To access the additional media content available with this e-book via Thieme MedOne, please use the code and follow the instructions provided at the back of the e-book.
Transnasal Endoscopic Skull Base and Brain Surgery

Surgical Anatomy and its Applications

Second Edition

Aldo C. Stamm, MD, PhD
Director, São Paulo ENT Center
Co-Director, São Paulo Skull Base Center
Complexo Hospitalar Edmundo Vasconcelos
São Paulo, Brazil

Associate Editor
João Mangussi-Gomes, MD, MSc
São Paulo ENT Center
São Paulo Skull Base Center
Complexo Hospitalar Edmundo Vasconcelos
São Paulo, Brazil

704 illustrations

Thieme
New York • Stuttgart • Delhi • Rio de Janeiro
Important note: Medicine is an ever-changing science undergoing continual development. Research and clinical experience are continually expanding our knowledge, in particular our knowledge of proper treatment and drug therapy. Insofar as this book mentions any dosage or application, readers may rest assured that the authors, editors, and publishers have made every effort to ensure that such references are in accordance with the state of knowledge at the time of production of the book.

Nevertheless, this does not involve, imply, or express any guarantee or responsibility on the part of the publishers in respect to any dosage instructions and forms of applications stated in the book. Every user is requested to examine carefully the manufacturers’ leaflets accompanying each drug and to check, if necessary in consultation with a physician or specialist, whether the dosage schedules mentioned therein or the contraindications stated by the manufacturers differ from the statements made in the present book. Such examination is particularly important with drugs that are either rarely used or have been newly released on the market. Every dosage schedule or every form of application used is entirely at the user’s own risk and responsibility. The authors and publishers request every user to report to the publishers any discrepancies or inaccuracies noticed. If errors in this work are found after publication, errata will be posted at www.thieme.com on the product description page.

Some of the product names, patents, and registered designs referred to in this book are in fact registered trademarks or proprietary names even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name without designation as proprietary is not to be construed as a representation by the publisher that it is in the public domain.
I dedicate this second edition to my whole family—my wife Dagmar; my children Raquel and Guilherme; my grandchildren Pedro, Helena, and Luisa; my son-in-law Leonardo; and my daughter-in-law Liana—for their unrelenting support. To my father Arno, who has already gone, and to my mother Ada, who despite her advanced age keeps fighting for life.
Contents

Videos Menu .. xii
Foreword by Laligam Sekhar .. xiii
Preface ... xiv
Acknowledgments .. xv
Contributors ... xvi

Part I. Principles of Transnasal Endoscopic Skull Base and Brain Surgery

1. Anatomy and Osteology of the Skull Base ... 2
 Carolina Martins, Alvaro Campero, Alexandre Yasuda, Luiz Felipe U. de Alencastro, Shigeyuki Osawa, and Albert L. Rhoton Jr.

2. Anatomy of the Nose, Paranasal Sinuses, and Skull Base ... 13

3. Imaging in Endoscopic Paranasal Sinus and Skull Base Surgery: Three-Dimensional Reconstruction 35
 Rainer G. Haetinger

4. Preoperative Assessment of Patients with Skull Base Disease: The Role of Nasal Endoscopy 48
 Juan Eugenio Salas-Galicia, Luis Miguel Garza Talaman, Paulina Andrade Lozano, Raúl Omar Cadena Torrero, and María Chávez Méndez

5. Transnasal Surgical Approaches to Skull Base Lesions ... 59
 Eduardo de Arnaldo S. Vellutini, Marcos de Queiroz Teles Gomes, Matheus Fernandes de Oliveira, Leonardo Balsalobre, João Manussi-Gomes, and Aldo C. Stamm

6. Anesthesia for Transnasal Endoscopic Skull Base and Brain Surgery 67
 Nelson Mizumoto

7. The Endoscopically Assisted Bimanual Operating Technique 74
 Daniel B. Simmen and Hans Rudolf Briner

8. How to Improve Endoscopic Surgical Field Quality: Tips and Pearls 85
 Brian C. Lobo, Pablo F. Recinos, Varun R. Kshettry, Troy D. Woodard, and Raj Sindwani

9. Endoscopic Transnasal Approaches to the Skull Base and Brain: Classification and its Applications 93
 Carl H. Snyderman, Eric W. Wang, Juan C. Fernandez-Miranda, and Paul A. Gardner

10. Postoperative Care Following Transnasal Endoscopic Skull Base and Brain Surgery 104
 Garret W. Choby and Peter H. Hwang

11. Technical Advances in Endoscopic Surgery for the Skull Base and Brain 110

Part II. Management of the Paranasal Sinuses in Transnasal Endoscopic Skull Base and Brain Surgery

12. Approaches to the Maxillary Sinus/Medial Maxillectomy: Surgical Anatomy 122
 Nobuyoshi Otori, Kiyoshi Yanagi, and Tsuguhisa Nakayama

13. Approaches to the Ethmoid Sinus .. 132
 Arjun K. Parasher and David W. Kennedy

14. Management of the Frontal Sinus .. 136
 Luis Fernando Macías-Valle and Peter-John Wormald
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
<th>Authors</th>
</tr>
</thead>
</table>

Part III. Transnasal Endoscopic Approach to the Orbit and Optic Nerve

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>Transnasal Endoscopic Surgical Anatomy of the Orbit and Optic Nerve</td>
<td>166</td>
<td>Paolo Castelnuovo, Apostolos Karligkiotis, Giacomo Pietrobon, Davide Locatelli, Paolo Battaglia, and Mario Turri-Zanoni</td>
</tr>
<tr>
<td>18.</td>
<td>Transnasal Endoscopic Orbit and Optic Nerve Decompressions</td>
<td>173</td>
<td>Benjamin S. Bleier and Sarina K. Müller</td>
</tr>
<tr>
<td>19.</td>
<td>Transnasal Endoscopic Approach to Orbital and Periorbital Diseases</td>
<td>180</td>
<td>Rahuram Sivasubramaniam, Catherine Banks, and Raymond Sacks</td>
</tr>
<tr>
<td>20.</td>
<td>Transorbital Neuroendoscopic Surgery of the Skull Base and Brain</td>
<td>186</td>
<td>Kris S. Moe and Darlene E. Lubbe</td>
</tr>
</tbody>
</table>

Part IV. Transnasal Endoscopic Transcribriform Approach

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.</td>
<td>Transnasal Endoscopic Cranietectomy for Esthesioneuroblastomas</td>
<td>211</td>
<td>Aldo C. Stamm, Camila S. Dassi, João Mangussi-Gomes, Leonardo Balsalobre, and Eduardo de Arnaldo S. Vellutini</td>
</tr>
<tr>
<td>24.</td>
<td>Skull Base Meningiomas: Transnasal Endoscopic versus Open Transcranial Approaches</td>
<td>227</td>
<td>Ehab El Refaee and Henry W. S. Schroeder</td>
</tr>
</tbody>
</table>

Part V. Transnasal Endoscopic Transplanum/Transtuberculum Approach

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.</td>
<td>Endonasal Endoscopic Transplanum/Transtuberculum Approach: Surgical Anatomy (Step by Step) and Technical Nuances</td>
<td>240</td>
<td>Stefan Lieber, Wei-Hsin Wang, Maximiliano Núñez, Solomon C. Cohen, and Juan C. Fernandez-Miranda</td>
</tr>
<tr>
<td>28.</td>
<td>Transnasal Endoscopic Transplanum/Transtuberculum Approach in Pituitary Adenomas</td>
<td>275</td>
<td>Diego Mazzatenta, Matteo Zoli, Giorgio Frank, and Ernesto Pasquini</td>
</tr>
</tbody>
</table>

Part VI. Transnasal Endoscopic Sellar and Parasellar Approaches

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.</td>
<td>Pituitary Stalk Lesions</td>
<td>281</td>
<td>Julio Abucham and Ticiana Paes</td>
</tr>
<tr>
<td>30.</td>
<td>The Eyebrow Approach</td>
<td>289</td>
<td>Reid Hoshide and Charles Teo</td>
</tr>
<tr>
<td>31.</td>
<td>A Brief Historical Background and Evolution of Pituitary Surgery</td>
<td>296</td>
<td>Edward R. Laws Jr. and Ian F. Dunn</td>
</tr>
</tbody>
</table>
32. Microsurgical and Endoscopic Anatomy of the Sellar and Parasellar Regions .. 300
 Carolina Martins, Alexandre Yasuda, Alvaro Campero, Luiz Felipe U. de Alencastro, Kohei Inoue, and Albert L. Rhoton Jr.

33. Endoscopic Surgical Anatomy of the Cavernous Sinus ... 313
 Stefan Lieber and Juan C. Fernandez-Miranda

34. Sellar and Parasellar Lesions ... 325
 Shunya Hanakita, Schahrazed Bouazza, Moujahed Labidi, Kentaro Watanabe, Anne-Laure Bernat, and Sébastien Froelich

35. Surgical Indications for Pituitary Tumors .. 338
 Marcello D. Bronstein

36. The Dos and Don’ts of Pituitary Surgery .. 341
 Dharambir S. Sethi, Narayan Janakiram, Shilpee Bhatia Sharma, and Chris Rataphol Dhennorrarat

37. Endoscopic Approaches to the Pituitary Gland ... 355
 Aldo C. Stamm, André F. Gentil, João Mangussi-Gomes, João T. Alves-Belo, Leonardo Balsalobre, and Eduardo de Arnaldo S. Vellutini

38. Hy droscopy: Application to Pituitary Surgery ... 362
 Theodore A. Schuman and Brent A. Senior

39. Transnasal Endoscopic Approaches to the Cavernous Sinus ... 367
 Aldo C. Stamm, João Mangussi-Gomes, Huy Q. Truong, Tiago F. Scopel, and Eduardo de Arnaldo S. Vellutini

40. Transsellar/Transdorsum Approach to the Interpeduncular Cistern: Pituitary Transposition 374
 Douglas A. Hardesty, Ala S. Montaser, Amin B. Kassam, Ricardo L. Carrau, and Daniel M. Prevedello

Part VII. Transnasal Endoscopic Transclival Surgery

41. Endoscopic Anatomy of the Clivus and Posterior Fossa and its Surgical Applications 384
 Luigi Maria Cavallo, Isabella Esposito, Matteo G. De Notaris, Felice Esposito, Manfred Tschabitscher, Domenico Solari, and Paolo Cappabianca

42. Endoscopic Transnasal Cranietomy to the Clivus and Posterior Fossa 396
 João Mangussi-Gomes, André Beer-Furlan, Edinson Najera, Tiago F. Scopel, Leonardo Balsalobre, Eduardo de Arnaldo S. Vellutini, and Aldo C. Stamm

Part VIII. Transnasal Endoscopic Transmaxillary/Transpterygoid/Infratemporal Fossa Approaches

43. Anatomy of the Pterygopalatine, Temporal, and Infratemporal Fossae ... 406
 Maria Peris-Celda, Carlos D. Pinheiro-Neto, and Albert L. Rhoton Jr.

44. Pterygopalatine Fossa and Infratemporal Fossa Surgery: Endoscopic Anatomy 413
 Rowan Valentine and Peter-John Wormald

45. Transnasal Endoscopic Transethmoid–Pterygoid–Sphenoid Approach .. 421
 Davide Locatelli, Fabio Pozzi, Apostolos Karligkiotis, Mario Turri-Zamoni, Jacopo Zacchi, and Paolo Castelnuovo

46. Transnasal Endoscopic Surgery for Juvenile Nasopharyngeal Angiofibromas 429
 Suat Kilic, Wayne D. Hsueh, Michael J. Pfisterer, James K. Liu, and Jean Anderson Eloy

47. Endoscopic Targeted Approach to Juvenile Nasopharyngeal Angiofibromas Based Upon a New Classification System ... 437
 Narayanan Janakiram, Shilpee Bhatia Sharma, and Onkar Deshmukh

48. Transmaxillary Endoscopic Approach to Contralateral Parasellar Lesions 446
 Luiz Felipe U. de Alencastro, Luiz Carlos de Alencastro, Carolina Martins, Ademir Lodetti, Alberto Carlos Capel Cardoso, Mário de Barros Faria, Kohei Inoue, Shigeysuki Osawa, and Albert L. Rhoton Jr.
Contents

Part IX. Transnasal Endoscopic Approach to the Petrous Apex and Meckel’s Cave

49. Petrous Apex: Surgical Anatomy and Approaches .. 458
Nadim Khoueir, Benjamin Verillaud, Sebastien Froelich, Damien Bresson, and Philippe Herman

50. Meckel’s Cave: Anterior Endoscopic Approaches and Surgical Anatomy 467
Enrique Iturriaga Casanova, Juan Carlos Rodriguez, and Huy Q. Truong

51. Transnasal Endoscopic Suprapetrous Approach to the Meckel’s Cave and Temporal Fossa 474
Douglas A. Hardesty, Daniel M. Prevedello, Amin B. Kassam, Ricardo L. Carrau, and Alexandre B. Todeschini

52. Endoscopic Dissection of the Petrocavernous Carotid Artery: The Key for Petrocival Surgery 479
Gretchen M. Oakley and Richard J. Harvey

Part X. Transnasal Endoscopic Surgery for Sinus and Skull Base Malignancies

53. General Concepts in Sinus and Skull Base Malignancies .. 488
Ehab Y. Hanna and Ahmed Salama Abdelmeguid

54. Transnasal Endoscopic Surgery for Malignancies of the Sinus and Skull Base 503
Paolo Castelnuovo, Mario Tumi-Zaonon, Alessia Lambertoni, Paolo Battaglia, and Apostolos Karligkiotis

55. Combined Cranioendoscopic Approaches to Sinus and Skull Base Malignancies 509
Davide Mattavelli, Vittorio Rampinelli, Davide Lancini, and Piero Nicolai

56. External versus Endoscopic Approaches for Skull Base Malignancies 516
Valerie J. Lund and David J. Howard

57. Endoscopic Transnasal Nasopharyngectomy: Anatomy and its Surgical Applications 523
Ronaldo Nunes Toledo, Paula Angélica Lorenzon Silveira, Renan Bezerra Lira, and Luiz Paulo Kowalski

58. Transnasal Endoscopic Treatment of Pterygopalatine Fossa and Infratemporal Fossa Malignancies . 534
Ing Ping Tang and Prepageran Narayanan

Part XI. Transnasal Endoscopic Craniocervical Junction Surgery

59. Microscopic and Endoscopic Anatomy of the Craniovertebral Junction 542
Alberto Carlos Capel Cardoso, Roger S. Brock, Carolina Martins, Luiz Felipe U. de Alencastro, and Albert L. Rhoton Jr.

60. The Craniovertebral Junction: Transnasal Endoscopic Approach 550
Theodore A. Schuman, Cristine Klatt-Cromwell, Brian D. Thorp, and Adam M. Zanation

Part XII. Transnasal Endoscopic Skull Base and Brain Surgery in Children

61. Transnasal Endoscopic Surgery of the Skull Base and Brain in Children: Anatomical Particularities ... 558
Maria Peris-Celda, Carlos D. Pinheiro-Neto, and Albert L. Rhoton Jr.

62. Transnasal Endoscopic Approach to the Skull Base and Brain in Children 563
Felipe Marconato, Leonardo Balsalobre, Camila S. Dassi, João Mangussi-Gomes, Eduardo de Amaldo S. Vellutini, and Aldo C. Stamm

Part XIII. Ventral Skull Base Cerebrospinal Fluid Leaks and Meningo/Encephaloceles

63. Transnasal Endoscopic Management of Ventral Skull Base Cerebrospinal Fluid Leaks and
Meningoencephaloceles ... 572
Arjun K. Parasher, Alan D. Workman, and James N. Palmer

64. Managing Sphenoid Lateral Recess Cerebrospinal Fluid Leaks 580
Alfredo José Herrera Vivas, Javier Andrés Ospina, Carolina Wuesthoff, and Ricardo L. Carrau
Part XIV. Complications in Transnasal Endoscopic Skull Base and Brain Surgery

65. Nasal and Paranasal Sinuses Complications after Transnasal Endoscopic Skull Base and Brain Surgery .. 590
Marcio Nakanishi, Leonardo Balsalobre, João Mangussi-Gomes, Eduardo de Arnaldo S. Vellutini, and Aldo C. Stamm

66. Skull Base Reconstruction: An Overview .. 595
João Mangussi-Gomes, Aldo C. Stamm, Carl H. Snyderman, Juan C. Fernandez-Miranda, Paul A. Gardner, and Eric W. Wang

67. Management of Skull Base Defects with Vascularized Flaps 604
Gustavo Hadad, Luis Bassagaisteguy, Miguel Mural, João Mangussi-Gomes, and Aldo C. Stamm

68. External Procedures for Repairing Skull Base Defects after Transnasal Endoscopic Surgery 611
Aldo C. Stamm, Ricardo L. Carrau, Guilherme Cardinali Barreiro, João Mangussi-Gomes, João T. Alves-Belo, and Daniel F. Kelly

69. Management of Internal Carotid Artery Injury During Transnasal Endoscopic Skull Base Surgery .. 622
Douglas A. Hardesty, Daniel M. Prevedello, Amin B. Kassam, Ricardo L. Carrau, and Alexandre B. Todeschini

70. Dealing with Small Arteries and Perforators in Transnasal Endoscopic Surgery 627
Eduardo de Arnaldo S. Vellutini, Marcos de Queiraz Teles Gomes, Matheus Fernandes de Oliveira, Leonardo Balsalobre, João Mangussi-Gomes, and Aldo C. Stamm

71. Endocrine Complications Following Transnasal Endoscopic Skull Base and Brain Surgery 635
Luma Ghalib and Lawrence S. Kirschner

72. Successful Management of Endoscopic Skull Base Complications 640

Index .. 647
Videos Menu

Video 13.1 Ethmoidectomy in skull base surgery.

Video 14.1 Step-by-step frontal drill-out procedure.

Video 15.1 The combined transtemporal/transnasal approach to the sphenoid sinus for resection of a pituitary adenoma.

Video 18.1 Left medial and inferior endoscopic orbital decompression with inferomedial strut preservation in a patient with dysthyroid orbitopathy.

Video 22.1 Transnasal endoscopic resection of an esthesioneuroblastoma.

Video 23.1 Endoscopic endonasal approach to an olfactory groove meningioma.

Video 26.1 Endoscopic endonasal transplanum transtuberculum approach for the resection of a large suprasellar craniopharyngioma.

Video 27.1 Endoscopic endonasal resection of tuberculum sella meningioma.

Video 36.1 The endoscopic endonasal resection of a pituitary adenoma.

Video 37.1 Endoscopic endonasal resection of a functioning pituitary adenoma.

Video 38.1 Use of “hydroscopy” to assist in endoscopic surgery of the pituitary.

Video 39.1 Transnasal endoscopic resection of a recurrent non-functioning pituitary adenoma.

Video 42.1 Transnasal endoscopic approaches to the clivus and posterior fossa: presentation of three complex cases.

Video 44.1 Endoscopic resection of a right pterygopalatine fossa juvenile angiofibroma involving the infratemporal fossa.

Video 46.1 Video depicting a multi-corridor endoscopic approach for resection of a right juvenile nasopharyngeal angiofibroma with infratemporal fossa extension.

Video 47.1 Endoscopic endonasal approach for a juvenile nasopharyngeal angiofibroma.

Video 51.1 This video shows an endoscopic endonasal approach to a trigeminal schwannoma. The patient presented with numbness on the right side of his face. Investigation revealed a large, heterogeneously enhancing mass centered on Meckel’s cave. Careful analysis of the images showed the mass to protrude into the lateral recesses of the sphenoid sinus, anterior to the internal carotid artery, favoring an endoscopic endonasal approach. A transtemporal approach, using the vidian canal to locate the anterior genu of the carotid artery was performed. Using a microdoppler probe to identify the ICA and neuro-stimulation to avoid any motor fibers of V3, we opened the dura and carefully resected the tumor. Postoperative images showed a complete resection of the lesion. After 6 months, sensation on the patient’s face had returned to normal.

Video 54.1 Clinical case of anterior skull base malignant tumor management. A 74-year-old woman presented with left epistaxis, nasal obstruction, and headache. CT and MR scans revealed a bulky lesion involving the left nasal fossa, ethmoid sinus and orbit. Biopsy of the lesion revealed a sinonasal undifferentiated carcinoma. A total body PET-CT scan excluded systemic dissemination of the disease. The patient underwent induction chemotherapy (5 cycles), with partial response (regression of the intraorbital component of the tumor). A combined approach (cranio-endoscopic) was performed, and free-margins were obtained. Finally, the patient underwent adjuvant radiotherapy (surgical field – 60 Gy; elective neck – 54 Gy) with intensity modulated technique (IMRT). After 27 months of follow-up, the patient is alive with no evidence of disease.

Video 57.1 Transnasal endoscopic nasopharyngectomy for a squamous cell carcinoma.

Video 69.1 This video demonstrates an endoscopic endonasal approach to patient with a chordoma, whom had had previous surgeries and proton beam therapy. Knowing that the Internal Carotid Artery was involved by tumor, the approach was done carefully, using neuronavigation guidance and microdoppler probe to identify the ICA. Despite the precautions taken, when removing tumor from behind the ICA using a blunt ball probe, the ICA ruptured and large-volume, brisk bleeding is seen. The bleeding is controlled in the OR using a muscle patch and tamponade and the patient is immediately taken to the angio-suite. Stenting the artery was not possible and the ICA had to be occluded. Fortunately, this patient had good contralateral flow and did not have an ischemic insult nor required bypass.
Foreword

From humble beginnings about 20 years ago the disciplines of endoscopic skull base surgery and endoscopic cranial surgery have grown considerably and now encompass a large volume of surgical cases in both specialties. This idea of “minimally invasive surgery” has grown and blossomed. However, the correct terminology is “minimal access surgery,” since through a small opening, very extensive surgery may be performed. Similar to other cranial base and cranial approaches, this type of surgery can also produce severe complications occasionally, which in some patients may be difficult to manage due to the small opening. The endoscopes, the display systems, and instruments we use for this surgery are still in their infancy and are still developing. The use of robotic and artificial intelligence technologies will have a great impact on this field in future. Like other types of surgery, an excellent understanding of the anatomy, especially as seen through the endoscope, is needed. In many cases, neuronavigation is extremely useful. Observation and learning with master surgeons who have perfected these techniques is essential for young surgeons who wish to enter this field of surgery.

Professor Aldo Stamm is now an internationally recognized expert in the area of endonasal and skull base surgery. He has done significant pioneering work in this field, and also has a track record of working collaboratively with neurosurgery and other disciplines to achieve optimal patient outcomes. In this book, he has masterfully assembled a team of international collaborators who have presented different aspects to endoscopic cranial base and cranial surgery. The book is well organized into 14 sections and is very readable. All aspects of the surgery, including instrumentation, anatomy, operative technique, and potential complications are well covered. I strongly recommend this book to any junior surgeon who wishes to pursue this field. I thank Prof. Stamm and his contributors for this valuable addition to our knowledge.

Laligam N. Sekhar, MD, FACS, FAANS
Professor and Vice Chairman
Director of Cranial Base and Cerebrovascular Surgery
Department of Neurological Surgery
University of Washington
Harborview Medical Center
Seattle, Washington
Preface

This second edition is an extension of our first, as new technologies and improvements of the transnasal endoscopic skull base and brain surgery have undergone a remarkable evolution in recent years. New topics were incorporated aiming at including a much larger number of clinical entities. The development of more ergonomic and precise surgical instruments, such as the bipolar coagulation systems, special tweezers and scissors, and new hemostatic agents has allowed a safer and more effective treatment of lesions that affect this complex region of the human body.

The main focus of this second edition is the correlation between the skull base anatomy as seen from the endonasal perspective and its surgical applications. To achieve this objective, we invited leading experts on the subject from all over the world, making this book a multicentric and multidisciplinary one, since many medical specialties are involved, especially neurosurgery, otorhinolaryngology, head and neck surgery, neuroendocrinology, intensive care, neuro-anesthesiology, among others. Thus, our colleagues will be able to appreciate the experience of different groups in what is best in the field of the transnasal endoscopic surgery of the skull base and brain.

Each chapter is provided with a summary and chapter highlights, which facilitates and illustrates beforehand what is most significant in the chapter. We also added to this edition a series of videos from different institutions, therefore contributing to a better understanding of the described techniques.

I wish you all a great and enjoyable reading!

Aldo C. Stamm, MD, PhD
Acknowledgments

This project is the result of hard work and commitment. First, I would like to thank all authors and collaborators who have made it possible to carry out this project, for all their effort and dedication. I would like to thank the staff at Thieme Publishers, especially Mr. Timothy Hiscock, who greatly encouraged and believed in the publishing of this second edition. I would also like to thank Mr. J. Owen Zurhellen and Ms. Mary Wilson for their constant help and guidance.

Thanks to the great masters and professors Wolfgang Draf (In memoriam) and Albert Rhoton Jr. (In memoriam), as well as to their respective fellows, for all their teachings and constant encouragement throughout this journey.

Thanks to Dr. Eduardo A. Vellutini, a great partner in the skull base surgeries, present in the good and bad moments, always encouraging the development and improvement of this type of surgery, pushing its limits beyond the early standards.

My special thanks to Dr. João Mangussi-Gomes, a great friend and co-editor of this book, for his untiring and dedicated work in taking and revising the chapters of this edition, so they would become more attractive and educational.

I would also like to thank Dr. Leonardo Balsalobre and Dr. Marcos Queiroz Gomes for their friendship and dedication to all patients undergoing this type of surgery, and to my fellows and residents, old and new, for their constant help and follow-up of our patients.

And finally, my deepest thanks to my family for their support, patience, and encouragement during all these more than 30 years dedicated to this complex and difficult branch of medicine.
Contributors

Ahmed Salama Abdelmeguid, MD, PhD
Lecturer of Otolaryngology–Head and Neck Surgery
Department of Otolaryngology–Head and Neck Surgery
Faculty of Medicine
Mansoura University
Mansoura, Egypt

Julio Abucham, MD, PhD
Associate Professor of Endocrinology
Chief of Neuroendocrine Unit
Escola Paulista de Medicina - Unifesp
São Paulo, Brazil

Luiz Carlos de Alencastro, MD, PhD
Neurosurgeon
Mãe de Deus Hospital
Moinhos de Vento Hospital
Porto Alegre, Brazil

Luiz Felipe U. de Alencastro, MD
Head, Neurosurgery Department
Mãe de Deus Hospital
Neurosurgeon
Moinhos de Vento Hospital
Porto Alegre, Brazil

João Paulo Almeida, MD
Clinical Fellow, Skull Base Surgery
Division of Neurosurgery
Toronto Western Hospital
University of Toronto
Toronto, Ontario, Canada

João Tiago Alves-Belo, MD
Attending Neurosurgeon, Department of Neurosurgery
Hospital Felício Rocho and Rede Mater Dei de Saúde
Belo Horizonte, Brazil

Vijay K. Anand, MD, FACS
Clinical Professor of Otolaryngology–Head and Neck Surgery
New York Presbyterian Hospital Weill-Cornell Medical Center
New York, New York

Paulina Andrade Lozano, MD
Department of Otorhinolaryngology
University Autonomous of Aguascalientes
Aguascalientes, Mexico

Leonardo Balsalobre, MD, PhD
São Paulo ENT Center
São Paulo Skull Base Center
Complexo Hospitalar Edmundo Vasconcelos
São Paulo, Brazil

Catherine Banks, MD
Department of Rhinology and Skull Base
Prince of Wales and Sydney Eye Hospital
Sydney, Australia

Luis Bassagaisteguy, MD
Catedra of Otolaryngology–Head and Neck Surgery
National University of Rosario
Hospital Provincial del Contenario
Rosario, Argentina

Paolo Battaglia, MD
Division of Otorhinolaryngology
Head and Neck Surgery & Forensic Dissection Research Center (HNS & FDRC)
Department of Biotechnology and Life Sciences
University of Insbrua-Varese
ASST Sette Laghi, Ospedale di Circolo e Fondazione Macchi
Varese, Italy

André Beer-Furlan, MD
Department of Neurological Surgery
Rush University Medical Center
Chicago, Illinois

Anne-Laure Bernat, MD
Department of Neurosurgery
Hôpital Lariboisière
Paris, France

Benjamin S. Bleier, MD, FACS, FARS
Director, Endoscopic Skull Base Surgery
Co-Director, Center for Thyroid Eye Disease and Orbital Surgery
Associate Professor
Department of Otolaryngology
Massachusetts Eye and Ear Infirmary
Harvard Medical School
Boston, Massachusetts

Schahrazed Bouazza, MD
Department of Neurosurgery
Hôpital Lariboisière
Paris, France

Damien Bresson, MD, PhD
Professor
Department of Neurosurgery
Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris Créteil, France

Hans Rudolf Briner, MD
Center for Otorhinolaryngology–Head and Neck Surgery
Klinik Hirslanden Zürich
Zürich, Switzerland

Roger S. Brock, MD
DFV Neuro
São Paulo, Brazil
Contributors

Marcello D. Bronstein, MD, PhD
Professor of Endocrinology
Chief, Neuroendocrine Unit
Division of Endocrinology and Metabolism
Hospital das Clínicas
University of São Paulo
São Paulo, Brazil

Raúl Omar Cadena Torrero, MD
Otorhinolaryngology
University Autónomo Nacional de México, UNAM
Veracruz, Mexico

Alvaro Campero, MD, PhD
Chairman, Department of Neurosurgery
Hospital Padilla
Associate Professor, Facultad de Medicina
Universidad Nacional de Tucumán
Tucumán, Argentina

Alberto Carlos Capel Cardoso, MD, PhD
DFVNeuro
São Paulo, Brazil

Paolo Cappabianca, MD
Professor and Chairman
Division of Neurosurgery
Head, Department of Neurosciences, Reproductive &
Odontostomatological Sciences
Università degli Studi di Napoli Federico II
Naples, Italy

Guilherme Cardinali Barreiro, MD, PhD
Complex Reconstructions and Microsurgery Group
Plastic Surgery Department
University of Campinas
Campinas, Brazil

Ricardo L. Carrau, MD
Professor and Lynne Shepard Jones Chair in Head and
Neck Oncology
Director, Comprehensive Skull Base Surgery Program
Departments of Otolaryngology–Head and Neck Surgery,
Neurological Surgery, and Speech and Hearing Sciences
The Ohio State University
Columbus, Ohio

Paolo Castelnuovo, MD, FACS, FRCS(Ed)
Division of Otorhinolaryngology
Head and Neck Surgery & Forensic Dissection Research Center
(HNS & FDRC)
Department of Biotechnology and Life Sciences
University of Insbruck-Varese
ASST Sette Laghi, Ospedale di Circolo e Fondazione Macchi
Varese, Italy

Luigi Maria Cavallo, MD, PhD
Associate Professor
Division of Neurosurgery
Università degli Studi di Napoli Federico II
Naples, Italy

Srikant S. Chakravarthi, MD, MSc
Fellow, Department of Neurosurgery
Aurora Neuroscience Innovation Institute
Aurora St. Luke’s Medical Center
Milwaukee, Wisconsin

María Chávez Méndez, MD
Department of Otorhinolaryngology
Endoscopic Paranasal Sinus & Skull Base Surgery, Médica Santé
University Valle of México & University Autónomo Nacional
of México, UNAM
Veracruz, Mexico

Garret W. Choby, MD
Assistant Professor
Vice-Chair of Quality
Department of Otorhinolaryngology–Head and Neck Surgery
Mayo Clinic
Rochester, Minnesota

Salomon C. Cohen, MD
Clinical Fellow
Department of Neurosurgery
Mayo Clinic
Rochester, Minnesota

Camila S. Dassi, MD
Rhinology
Auckland City Hospital
Auckland, New Zealand
São Paulo Skull Base Center
Complexo Hospitalar Edmundo Vasconcelos
São Paulo, Brazil

Matteo G. De Notaris, MD, PhD
Neurosurgery Operative Unit
Department of Neuroscience, “G. Rummo” Hospital
Benevento, Italy

Onkar Deshmukh, MS
Director, Asian Centre for Ear, Nose, and Throat
Indore, India

Chris Rataphol Dhepnorrarat, MBBS, FRACS
Consultant Surgeon and Head of Department
Sir Charles Gairdner Hospital, Nedlands, Western Australia
Senior Clinical Lecturer
University of Western Australia
Perth, Australia
Contributors

Ian F. Dunn, MD, FACS
Chair, Department of Neurosurgery
University of Oklahoma
Oklahoma City, Oklahoma

Jean Anderson Eloy, MD, FACS, FARS
Professor and Vice Chairman
Department of Otolaryngology–Head and Neck Surgery
Director, Rhinology and Sinus Surgery
Co-Director, Endoscopic Skull Base Surgery Program
Director, Otolaryngology Research
Director, Rhinology, Sinus, and Endoscopic Skull Base Surgery Fellowship Program
Professor of Neurological Surgery
Professor of Ophthalmology and Visual Science
Neurological Institute of New Jersey
Rutgers New Jersey Medical School
Newark, New Jersey

Ehab El Refaee, MD, MDNS
Associate Professor of Neurosurgery
Cairo University
Cairo, Egypt
Academic Coordinator and Clinical Fellow
University Medicine Greifswald
Greifswald, Germany

Felice Esposito, MD, PhD
Associate Professor of Neurosurgery
University of Messina
Messina, Italy

Isabella Esposito, MD
Division of Neurosurgery
Istituti Ospedalieri di Cremona
Cremona, Italy

Mário de Barros Faria, MD
Head of Neurosurgical Department
Hospital de Pronto Socorro
Porto Alegre, Brazil

Juan C. Fernandez-Miranda, MD, FACS
Professor of Neurosurgery, Medicine and by courtesy Otolaryngology–Head and Neck Surgery
Surgical Director of Brain Tumor, Skull Base, and Pituitary Centers
Stanford University Medical Center
Stanford, California

Giorgio Frank, MD
Director
Center of Surgery for Pituitary Tumors
Neurosurgeon
Bellaria Hospital
Bologna, Italy

Sébastien Froelich, MD, PhD
Head, Department of Neurosurgery
Hôpital Lariboisière, Assistance Publique - Hôpitaux de Paris
Paris, France

Melanie Brown Fukui, MD
Director of Neuroradiology
Aurora Neuroscience Innovation Institute
Aurora St. Luke's Medical Center
Milwaukee, Wisconsin

Paul A. Gardner, MD
Professor, Departments of Neurological Surgery and Otolaryngology
Co-Director, Center for Cranial Base Surgery
University of Pittsburgh
Pittsburgh, Pennsylvania

Luis Miguel Garza Talamas, MD
Rhinology and Endoscopic Paranasal Sinus & Skull Base Surgery Module
Centro Médico Nacional del Noreste
Institute of Otolaryngology
Hospital Zambrano Hellion, Tecnológico de Monterrey, San Pedro Garza García
Monterrey, Mexico

André F. Gentil, MD, PhD
Neurosurgeon
Hospital Israelita Albert Einstein
São Paulo, Brazil

Luma Ghalib, MD, FACE
Assistant Professor– Clinical Division of Endocrinology
The Ohio State University
Columbus, Ohio

Gunjan Goel, MD
Department of Neurosurgery
University of California San Diego Medical Center
San Diego, California

Marcos da Queiroz Teles Gomes, MD
São Paulo Skull Base Center
DFV Neuro – Neurology & Neurosurgery Group
São Paulo, Brazil

Lior Gonen, MD
Neurosurgeon
Department of Neurosurgery
Shaare Zedek Medical Center
Jerusalem, Israel
Contributors

Gustavo Hadad, MD
Cátedra de Otorrinolaringología, Cátedra de Anatomía
Museo de Anatomía y Ciencias Morfológicas
Facultad de Medicina de la Universidad Nacional de Rosario
Provincial del Centenario Hospital
Rosario, Argentina

Rainer G. Haetinger, MD, PhD
Department of Radiology
Hospital Beneficencia Portuguesa São Paulo
Department of Anatomy
Institute of Biologic Sciences
University of São Paulo
São Paulo, Brazil

Shunya Hanakita, MD, PhD
Department of Neurosurgery
Hôpital Lariboisière
Paris, France

Ehab Y. Hanna, MD, FACS
Professor and Vice Chairman
Director of Skull Base Surgery
Department of Head and Neck Surgery
Medical Director, Head and Neck Center
University of Texas M.D. Anderson Cancer Center
Houston, Texas

Douglas A. Hardesty, MD
Assistant Professor of Neurological Surgery
The Ohio State University
Columbus, Ohio

Richard J. Harvey, MD, PhD, FRACS
Program Head and Professor
Rhinology and Skull Base Research Group
University of New South Wales & Macquarie University
Sydney, Australia

Philippe Herman, MD, PhD
Head, ENT Department–Skull Base Center
Hôpital Lariboisière, Assistance Publique - Hôpitaux de Paris
Paris, France

Alfredo José Herrera Vivas, MD
Director of Rhinology and Endoscopic Sinus and Skull Base Division
Hospital Universitario San Ignacio
Assistant Professor
Pontificia Universidad Javeriana
Bogotá, Colombia

Reid Hoshide, MD, MPH
Centre for Minimally Invasive Neurosurgery
Sydney, Australia

David J. Howard, MRCSLRCP, MBBS, FRCS, FRCS(Ed)
Professor of Head and Neck Oncology and Honorary Consultant Surgeon
Imperial College NHS Trust Hospitals
Honorary Senior Lecturer
UCL Ear Institute and Honorary Consultant Surgeon UCLH Trust Hospitals
London, England, United Kingdom

Wayne D. Hsueh, MD
Assistant Professor
Department of Otolaryngology–Head and Neck Surgery
Rutgers New Jersey Medical School
Newark, New Jersey

Peter H. Hwang, MD
Professor and Chief
Division of Rhinology and Endoscopic Skull Base Surgery
Department of Otolaryngology–Head and Neck Surgery
Stanford University School of Medicine
Stanford, California

Kohei Inoue, MD
Department of Neurosurgery
Faculty of Medicine
Saga University
Saga, Japan

Enrique Iturriaga Casanova, MD
Principal Director, Caracas Skull Base Institute
Caracas Medical Center
Caracas, Venezuela

Narayanan Janakiram, MD
Director
Department of Otorhinolaryngology
Royal Pearl Hospital
Trichy, India

Jonathan E. Jennings, MD
Neuroradiologist
Chairman, Department of Radiology
Director, Functional Neuroimaging
Aurora St. Luke’s Medical Center
Milwaukee, Wisconsin

Apostolos Karligkiotis, MD
Division of Otorhinolaryngology
Head and Neck Surgery & Forensic Dissection Research Center (HNS & FDRC)
Department of Biotechnology and Life Sciences
University of Insubria-Varese
ASST Sette Laghi, Ospedale di Circolo e Fondazione Macchi Varese, Italy
Contributors

Amin B. Kassam, MD
Chief Scientific Strategist, Aurora Advocate Health Care
Vice President, Aurora Neuroscience Innovation Institute
Chairman, Department of Neurosurgery
Aurora St. Luke's Medical Center
Milwaukee, Wisconsin

Daniel F. Kelly, MD
Director, Pacific Neuroscience Institute
Professor of Neurosurgery, John Wayne Cancer Institute
Providence Saint John’s Health Center
Santa Monica, California

David W. Kennedy, MD, FACS, FRCSI
Professor of Otorhinolaryngology–Head and Neck Surgery
University of Pennsylvania Perelman School of Medicine
Philadelphia, Pennsylvania

Tyler J. Kenning, MD, FAANS
Director, Pituitary and Cranial Base Surgery
Department of Neurosurgery
Albany Medical Center
Albany, New York

Nadim Khoueir, MD
ENT Department–Skull Base Center
Hôpital Lariboisière, Assistance Publique - Hôpitaux de Paris
Paris, France
ENT Department
Hotel Dieu de France University Hospital
Saint Joseph University, Faculty of Medicine
Beirut, Lebanon

Suat Kilic, BA
Department of Otolaryngology–Head and Neck Surgery
Rutgers New Jersey Medical School
Newark, New Jersey

Lawrence S. Kirschner, MD, PhD
Professor of Medicine
Division of Endocrinology, Diabetes, and Metabolism
Department of Internal Medicine
Department of Cancer Biology and Genetics
The Ohio State University
Columbus, Ohio

Cristine Klatt-Cromwell, MD
Assistant Professor of Otolaryngology–Head and Neck Surgery
Rhinology and Anterior Skull Base Surgery
Washington University in St. Louis
St. Louis, Missouri

Luiz Paulo Kowalski, MD, PhD
Professor and Chief, Head and Neck Oncology
Department of Otorhinolaryngology and Head & Neck Surgery
A.C. Camargo Cancer Center
São Paulo, Brazil

Varun R. Kshettry, MD
Skull Base & Cerebrovascular Surgery
Assistant Professor of Neurosurgery
Department of Neurosurgery
Cleveland Clinic
Cleveland, Ohio

Moujahed Labidi, MD, FRCSC
Department of Neurosurgery
Hôpital Lariboisière
Paris, France

Alessia Lambertoni, MD
Division of Otorhinolaryngology–Head and Neck Surgery
University of Insubria–Varese
ASST Sette Laghi Ospedale di Circolo e Fondazione Macchi
Varese, Italy

Davide Lancini, MD
Department of Otorhinolaryngology–Head and Neck Surgery
University of Brescia
Brescia, Italy

Edward R. Laws Jr., MD, FACS
Professor of Neurosurgery
Harvard Medical School
Director, Pituitary/Neuroendocrine Center
Brigham & Women’s Hospital
Boston, Massachusetts

Stefan Lieber, MD
Department of Neurological Surgery
Microsurgical Neuroanatomy Lab of the Center for Cranial Base Surgery
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania

Renan Bezerra Lira, MD, PhD
Attending Surgeon, Department of Head and Neck Surgery
Vice Coordinator of Robotic Surgery
AC Camargo Cancer Center
São Paulo, Brazil

James K. Liu, MD, FACS, FAANS
Professor of Neurological Surgery
Director, Cerebrovascular/Skull Base & Pituitary Surgery
Departments of Neurological Surgery and Otolaryngology–Head and Neck Surgery
Rutgers Neurological Institute of New Jersey
Rutgers University-New Jersey Medical School
RWJ Barnabas Health
Newark, New Jersey

Brian C. Lobo, MD
Assistant Professor
Advanced Rhinology and Endoscopic Skull Base Surgery
University of Florida
Gainesville, Florida
Contributors

Davide Locatelli, MD
Director, Neurosurgery Center
Ospedale di Circolo e Fondazione Macchi
Professor of Neurosurgery
University of Insubria
Varese, Italy

Ademir Lodetti, MD
Neurosurgeon
Mãe de Deus Hospital
Moinhos de Vento Hospital
Porto Alegre, Brazil

Paula Angélica Lorenzo Silveira, MD
Department of Otorhinolaryngology and Head & Neck Surgery
A.C. Camargo Cancer Center
São Paulo, Brazil

Darlene E. Lubbe, MD
Associate Professor
Division of Otolaryngology
University of Cape Town
Cape Town, South Africa

Valerie J. Lund, MBBS, FRCS, FRCSEd, ACS(Hon), CBE
Professor Emeritus of Rhinology
University College London
Honorary Consultant ENT Surgeon
Royal National Throat Nose and Ear Hospital
London, England, UK

Luis Fernando Macías-Valle, MD, FARS
Assistant Professor
Rhinology and Endoscopic Skull Base Surgery
Department of Otolaryngology
Hospital Español de México
La Salle University
Mexico City, Mexico

João Mangussi-Gomes, MD, MSc
São Paulo ENT Center
São Paulo Skull Base Center
Complexo Hospitalar Edmundo Vasconcelos
São Paulo, Brazil

Felipe Marconato, MD
Advanced Medicine Center
Hospital Sírio Libanês
São Paulo, Brazil

Carolina Martins, MD, PhD
Neurosurgeon
Director of Research and Education
Hospital Metropolitano Oeste Pelópidas Silveira – IMIP/SES/SUS
Professor, Department of Neuropsychiatry
Federal University of Pernambuco - UFPE
Recife, Brazil

Davide Mattavelli, MD
Assistant Professor
Unit of Otorhinolaryngology–Head and Neck Surgery
Department of Surgical Specialties, Radiological Sciences, and Public Health
University of Brescia
Brescia, Italy

Diego Mazzatenta, MD
Professor of Neurosurgery
Department of Biomedical and Neuromotor Sciences
University of Bologna
Bologna, Italy

Nelson Mizumoto, MD
Department of Anesthesiology
University of São Paulo
São Paulo, Brazil

Kris S. Moe, MD, FACS
Professor and Chief
Division of Facial Plastic and Reconstructive Surgery
Departments of Otolaryngology and Neurological Surgery
University of Washington School of Medicine
Seattle, Washington

Alejandro Monroy-Sosa, MD
MD Monroy
Huixquilucan, Mexico

Alaa S. Montaser, MD
Research Fellow
Neurosurgery Department
Ohio State University
Columbus, Ohio
Assistant Lecturer
Neurosurgery Department
Ain Shams University
Cairo, Egypt

Sarina K. Müller, MD
Department of Otorhinolaryngology–Head and Neck Surgery
Friedrich-Alexander University Erlangen-Nürnberg (FAU)
Erlangen, Germany

Miguel Mural, MD
Department of Neurosurgery
Hospital Nacional Prof. A. Posadas
El Palomar, Argentina
Hospital El Cruce
Florencio Varela, Argentina

Edinson Najera, MD
Department of Neurosurgery
Hospital Universitari Joan XXIII
Tarragona, Catalonia, Spain
Former Research Fellow in Neuroanatomy
University of Pittsburgh Center for Cranial Base Surgery
Pittsburgh, Pennsylvania
Contributors

Marcio Nakanishi, MD, PhD
Associate Researcher, Faculty of Medicine
University of Brasília
Departments of Otorhinolaryngology and Head and Neck Surgery and Neurosurgery
University Hospital of Brasília
Director, Department of Otorhinolaryngology
Hospital Santa Luzia Rede D’Or
Brasília, Brazil

Tsuguhisa Nakayama, MD, PhD
Clinical Associate
Department of Otorhinolaryngology
The Jikei University School of Medicine
Tokyo, Japan

Prepageran Narayanan, MBBS, MS(ORL-HNS), FRCS
Professor and Consultant ENT
University of Malaya
Kuala Lumpur, Malaysia

Yoshihiro Natori, MD, PhD
Associate Professor of Neurosurgery
Kyushu University
Director of Neurosurgery
Iizuka Hospital
Fukuoka, Japan

Pier Nicolai, MD
Professor and Chairman
Department of Otorhinolaryngology–Head and Neck Surgery
University of Brescia
Brescia, Italy

Maximiliano Nuñez, MD
Neurosurgeon in Skull Base
Permanent Staff, Hospital El Cruce
Buenos Aires, Argentina

Gretchen M. Oakley, MD
Assistant Professor
Division of Otolaryngology–Head and Neck Surgery
University of Utah
Salt Lake City, Utah

Matheus Fernandes de Oliveira, MD, PhD
DFV Neuro
São Paulo, Brazil

Sacit B. Omay, MD
Assistant Professor
Department of Neurosurgery
Yale University School of Medicine
New Haven, Connecticut

Shigeyuki Osawa, MD
Department of Neurosurgery
Osawa Neurological Clinic
Iwate, Japan

Javier Andrés Ospina, MD
Fundación Santa Fe de Bogotá
Instituto Nacional de Cancerología
Bogotá, Colombia

Nobuyoshi Otori, MD
Department of Otorhinolaryngology
Jikei University School of Medicine
Tokyo, Japan

Ticiana Paes, MD, MsC
Erasmus University Medical Center
Rotterdam, The Netherlands

James N. Palmer, MD
Professor
Department of Otorhinolaryngology–Head and Neck Surgery
University of Pennsylvania
Philadelphia, Pennsylvania

Arjun K. Parasher, MD
Assistant Professor, Rhinology and Skull Base Surgery
Department of Otolaryngology–Head and Neck Surgery
University of South Florida
Tampa, Florida

Ernesto Pasquini, MD
ENT Department
Sant’Orsola-Malpighi University Hospital
Bologna, Italy

Maria Peris-Celda, MD, PhD
Assistant Professor of Neurosurgery
Director, Professor Rhoton North-East Anatomy Laboratory
Albany Medical Center
Albany, New York

Michael J. Pfisterer, MD
Department of Otolaryngology–Head and Neck Surgery
Rutgers New Jersey Medical School
Newark, New Jersey

Giacomo Pietrobon, MD
Division of Otorhinolaryngology
Ospedale di Circolo e Fondazione Macchi
Varese, Italy

Carlos D. Pinheiro-Neto, MD, PhD
Associate Professor of Otolaryngology and Neurosurgery
Albany Medical College
Director of Cranial Base Surgery
Department of Surgery
Albany Medical Center
Albany, New York
Fabio Pozzi, MD, PhD
Consultant, Department of Neurosurgery
ASST Sette Laghi - Ospedale di Circolo
Varese, Italy

Daniel M. Prevedello, MD, FACS
Professor
Director, Skull Base and Pituitary Center
James Cancer Center
The Ohio State University Wexner Medical Center
Columbus, Ohio

Vittorio Rampinelli, MD
Unit of Otorhinolaryngology–Head and Neck Surgery
University of Brescia, Italy

Pablo F. Recinos, MD
Associate Professor of Neurological Surgery
Cleveland Clinic Lerner College of Medicine of Case Western Reserve University
Section Head, Skull Base Surgery
Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center
Cleveland Clinic
Cleveland, Ohio

Albert L. Rhoton Jr., MD
R. D. Keene Family Professor and Chairman Emeritus
Department of Neurosurgery
University of Florida College of Medicine
Gainesville, Florida

Charles A. Riley, MD
Departments of Otolaryngology and Neurological Surgery and Neuroscience
Weill Cornell Medical College – New York Presbyterian Hospital
New York, New York

Juan Carlos Rodriguez, MD, MBA
Associate Medical Director, Caracas Skull Base Institute
Centro Médico Docente la Trinidad
Caracas, Venezuela

Richard A. Rovin, MD
Aurora Neuroscience Innovation Institute
Milwaukee, Wisconsin

Raymond Sacks, MD, FCS(SA)ORL, FRACS, FARS
Professor and Head of Otolaryngology–Head and Neck Surgery
Macquarie University
Clinical Professor and Head of Otolaryngology–Head and Neck Surgery
University of Sydney
Sydney, Australia

Juan Eugenio Salas-Galicia, MD
Department of Otorhinolaryngology
Endoscopic Paranasal Sinus & Skull Base Surgery,
Médica Santé
University Valle of México & University Autonomous National of México, UNAM
Veracruz, Mexico

Henry W. S. Schroeder, MD, PhD
Professor and Chairman
Department of Neurosurgery
University Medicine Greifswald
Greifswald, Germany

Theodore A. Schuman, MD
Assistant Professor
Rhinology & Skull Base Surgery
Dept. of Otolaryngology–Head and Neck Surgery
Virginia Commonwealth University
Richmond, Virginia

Theodore H. Schwartz, MD, FACS
David and Ursel Barnes Professor of Minimally Invasive Neurosurgery
Director, Anterior Skull Base and Pituitary Surgery
Director, Epilepsy Research Laboratory
Departments of Neurological Surgery, Otolaryngology, and Neuroscience
Weill Cornell Medicine
New York, New York

Tiago F. Scopel, MD
Department of Otorhinolaryngology
University Hospital of Mato Grosso do Sul
Federal University of Mato Grosso do Sul
Campo Grande, Brazil

Vibhav Sekhsaria, MD
Director of ENT
Family ENT Allergy and Asthma Care Center
Rockville, Maryland

Brent A. Senior, MD, FACS, FARS
Nat and Sheila Harris Distinguished Professor of Otolaryngology
Professor of Neurosurgery
Chief, Division of Rhinology, Allergy, and Endoscopic Skull Base Surgery
University of North Carolina
Chapel Hill, North Carolina

Dharambir S. Sethi, MBBS, FRCSEd (Edinburgh), FRCS (Singapore)
Adjunct Associate Professor
NUS-Duke Graduate Medical School
Novena ENT – Head & Neck Surgery Centre
Singapore

Shilpee Bhatia Sharma, MD
Consultant
Department of Otorhinolaryngology
Royal Pearl Hospital
Trichy, India

Daniel B. Simmen, MD
Professor and Lecturer in Rhinology
University of Zürich
Center for Rhinology, Skull Base Surgery, and Facial Plastic Surgery
The Hirslanden Clinic
Zürich, Switzerland
<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raj Sindwani, MD, FACS, FRCS(C)</td>
<td>Vice Chairman and Section Head of Rhinology</td>
</tr>
<tr>
<td></td>
<td>Head and Neck Institute</td>
</tr>
<tr>
<td></td>
<td>Vice Chair of Enterprise Surgical Operations</td>
</tr>
<tr>
<td></td>
<td>Co-Director, Minimally Invasive Pituitary and Skull Base Surgery Program</td>
</tr>
<tr>
<td></td>
<td>Department of Neurosurgery</td>
</tr>
<tr>
<td></td>
<td>Neurological Institute</td>
</tr>
<tr>
<td></td>
<td>Cleveland Clinic</td>
</tr>
<tr>
<td></td>
<td>Cleveland, Ohio</td>
</tr>
<tr>
<td>Rahuram Sivasubramaniam, MBBS, FRACS</td>
<td>Rhinology and Anterior Skull Base Surgeon</td>
</tr>
<tr>
<td></td>
<td>Department of ENT Surgery</td>
</tr>
<tr>
<td></td>
<td>Westmead Hospital</td>
</tr>
<tr>
<td></td>
<td>Sydney, Australia</td>
</tr>
<tr>
<td>Carl H. Snyderman, MD, MBA</td>
<td>Professor, Departments of Otolaryngology and Neurological Surgery</td>
</tr>
<tr>
<td></td>
<td>Co-Director, Center for Cranial Base Surgery</td>
</tr>
<tr>
<td></td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td>Domenico Solari, MD, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td></td>
<td>Division of Neurosurgery</td>
</tr>
<tr>
<td></td>
<td>Universita' degli Studi di Napoli Federico II</td>
</tr>
<tr>
<td></td>
<td>Naples, Italy</td>
</tr>
<tr>
<td>Christian P. Soneru, MD</td>
<td>Rhinology and Endoscopic Skull Base Surgery</td>
</tr>
<tr>
<td></td>
<td>Weill Cornell Medical Center</td>
</tr>
<tr>
<td></td>
<td>New York, New York</td>
</tr>
<tr>
<td>Aldo C. Stamm, MD, PhD</td>
<td>Director, São Paulo ENT Center</td>
</tr>
<tr>
<td></td>
<td>Co-Director, São Paulo Skull Base Center</td>
</tr>
<tr>
<td></td>
<td>Complexo Hospitalar Edmundo Vasconcelos</td>
</tr>
<tr>
<td></td>
<td>São Paulo, Brazil</td>
</tr>
<tr>
<td>Abtin Tabaee, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td></td>
<td>Department of Otolaryngology–Head and Neck Surgery</td>
</tr>
<tr>
<td></td>
<td>Weill Cornell Medicine–New York Presbyterian Hospital</td>
</tr>
<tr>
<td></td>
<td>New York, New York</td>
</tr>
<tr>
<td>Ing Ping Tang, MD, MS(ORL-HNS), FRCS</td>
<td>Professor and Consultant ENT</td>
</tr>
<tr>
<td></td>
<td>University Malaysia Sarawak & Sarawak General Hospital</td>
</tr>
<tr>
<td></td>
<td>Kuching, Sarawak, Malaysia</td>
</tr>
<tr>
<td>Heldor Tedesch, MD, PhD</td>
<td>Head, Division of Neurosurgery</td>
</tr>
<tr>
<td></td>
<td>University of Campinas</td>
</tr>
<tr>
<td>Charles Teo, MBBS, FRACS</td>
<td>Centre for Minimally Invasive Neurosurgery</td>
</tr>
<tr>
<td></td>
<td>Sydney, Australia</td>
</tr>
<tr>
<td>Brian D. Thorp, MD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td></td>
<td>Department of Otolaryngology–Head and Neck Surgery</td>
</tr>
<tr>
<td></td>
<td>University of North Carolina</td>
</tr>
<tr>
<td>Alexandre B. Todeschini, MD</td>
<td>Department of Neurological Surgery</td>
</tr>
<tr>
<td></td>
<td>Wexner Medical Center</td>
</tr>
<tr>
<td></td>
<td>The Ohio State University College of Medicine</td>
</tr>
<tr>
<td>Ronaldo Nunes Toledo, MD, PhD</td>
<td>Department of Otorhinology and Head and Neck Surgery</td>
</tr>
<tr>
<td></td>
<td>A. C. Camargo Cancer Center</td>
</tr>
<tr>
<td></td>
<td>São Paulo, Brazil</td>
</tr>
<tr>
<td>Huy Q. Truong, MD</td>
<td>Department of Neurosurgery</td>
</tr>
<tr>
<td></td>
<td>Albany Medical College</td>
</tr>
<tr>
<td></td>
<td>Albany, New York</td>
</tr>
<tr>
<td>Manfred Tschabitscher, MD, PhD</td>
<td>Professor of Anatomy and Physiopathology</td>
</tr>
<tr>
<td></td>
<td>Department of Clinical and Experimental Sciences</td>
</tr>
<tr>
<td></td>
<td>University of Brescia</td>
</tr>
<tr>
<td>Mario Turri-Zanoni, MD</td>
<td>Consultant in Otorhinology and Skull Base Surgery</td>
</tr>
<tr>
<td></td>
<td>University of Insubria–Varese</td>
</tr>
<tr>
<td></td>
<td>ASST Sette Laghi Ospedale di Circolo e Fondazione Macchi</td>
</tr>
<tr>
<td></td>
<td>Varese, Italy</td>
</tr>
<tr>
<td>Rowan Valentine, FRACS, MBBS, PhD</td>
<td>Department of Otolaryngology–Head and Neck Surgery</td>
</tr>
<tr>
<td></td>
<td>University of Adelaide</td>
</tr>
<tr>
<td></td>
<td>Adelaide, Australia</td>
</tr>
<tr>
<td>Eduardo de Arnaldo S. Vellutini, MD</td>
<td>Director, DFV Neuro</td>
</tr>
<tr>
<td></td>
<td>Co-Director, São Paulo Skull Base Center</td>
</tr>
<tr>
<td></td>
<td>Hospital Alemão Oswaldo Cruz</td>
</tr>
<tr>
<td></td>
<td>São Paulo, Brazil</td>
</tr>
<tr>
<td>Benjamin Verillaud, MD, PhD</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td></td>
<td>ENT Department–Skull Base Center</td>
</tr>
<tr>
<td></td>
<td>Hôpital Lariboisière, Assistance Publique - Hôpitaux de Paris</td>
</tr>
<tr>
<td></td>
<td>Paris, France</td>
</tr>
<tr>
<td>Eric W. Wang, MD</td>
<td>Associate Professor, Departments of Otolaryngology, Neurological Surgery,</td>
</tr>
<tr>
<td></td>
<td>and Ophthalmology</td>
</tr>
<tr>
<td></td>
<td>Director of Education, Center for Cranial Base Surgery</td>
</tr>
<tr>
<td></td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td></td>
<td>Pittsburgh, Pennsylvania</td>
</tr>
</tbody>
</table>

Contributors
Jian Wang, MD, PhD
Department of Neurosurgery/Neuro-Oncology
Sun Yat-Sen University Cancer Center
Guangzhou, China

Wei-Hsin Wang, MD
Attending Neurosurgeon
Department of Neurosurgery
Taipei Veterans General Hospital
Taipei, Taiwan

Kentaro Watanabe, MD
Department of Neurosurgery
Tokyo Jikei University Medical Center
Tokyo, Japan

Troy D. Woodard, MD, FACS
Section Head of Rhinology, Head and Neck Institute
Minimally Invasive Pituitary and Skull Base Surgery Program
Department of Neurosurgery, Neurological Institute
Cleveland Clinic
Cleveland, Ohio

Alan D. Workman, MD, MTR
Massachusetts Eye and Ear Infirmary
Harvard Medical School
Boston, Massachusetts

Peter-John Wormald, MD, FRACS, FCS(SA), FRCS, MBChB
Chairman, Otolaryngology–Head and Neck Surgery
Professor of Skull Base Surgery
University of Adelaide
Adelaide, Australia

Carolina Wuesthoff, MD
Toronto, Ontario, Canada

Kiyoshi Yanagi, MD
Department of Otorhinolaryngology
Jikei University School of Medicine
Tokyo, Japan

Alexandre Yasuda, MD, PhD
Neurosurgeon
Hospital Israelita Albert Einstein
São Paulo, Brazil
Research Fellow
University of Florida
Gainesville, Florida

Adam M. Zanation, MD, FACS
Harold C. Pillsbury Distinguished Professor
Departments of Otolaryngology–Head and Neck Surgery and
Neurosurgery
University of North Carolina
Chapel Hill, North Carolina

Jacopo Zocchi, MD
Division of Otorhinolaryngology–Head and Neck Surgery
University of Insubria–Varese
ASST Sette Laghi Ospedale di Circolo e Fondazione Macchi
Varese, Italy

Matteo Zoli, MD
Center of Pituitary and Endoscopic Skull Base Surgery
Department of Neurosurgery
IRCCS Istituto delle Scienze Neurologiche di Bologna
Bologna, Italy
Part I

Principles of Transnasal Endoscopic Skull Base and Brain Surgery

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anatomy and Osteology of the Skull Base</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Anatomy of the Nose, Paranasal Sinuses, and Skull Base</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Imaging in Endoscopic Paranasal Sinus and Skull Base Surgery: Three-Dimensional Reconstruction</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>Preoperative Assessment of Patients with Skull Base Disease: The Role of Nasal Endoscopy</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>Transnasal Surgical Approaches to Skull Base Lesions</td>
<td>59</td>
</tr>
<tr>
<td>6</td>
<td>Anesthesia for Transnasal Endoscopic Skull Base and Brain Surgery</td>
<td>67</td>
</tr>
<tr>
<td>7</td>
<td>The Endoscopically Assisted Bimanual Operating Technique</td>
<td>74</td>
</tr>
<tr>
<td>8</td>
<td>How to Improve Endoscopic Surgical Field Quality: Tips and Pearls</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>Endoscopic Transnasal Approaches to the Skull Base and Brain: Classifications and its Applications</td>
<td>93</td>
</tr>
<tr>
<td>10</td>
<td>Postoperative Care Following Transnasal Endoscopic Skull Base and Brain Surgery</td>
<td>104</td>
</tr>
<tr>
<td>11</td>
<td>Technical Advances in Endoscopic Surgery for the Skull Base and Brain</td>
<td>110</td>
</tr>
</tbody>
</table>
1 Anatomy and Osteology of the Skull Base

Carolina Martins, Alvaro Campero, Alexandre Yasuda, Luiz Felipe U. de Alencastro, Shigeyuki Osawa, and Albert L. Rhoton Jr.

Summary
This chapter reviews the bony architecture of the anterior, middle, and posterior skull base. Relying on a series of dry skull images, this anatomy is explained through a progressive disassembly of the skull base. This approach allows introduction of concepts on the corresponding exo- and endocranial divisions of each of the cranial fossae and relevant surgical notions as the formation of the center and lateral corridors of the skull base.

Keywords: skull base, skull base anatomy, osteology, endoscopic skull base surgery

Key Points
- Each skull base area has a center, or midline portion, and two lateral parts.
- The center areas are lined up as a corridor, whereas the lateral parts radiate from the skull base center.
- On the endocranial side, the center surgical corridor comprises, from anterior to posterior, (1) the cribriform area; (2) planum; (3) sellae; (4) clivus; and (5) craniovertebral junction.
- On the exocranial side, the center surgical corridor comprises (1) the nasal cavity; (2) the sphenoid sinus; and (3) the pharynx, which enable surgical access to the corresponding endocranial areas.
- In the center surgical corridor, the anterior, middle, and posterior skull base areas are close together and bridged by the sphenoid body.

1.1 Introduction
Understanding the osteology of the skull base is a fundamental step in skull base surgery. It enables accurate topographic location and helps tailor surgical routes to specific skull base areas. This chapter reviews the bony architecture of the anterior, middle, and posterior skull base.

1.2 General Anatomy
The skull is divided into the cranium and facial skeleton. The cranium in its turn is divided into calvaria, which is the domelike superior portion of the cranium, formed by the frontal, parietal, and squamous parts of the occipital and temporal bones and greater sphenoid wings, and the cranial base. The cranial base is formed by the occipital, temporal, ethmoid, and frontal bone arranged around, and connected by, a center element: the sphenoid bone.

The cranial base has an endocranial surface, which faces the brain and is naturally divided into anterior, middle, and posterior fossae (► Fig. 1.1), and an exocranial surface (► Fig. 1.2), which faces the nasal cavity, sinuses, orbits, pharynx, infratemporal fossae, and pterygopalatine, parapharyngeal, and infrapetrosal spaces.1,2

On the endocranial side of the skull base, the border between the anterior and middle fossa is marked by the sphenoid ridge, joined medially by the chiasmatic sulcus. The border between the middle and posterior fossae is formed by the petrous ridges joining by the dorsum sellae and posterior clinoid processes (► Fig. 1.3).

On the exocranial side, the anterior and middle fossae are divided by a transverse line, extending through the pterygomaxillary fissures and pterygopalatine fossae at the upper level, and the posterior edge of the alveolar processes of the maxillae at a lower level. Medially, this corresponds to the attachment of the vomer to the sphenoid bone. The middle and posterior cranial fossae are separated on each side by a transverse line crossing near the posterior border of the vomer–sphenoid junction, foramen lacerum, carotid canal, jugular foramen, styloid process, and mastoid tip (► Fig. 1.4).
Each of the three skull base areas has a center and two lateral parts. The center parts are arranged as a midline corridor and comprise, on the endocranial side, the cribriform area, planum, sellae, clivus, and craniovertebral junction. On the exocranial side, the center corridor encompasses the nasal cavity, sphenoid sinus, and the pharynx.

In the center corridor, the anterior, middle, and posterior skull base areas are close together and bridged by the body of the sphenoid.

1.3 Anatomy of the Anterior Skull Base

The anterior endocranial surface is formed by the combination of three bones: frontal, ethmoid, and sphenoid (Fig. 1.5). The orbital plates of the frontal bones form most of the lateral parts of this fossa, are the roof of the orbital cavities, and give support to the dura and orbital gyri of the frontal lobe. The medial gap between the orbital plates is filled by the bony nasal septum, which is formed by the vomer and perpendicular plate of the ethmoid.

On the endocranial side of the skull base, the border between the anterior and middle fossa is marked by the sphenoid ridge, joined medially by the chiasmatic sulcus (dotted light blue line), and the border between the middle and posterior fossae is formed by the petrous ridges joined by the dorsum sellae and posterior clinoid processes (dotted dark blue line). Ac.: acoustic; Ant.: anterior; Chiasm.: chiasmatic; Clin.: clinoid; For.: foramen; Front.: frontal; Int.: internal; Jug.: jugular; Orb.: orbital; Pet.: petrous; Post.: posterior; Sphen.: sphenoid; Temp.: temporal; Tuberc.: tuberculum.
whereas the lateral plates of the ethmoid bones separate the nasal cavity from each orbit (▶ Fig. 1.7 and ▶ Fig. 1.8).

Some foramina and grooves connect the endocranial and exocranial surfaces and transmit vascular and neural structures in this area. The foramen cecum in the midline serves as the site of passage of an emissary vein; the cribriform plate is pierced by the filaments of the olfactory nerve; the supraorbital grooves, on the superior orbital limits, are related to the frontal branch of the first trigeminal division; the anterior and posterior ethmoidal canals, located along the suture line formed by the frontal and ethmoid bones, transmit the anterior and posterior ethmoidal nerves and arteries; the superior orbital fissure, located between the lesser and greater sphenoidal wings, transmits the superior ophthalmic vein and the first division of the trigeminal, oculomotor, trochlear, and abducens nerves; and the optic canals between the anterior and posterior roots of the anterior clinoid processes transmit the optic nerve and the ophthalmic artery.

1.4 Anatomy of the Middle Skull Base

The endocranial surface of the middle fossa is formed by the sphenoid and temporal bones. The division between these bones usually is not easy to see unless one is focusing on the sphenoid spine, the most posterior prominence of the sphenoid bone, just posterolateral to the foramen spinosum. From this point, it is possible to follow the sphenopetrosal and sphenosquamosal sutures (▶ Fig. 1.9). The middle cranial base has medial and lateral parts. The medial part is formed by the body of the sphenoid, whereas the lateral parts result from the combination of lesser and greater sphenoid wings and squamous and petrous parts of the temporal bone. The medial portion of the middle cranial base is the sellae, whereas the most lateral portions are the temporal fossae. Between these two areas, on each side, are the parasellar regions. The parasellar regions are probably the smallest areas of the skull base with the highest concentration of important neural and vascular structures, as they house the cavernous sinuses.

The sphenoid contributes to the middle fossa mainly with its body, the greater and lesser wings. Laterally, the lesser sphenoid wings form the sphenoid ridges. Medially, the lesser wings are connected to the sphenoid body through the anterior root, and they form the roof of the optic canal and are continuous with the sphenoid planum. At the center of the planum is the sphenoid jugum, a faint ridge, which is the remnant of the fusion of the ossification centers. The posterior root of the anterior clinoid process, also called the optic strut, separates the optic canals above from the superior orbital fissure below. The chiasmatic sulcus is located posterior to the planum. On each side of the chiasmatic sulcus are the endocranial openings of the optic canals. Posteriorly, the chiasmatic sulcus is separated from the sellar cavity by the tuberculum sellae. The posterior limit of the sellae is composed of the dorsum and posterior clinoid processes, which
are the medial boundaries between the middle and posterior cranial fossae (▶ Fig. 1.10).

The greater sphenoid wings contribute to the temporal fossae. Anteriorly, it forms the lateral limit of the superior orbital fissure. The foramen rotundum, which transmits the maxillary division of the trigeminal nerve, is separated from the superior orbital fissure by a bridge of bone, the maxillary strut. The largest opening at the greater sphenoid wing is the foramen ovale, which transmits the optic nerve and ophthalmic artery. The superior orbital fissure is located between the lesser and greater sphenoidal wings on the lateral side of the optic canal. It transmits the oculomotor, trochlear, ophthalmic, and abducens nerves, a recurrent meningeal artery, and the superior and inferior ophthalmic veins. Eth.: ethmoid, ethmoidal; Fiss.: fissure; For.: foramen; Gr.: greater; Lat.: lateral; Less.: lesser; Orb.: orbital; Perp.: perpendicular; Sphen.: sphenoid, sphenoidal; Sup.: superior; Supraorb.: supraorbital; Supratr.: supratrochlear.

might transmit the accessory meningeal artery. The lingula is a protrusion of the sphenoid bone located at the junction of the body and the greater wing. As soon as the carotid artery leaves its canal on the petrous portion of the temporal bone, it is embraced by the lingula, which holds the artery in place and enables it to run along the carotid sulcus on each side of sellae. Anteriorly, the carotid artery rests against the optic strut, in close relationship with the anterior clinoid. The lingula gives attachment to the

Fig. 1.7 The osseous nasal septum is formed by the attachment of the perpendicular plate of the ethmoid and vomer at the sphenoidal crest. Eth.: ethmoid, ethmoidal; Perp.: perpendicular; Sphen.: sphenoid, sphenoidal.
petrolingual ligament, which separates the petrous carotid from the vertical cavernous carotid segment (▶ Fig. 1.11).

The endocranial surfaces of the petrolingual petrous and squamosal parts of the temporal bone also form the middle fossa (▶ Fig. 1.12 and ▶ Fig. 1.13). In this area, the greater petrosal nerve runs into the facial hiatus just medial to the tensor tympani muscle and lateral to the carotid canal. The trigeminal impression, which houses the trigeminal ganglion, is lateral to the petrous apex and posterolateral to the superior opening of the carotid canal.

The exocranial surface of the middle cranial base is also divided into medial and lateral parts (▶ Fig. 1.14 and ▶ Fig. 1.15). The medial part encompasses the sphenoid body and the upper portion of the basal part of the occipital bone and corresponds to the sphenoid sinus and the nasopharynx. The lateral part is formed by the greater sphenoid wing and the lateral pterygoid plate; the petrous, tympanic, squamous, and styloid parts of the temporal bone; and the zygomatic, palatine, and maxillary bones. Between the lateral and medial parts of the middle cranial base, an intermediate part corresponds to the area between the pterygoid plates. This area is inferior to each cavernous sinus and extends from the pterygopalatine fossa anteriorly to the pterygoid fossa posteriorly. The pterygopalatine fossa is located between the posterior wall of the maxillary sinus in the front, the pterygoid process behind, the palatine bone medially, and the body of the sphenoid bone above. The fossa opens laterally through the pterygomaxillary fissure into the infratemporal fossa and medially through the sphenopalatine foramen to the nasal cavity. Both the foramen rotundum for the maxillary nerve and the pterygoid canal for the vidian nerve open through the posterior wall of the fossae formed by the pterygoid process of the sphenoid bone. The palatovaginal canal carrying the pharyngeal nerve and artery and the greater and lesser palatine canals conveying the greater and lesser palatine arteries also open into the pterygopalatine fossa. The inferior orbital fissure, across which the orbital muscle stretches, lies in front of the pterygopalatine fossa.
The lateral part of the middle cranial base that corresponds endocranially to the temporal fossa includes the infratemporal fossa, mandibular fossa, and the parapharyngeal space (Fig. 1.16). The infratemporal fossa is bounded anteriorly by the posterolateral surface of the maxilla and the infratemporal crest, which separates the infratemporal from the superolaterally located temporal fossa. The infratemporal fossa is bounded anteromedially by the lateral pterygoid plate, laterally by the mandibular ramus, and posteriorly by the tympanic part of the temporal bone and styloid process. The pterygopatymal and inferior orbital fissures, the alveolar canals, the foramen spinosum, the ovale, and the emissary sphenoid foramen open into the infratemporal fossa, which is bounded anteriorly by the infratemporal crest, the infratemporal and sphenoidal foramina, and the emissary sphenoidal foramen. The infratemporal fossa is bounded superolaterally by the zygomatic arch, the zygomatic process of the maxilla, and the pterygoid process of the sphenoid bone. The infratemporal fossa is bounded superomedially by the infraorbital foramen and the temporal line. The infratemporal fossa is bounded anteromedially by the anterior and lateral orbital walls. The infratemporal fossa is bounded posteriorly by the posterior wall of the maxillary sinus and the infratemporal crest. The infratemporal fossa is bounded posterolaterally by the lateral pterygoid plate. The infratemporal fossa is bounded posteriorly by the pterygoid plates and the sphenoid sinus. The infratemporal fossa is bounded inferiorly by the body of the sphenoid bone and the pterygoid plates. The infratemporal fossa is bounded inferiorly by the sphenoid sinus and the pterygoid plates. The infratemporal fossa is bounded inferiorly by the pterygoid plates and the sphenoid sinus. The infratemporal fossa is bounded inferiorly by the pterygoid plates and the sphenoid sinus. The infratemporal fossa is bounded inferiorly by the pterygoid plates and the sphenoid sinus.