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This book is dedicated to the memory of Jeffrey Ying (1954–2017).

I first met him on the Fourth of July 2014, at a picnic he and his wife Renee 
were throwing to celebrate the birth of our nation. My wife and I were new to 
Southern California and were invited because of who Jeffrey was: generous, 
welcoming of any new neighbor, and always sharing and celebrating life.

Jeffrey was an engineer and founder of the I/O Controls Corporation. In business 
he was known as an entrepreneur, an innovator, and a leader. He held more than 
100 patents. He believed in science and engineering for the betterment of 
mankind. In his work and through his inventions, he has touched the lives of many.

For those who knew him, he was always the most interesting man in the room. 
He lived life to the fullest and was accomplished in so many areas outside of 
work. Whatever he did, he did the utmost. He was the first Chinese pilot from 
Taiwan to circumnavigate the globe in a single engine aircraft, when he and 
Renee performed the feat in 2010.

Jeffrey was also kind, loyal, compassionate, and generous. He and his wife 
Renee started the 12K Foundation to fund education for orphans in Tibet. 
They were also generous in support of medical research directed at 
engineering new cancer therapies.

We are happy to have known him and continue to be inspired by him.

“Always be curious and adventurous; keep the heart of a 
child inside and fill it up with joy and peace, and be the 
best you can be (Jeffrey Ying).”
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Robotic Surgery as the Natural Evolution of Minimally Invasive Surgery

Minimally invasive surgery (MIS) was largely restricted to diagnostic procedures until the 
second half of the twentieth century. Improving instrumentation, particularly in energy devices 
for sealing and in stapling devices for anastomosis of luminal organs, prompted rapid develop-
ment of laparoscopy in the end of the last century. The first laparoscopic cholecystectomy was 
performed in 1985 [1] and within a decade was the standard of care [2]. The first laparoscopic 
colectomies were performed in 1990 and now are accepted as standard [3]. Many operations, 
including complex esophageal, liver, lung, and endocrine procedures, are now routinely per-
formed using laparoscopic approaches and to the benefit of many patients. Robotic surgery, 
introduced to surgeons at the beginning of the twenty-first century, is the natural evolution of 
this MIS revolution. Using computer control of the MIS instruments, robotic surgery offers 
many potential advantages including improved visibility, easily controlled articulated instru-
ments, and superb ergonomics. Complex tasks such as suturing that have challenged the lapa-
roscopic surgeon are now easily within reach of the robotic MIS surgeon. The surgical robot 
has evolved from a single-purpose robot to a true surgical instrument with many potential 
operations. Over three million operations of many types have been performed with the assis-
tance of the surgical robot.

The evolution of robotic surgery is reminiscent of what transpired in the evolution of indus-
trial robots in the mid-twentieth century. Industrial robots were born as necessary safety tools 
for nuclear engineering. In the 1940s, mechanical teleoperators were created for handling dan-
gerous radioactive materials. In the 1950s, computer controllers were added to the tele- 
manipulators to improve reliability and ergonomics. In the 1960s, General Motors deployed 
the first Unimation® robots in their automotive factories. In the early days, these robots were 
put to work just stacking boxes and unloading trucks. This is reminiscent of the first robots that 
arrived in the operating room. In 1992, Computer Motion Inc. brought forth the operative robot 
“Automated Endoscopic System for Optimal Positioning (AESOP),” which did not drive any 
surgical interventional instrument. AESOP was a single-purpose camera holder that reliably 
held and moved the laparoscopic camera, improving visualization of the MIS operation.

Industrial robots are now well advanced. Robots are now used autonomously for many of 
the essential steps in welding and assembling the more than 70 million vehicles produced 
yearly. Robots are even used to autonomously drive cars here on Earth and on Mars [4]. Most 
importantly, there is now general public acceptance of robotics for manufacturing and 
transportation.

Surgical robots are now mainly used as mechanical teleoperators in the surgical suite, 
allowing rapid and precise movement of the laparoscope within and between multiple operat-
ing fields. The surgical robotic tele-manipulator is also used to drive an increasingly diverse 
number of instruments to facilitate accessibility and performance of increasingly complex MIS 
tasks. We are now at a pivotal point in the field when a technology is about to transform from 
a tool for innovators and experts to a tool for general practitioners. To facilitate general deploy-
ment, teaching tools are necessary including comprehensive atlases such as the current vol-

Preface



viii

ume. This book is a step-by-step guide to document the current state of the field, to increase 
accessibility for those venturing in the field, and to improve the safety of procedures. Ultimately, 
the goal is to improve outcomes for patients undergoing such procedures by providing an easy 
to understand, illustrated atlas of robotic surgery.

This book outlines the basics of successfully organizing, initiating, and running a robotic 
program. Details regarding technical, financial, and medico-legal aspects are presented, includ-
ing room design and surgical team needs. This section is intended to help efficiently set up and 
start a robotic program. The economic cost of robot-assisted surgery is a major and consistent 
factor contributing to inertia against adoption [5]. Mitigating the higher cost is an essential 
component to the routine adoption of robotic surgery. We hope this section of the book will 
alert readers to the avoidable inefficiencies and wasted costs in the initial phase of launching a 
new program.

Safety is an important issue since extensive operations are being performed through 8 mm 
incisions. In cases where emergencies arise, it is critical to have meticulously rehearsed plans 
for urgent or emergent conversion to ensure life-saving interventions. These are described in 
chapters on workflow (Chap. 7) and emergencies (Chap. 9).

We then present technical steps and detailed pearls of 34 operations that are routinely per-
formed, with room setup and instrument usage, as well as technical steps. The operations 
presented range from surgery in the oral pharynx to pelvic operations. Some of these, such as 
prostatectomy, colectomy, cholecystectomy, pulmonary resection, and gynecologic proce-
dures, are well established and are the standard procedures for the organ involved. Some pro-
cedures described, such as radical gastrectomies, pancreatectomies, and trans-oral surgery, are 
emerging procedures that we anticipate will become important in the field. For some of the 
most complex operations, such as pancreaticoduodenectomy, we detail descriptions by more 
than one group to show variations in procedure.

The field of robotics is both dynamic and rapidly evolving. Many new operations are being 
invented and improvements in current operative technique will develop with wider deployment 
and increasing input from more robotic surgeons, as well as from improvements in robots and 
instrumentation. We hope that the reader will see our book as a living work that our robotic 
surgical community will shape together. If you have new variations of the current procedures 
or a new procedure that is becoming popularized, please let us know so we can plan to include 
it in the next edition.

The future for robotic MIS surgery is bright. However, for most of the operations performed 
by a robotic approach, there is a perception that it takes longer and costs more, especially at the 
initiation of a new program. Most cars in the world are created by robots because quality is 
more consistent, production is faster, and it costs less. Interventional radiologic procedures are 
rarely debated even when initial costs are steep because the procedures are clearly more effi-
cient and significantly reduce morbidity. For common low-intensity robotic operations, we 
need to make them safer, faster, cheaper, or easier [6].

For high-end technical operations, technical enhancements including better instrumentation 
and workflows that enable improvements in accessibility or outcome are critical to growing 
this application. As physicians, we tirelessly aim to improve the learning curve for established 
and emerging techniques, improve outcomes for our patients, and most of all help our patients 
return to normal and productive lives. We hope this atlas will contribute to all of these goals.

This book is intended for anyone who plans to incorporate robotically assisted surgery 
into their portfolio of practice. We hope this will include surgeons, nurses, and other operat-
ing room personnel, as well as administrators and engineers. A work like this is only possible 
because of the contributions of many. The authorship of this work includes experienced 
surgical oncologists, general surgeons, thoracic surgeons, gynecologic oncologists, urolo-
gists, transplantation specialists, anesthesiologists, architects, and attorneys. We thank them 
for their contributions and efforts to collaborate in the creation of this comprehensive and 
special work.
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History of Robots and Robotic Surgery

Paolo Fiorini

 Introduction

This chapter presents a brief history of robotics and one of 
its most successful applications, surgical robotics. The first 
section describes the beginning of this technology, from 
1950 to 1980, when the basic concepts and technologies 
were developed. The second section addresses the develop-
ment of robotic surgery, which has established itself as a 
necessary complement to standard surgical practice. The 
third section briefly summarizes some of the current research 
efforts in robotic surgery, and the fourth section introduces 
the main commercial surgical robots available on the mar-
ket. The final section describes the most important robotic 
concepts that are necessary to understand the main features 
of any surgical robot.

 The Beginnings

Robots are among the good byproducts of the Second World 
War. Their technology derived from the early teleoperation 
systems developed in 1948 by Raymond Goertz at the 
Argonne National Laboratory in the United States, to handle 
radioactive material [1]. The word “robot” and the concept of 
a mechanical entity able to carry out tasks that a person can-
not do or does not want to do pre-date this technology devel-
opment. The word “robot” started to be used in the 1920s 
following a play by the Czech author Karel Capek, called 
R.U.R. (Rossum’s Universal Robots), in which artificial bio-
logical organisms in human form obey their master’s orders 
[2]. These organisms were called “robots,” a word derived 
from the Czech “robota,” meaning “forced labor.” They were 
more similar to androids than to current humanoid robots, as 
they could also think for themselves, which eventually led to 

a rebellion that destroyed the human race. The word “robot” 
then came to identify all devices developed to display an 
 animate behavior.

In ancient times, many mythological figures and brilliant 
devices have been described that mimic human or animal 
functions. It is worth remembering the clay golems of Jewish 
legend [3], the clay giants of Norse legend, and the Greek 
myth of Talos [4], in which a bronze warrior guarded the 
island of Crete in 400 BC. The quest to develop mechanical 
humans is present in most cultures. In early China, about 
900  BC, the inventor Yan Shi developed for King Mu of 
Zhou a life-sized, human-shaped figure made of leather and 
wood [5]. In 1066, the Chinese inventor Su Song built a 
water clock shaped as a tower with mechanical figures indi-
cating the hours [6]. About 1495 in Italy, Leonardo da Vinci 
drew in his notebooks the plans for a mechanical knight able 
to sit up, wave its arms, and move its head and jaw [7]. In 
Japan, complex animal and human automata were built in the 
seventeenth to nineteenth centuries [8], such as the “karakuri 
ningyō,” a type of mechanical device used to recreate differ-
ent events, such as the tea ceremony. In France, between 
1738 and 1739, Jacques de Vaucanson developed several 
life-sized automatons, including his famous mechanical 
duck, which could flap its wings, move its neck, swallow 
food, and give the illusion of digesting it by excreting matter 
stored in its body [9]. To impress the Empress Maria Theresa 
of Austria, in 1770 the Hungarian inventor Kempelen Farkas 
developed a mechanism that was unbeatable at chess. The 
machine was called the “Mechanical Turk”; only in 1820 
was it exposed as a hoax, with a person hidden inside the 
structure [10].

The word “robotics” has also a nontechnical origin. It was 
created in the 1940s by the Russian writer Isaac Asimov to 
represent the study of mechanical robots of human appear-
ance. The robots’ behavior was programmed in a “posi-
tronic” brain and satisfied certain rules of ethical conduct, 
which came to be known as the Three Laws of Robotics [11].

The first teleoperation system credited to Raymond 
Goertz consisted of a master device, held by the operator, 
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and by a slave mechanical arm, in contact with the 
 environment, in the so-called master-slave configuration. 
The slave was coupled to the master through a series of 
mechanical linkages, and it duplicated the motions of the 
operator’s hands and fingers. These linkages were eventually 
replaced by electric or hydraulic coupling; the operator could 
then control the position of the slave arms but lost the per-
ception of contacts provided by the mechanical linkages. 
Force feedback was then added to the teleoperation system 
to prevent crushing glass containers, and the operator could 
again feel the interaction forces of the slave with the environ-
ment. This solution was called “teleoperator” to represent a 
teleoperation system that was not mechanically linked with 
the operator. The term “telepresence” was also introduced to 
describe the added sensory feedback, from the remote envi-
ronment to the operator, who thus has increased sensory and 
decision- making abilities.

In 1949, the US Air Force sponsored the development of 
numerically controlled milling machines [12] that combined 
servo systems with the newly developed numerical comput-
ers. In 1953, the MIT Radiation Laboratory demonstrated 
the prototype of a computer numerically controlled (CNC) 
machine. In 1954, George Devol replaced the master device 
of the teleoperator with the computer control of a CNC 
machine and called this device a “programmed articulated 
transfer device” for which he filed a patent [13]. The patent 
rights were bought by a Columbia University student, Joseph 
Engelberger, who founded a company called Unimation in 
1956. In 1960, the first Unimation robot was demonstrated, 
and the first installation was done the following year at a 
General Motors plant. This industrial robot could be repro-
grammed to perform different pick-and-place tasks, but all 
parts needed to be accurately positioned in the working cell, 

as the robot could not adapt to any position error [14]. The 
first applications were for material handling in steel plants. 
To overcome the need for precise part positioning, in 1961 a 
robot with force sensing was developed at MIT [15], which 
enabled the robot to stack blocks in an unstructured environ-
ment without explicitly programming the robot motions. 
Other sensors were added to robots to increase the percep-
tion of their environment. In the 1960s, binary and halftone 
vision systems were also developed for obstacle detection 
[16], followed later by a camera vision system [17]. One of 
the most influential early designs was the Stanford arm 
designed in 1969 by Victor Scheinman at the Stanford 
Artificial Intelligence Lab (SAIL) (Fig.  1.1). It was a six- 
joint, all-electric mechanical manipulator designed exclu-
sively for computer control [18].

Fig. 1.1 The Stanford Arm (courtesy of Prof. Oussama Khatib, 
Stanford University)
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This robot was enhanced with artificial intelligence algo-
rithms that enabled it to solve puzzles [19]. These sensor- 
equipped robots were able to perform tasks requiring the 
control of the interaction forces with the environment. 
Japanese researchers developed the automatic selection of 
force and position control, and this led to the development of 
a mechanical manipulator with compliance control [20]. 
Roughly at the same time, in 1973, Stanford researchers 

developed the first language for programming a robot [21]. 
The first anthropomorphic industrial robot was developed in 
1976 by Cincinnati Milacron Inc. The Tomorrow Tool (T3) 
could lift 50 kg and track objects on a moving conveyor belt 
[22]. In 1973, Victor Scheinman developed the Vicarm, 
which was sold in 1977 to Unimation. Figure 1.2 shows the 
brochure of the robots produced by Scheinman company. 
The following year, with support from General Motors, 

Fig. 1.2 Brochure of Vicarm, 
the first manufacturer of 
commercial robots (courtesy 
of Prof. Paolo Fiorini, 
University of Verona)

1 History of Robots and Robotic Surgery
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Unimation developed the Vicarm into the PUMA 
(Programmable Universal Machine for Assembly) family of 
robots, which would become the workhorse of robotics 
research (Figs. 1.3 and 1.4). In the mid-1970s, Antal Bejczy 
at Caltech NASA-Jet Propulsion Laboratory (JPL) devel-
oped the first dynamic model of a robotic arm and later began 
the teleoperation program for space-based manipulators, 

which led to robotic surgery. In 1979, the SCARA (Selective 
Compliant Articulated Robot for Assembly) was developed. 
Based on these results, the group of Antal Bejczy developed 
the Advanced Teleoperation Laboratory to demonstrate the 
feasibility of space repair from Earth and developed some of 
the technologies for bilateral teleoperation used in later tele-
surgical systems (Figs. 1.5 and 1.6).

Fig. 1.3 The Puma 500 robotic arm (courtesy of Prof. Paolo Fiorini, 
University of Verona)

Fig. 1.4 The Puma 200 robotic arm (courtesy of Prof. Paolo Fiorini, 
University of Verona)

Fig. 1.5 The master station of the Advanced Teleoperation Laboratory 
at NASA-JPL (courtesy of NASA/JPL-Caltech)

Fig. 1.6 The slave station of the Advanced Teleoperation Laboratory at 
NASA-JPL (courtesy of NASA/JPL-Caltech)
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The introduction of force and touch sensing raised the 
attention of the medical community, and in 1963 researchers 
at the Institute Mihajlo Pupin in Belgrade developed the first 
robotic prosthetic device capable of programmed grasping 
patterns, later known as the Belgrade hand [23]. Shortly 
afterward, in 1972, the same Institute developed a powered 
exoskeleton, one of the first assistive devices for walking dis-
abilities. Papers on robotic research carried out by scientists 
at the Institute Mihajlo Pupin started to appear in the western 
press in 1973 [24], together with the results of Russian scien-
tists [25]. English editions of books summarizing the results 
achieved by the Russian robotics community [26] and books 
reporting on the activities of the Pupin Institute [27] were 
published shortly afterward.

The other important player in the early days of robotics 
and teleoperation research was the Paris laboratory of CEA 
(the French “Commissariat à l’énergie atomique et aux éner-
gies alternatives”), where Jean Vertut established his labora-
tory in 1962. The other leading French laboratory in robotics 
was the Laboratory for Automation and Microprocessing, 
Monipellier (LAMM), led by Philippe Coiffet. Both labora-
tories are still very active in teleoperation and robotic 
research. These early developments and the results achieved 
by the French robotics community are well documented in 
several books [28].

In the 1920s, robots began appearing in department stores 
in Japan under the shape of a humanoid robot named 
Gakutensoku. Later, the robotic idea was carried on by the 
cartoon character Astro Boy, a manga series running from 
1952 to 1968 [29]. Industrial robots made their appearance 

in Japan through Kawasaki’s acquisition of a license from 
Unimation in 1968. In 1972, researchers were able to pro-
gram a robot to build a block structure after examining the 
drawings of a final configuration [30]. The following year, 
researchers at the Waseda University in Tokyo developed the 
“WABOT-1,” a full-scale humanoid robot with two arms, 
capable of walking on two legs and seeing with stereo cam-
eras [31]. The introduction of new force sensors prompted 
the development of efficient algorithms for the control of 
dynamic interactions between the robot and its environment, 
such as the automatic turning of a crank [32].

The 1980s saw the development of many robotic products 
for industrial automation, and of new algorithms to improve 
robot speed and position accuracy, leading to an in-depth 
understanding of the capabilities and limitations of robotic 
systems, identifying promising applications. During this 
period, robotics became a recognized field of research with 
regular conferences and scientific publications. Research 
results were initially reported by two international organiza-
tions, the American Nuclear Society and the International 
Federation for Theory of Machines and Mechanisms 
(IFToMM), which started organizing at the Centre 
International des Sciences Mecaniques (CISM, Udine, Italy) 
the Robot and Manipulator Symposiums (RO.MAN.SY), 
still an important forum for today’s robotics community. 
Later, also other major robotics conferences began to be 
organized: the International Conference on Advanced 
Robotics (ICAR), the IEEE International Conference on 
Automation and Robotics (ICRA), and the International 
Conference on Intelligent Robotic Systems (IROS).

1 History of Robots and Robotic Surgery
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 The Development of Surgical Robotics

Together with the development of basic robotic technologies, 
researchers started considering the use of robots in areas in 
which human performance could be improved [33, 34]. The 
idea of robotic surgery was probably born in the early 1970s, 
proposed in a study for the National Aeronautics and Space 
Administration (NASA) to provide surgical care for astro-
nauts with remote-controlled robots [35].

The first robot that was designed for patient treatment was 
the Arthrobot in 1983, for arthroscopic procedures. The 
development was led by J.  McEwen, G.  Auchinlec, and 
B. Day at the University of British Columbia, Canada [36]; 
the first procedures were carried out in 1984. At the same 
time, experiments were carried out in California of robot- 
assisted stereotaxic brain surgery. A joint team from Memorial 
Medical Center in Long Beach and NASA-JPL led by Y. S. 
Kwoh and Samad Hayati used a Puma 200 to hold and manip-
ulate a biopsy cannula, navigated by a stereotactic frame 
mounted on the base of the robot [37]. In the same period, 
similar interventions were also performed in China.

In the late 1980s, the idea of robot-assisted minimally 
invasive telesurgery was primarily developed under the lead-
ership of Richard Satava within the US Army, which funded 
SRI International’s development of a prototype telesurgical 
system [38]. The prototype was demonstrated in animal 
experiments, described by Bowersox et  al. [39]. 
Contemporary to the US development, at the University of 
Karlsruhe (Germany), the team led by Gerhard Buess, 
already a pioneer of endoscopic surgery, developed (together 
with the Nuclear Research Center in Karlsruhe) the surgical 
robot prototype ARTEMIS, with seven degrees of freedom 
(DoF) [40, 41], shown in Fig. 1.7.

In the mid-1980s, Brian Davies and his team at Imperial 
College (London, UK) started to work on prostate surgery 
and developed the system called PROBOT for transure-
thral resection of the prostate (TURP) procedures in 1991 
[42]. In Milano, the team lead by Alberto Rovetta also 
developed a robot for TURP, which was used in a clinical 
trial [43].

The first robotic system for orthopedic surgery was 
developed in 1986 by a team formed by two surgeons, Dr. 
Howard Paul and Dr. William Bargar, and researchers at 
IBM Watson Research Center (Yorktown Heights, NY) 
led by Russell Taylor. This system was further developed 
by Integrated Surgical Systems (ISS, Santa Monica, CA), 
which in 1992 created the first orthopedic surgical sys-
tem, in collaboration with the University of California–
Davis. This system was called ROBODOC and was used 
for robot-assisted human hip replacement [44]. The team 
at Imperial College also addressed orthopedic surgery 
and developed the Acrobot® system for total knee replace-
ment procedures [45]. Other robots developed for ortho-
pedic surgery were CRIGOS [46] and Orto Maquet 
CASPAR [47].

In 1989, Yulan Wang founded Computer Motion Inc. 
(Goleta, CA), and, with a NASA-JPL grant, in 1992 he 
developed a robotic system able to move an endoscope 
during laparoscopic surgeries. He then commercialized 
this device as the Automated Endoscopic System for 
Optimal Positioning (AESOP), the first commercial robot 
to be routinely used in the operating room [48]. The 
AESOP system was later extended with the addition of 
more arms and different surgical instruments, and it 
became the Zeus Robotic Surgical System (Fig.  1.8), 
which included three arms [49].

Fig. 1.7 The master station of the ARTEMIS surgical robot (courtesy 
of Prof. Alberto Arezzo, University of Torino)

Fig. 1.8 The Zeus surgical robotic system (courtesy of Prof. Guang- 
Zhong Yang, The Hamlyn Center, Imperial College)

P. Fiorini



9

A collaboration between the ophthalmic surgeon Steve 
Charles and the NASA-JPL team of Antal Bejczy led to the 
development by Hari Nayar of the Advanced Teleoperation 
(ATOP) Lab of the robot-assisted microsurgery (RAMS) sys-
tem in 1994, a robotic system for microsurgery with force 
feedback (Fig. 1.9) [50]. The RAMS capabilities were later 
demonstrated in coronary artery anastomoses on animals [51].

Intuitive Surgical Inc. (Mountain View, CA) was founded 
in 1995 by Frederic Moll. After acquiring some of the pat-
ents of SRI for their surgical robotic system, Intuitive 
Surgical created a first prototype of the da Vinci surgical sys-

tem in 1997 to carry out clinical trials, which led to the first 
closed-chest, multivessel cardiac bypass procedure in 1999. 
The da Vinci system was cleared by the US Food and Drug 
Administration (FDA) for human use in 2000 and commer-
cialized as shown in Fig. 1.10. After several attempts to cre-
ate a market for beating-heart procedures, the da Vinci 
system found its niche in urology and gynecology, where it 
is now the gold standard for intervention. After a long patent 
dispute, Intuitive Surgical acquired Computer Motion, its 
only competitor, in 2003, and shortly afterward it discontin-
ued the production of the Zeus system [52].

Fig. 1.9 The robot-assisted microsurgery system (courtesy of NASA/
JPL-Caltech)

Fig. 1.10 The first 
generation of the da Vinci 
Surgical System (courtesy of 
Prof. Guang-Zhong Yang, The 
Hamlyn Center, Imperial 
College)

1 History of Robots and Robotic Surgery
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There have also been a few attempts at long-distance tele-
surgery. The first experiment was performed in 1993 between 
NASA-JPL (Pasadena, CA) and Milan, Italy, by the teams of 
Antal Bejczy and Alberto Rovetta [53]. A few years later, 
Jacques Marescaux performed a cholecystectomy on a patient 
in Strasbourg (France) from New  York, controlling a Zeus 
robot in France [54]. The Zeus robot was also involved in the 
2004 NEEMO experiments of undersea simulated surgery 
controlled remotely from the Centre for Minimal Access 
Surgery, London, UK. In 2005, the US Department of Defense 
launched its long-distance medical assistance project, the 
Trauma Pod [55], to demonstrate the feasibility of the original 
idea of Richard Satava, an emergency surgical unit in combat 
areas [56]. Although all these experiments were successful, 
long-distance telesurgery has not yet entered clinical practice 
because of safety and certification issues.

Several robots were also developed for neurosurgery. In 
1997, the team of Alim Louis Benabid in Grenoble developed 
the NeuroMate system [57], a stereotaxic targeting device for 
neurosurgery, which was the first neurosurgical robot to receive 
FDA clearance. This robot was initially marketed by Innovative 
Medical Machines International (Lyon, France) and now is a 
Renishaw product [58]. Minerva [59] was designed for stereo-
tactic brain biopsy to meet  specifications incorporating safety 
and geometry, to perform single- dimensional incursions into 
the brain while the patient is within a CT system that continu-
ously provides real-time imaging data to the robot. The 
PathFinder was an image- guided, frameless, six-axes robot to 
accurately position a tool for neurosurgery [60].

 Development Directions  
in Surgical Robotics

Robotic surgery is a very active area of research, and it is 
worth mentioning some of the most successful prototypes. 
The German Space Agency DLR has developed the MIRO 
surgical system [61], whose fast dynamics could allow 
beating- heart interventions. It has been designed to achieve 
the requirements of a broad range of surgical applications in 
endoscopic and open surgery. Integrated multimodal sensors 
and different control modes allow system configurations for 
telepresence (Fig. 1.11).

Fig. 1.11 The MIRO surgical system (courtesy of Deutschen Zentrums 
für Luft- und Raumfahrt [DLR])

P. Fiorini
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