silver an	nd Gold	279	
		13.2.1	Silver	282	
		13.2.2	Gold	285	
	13.3	Platinur 13.3.1	n and Platinoid Elements Cytotoxicity, Mutagenicity	289	
			and Carcinogenicity	291	
	Refer	13.3.2 ences	Carcinogenicity and Mechanism of Action	294 294	
Chapter 14	Beryl	lium		301	
	1/1 1	Introdu	ction	301	
	14.1	Industri	al Uses and Human Exposure	303	
	14.2	Untake	and Metabolism	305	
	14.4	Genoto	xicity. Mutagenicity and Carcinogenicity	307	
		14.4.1	Human Studies	307	
		14.4.2	Experimental Animal Studies	308	
		14.4.3	In Vitro Studies	310	
	14.5	Conclus	ions	311	
	Refer	ences		312	
Chapter 15	Galliu	ım, Indiu	m and Thallium	316	
	15.1	Introdu	ction	316	
	15.2	Gallium		317	
				/	

xv