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Robotics in Surgery

Moran Amit, Shorook Na’ara, and Ziv Gil

1.1  Introduction

Over the last two decades, robotic-assisted sur-
gery has revolutionized minimally invasive sur-
gery in multiple surgical specialties. The first 
robotic surgery system, the PUMA 560, was 
developed in 1985 to provide greater precision in 
performing image-guided intracranial biopsies. 
Further refinement in the early 1990s led to 
ROBODOC, which was the first robotic system 
to receive FDA approval for arthroscopic hip sur-
gery in 1994 [1]. Interest in medical robots led to 
collaborative efforts between the National 
Aeronautics and Space Administration (NASA) 
and Stanford Research Institute (SRI) in the early 
1980s, to develop telepresence surgery, the vir-
tual placement of a remotely located surgeon in 
the operative field.

Experience with minimally invasive laparo-
scopic procedures has helped surgeons under-
stand the limitations of rigid equipment and 

two-dimensional views. This has resulted in the 
development of semirigid robotic equipment 
with three-dimensional views for the operative 
setting. Combining these tools with telepresence 
surgery led to the development of the Automated 
Endoscopic System for Optimal Positioning 
(AESOP), a robotic arm (controlled by a sur-
geon’s voice commands) that manipulates an 
endoscopic camera [2]. The first robotic system 
that enabled surgery over a large distance con-
sisted of two separate subsystems, i.e., “surgeon- 
side” and “patient-side” (ZEUS, Computer 
Motion, California). The operator site was 
located in New York and the animals were in 
Strasbourg. The two sites were connected 
through a high-speed terrestrial optical-fiber net-
work that transports data through dedicated con-
nections using asynchronous transfer mode 
(ATM) technology [3].

Shortly thereafter, Intuitive Systems 
(Sunnyvale, CA) released the SRI Telepresence 
Surgery System that was recently updated to the 
current da Vinci Surgical System, the most com-
mon robotic system in use today [4].

In short, the current da Vinci system functions 
as a master-slave robot, with the surgeon manipu-
lating instruments connected by a cable network 
to the robotic cart. The system comprises three 
arms (one for the 12 mm 0° or 30° camera and two 
accommodate 8 mm and 5 mm instruments). The 
camera not only enables magnification but also 
three-dimensional viewing of the surgical field. 
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Robot-assisted surgery enables excellent visual-
ization and the capacity to manipulate and resect 
tumors due to the six degrees of freedom offered 
by the robotic arms and by the camera.

1.2  Applications in Fields Other 
Than Otolaryngology

Robot-assisted surgery is currently utilized in 
almost every surgical field. In general surgery, 
there is an abundance of reports on its use in cho-
lecystectomy, Heller myotomy, Nissen fundopli-
cation, bowel resection with reanastomosis, 
splenectomy, and Whipple and hepatobiliary sur-
gery [5]. These reports endorse the benefits of 
stable visualization and improved dexterity of the 
robotic arms with suturing and dissection. 
Cardiothoracic surgeons used robotic surgery 
first in 1998 to perform coronary revasculariza-
tion procedures and mitral valve replacements 
[6]. Numerous additional case series have since 
been published, describing esophagectomy, lung 
resection, tumor resections, atrial fibrillation 
ablations, and congenital cardiac anomalies. 
Results have been encouraging, with evidence 
demonstrating fewer blood transfusions, shorter 
hospital stays, faster returns to preoperative func-
tion levels, and improved quality of life com-
pared to patient series of sternotomy [7]. Multiple 
pediatric surgery robotic-assisted procedures 
include tracheoesophageal fistula repair, chole-
cystectomy, Nissen fundoplication, Morgagni’s 
hernia repair, Kasai portoenterostomy, and con-
genital diaphragmatic hernia repair.

Gynecologists utilize robotic surgery in hys-
terectomies, myomectomies, and tubal reanasto-
moses and achieve similarly positive results as in 
laparoscopic and open procedures. However, a 
recent Cochrane review showed an uncertain 
benefit for robotic surgery in gynecology because 
it is unclear if it affects rates of complications [8]. 
Oncologic outcomes were similar to laparoscopic 
and open methods. The setup time for both 
 exposure and docking of the robotic arms is lon-
ger with robot-assisted surgery but may be asso-
ciated with a shorter hospital stay following 

hysterectomy. In addition, gynecologic surgeons 
observed another major disadvantage; the lack of 
haptic feedback, which is a virtual tactile feed-
back technology that provides mechanical feed-
back to the surgeon. Currently, in the United 
States, robotic- assisted hysterectomy is mainly 
used for benign conditions and has been shown to 
be more expensive than conventional laparo-
scopic hysterectomy, with no difference in over-
all rates of complications [9].

The development of robotic technology has 
paved the way for the performance of highly 
complex procedures such as transplant surgery, 
in a minimally invasive fashion. The first fully 
robotic kidney transplantations were performed 
in the late 2000s. The use of the robotic-assisted 
approach has enabled transplantation of kidneys 
with minimal complications and has significantly 
shortened the recovery period. This has made 
possible kidney transplantation in obese patients, 
who were frequently denied access to 
transplantation.

The field of urologic surgery has perhaps 
seen the greatest incorporation of robotic sur-
gery: To date, more than two-thirds of prostatec-
tomies are performed with robotic assistance 
[10]. Positive margin status and PSA levels 
achieved by the robotic technique are compara-
ble to those achieved by open procedures [11]. 
However, surgeons noted significantly lower 
blood loss and transfusion rates, less pain, and 
shorter hospital stays for robotic techniques 
than open prostatectomies; erectile and urinary 
functional outcomes were found to be equiva-
lent among open, laparoscopic, and robotic 
prostatectomies [12].

1.3  Evolution of Robotic 
Applications 
in Otolaryngology

The first TORS procedure was reported in 
Washington by McLeod et al. only a little more 
than one decade ago [13]. Since then, surgeons 
have laid infrastructure for its use, and it has been 
successfully incorporated into routine practice in 
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the field of otolaryngology. Incorporation of 
robotic-assisted surgery in otolaryngology can be 
attributed to three main driving forces: (1) tech-
nological advancements that improved visualiza-
tion and instrumentation, (2) fast learning curve, 
and (3) better understanding of head and neck 
cancer biology while exploring organ conserva-
tion treatment protocols.

Traditionally, surgical removal of oropharyn-
geal cancer required mandibulotomy with or 
without free flap reconstruction in most cases. 
Unfortunately, this approach results in signifi-
cant morbidity. Mandibulotomy patients often 
require tracheotomies and feeding tubes. In 
addition, postoperative recovery, including 
rehabilitation, might further be slowed by adju-
vant chemotherapy and/or radiation [14]. The 
pendulum started to shift in the late 1980s when 
multiple institutions investigated alternative 
treatment protocols based on organ preserva-
tion. The VA trial and RTOG 91-11 showed that 
survival rates following chemotherapy and radi-
ation protocols were equivalent to those for 
patients who underwent surgery followed by 
radiation. By preserving the functional laryngo-
pharyngeal complex, these protocols became 
the standard of care in the treatment of squa-
mous cell carcinoma of the larynx [15, 16]. 
Alongside the highly conformal radiation deliv-
ery techniques (e.g., IMRT), molecular targeted 
therapies (e.g., cetuximab) were successfully 
introduced and represent an evolutionary 
advancement in head and neck cancer manage-
ment. Nonetheless, survival and quality of life 
are still poor for some patients [17].

Over the last decade, we encountered an 
increase in oropharyngeal squamous cell carci-
noma (OPSCC) caused by the human papilloma 
virus (HPV). HPV was recognized as a powerful 
prognostic biomarker for responsiveness to 
radiotherapy; however, HPV-positive patients 
tend to be younger, and thus the potential is 
greater for long-term sequelae from radiation, 
such as radiation-induced malignancy [18]. The 
development of successful minimally invasive 
surgical techniques has assisted in achieving 
sound oncological resection with local control 

and possibly sparing patients from undergoing 
concurrent chemoradiation.

First attempts to control OPSCC with mini-
mally invasive techniques in the modern radio-
therapy era used transoral laser microsurgery 
(TLM). While no randomized trials have com-
pared surgery and radiation, small series from 
various institutions have shown success at 
achieving local control by using TLM as the 
primary modality for OPSCC [19]. However, 
rigid narrow field exposure through laryngo-
scopes is very limited and challenging to 
maneuver within the complex anatomy of the 
oropharynx.

Robotic surgery overcomes some of these lim-
itations and provides a unique advantage by 
introducing angled optics and instrumentation 
with multiple degrees of rotation, which allows 
access to the entire upper aerodigestive tract sur-
face. In addition, superior optics enable a precise 
three-dimensional assessment of resection mar-
gins, less collateral tissue damage, and an excel-
lent view of the surgical bed.

1.4  Feasibility

Robotic-assisted salivary gland excision and 
neck dissection in a porcine model were the first 
applications of robotics in otolaryngology, as 
documented at Stanford University in 2003 [20]. 
Among the advantages claimed were the elimina-
tion of hand tremor and superior visualization 
without tactile sensation. Next, Hockstein and 
O’Malley reported gaining wide access to the 
laryngopharynx using mouth gag retractors in an 
airway mannequin and cadaver [21]. Later, 
Weinstein performed a supraglottic laryngec-
tomy in a canine model [21]. The authors reported 
increased exposure with the mouth gag, yielding 
adjustable visualization of the larynx [22]. The 
final step before attempts on live human surgery 
was the technological increment achieved by 
coupling of 5-mm instruments and other mouth 
retractors to the robotic system at Cleveland 
Clinic by Solares [23]. The latter incorporated 
the CO2 laser with the robotic arm for robotic- 
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assisted supraglottic laryngectomy and demon-
strated the importance of evaluating variable 
patient factors such as oral opening and neck 
extension.

Weinstein and O’Malley first reported the 
efficacy of robotic-assisted head and neck sur-
gery. They described a series of patients with 
early- stage, base of tongue squamous cell car-
cinomas who underwent complete en bloc 
resection of their tumors with negative mar-
gins. No immediate complications were noted, 
and patients were able to return to a full diet 
within 6 weeks of surgery [24]. With the feasi-
bility of TORS established in OPSCC, institu-
tions have begun recruiting patients for clinical 
trials such as ECOG3311 and RTOG1221 to 

assess treatment de-escalation of HPV+ patients 
with surgery and surgical intensification of 
treatment in HPV patients. Currently, robotic-
assisted surgery has a wide range of applica-
tions in otorhinolaryngology. These include 
transoral surgery for sleep disorders, malignant 
and benign tumor resection from the upper 
aerodigestive tract, and skull base surgery. In 
addition, various approaches have been uti-
lized for neck surgery, i.e., the transaxillary 
approach for thyroid and parathyroid surgery, 
and the retroauricular approach for neck dis-
section, congenital lesion resection, and sali-
vary gland surgery. Table 1.1 summarizes 
published applications of robotic-assisted sur-
gery in otorhinolaryngology.

Table 1.1. Published applications of robotic-assisted surgery in otorhinolaryngology

Approach Site Pathology
Number of 
published cases References

TORS Oral cavity Malignancies 8 [25–27]

Oropharynx: base of 
tongue and tonsils

Malignancies 1,337 [24–36]

Benign lesions 19 [13, 37–39]

OSA 726 [40–50]

Hypopharynx Malignancies 21 [26, 27, 51–53]

Larynx: supraglottis 
and glottis

Malignancies 63 [23, 25–27, 34, 
51, 54–56]

Congenital 
malformations and 
benign lesions

6 [57, 58]

Parapharyngeal space Benign and 
malignant tumors

45 [59–67]

Transaxillary approach Thyroid PTC and benign 
nodules

2,074 [68–79]

Parathyroid Parathyroid 
adenoma and 
hyperplasia

15 [78–81]

Thoracoscopic approach Mediastinal parathyroid Parathyroid 
adenoma and 
hyperplasia

10 [82–87]

Retroauricular/postauricular 
approach

Thyroid PTC 4 [88]

Neck dissection 19 [27, 89]

Branchial cleft cyst 3 [90]

Submandibular gland 13 [91]

TGDC 1 [92]

Modified facelift Neck dissection 44 [27, 93]

TORS transoral robotic surgery, OSA obstructive sleep apnea, PTC papillary thyroid carcinoma, TGDC thyroglossal 
duct cyst

M. Amit et al.
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1.5  Oncologic and Functional 
Outcomes

The effectiveness of a therapeutic modality 
appears to be strongly inversely related to the 
number of clinical trials that investigate the 
modality. While most head and neck cancers are 
surgically treated, only few clinical trials isolate 
any given surgical question.

Long-term survival outcomes of TORS are not 
currently available. Still, several institutions have 
published promising small cohort short-term 
data. A phase I study of 27 patients with early- 
stage tonsillar squamous cell carcinoma undergo-
ing TORS revealed a 92 % negative margin rate. 
Population-based analysis revealed that TORS is 
associated with a lower rate of positive margins 
than non-robotic surgery and that high-volume 
centers have the lowest rates of positive margins 
and unplanned readmissions [28]. After achiev-
ing resection with negative margins, adjuvant 
treatment may be administered. However, even if 
the patient requires adjuvant therapy, the toxicity 
from the lower dose of radiation, with possible 
sparing of concurrent chemoradiation, tends to be 
significantly less following adequate robotic sur-
gery and to result in better functional outcomes 
[94]. In addition, most patients do not need a tra-
cheotomy or extended hospitalization.

From a functional standpoint, many clinical 
studies have shown improved post-TORS swal-
lowing function compared with other surgical 
modalities and compared with primary chemora-
diation therapy, along with shorter hospital stay 
and faster recovery, as well as a more efficient 
return to work after completion of therapy [29]. 
Most patients after TORS for OPSCC maintain 
full oral feeding and eventually acceptable to 
normal physiological swallowing. In a negligible 
minority of patients, elective temporary trache-
otomy (1–2 weeks) is performed at the discretion 
of the surgeon, based on the estimated risk of 
postoperative upper airway obstruction due to 
mucosal swelling and the risk of postoperative 
bleeding. Faster recovery means that adjuvant 
therapy, if indicated, may start sooner, which 
improves locoregional control [30, 31].

Favorable oncological and functional out-
comes of TORS, which permit resection of the 
tumor en bloc while preserving patients’ swal-
lowing ability, led the FDA to approve, in 
December 2009, TORS for use in selected benign 
and malignant tumors of the head and neck. 
Using TORS, a mandibulotomy and/or pharyn-
gotomy is avoided. As evidence accumulates 
regarding survival implications of HPV status in 
patients undergoing primary surgical therapy, 
TORS may play a significant role in the applica-
tion of surgery to escalate or de-escalate first-line 
treatment for select patients with OPSCC.

1.6  Cost

High costs are a significant concern and a poten-
tial disadvantage of the implementation of a 
robotic program solely for TORS. With an initial 
cost of 1.5 million US dollars and annual mainte-
nance fees of 100,000 US dollars, most programs 
rely on sharing the robotic facility with other 
departments. Disposable equipment such as 
graspers, cautery arms, and other surgical instru-
ments total approximately 200 dollars per case. A 
nationwide cross-sectional analysis of more than 
9,000 patients showed that after controlling for 
all other variables, TORS patients had lower rates 
of gastrostomy tube placement and tracheotomy 
tube placement, shorter length of hospitalization 
(mean, −1.5 days), and lower hospital-related 
costs (mean, −$4,285) [95].

1.7  Training

Naturally, as the popularity of robotic surgery is 
growing, practitioners are seeking training and 
certification in this area. The pitfall of such 
market- driven health care is the possibility that 
adverse outcomes may decrease positive results 
of surgery when less-experienced surgeons per-
form oncologic resections simply because TORS 
is a new and marketable procedure [96]. Intuitive 
surgical provides a training curriculum on their 
website, which includes didactic lectures on the 
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da Vinci console, cadaver dissections, and live 
case observation. Nearly 1,500 surgical clips of 
TORS can be viewed on YouTube, and 
 representatives for the company provide surgeon 
tutoring during practitioners’ initial procedures.

Robust outcomes data are not yet available, 
but potentially, robot-assisted surgery will 
become a standardized integral part of treatment 
protocols such as the National Comprehensive 
Cancer Network (NCCN). Once integrated, the 
implementation of a standardized curriculum for 
robotic surgery into residency and fellowship 
education will be vital. Current data indicate that 
the performance of simple tasks such as grasping 
inanimate objects and suturing on latex is highly 
intuitive, and introducing residents to basic 
robotic surgical skills eases their transition to live 
patient cases [97]. As a result, many training pro-
grams now provide cadaver dissection courses 
using the robot as part of their training. Training 
is discussed in more depth in Chapter 4.

1.8  Future Directions

To date, available data on head and neck robotic 
surgery, mainly TORS, indicate that it is a safe effi-
cacious procedure for benign conditions such as 
obstructive sleep apnea. As stated, current efforts 
are being directed to implement TORS in oncology 
treatment protocols. Attempts are also being made 
to extend the applications of robot- assisted surgery 
and to use TORS in innovative ways and in other 
areas in the head and neck. An example is the field 
of skull base surgery, which requires precise 
motions with a steady hand. Surgeons have illus-
trated an approach to the midline and anterior skull 
base using two trocars inserted transcervically and 
placing the camera head in the oral cavity [98]. 
Anterior skull base and sella were accessed and 
dissected via bilateral Caldwell Luc incisions and 
maxillary antrostomies [99].

Robotic-assisted surgery is also being uti-
lized in reconstructive surgery [100]. 
Microvascular anastomosis in narrow and deep 

spaces such as the oropharynx has been shown 
to be fast and effective, in a tremor-free man-
ner. TORS free flap oropharyngeal reconstruc-
tion provides improved functional recovery 
and avoids the need for long-term healing by 
secondary intention of the oropharyngeal 
defect.

As current instrumentation is bulky, rigid, 
and passive, access is limited to narrow 3D com-
plex spaces such as the larynx and skull base. 
Approaches to such areas will become possible 
as finer analytical instrumentation such as flexi-
ble lasers and Doppler probes will emerge. To 
overcome some of these obstacles, a flexible 
nonlinear robot was designed based on the expe-
rience gained by the use of the da Vinci system. 
This robot was further customized and trans-
formed into the Medrobotics(®) Flex(®) System 
(Medrobotics Corp., Raynham, MA, USA), 
which was developed specifically for use in sur-
gical applications requiring nonlinear maneuver-
ability such as transoral surgery. The 
Medrobotics® Flex(®) System is an operator- 
controlled flexible endoscope system that 
includes rigid chip-on-tip endoscope and 
computer- assisted controllers, with two external 
channels for use with compatible, 3.5 mm flexi-
ble instruments. In 2015, the FDA approved the 
use of the Flex System for transoral resections of 
head and neck tumors.

 Conclusion

Head and neck applications of robotic surgery 
are an evolutionary increment in surgical 
capabilities. While robotic-assisted head and 
neck surgery confers significant advantages, 
its limitations should be acknowledged. 
Patients can benefit from en bloc removal of 
their tumors via minimally invasive surgery 
without a cervical incision while preserving 
function and potentially avoiding adjuvant 
radiation and long-term sequelae. While 
long-term oncologic and functional data are 
needed to fully validate its use, early results 
are promising.

M. Amit et al.
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