VOLUME 1

Introduction and General Neurosurgery
William T. Couldwell, Basant K. Misra, Volker Seifert, and Üğur Türe

Basic and Clinical Sciences
Michel Kliot, Pierre J. Magistretti, Robert M. Friedlander, and Michael M. Haglund

Epilepsy
Guy M. McKhann II, Itzhak Fried, Andrew W. McEvoy, Steven V. Pacia, Dennis D. Spencer, and Nitin Tandon

Functional Neurosurgery
Ron L. Alterman, Andres M. Lozano, Joachim K. Krauss, and Takaomi Taira

VOLUME 2

Oncology
E. Antonio Chiocca, Henry Brem, Russell R. Lonser, Andrew T. Parsa, Zvi Ram, and Raymond Sawaya

Pain
Kim J. Burchiel, Feridun Acar, and Andrew C. Zacest

Pediatrics
Gerald A. Grant, James T. Rutka, Andrew H. Jea, James Tait Goodrich, Richard David Hayward, and Shenandoah Robinson

VOLUME 3

Peripheral Nerve
Aaron G. Filler, Allan J. Belzberg, Liang Chen, and Martijn J.A. Malessy

Radiation
Bruce E. Pollock, Dong Gyu Kim, and Jean Régis

Spine
Christopher I. Shaffrey, Sr., Michael G. Fehlings, Osmar José Santos de Moraes, Charles Kuntz IV, Praveen V. Mummaneni, Paul Santiago, and Daniel K. Resnick

VOLUME 4

Trauma
Geoffrey T. Manley, Peter J. Hutchinson, Andrew I.R. Maas, and Guy Rosenthal

Vascular
E. Sander Connolly, Jr., Gavin W. Britz, Kazuhiro Hongo, Michael T. Lawton, and Fredric B. Meyer

About the Cover Artist:
Dr. Kathryn Ko completed her neurosurgery training at Mount Sinai Medical Center in New York City and earned an MFA from the Academy of Art University in representational painting. Dr. Ko is the host of Art on Call, a series that deals with the intersection of art and medicine. Dr. Ko regards art as a necessary continuation of her surgical practice. The operating theater is her studio; the treatment of the subject begins with the scalpel and ends with the brush.
Copyright © 2017 by Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

With respect to any drug or pharmaceutical products identified, readers are advised to check the most current information provided (i) on procedures featured or (ii) by the manufacturer of each product to be administered, to verify the recommended dose or formula, the method and duration of administration, and contraindications. It is the responsibility of practitioners, relying on their own experience and knowledge of their patients, to make diagnoses, to determine dosages and the best treatment for each individual patient, and to take all appropriate safety precautions.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Title: Youmans and Winn neurological surgery / [edited by] H. Richard Winn.
Other titles: Youmans neurological surgery. 1. Neurological surgery
Youmans neurological surgery, 6th ed. c2011. 1 Includes bibliographical references and index.
Identifiers: LCCN 2016035901 1 ISBN 9780323287821 (hardcover : alk. paper)
Classification: LCC RD593 1 NLM WL 368 1 DDC 617.4/8—dc23 LC record available
at https://lccn.loc.gov/2016035901

Senior Content Strategist: Charlotta Kryhl
Senior Content Development Specialist: Jennifer Shreiner
Publishing Services Manager: Jennifer Shreiner
Book Production Specialist: Kristine Feeherty
Design Direction: Julia Dummitt
Cover Art: Dr. Kathryn Ko

The artworks used on the cover from left to right are entitled:
The Unknown Human © Kathryn Ko, MD, MFA
Globus Pallidum © Kathryn Ko, MD, MFA
Lumbar Spine © Kathryn Ko, MD, MFA
Craniotomy in G Sharp © Kathryn Ko, MD, MFA

Printed in China

Last digit is the print number: 9 8 7 6 5 4 3 2 1
John A. Jane, Sr., MD, PhD, 1931-2015
Professor and Chair, Neurological Surgery
University of Virginia, Charlottesville, Virginia (1969-2006)
Editor-in-Chief of the Journal of Neurosurgery (1992-2013)

“Pigmaei gigantum humeris impositi plusquam ipsi gigantes vident.”
(If I have seen further it is by standing on the shoulders of giants.) Issac Newton 1676

“Though lives die, the life is not dead, and the memory of lives such as these will be reverently and forever shared not by a profession alone, not by a nation alone, but by the universal brotherhood of man.” Andreas Vesalius 1543

Dr. Jane was a giant whose shoulders were the foundation for advances in neurological surgery and for many generations of neurosurgeons. The department he fashioned at the University of Virginia was a fountainhead of originality, research, and advances in clinical care. Even more distinctively, he combined these efforts with a unique, compelling, and dominating focus on education. Dr. Jane united this scholarly emphasis with a warm and welcoming personality, an immense and eclectic intellect, and an ironic and unlimited sense of humor. Like Thomas Jefferson, the founder of the University of Virginia, Dr. Jane sought to create an “academic village” that fostered curiosity, innovation, and intellectual rigor in a supportive milieu. With his personal involvement and encouragement, his students and trainees pursued careers and leadership positions in academic institutions throughout America and the world. These trainees and their descendants will affirm the validity of Vesalius’s observation: memories of John Jane’s life and his “message” will be shared with future generations of neurosurgeons.

H. Richard Winn, MD
Resident in Neurological Surgery, University of Virginia (1970-1974)
Assistant, Associate, Professor and Vice Chair
Department of Neurological Surgery, University of Virginia (1976-1983)

REFERENCES
H. Richard Winn, MD
Professor of Neurosurgery
University of Iowa Carver College of Medicine
Iowa City, Iowa;
Professor of Neurosurgery and Neuroscience
Icahn School of Medicine at Mount Sinai
New York, New York
DEPUTY EDITORS-IN-CHIEF

Mitchel S. Berger, MD, MA
Professor and Berthold and Belle N. Guggenheim Endowed Chair
Department of Neurosurgery
Director, Brain Tumor Surgery Program
Director, Neurosurgical Research Centers, Brain Tumor Research Center
University of California, San Francisco
San Francisco, California

Kim J. Burchiel, MD, FACS
John Raaf Professor
Department of Neurological Surgery
Professor, Department of Anesthesiology and Perioperative Medicine
Oregon Health & Science University
Portland, Oregon

Ralph G. Dacey, Jr, MD
Henry G. and Edith R. Schwartz Professor and Chairman
Department of Neurological Surgery
Washington University School of Medicine in St. Louis
St. Louis, Missouri

M. Sean Grady, MD
Charles Harrison Frazier Professor and Chairman
Department of Neurosurgery
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, Pennsylvania

Matthew A. Howard III, MD
Professor and Chair
Department of Neurosurgery
University of Iowa Carver College of Medicine
Iowa City, Iowa

Marc R. Mayberg, MD
Executive Director
Swedish Neuroscience Institute
Swedish Medical Center
Seattle, Washington
SECTION I. INTRODUCTION AND GENERAL NEUROSURGERY

William T. Couldwell, MD, PhD
Professor and Chair
Department of Neurosurgery
University of Utah School of Medicine
Salt Lake City, Utah

Basant K. Misra, MBBS, MS, MCh, Diplomate National Board
Chairman, Department of Neurosurgery and Gamma Knife Radiosurgery
PD Hinduja National Hospital & Medical Research Centre
Mumbai, India

Volker Seifert, MD, PhD
Professor and Chairman
Department of Neurosurgery
Director, Center of Clinical Neurosciences
Johann Wolfgang Goethe-University
Frankfurt am Main Germany

Ugur Türe, MD
Professor and Chair
Department of Neurosurgery
Hacettepe University School of Medicine
Ankara, Turkey

SECTION II. BASIC AND CLINICAL SCIENCES

Michel Kliot, MD, MA
Professor and Interim Chair
Department of Neurosurgery
Director, Peripheral Nerve Center
Northwestern University Feinberg School of Medicine
Chicago, Illinois

Pierre J. Magistretti, MD, PhD
Professor and Director
Brain Mind Institute
Ecole Polytechnique Fédérale de Lausanne;
Director, Center for Psychiatric Neuroscience
Department of Psychiatry
Centre Hospitalier Universitaire Vaudois
Lausanne, Switzerland

Robert M. Friedlander, MD, MA
Walter E. Dandy Professor and Chairman
Department of Neurological Surgery
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania

Michael M. Haglund, MD, PhD
Professor of Neurosurgery, Neurobiology, and Global Health
Department of Neurosurgery
Duke University School of Medicine
Durham, North Carolina

SECTION III. EPILEPSY

Guy M. McKhann II, MD
Florence Irving Associate Professor of Neurological Surgery
Columbia University College of Physicians and Surgeons;
Director, Epilepsy and Movement Disorder Surgery
Director, Adult Hydrocephalus Center
Director, Awake Brain Mapping for Tumors and Epilepsy
New York–Presbyterian Columbia University Medical Center
New York, New York

Itzhak Fried, MD, PhD
Professor of Surgery (Neurosurgery) and Psychiatry and Bio-behavioral Sciences
Director of Epilepsy Surgery
Department of Neurosurgery
David Geffen School of Medicine at UCLA
Co-Director, Seizure Disorder Center
UCLA Medical Center
Los Angeles, California;
Professor of Surgery (Neurosurgery)
Tel-Aviv Medical Center
Tel-Aviv, Israel
SECTION IV. FUNCTIONAL NEUROSURGERY

Ron L. Alterman, MD, MBA
Professor of Neurosurgery
Harvard Medical School;
Chief, Division of Neurosurgery
Beth Israel Deaconess Medical Center
Boston, Massachusetts

Andrew M. Lozano, MD, PhD
Professor and Chairman
Division of Neurosurgery
University of Toronto Faculty of Medicine
Toronto, Ontario, Canada

SECTION V. ONCOLOGY

E. Antonio Chiocca, MD, PhD, FAANS
Harvey W. Cushing Professor of Neurosurgery
Harvard Medical School;
Neurosurgeon-in-Chief and Chair, Department of Neurosurgery
Co-Director, Institute for the Neurosciences
Brigham and Women’s Hospital
Boston, Massachusetts

Henry Brem, MD
Harvey Cushing Professor and Director
Department of Neurosurgery
Professor of Neurosurgery, Ophthalmology, Oncology, and Biomedical Engineering
Johns Hopkins University School of Medicine;
Neurosurgeon-in-Chief, Johns Hopkins Medical Institutions
Director, Hunterian Neurosurgical Research Center
Baltimore, Maryland

Russell R. Lonser, MD
Professor and Chairman
Department of Neurological Surgery
The Ohio State University Wexner Medical Center
Columbus, Ohio

Andrew T. Parsa, MD, PhD†
Michael J. Marchese Chair in Neurosurgery
Professor in Neurological Surgery and Neurology
Northwestern University Feinberg School of Medicine
Chicago, Illinois

†Deceased.
SECTION VI. PAIN

Kim J. Burchiel, MD, FACS
John Raaf Professor
Department of Neurological Surgery
Professor, Department of Anesthesiology and Perioperative Medicine
Oregon Health & Science University
Portland, Oregon

Feridun Acar, MD
Professor and Chair
Department of Neurosurgery
Pamukkale Universitesi
Denizli, Turkey

Andrew C. Zacest, MBBS, MS, FRACS, FFFPMANZCA
Consultant Neurosurgeon
Royal Adelaide Hospital
Associate Clinical Professor of Neurosurgery and Pain Medicine
University of Adelaide
Adelaide, Australia

SECTION VII. PEDIATRICS

Gerald A. Grant, MD, FACS
Associate Professor of Neurosurgery
Arline and Pete Harman Endowed Faculty Scholar
Division Chief, Pediatric Neurosurgery
Stanford University School of Medicine
Stanford, California

SECTION VIII. PERIPHERAL NERVE

Aaron G. Filler, MD, PhD, JD, FRCS
Medical Director
Institute for Nerve Medicine
Santa Monica, California
SECTION IX. RADIATION

Bruce E. Pollock, MD
Professor of Neurological Surgery and Radiation Oncology
Mayo Clinic
Rochester, Minnesota

Dong Gyu Kim, MD, PhD
Professor
Department of Neurosurgery
Seoul National University College of Medicine
Seoul National University Hospital
Seoul, Republic of Korea

Jean Régis, MD
Professor of Neurosurgery
Head, Functional Neurosurgery Department
Aix-Marseille University
Timone Hospital APHM
Marseille, France

SECTION X. SPINE

Christopher I. Shaffrey, Sr., MD
John A. Jane Professor
Departments of Neurological and Orthopaedic Surgery
University of Virginia Health System
Charlottesville, Virginia

Michael G. Fehlings, MD, PhD, FRCSC, FACS
Professor of Neurosurgery;
Vice Chair, Research, Department of Surgery, University of Toronto Faculty of Medicine;
Co-Director of the University of Toronto Spine Program, Director of the Spinal Program at the Toronto Western Hospital;
Gerald and Tootsie Halbert Chair in Neural Repair and Regeneration,
University Health Network;
Senior Scientist, Toronto Western Research Institute, University Health Network
Toronto, Ontario, Canada

Omar José Santos de Moraes, MD
Professor of Evidence Based Medicine
Santa Marcelina Medical School;
Head, Department of Neurosurgery
Santa Marcelina University Hospital
São Paulo, Brazil

Charles Kuntz IV, MD†
Professor and Vice Chairman
Department of Neurosurgery
University of Cincinnati College of Medicine;
Director, Division of Spine and Peripheral Nerve Surgery
Mayfield Clinic
Cincinnati, Ohio

Praveen V. Mummaneni, MD
Professor and Vice Chair
Department of Neurological Surgery
Director of Minimally Invasive and Cervical Spine Surgery
Co-Director, Spinal Surgery
University of California, San Francisco
San Francisco, California

†Deceased.
SECTION XI. TRAUMA

Geoffrey T. Manley, MD, PhD
Professor in Residence and Vice Chairman
Department of Neurological Surgery
Co-Director and Principal Investigator, Brain and Spinal Injury Center (BASIC)
University of California, San Francisco; Chief of Neurosurgery
San Francisco General Hospital
San Francisco, California

Peter J. Hutchinson, MBBS, PhD, FRCS (Surg Neurol)
Professor of Neurosurgery and NIHR Research Professor
Division of Neurosurgery, Department of Clinical Neurosciences
University of Cambridge
Addenbrooke’s Hospital
Cambridge, United Kingdom

Andrew I.R. Maas, MD, PhD
Professor and Chair
Department of Neurosurgery
University Hospital Antwerp and University of Antwerp
Antwerp, Belgium

Guy Rosenthal, MD
Senior Staff
Department of Neurosurgery
Hadassah Medical Center
Jerusalem, Israel

SECTION XII. VASCULAR

E. Sander Connolly, Jr., MD, FACS
Bennett M. Stein Professor of Neurological Surgery
Vice Chairman of Neurosurgery
Columbia University College of Physicians and Surgeons;
Director, Cerebrovascular Research Laboratory
Surgical Director, Neuro-Intensive Care Unit
New York–Presbyterian Columbia University Medical Center
New York, New York

Gavin W. Britz, MD, MBBCh, MPH, MBA, FAANS
Professor and Chair
Department of Neurosurgery
Houston Methodist Hospital
Co-Director, Methodist Neurological Institute
Houston, Texas;
Professor of Neurological Surgery
Weill Cornell Medical College
Cornell University
New York, New York

Kazuhiro Hongo, MD, PhD
Professor and Chair
Department of Neurosurgery
Shinshu University School of Medicine
Matsumoto, Japan

Michael T. Lawton, MD
Professor in Residence, Vice-Chairman, and Tong Po Kan Endowed Chair
Department of Neurological Surgery
Chief, Cerebrovascular and Skull Base Surgery Programs
Director, Cerebrovascular Disorders Program
Principal Investigator, Center for Cerebrovascular Research
University of California, San Francisco
San Francisco, California

Fredric B. Meyer, MD
Professor and Chair
Department of Neurosurgery
Mayo Clinic
Rochester, Minnesota
2 Surgical Anatomy of the Brain

2-1 Deep Right Frontal Glioma
2-2 Left Motor Area Glioma (Left Central Dysembryoplastic Neuroepithelial Tumor)
2-3 Deep Left Parietal Glioma
2-4 Left Superior Temporal Sulcus Cavernoma
2-5 Left Occipital Arteriovenous Malformation
2-6 Left Frontal and Parietal Opercula Low-Grade Glioma
2-7 Right Temporoinsular Oligodendroglioma
2-8 Right Anterior-Inferior Insular Cavernoma
2-9 Left Frontoinsular Cortical Dysplasia
2-10 Left Subcallosal Low-Grade Glioma
2-11 Left Interhemispheric Anterior Transcallosal Approach to Tumor in the Body of Lateral Ventricle
2-12 Total Callosotomy
2-13 Left Corticoamygdalohippocampectomy
2-14 Transcallosal Transchoroidal Approach to Colloid Cyst of the Third Ventricle
2-15 Middle Cerebral Artery M1 Aneurysm Pointing Upward
2-16 Middle Cerebral Artery M1 Aneurysm Pointing Downward
2-17 Paraclinoid Internal Carotid Artery Aneurysm Directed Medially
2-18 Left Posterior Communicating Artery Aneurysm
2-19 Left Carotid–Posterior Communicating Artery Aneurysm
2-20 Left Carotid–Posterior Communicating Artery Aneurysm
2-21 Left Carotid–Posterior Communicating Artery Aneurysm: Minipterional Approach
2-22 Carotid-Ophthalmic Aneurysm
2-23 Tuberculum Sellae Meningioma
2-24 Right Posterior Interhemispheric Approach
2-25 Right Medial Temporal Cavernoma
2-26 Anterior Communicating Artery Aneurysm
2-27 Right A1–Anterior Communicating Artery Aneurysm
2-28 Motor Area Cortical Dysplasia
2-29 Left Anterior Petrothal Approach to Pons Cavernoma
2-30 Left Cervical C1 Schwannoma

2-31 Left Middle Cerebellar Peduncle Cavernoma
2-32A Fourth Ventricle Ependymoma
2-32BC Lower Cerebellopontine Angle Ependymoma (Part 1)/Lower Cerebellopontine Angle Ependymoma (Part 2)
2-33 Right Posterior Inferior Cerebellar Artery Aneurysm
2-34 Left Posterior Inferior Cerebellar Artery (Cisterna Magna) Aneurysm

8 Neuro-ophthalmology

8-1 Right Third Cranial Nerve (Oculomotor) Palsy
8-2 Left Fourth Cranial Nerve Palsy
8-3 Left Sixth Cranial Nerve Palsy
8-4 Dorsal Midbrain (Parinaud’s) Syndrome
8-5 Ocular Bobbing
8-6 Ping-Pong Gaze in a Patient with Hypoxic-Ischemic Encephalopathy and Extensive Bilateral Hemispheric Injury

12 Radiology of the Spine

12-1 Sagittal Cerebrospinal Fluid (CSF) Flow Examination through the Brain in a Patient with Chiari I Malformation

20 Positioning for Cranial Surgery

20-1 Positioning for Cranial Surgery
20-2 Supine and Semi-Sitting Positions
20-3 Modified Supine Position for Retrosigmoid Approach
20-4 Lateral Decubitus Position
20-5 Prone Position
20-6 Three-Quarter Prone Position
20-7 Sitting Position

21 Positioning for Spinal Surgery

21-1 Positioning for Spinal Surgery

22 Positioning for Peripheral Nerve Surgery

22-1 Introduction to Peripheral Nerve Surgery Positions and Exposures
22-2 Suprascapular Nerve
22-3 Spinal Accessory Nerve
22-4 Brachial Plexus (Supra- and Infraclavicular Exposures)
22-5 Exposure of the Ulnar, Median, and Musculocutaneous Nerves in the Arm
22-6 Ulnar Nerve at the Cubital Tunnel
22-7 Anterior Interosseous Nerve
22-8 Posterior Interosseous Nerve
22-9 Carpal Tunnel
22-10 Ulnar Nerve at Guyon's Canal
22-11 Superficial Radial Nerve
22-12 Radial Nerve
22-13 Lumbar Plexus
22-14 Exposure of the Femoral and Lateral Femoral Cutaneous Nerves in the Leg
22-15 Exposure of the Sciatic Nerve in the Buttock
22-16 Peroneal and Tibial Nerves
22-17 Sural Nerve
22-18 Tarsal Tunnel (Medial, Lateral Plantar, and Calcaneal Nerves)

26 Advantages and Limitations of Cranial Endoscopy
26-1 Endoscopic Endonasal Transcribriform Approach for Resection of Adenoid Cystic Carcinoma of the Anterior Skull Base and Orbit

27 Thorascopic Spine Surgery
27-1 Positioning
27-2 Marking the Portals
27-3 Approach
27-4 Transdiaphragmatic Approach
27-5 Landmarks Incision
27-6 Segmental Vessel Preparation
27-7 Cannulated Screw Insertion
27-8 Discectomy T12-L1
27-9 Partial Corpectomy
27-10 Bone Graft Insertion
27-11 Instrumentation
27-12 Final Steps
27-13 Thoracic Herniated Disk: Thorascoscopic Treatment

28 Cranioplasty
28-1 Autologous Cranioplasty after Decompressive Hemicraniectomy
28-2 Methyl Methacrylate Cranioplasty for Left Parietal Skull Lesion

31 Shunting
31-1 Ventriculoperitoneal (VP) Shunting
31-2 Ventriculoatrial (VA) Shunting
31-3 Endoscopic Third Ventriculostomy (ETV) Technique

34 Medical and Surgical Management of Chronic Subdural Hematomas
34-1 Bur-Hole Craniostomy for Treatment of Chronic Subdural Hematomas

42 Parasitic Infections
42-1 Endoscopic Approach for Cysticerci Located in Subarachnoid Cisterns at the Base of the Brain

54 Extracellular Fluid Movement and Clearance in the Brain: The Glymphatic Pathway
54-1 Paravascular
54-2 Role of Astroglial Water Transport in Paravascular CSF-ISF Exchange

69 Motor, Sensory, and Language Mapping and Monitoring for Cortical Resections
69-1 Awake Craniotomy with Mapping for Resection of a Temporal Lobe Tumor

71 Intracranial Monitoring: Subdural Strip and Grid Recording
71-1 Craniotomy for Subdural Strip and Grid Placement

73 Surgical Techniques for Non–Temporal Lobe Epilepsy: Corpus Callosotomy, Multiple Subpial Transection, and Topectomy
73-1 Corpus Callosotomy

88 Ablative Procedures for Parkinson’s Disease
88-1 Stereotactic Targeting and Microelectrode Mapping of the Globus Pallidus

89 Deep Brain Stimulation for Parkinson’s Disease
89-1 Interventional MRI Deep Brain Stimulation

95 Transcranial Magnetic Resonance Imaging–Guided Focused Ultrasound Thalamotomy for Tremor
95-1 Focused Ultrasound Thalamotomy

96 Selective Peripheral Denervation for Cervical Dystonia
96-1 Patient with Cervical Dystonia before and after Peripheral Denervation Surgery

97 Thalamotomy for Focal Hand Dystonia
97-1 A Typical Example of Writer’s Cramp
97-2 Writer’s Cramp with Dystonic Tremor
97-3 Occupational Focal Dystonia
97-4 Task-Specific Dystonia in a Music Teacher
97-5 Task-Specific Dystonia of the Left Hand in a Professional Guitarist
97-6 Task-Specific Dystonia of the Right Hand in a Professional Guitarist
97-7 Intraoperative View of Right Vo Thalamotomy in a Professional Pianist

99 Surgery for Tourette’s Syndrome
99-1 Deep Brain Stimulation for Tourette’s Syndrome

104 Management of Spasticity by Central Nervous System Infusion Techniques
104-1 SynchroMed II Intrathecal Drug Delivery System Implant Procedure

109 Neuroprosthetics
109-1 Robotic Limb Control by a Monkey
109-2 Robotic Limb Control by a Human
109-3 Speech Network Brain-Computer Interface Control
109-4 Electrocorticographic Brain-Computer Interface in a Human with Tetraplegia

115 Malignant Glioma Microenvironment
115-1 Visualization of Glioma Cell Dispersion through Neural Tissue
115-2 Stereotypical Motility of Glioma Cells in Neural Tissue

119 Local Therapies for Gliomas
119-1 Real-Time Magnetic Resonance Imaging of Convection-Enhanced Delivery of Infusate and Gadolinium into the Brainstem

130 Basic Principles of Skull Base Surgery
130-1 Giant Suprasellar Meningioma: Frontolateral Approach
130-2 Tumor in the Cavernous Sinus and Meckel’s Cave
130-3 Trigeminal Schwannoma: Endoscope-Assisted Retrosigmoid Suprameatal Approach

132 Surgical Navigation for Brain Tumors
132-1 Preoperative Surgical Planning using Functional Magnetic Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI) Data

133 Endoscopic Approaches to Brain Tumors
133-1 Seeing around Corners
133-2 Endoscopic Endonasal Resection of Pituitary Adenoma

134 Awake Craniotomy and Intraoperative Mapping
134-1 Awake Craniotomy with Sensorimotor Mapping

141 Pineal Tumors
141-1 Resection of Pineal Region Tumors: Suprarcerebellar Infratentorial Approach
141-2 Resection of Pineal Region Tumors: Occipital Transtentorial Approach
144 Hemangioblastomas
144-1 Surgical Resection Technique for Spinal Cord Hemangioblastoma

147 Meningiomas
147-1 Combined Petrosal Approach for Resection of Petroclival Meningioma
147-2 Transcondylar Cranietomy for Resection of Ventral Foramen Magnum Meningioma

150 Pituitary Tumors: Functioning and Nonfunctioning
150-1 Endonasal Endoscopic Transsphenoidal Tumor Resection

153 Ventricle Tumors
153-1 Interhemispheric Subfrontal Trans–Lamina Terminalis Approach
153-2 Lateral Subfrontal Trans–Lamina Terminalis Approach
153-3 Anterior Transcortical Approach
153-4 Anterior Interhemispheric Transcallosal Paraforniceal Approach
153-5 Occipital Transtentorial Approach to the Pineal Region
153-6 Tectal Tumors Involving the Third Ventricle
153-7 Resection of Ependymoma
153-8 Resection of Exophytic Cavernous Malformation
153-9 Endoscopic Resection of Colloid Cyst

154 Overview of Skull Base Tumors
154-1 Petrous Meningioma Resection
154-2 Anterior Clinoid Meningioma Resection
154-3 En Plaque Vertebral Artery Meningioma Resection
154-4 Craniovertebral Junction Meningioma
154-5 Unique Hemostatic Technique: H2O2 in Ultrasonic Aspirator
154-6 Clival Meningioma Resection
154-7 Subfrontal Resection of Giant Fibrous Pituitary Tumor
154-8 Trigeminal Schwannoma Resection
154-9 C2 Schwannoma Resection
154-10 Giant Acoustic Schwannoma Resection
154-11 Intracanalicular Schwannoma Resection
154-12 Left Acoustic Schwannoma Resection
154-13 Endoscopic Resection of Clival Chordoma

159 Trigeminal Schwannomas
159-1 Right-Sided Dolenc’s Approach for Trigeminal Schwannoma

161 Tumors of the Orbit
161-1 Lateral Orbitotomy Approach for Sphenoid Wing Meningioma
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Subtitle</th>
</tr>
</thead>
<tbody>
<tr>
<td>161-2</td>
<td>Decompression of Left Optic Nerve and Medial Orbital Apex via Endoscopic Endonasal Approach</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Pseudotumor Cerebri</td>
<td>Technique for Performing an Optic Nerve Sheath Fenestration</td>
</tr>
<tr>
<td>173-1</td>
<td>Stereotactic Radiosurgery for Trigeminal Neuralgia</td>
<td>Demonstration of Planning for Gamma Knife Surgery</td>
</tr>
<tr>
<td>174-1</td>
<td>Microvascular Decompression for Trigeminal Neuralgia</td>
<td>Microvasular Decompression for Trigeminal Neuralgia</td>
</tr>
<tr>
<td>178</td>
<td>Spinal Cord Stimulation</td>
<td>Stage I Setup and Patient Prep for Spinal Cord Stimulator Placement</td>
</tr>
<tr>
<td>178-2</td>
<td>Stage I Exposure for Spinal Cord Stimulator Placement</td>
<td>Stage II Exposure for Spinal Cord Stimulator Placement</td>
</tr>
<tr>
<td>178-3</td>
<td>Spinal Cord Stimulator Electrode Placement and Testing</td>
<td>Creation of Generator Pocket for Spinal Cord Stimulator</td>
</tr>
<tr>
<td>178-4</td>
<td>Securing the Spinal Cord Stimulator Electrode</td>
<td>Tunneling Lead Extenders in Spinal Cord Stimulator Placement</td>
</tr>
<tr>
<td>178-5</td>
<td>Closure of Stage I in Spinal Cord Stimulator Surgery</td>
<td>Connecting Leads to Generator in Spinal Cord Stimulator Placement</td>
</tr>
<tr>
<td>178-6</td>
<td>Stage II Setup and Patient Prep for Spinal Cord Stimulator Placement</td>
<td>Closing Stage II in Spinal Cord Stimulator Surgery</td>
</tr>
<tr>
<td>189-1</td>
<td>Arachnoid Cysts in Childhood</td>
<td>Endoscopic Approach to Intraventricular Cyst Fenestration and Excision</td>
</tr>
<tr>
<td>190-1</td>
<td>Chiari Malformations</td>
<td>Posterior Fossa Decompression for Chiari I Malformation</td>
</tr>
<tr>
<td>201-1</td>
<td>Ventricular Shunting Procedures</td>
<td>Occipitoparietal VP Shunt Insertion with Laparoscopic Distal Catheter Placement</td>
</tr>
<tr>
<td>207-1</td>
<td>Optic Pathway Hypothalamic Gliomas</td>
<td>Interhemispheric, Transcallosal Approach for Third Ventricular Tumor</td>
</tr>
<tr>
<td>207-2</td>
<td>Debulking of Optic Pathway Hypothalamic Glioma within Third Ventricle, via Interhemispheric,</td>
<td>Debulking of Optic Pathway Hypothalamic Glioma within Third Ventricle, via Interhemispheric,</td>
</tr>
<tr>
<td></td>
<td>Transcallosal, Transforaminal Approach</td>
<td>Transcallosal, Transforaminal Approach</td>
</tr>
<tr>
<td>209-1</td>
<td>Choroid Plexus Tumors</td>
<td>Bipolar Coagulation without Debulking of Choroid Plexus Papilloma</td>
</tr>
<tr>
<td>217-1</td>
<td>Neurocutaneous Tumor Syndromes</td>
<td>Endoscopic Resection of Subependymal Giant Cell Astrocytoma</td>
</tr>
<tr>
<td>220-1</td>
<td>Moyamoya Disease</td>
<td>Pial Synangiosis for Moyamoya Disease</td>
</tr>
<tr>
<td>221-1</td>
<td>Vein of Galen Aneurysmal Malformation</td>
<td>Vein of Galen Aneurysmal Malformation: Choroidal Type</td>
</tr>
<tr>
<td>222-1</td>
<td>Pediatric Cerebral Aneurysms</td>
<td>Craniotomy and STA-MCA Bypass for Previously Stented Giant Pediatric Aneurysm</td>
</tr>
<tr>
<td>229-1</td>
<td>Myelomeningocele and Myelocystocele</td>
<td>Myelomeningocele Repair</td>
</tr>
<tr>
<td>230-1</td>
<td>Lipomyelomeningocele</td>
<td>Lipomyelomeningocele Repair</td>
</tr>
<tr>
<td>231-1</td>
<td>Split Spinal Cord</td>
<td>Surgical Repair of Diastematomyelia Type II</td>
</tr>
<tr>
<td>232</td>
<td>Tethered Spinal Cord: Fatty Filum Terminale, Meningocele Manqué, and Dermal Sinus Tracts</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>Developmental Anomalies of the Craniovertebral Junction and Surgical Management</td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>Achondroplasia and Other Dwarfisms</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>Surgical Management of the Pediatric Subaxial Cervical Spine</td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>Intraspinal Tumors in Children</td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>Pediatric Vertebral Column and Spinal Cord Injuries</td>
<td>Computer-Assisted Navigation and Placement of C2 Translaminar Screw for Occipitocervical Fusion</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>241-1</td>
<td>Clinical Features and Management of Cerebral Palsy</td>
<td></td>
</tr>
<tr>
<td>241-2</td>
<td>A Child with Spastic Diplegia and Mixed Movement Disorders: GMFCS III</td>
<td></td>
</tr>
<tr>
<td>241-3</td>
<td>A Child with Mixed Spastic Greater Than Dystonic Quadriplegic Cerebral Palsy: GMFCS IV</td>
<td></td>
</tr>
<tr>
<td>241-4</td>
<td>Comparison of Motor Function Levels among Three Children with Spastic Diplegic Cerebral Palsy: GMFCS I, GMFCS III, GMFCS IV</td>
<td></td>
</tr>
<tr>
<td>241-5</td>
<td>A Child with Diplegic Cerebral Palsy after Bilateral Hamstring Lengthening and Intensive Strengthening: GMFCS II</td>
<td></td>
</tr>
<tr>
<td>241-6</td>
<td>Botulinum Toxin Used to Improve Range of Motion in a Child with Mixed Tone Cerebral Palsy: GMFCS V</td>
<td></td>
</tr>
<tr>
<td>241-7</td>
<td>A Child with Cerebral Palsy before and after Selective Dorsal Rhizotomy: GMFCS III</td>
<td></td>
</tr>
<tr>
<td>241-8</td>
<td>A Child with Spastic Dystonic Quadriplegic Cerebral Palsy before and after Placement of an Intrathecal Baclofen Pump: GMFCS V</td>
<td></td>
</tr>
<tr>
<td>241-9</td>
<td>A Child with Ataxic Cerebral Palsy and Mixed Dyskinetic Spastic Quadriplegia: GMFCS IV</td>
<td></td>
</tr>
<tr>
<td>241-10</td>
<td>A Child with Severe Mixed Dyskinetic Spastic Quadriplegic Cerebral Palsy: GMFCS V</td>
<td></td>
</tr>
<tr>
<td>241-11</td>
<td>A Child with Mixed Dyskinetic Spastic Cerebral Palsy Secondary to Hypoxic Ischemic Encephalopathy: GMFCS III, Then Became a GMFCS II</td>
<td></td>
</tr>
<tr>
<td>241-12</td>
<td>A Child with Diplegic Cerebral Palsy with Significant Dystonia after Selective Dorsal Rhizotomy: GMFCS III</td>
<td></td>
</tr>
<tr>
<td>241-13</td>
<td>A Child with Generalized Dystonia: GMFCS V</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>245</th>
<th>Peripheral Nerve Examination, Evaluation, and Biopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>245-1</td>
<td>Radial Nerve Examination</td>
</tr>
<tr>
<td>245-2</td>
<td>Median Nerve Examination</td>
</tr>
<tr>
<td>245-3</td>
<td>Ulnar Nerve Examination</td>
</tr>
<tr>
<td>245-4</td>
<td>Peroneal Nerve Examination</td>
</tr>
<tr>
<td>245-5</td>
<td>Tibial Nerve Examination</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>246</th>
<th>Peripheral Neuropathies</th>
</tr>
</thead>
<tbody>
<tr>
<td>246-1</td>
<td>Sural Nerve Biopsy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>247</th>
<th>Monitoring of Neural Function: Electromyography, Nerve Conduction, and Evoked Potentials</th>
</tr>
</thead>
<tbody>
<tr>
<td>247-1</td>
<td>Intrathecal Baclofen Pump</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>248</th>
<th>Imaging for Peripheral Nerve Disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>248-1</td>
<td>Phased Array T2 Neurography</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>249</th>
<th>Distal Entrapment Syndromes: Carpal Tunnel, Cubital Tunnel, Peroneal, and Tarsal Tunnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>249-1</td>
<td>Mini-Open Carpal Tunnel Decompression</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>252</th>
<th>Techniques in Nerve Reconstruction and Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>252-1</td>
<td>Cable Nerve Grafting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>253</th>
<th>Nerve Transfers</th>
</tr>
</thead>
<tbody>
<tr>
<td>253-1</td>
<td>Contralateral C7 Transfer for Treatment of Total Brachial Plexus Root Avulsion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>260</th>
<th>Neuroelectronic Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>260-1</td>
<td>Electromyographic Training and Hybrid Hand Fitting</td>
</tr>
<tr>
<td>260-2</td>
<td>Southampton Hand Assessment Procedure (SHAP) of Prosthetic Hand Function</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>264</th>
<th>Radiosurgery Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>264-1</td>
<td>Radiosurgery Technique</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>274</th>
<th>Assessment of Spinal Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>274-1</td>
<td>Normal Bidirectional Cerebrospinal Fluid Flow</td>
</tr>
<tr>
<td>274-2</td>
<td>Abnormal Cerebrospinal Fluid Flow in Chiari Malformation</td>
</tr>
<tr>
<td>274-3</td>
<td>Normal Range of Motion</td>
</tr>
<tr>
<td>274-4</td>
<td>Increased Subarachnoid Space Narrowing in Cervical Spondylolisthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>277</th>
<th>Pathophysiology and Treatment of Spinal Cord Injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>277-1</td>
<td>Lecture Overview of the Basic Science and Treatment of Spinal Cord Injury</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>278</th>
<th>Electrophysiologic Studies and Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>278-1</td>
<td>Directional Triggered Electromyography (EMG) Readings Encountered during the Lateral Transpsoas Approach to the Lumbar Spine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>283</th>
<th>Evaluation and Treatment of Cervical Disk Herniations</th>
</tr>
</thead>
<tbody>
<tr>
<td>283-1</td>
<td>C6-C7 Cervical Arthroplasty</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>285</th>
<th>Evaluation and Treatment of Thoracic Disk Herniation</th>
</tr>
</thead>
<tbody>
<tr>
<td>285-1</td>
<td>Transpedicular Approach to Resecting a Thoracic Disk</td>
</tr>
<tr>
<td>285-2</td>
<td>Thoracoscopic Approach to Discectomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>288</th>
<th>Evaluation and Treatment of Degenerative Lumbar Spondylolisthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>288-1</td>
<td>Open Transforaminal Lumbar Interbody Fusion (TLIF) with Laminectomy for Lumbar Stenosis and Degenerative Spondylolisthesis</td>
</tr>
</tbody>
</table>
288-2 Minimally Invasive Transforaminal Lumbar Interbody Fusion (TLIF) for Degenerative Spondylolisthesis with Bilateral Decompression of Lumbar Stenosis via a Unilateral Approach

289 Treatment of Discitis and Epidural Abscess

289-1 Computed Tomography–Guided Needle Biopsy

291 Evaluation and Treatment of Fungal and Tubercular Infections of the Spine

291-1 Intramedullary Tuberculoma

293 Assessment and Treatment of Primary Malignant Tumors of the Axial Skeleton

293-1 L5 Chordoma En Bloc Excision: Posterior Approach

293-2 L5 Chordoma En Bloc Excision: Anterior Approach

293-3 L5 Chordoma En Bloc Excision: Preparing Anterior Reconstruction after Removal of L5 Vertebral Body

294 Assessment and Treatment of Benign Intradural Extramedullary Tumors

294-1 Gross Total Resection of a Thoracic Schwannoma

294-2 Gross Total Resection of a Myxopapillary Ependymoma

295 Assessment and Treatment of Metastatic Spinal Lesions

295-1 Laminectomy and Exposure of the Dura for Decompression and Reconstruction of L3-L4 Metastatic Spinal Cord Compression

295-2A L3-L4 Decompression: Right-Sided Transpedicular Approach

295-2B Completion of the L3-L4 Decompression

295-3 Anterior Reconstruction and Posterior Instrumented Fusion

300 Adult Tethered Cord Syndrome

300-1 Single-Level Laminotomy and Sectioning of the Filum Terminale in a Patient with Tethered Cord Syndrome with a Low-Lying Spinal Cord

300-2 Single-Level Laminotomy and Sectioning of the Filum Terminale in a Patient with Tethered Cord Syndrome with a Fatty Filum

300-3 Excision of a Dermal Sinus Tract with Intradural Extension

300-4 Vertebral Column Subtraction Osteotomy (VCSO) or Spinal Shortening Procedure

304 Classification and Treatment of O-C1 Cervicocranial Injuries

304-1 Occipitocervical Fusion with Steinmann Pin and Contoured Rod

304-2 Occipitocervical Instrumentation with Plate and Lateral Mass Screws

313 Evaluation and Treatment of Cervical Deformity

313-1 Combined Anterior Cervical Discectomy and Fusion in Conjunction with Posterior Laminectomy, Facet Osteotomies, and Instrumented Fusion for Treatment of Cervical Kyphotic Deformity

315 Evaluation and Treatment of Scheuermann’s Kyphosis

315-1 Ponte Osteotomies and Kyphosis Correction with Cantilever

321 Cervical Arthroplasty

321-1 The PRESTIGE® LP Cervical Disc Surgical Technique

324 Occiput, C1, and C2 Instrumentation

324-1 Technique of Atlantoaxial Fixation

325 Anterior Cervical Instrumentation

325-1 Anterior Cervicothoracic Corpectomies with Expandable Cage and Plate

327 Anterior Thoracic Instrumentation

327-1 Anterior Techniques in Scoliosis Correction: Rib Excision

327-2 Rib Excision

327-3 Transpleural Retroperitoneal Approach

327-4 Psoas Dissection

327-5 Dissection to Base of Pedicle and Nerve Root Foramen

327-6 Completed Dissection

327-7 En Bloc Excision of Posterior End Plate and Anulus

327-8 Posterior Longitudinal Ligament Exposed

327-9 Segmental Structural Rib Graft under Compression

328 Anterior and Lateral Lumbar Instrumentation

328-1 Four-Level Minimally Invasive Lateral Interbody Fusion for Treatment of Degenerative Scoliosis

330 Posterior, Transforaminal, and Anterior Lumbar Interbody Fusion

330-1 Expandable Interbody Spacer as Seen on Fluoroscopy

332 Sacropelvic Fixation: Anterior and Posterior Options

332-1 Technique of Pelvic Screw Placement

335 Minimally Invasive Techniques for Degenerative Disease

335-1 Tubular Lumbar Laminectomy

335-2 Transforaminal Lumbar Interbody Fusion (TLIF)

335-3 Extreme Lateral Interbody Fusion (ELIF)
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>335-4</td>
<td>Extreme Lateral Mini-Thoracotomy</td>
</tr>
<tr>
<td>335-5</td>
<td>Posterior Cervical Foraminotomy</td>
</tr>
<tr>
<td>341</td>
<td>Neurochemical Pathomechanisms in Traumatic Brain Injury</td>
</tr>
<tr>
<td>341-1</td>
<td>Overview of the Neurochemical Pathomechanisms of TBI</td>
</tr>
<tr>
<td>348</td>
<td>Initial Resuscitation, Prehospital Care, and Emergency Room Care in Traumatic Brain Injury</td>
</tr>
<tr>
<td>348-1</td>
<td>Placement of an Intracranial Pressure Monitor</td>
</tr>
<tr>
<td>349</td>
<td>Critical Care Management of Traumatic Brain Injury</td>
</tr>
<tr>
<td>349-1</td>
<td>Central Line Placement: Basic Equipment and Procedure Skills</td>
</tr>
<tr>
<td>349-2</td>
<td>Endotracheal Intubation: Basic Equipment and Procedure Skills</td>
</tr>
<tr>
<td>349-3</td>
<td>Bronchoscopy</td>
</tr>
<tr>
<td>353</td>
<td>Blast-Induced Neurotrauma</td>
</tr>
<tr>
<td>353-1</td>
<td>Blast-Induced Neurotrauma: Models and Outcomes</td>
</tr>
<tr>
<td>355</td>
<td>Craniofacial Injuries</td>
</tr>
<tr>
<td>355-1</td>
<td>Management of Panfacial Fractures</td>
</tr>
<tr>
<td>357</td>
<td>Traumatic Cerebrospinal Fluid Fistulas</td>
</tr>
<tr>
<td>357-1</td>
<td>Repair of CSF Fistula with a Nasoseptal Flap</td>
</tr>
<tr>
<td>358</td>
<td>Rehabilitation of Patients with Traumatic Brain Injury</td>
</tr>
<tr>
<td>358-1</td>
<td>Cortical Downregulation versus Apathy after Severe TBI</td>
</tr>
<tr>
<td>361</td>
<td>Acute Surgical and Endovascular Management of Ischemic and Hemorrhagic Stroke</td>
</tr>
<tr>
<td>361-1</td>
<td>Stent retriever Mediated Manual Aspiration Thrombectomy (SMAT)</td>
</tr>
<tr>
<td>364</td>
<td>Neurovascular Imaging</td>
</tr>
<tr>
<td>364-1</td>
<td>Three-Dimensional (3D) Rotational Angiography of the Cerebral Artery Bed</td>
</tr>
<tr>
<td>366</td>
<td>Carotid Endarterectomy</td>
</tr>
<tr>
<td>366-1</td>
<td>Endarterectomy: Overview</td>
</tr>
<tr>
<td>366-2</td>
<td>Endarterectomy: Step 1 Room Setup</td>
</tr>
<tr>
<td>366-3</td>
<td>Endarterectomy: Step 2 Incision and Isolation</td>
</tr>
<tr>
<td>366-4</td>
<td>Endarterectomy: Step 3 Spinal Accessory and Dissection</td>
</tr>
<tr>
<td>366-5</td>
<td>Endarterectomy: Step 4 Opening the Carotid Sheath</td>
</tr>
<tr>
<td>366-6</td>
<td>Endarterectomy: Step 5 Placing the Henly Clamp and Visualizing the Plaque</td>
</tr>
<tr>
<td>366-7</td>
<td>Endarterectomy: Step 6 Marking the Arteriotomy</td>
</tr>
<tr>
<td>366-8</td>
<td>Endarterectomy: Step 7 The Surgical Site Just before Arteriotomy</td>
</tr>
<tr>
<td>366-9</td>
<td>Endarterectomy: Step 8 The Arteriotomy</td>
</tr>
<tr>
<td>366-10</td>
<td>Endarterectomy: Step 9 Mobilizing, Cutting, and Removing the Plaque</td>
</tr>
<tr>
<td>366-11</td>
<td>Endarterectomy: The Plaque</td>
</tr>
<tr>
<td>366-12</td>
<td>Endarterectomy: Step 10 Outlining the Incision with Lap Pads</td>
</tr>
<tr>
<td>366-13</td>
<td>Endarterectomy: Step 11 Using a Tacking Suture</td>
</tr>
<tr>
<td>366-14</td>
<td>Endarterectomy: Step 12 Suturing the Arteriotomy</td>
</tr>
<tr>
<td>366-15</td>
<td>Endarterectomy: Step 13 Irrigate and Bleed Prior to Closure</td>
</tr>
<tr>
<td>366-16</td>
<td>Endarterectomy: Step 14 Back Bleeding and Removal of Clamps</td>
</tr>
<tr>
<td>366-17</td>
<td>Endarterectomy: Step 15 Removal of Tapes and Testing with Doppler</td>
</tr>
<tr>
<td>366-18</td>
<td>Endarterectomy: Final Postoperative Anatomy</td>
</tr>
<tr>
<td>367</td>
<td>Carotid Artery Angioplasty and Stenting</td>
</tr>
<tr>
<td>367-1</td>
<td>Carotid Stenting via Direct Carotid Artery Access</td>
</tr>
<tr>
<td>367-2</td>
<td>In-Stent Intraluminal Thrombus Detection by Intravascular Ultrasound Imaging</td>
</tr>
<tr>
<td>370</td>
<td>Extracranial Vertebral Artery Diseases</td>
</tr>
<tr>
<td>370-1</td>
<td>Vertebral Artery to Common Carotid Artery Transposition</td>
</tr>
<tr>
<td>370-2</td>
<td>Carotid to Vertebral Artery Vein Graft Bypass</td>
</tr>
<tr>
<td>371</td>
<td>Microsurgical Management of Intracranial Occlusion Disease</td>
</tr>
<tr>
<td>371-1</td>
<td>Surgical Technique for Superficial Temporal Artery to Middle Cerebral Artery Bypass</td>
</tr>
<tr>
<td>372</td>
<td>Endovascular Management of Intracranial Occlusion Disease</td>
</tr>
<tr>
<td>372-1</td>
<td>Thrombectomy of a Distal ICA Thrombus</td>
</tr>
<tr>
<td>373</td>
<td>Adult Moyamoya Disease</td>
</tr>
<tr>
<td>373-1</td>
<td>Superficial Temporal Artery–Middle Cerebral Artery Bypass for Treatment of Adult Moyamoya Disease</td>
</tr>
<tr>
<td>380</td>
<td>Perioperative Management of Subarachnoid Hemorrhage</td>
</tr>
<tr>
<td>380-1</td>
<td>Craniotomy and Clipping of a Thrombosed Anterior Communicating Artery Aneurysm</td>
</tr>
<tr>
<td>384</td>
<td>Microsurgery of Paraclinoid Aneurysms</td>
</tr>
<tr>
<td>384-1</td>
<td>Surgery for Right Ophthalmic Artery and Giant Right Superior Hypophyseal Artery Aneurysms</td>
</tr>
<tr>
<td>385</td>
<td>Intracranial Internal Carotid Artery Aneurysms</td>
</tr>
<tr>
<td>385-1</td>
<td>Surgery for Internal Carotid Artery Aneurysms</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>387</td>
<td>Microsurgery of Distal Anterior Cerebral Artery Aneurysms</td>
</tr>
<tr>
<td>388</td>
<td>Surgical Management of Middle Cerebral Artery Aneurysms</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>389</td>
<td>Microsurgery of Vertebral Artery and Posterior Inferior Cerebellar Artery Aneurysms</td>
</tr>
<tr>
<td>392</td>
<td>Endovascular Approaches to Wide-Necked Intracranial Aneurysms</td>
</tr>
<tr>
<td>403</td>
<td>Adjuvant Endovascular Management of Brain Arteriovenous Malformations</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>406</td>
<td>Surgical and Radiosurgical Management of Grade IV and V Arteriovenous Malformations</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>408</td>
<td>Treatment of Other Intracranial Dural Arteriovenous Fistulas</td>
</tr>
<tr>
<td>411</td>
<td>Microsurgery for Cerebral Cavernous Malformations</td>
</tr>
<tr>
<td>412</td>
<td>Classification of Spinal Arteriovenous Lesions</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>413</td>
<td>Endovascular Treatment of Spinal Vascular Malformations</td>
</tr>
<tr>
<td>414</td>
<td>Microsurgical Treatment of Spinal Vascular Malformations</td>
</tr>
</tbody>
</table>
Contributors

Bizhan Aarabi, MD
Professor of Neurosurgery
University of Maryland School of Medicine
Baltimore, Maryland
352: Traumatic and Penetrating Head Injuries

Rick Abbott, MD
Professor of Neurological Surgery
Albert Einstein College of Medicine
Montefiore Medical Center
Bronx, New York
236: Intraspinal Tumors in Children

Muhammad M. Abd-El-Barr, MD, PhD
Resident Neurosurgeon
Harvard Medical School
Brigham and Women’s Hospital
Boston Children’s Hospital
Boston, Massachusetts
192: Molecular Genetics and Principles of Craniosynostosis
215: Brainstem Gliomas

Taylor J. Abel, MD
Chief Resident
Department of Neurosurgery
University of Iowa Carver College of Medicine
Iowa City, Iowa
70: Investigation of Human Cognition in Epilepsy Surgery Patients

Todd A. Abruzzo, MD, FAHA
Professor
Departments of Neurosurgery, Radiology, and Biomedical Engineering
University of Cincinnati;
Chief of Pediatric Interventional Neuroradiology
Cincinnati Children’s Hospital Medical Center
Mayfield Clinic
Cincinnati, Ohio
382: Endovascular Management of Cerebral Vasospasm

Feridun Acar, MD
Professor and Chair
Department of Neurosurgery
Pamukkale Universitesi
Denizli, Turkey
Overview and Controversies (Pain)
176: Evidence-Based Neurostimulation for Pain
180: Dorsal Rhizotomy and Dorsal Root Ganglionectomy

Rebecca L. Achey, BS
Cleveland Clinic Lerner College of Medicine
The Cleveland Clinic Foundation
Cleveland, Ohio
38: Electrophysiologic Properties of the Mammalian Central Nervous System

Paul D. Ackerman, MD
Attending Neurosurgeon
Northwestern Neurosurgical Associates
Chicago, Illinois
365: The Natural History and Medical Management of Carotid Occlusive Disease

Hadie Adams, MD
Research Fellow
Division of Neurosurgery
University of Cambridge and Cambridge University Hospitals NHS Foundation Trust
Cambridge, United Kingdom
Overview and Controversies (Trauma)

Nithin D. Adappa, MD
Assistant Professor of Otorhinolaryngology
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, Pennsylvania
357: Traumatic Cerebrospinal Fluid Fistulas

P. David Adelson, MD, FACS, FAAP
Director, Barrow Neurological Institute at Phoenix Children’s Hospital
Diane and Bruce Halle Chair of Pediatric Neurosciences
Chief, Pediatric Neurosurgery
Phoenix Children’s Hospital
Phoenix, Arizona
224: Management of Head Injury: Special Considerations in Children

David H. Aguirre-Padilla, MD
Professor of Neurosurgery
University of Chile Faculty of Medicine;
Chief, Division of Neurosurgery
Hospital Clínico San Borja Arriarán;
Attending Neurosurgeon
Emergency Department
Hospital de Urgencia Asistencia Pública
Santiago, Chile
92: Complication Avoidance in Deep Brain Stimulation Surgery

Raheel Ahmed, MD, PhD
Fellow, Division of Neurosurgery
The Hospital for Sick Children
University of Toronto
Toronto, Ontario, Canada
233: Developmental Anomalies of the Craniovertebral Junction and Surgical Management

Edward S. Ahn, MD
Associate Professor
Departments of Neurosurgery, Pediatrics, and Plastic Surgery
Johns Hopkins University School of Medicine
Baltimore, Maryland
234: Aehondroplasia and Other Dwarfisms

Tamir T. Ailon, MD, MPH, FRCSC
Clinical Instructor
Department of Orthopaedics
University of British Columbia Faculty of Medicine;
Neurosurgeon
Vancouver Spine Surgery Institute
Vancouver, British Columbia, Canada
317: Evaluation and Treatment of Adult Scoliosis and Sagittal Plane Deformity

Michael C. Ain, MD
Associate Professor
Departments of Pediatrics and Orthopaedic Surgery
Johns Hopkins University School of Medicine
Baltimore, Maryland
234: Aehondroplasia and Other Dwarfisms

Imoigele P. Aisiku, MD, MSCR, MBA, FCCP
Assistant Professor of Emergency Medicine
Harvard Medical School
Brigham and Women’s Hospital
Boston, Massachusetts
349: Critical Care Management of Traumatic Brain Injury

Ali Alaraj, MD
Associate Professor
Department of Neurosurgery
University of Illinois at Chicago
Chicago, Illinois
364: Neurovascular Imaging
370: Extracranial Vertebral Artery Diseases
Contributors

William J. Ares, MD
Resident Neurosurgeon
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania
361: Acute Surgical and Endovascular Management of Ischemic and Hemorrhagic Stroke

Jeffrey E. Arle, MD, PhD, FAANS
Associate Professor of Neurosurgery
Harvard Medical School;
Associate Chief, Division of Neurosurgery
Beth Israel Deaconess Medical Center
Boston, Massachusetts
93: Neurophysiologic Monitoring for Movement Disorders Surgery
106: Motor Cortex Stimulation for Pain and Movement Disorders

Rocco A. Armonda, MD
Associate Professor and Director
Department of Neurosurgery
Uniformed Services University of the Health Sciences
Bethesda, Maryland;
Director, Neuroendovascular Surgery
MedStar Washington Hospital Center and Georgetown University Hospital Washington, DC
352: Traumatic and Penetrating Head Injuries

Omar Arnaout, MD
Chief Resident
Department of Neurosurgery
Northwestern Memorial Hospital
Chicago, Illinois
130: Basic Principles of Skull Base Surgery

Eric Arnaud, MD
Pediatric Neurosurgeon and Co-Director
Unité de Chirurgie Craniofaciale
Hôpital Necker Enfants Malades
Paris, France
194: Syndromic Craniosynostosis

Paul M. Arnold, MD, FACS
Professor of Neurosurgery
University of Kansas Medical Center;
Director, Spinal Cord Injury Center
University of Kansas Hospital
Kansas City, Kansas
305: Evaluation and Treatment of C2 (Axis) Fractures

Rachid Assina, RPh, MD
Assistant Professor
Department of Neurological Surgery
Rutgers New Jersey Medical School
Newark, New Jersey
24: Brain Retraction
334: Evaluation, Indications, and Techniques of Revision Spine Surgery

Oskar C. Aszmann, MD, PhD
Associate Professor of Plastic and Reconstructive Surgery
Director, Center of Extremity Reconstruction and Rehabilitation
Christian Doppler Laboratory for Restoration of Extremity Function
Medical University of Vienna
Vienna, Austria
260: Neuroelectronic Systems

Frank J. Attenello III, MD, MS
Clinical Instructor
Department Neurosurgery
Keck School of Medicine
University of Southern California
Los Angeles, California
18: Surgical Planning: An Overview

Jetan H. Badhiwala, MD
Resident Neurosurgeon
Department of Surgery
University of Toronto Faculty of Medicine
The Hospital for Sick Children
Toronto, Ontario, Canada
201: Ventricular Shunting Procedures

Joachim M. Baehring, MD, DSc
Associate Professor
Departments of Medicine (Medical Oncology), Neurology, and Neurosurgery
Yale School of Medicine
New Haven, Connecticut
139: Unusual Gliomas

Christopher D. Baggott, MD
Resident Neurosurgeon
University of Wisconsin Hospitals and Clinics
Madison, Wisconsin
307: Treatment of Cervicothoracic Junction Injuries

Anto Bagić, MD, PhD
Associate Professor of Neurology and Neurosurgery
Chief, Epilepsy Division
Director, University of Pittsburgh Comprehensive Epilepsy Center (UPCEC)
Director, UPMC MEG Epilepsy Program
Chief Scientific Advisor, MEG Research Department of Neurology
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania
66: Magnetoencephalography (MEG)/Magnetic Source Imaging (MSI)

Diaa Bahgat, MD, MsSc, PhD
Department of Neurosurgery
University of Arkansas for Medical Sciences
Little Rock, Arkansas;
Lecturer in Neurosurgery
Fayoum University
El Fayoum, Egypt
169: Pharmacologic Treatment of Pain

Julian E. Bailes, MD
Clinical Professor of Medicine
University of Chicago Pritzker School of Medicine
Co-Director, NorthShore Neurological Institute
Evanston, Illinois
347: Mild Traumatic Brain Injury in Adults and Concussion in Sports

Mark Bain, MD, MS
Staff Neurosurgeon
Cerebrovascular Center
Cleveland Clinic
Cleveland, Ohio
393: Endovascular Flow Diversion for Intracranial Aneurysms

Perry A. Ball, MD
Professor
Departments of Surgery and Anesthesiology
Dartmouth-Hitchcock Medical Center
Lebanon, New Hampshire
16: Principles of Neurocritical Care

Gordon H. Baltuch, MD, PhD
Professor of Neurosurgery
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, Pennsylvania
71: Intracranial Monitoring: Subdural Strip and Grid Recording

Scott C. Baraban, PhD
Professor of Neurological Surgery
William K. Bowes Jr. Endowed Chair in Neuroscience Research
Director, Epilepsy Research Laboratory
University of California, San Francisco School of Medicine
San Francisco, California
59: Animal Models of Epilepsy

Tanyeri Barak, MD
Associate Research Scientist
Department of Neurosurgery
Yale University
New Haven, Connecticut
376: Genetics of Intracranial Aneurysms

Igor J. Barani, MD
Associate Professor
Departments of Radiation Oncology and Neurological Surgery
University of California, San Francisco
San Francisco, California
265: Fractionated Radiotherapy for Brain Tumors

Giuseppe M.V. Barbagallo, MD
Associate Professor of Neurosurgery
Policlinico G. Rodolico University Hospital
Catania, Italy
323: Nucleoplasty and Posterior Dynamic Stabilization Systems
Nicholas M. Barbaro, MD
Betsey Barton Professor and Chair
Department of Neurological Surgery
Indiana University School of Medicine
Indianapolis, Indiana
78: Radiosurgical Treatment for Epilepsy

Frederick G. Barker II, MD
Associate Professor of Neurosurgery
Harvard Medical School;
Attending Neurosurgeon
Massachusetts General Hospital
Boston, Massachusetts
36: Postoperative Infections of the Head and Brain
57: Neurosurgical Epidemiology and Outcomes Assessment
126: Brain Tumor Outcome Studies: Design and Interpretation

Gene H. Barnett, MD, MBA
Professor and Vice-Chairman,
Department of Neurological Surgery
The Rose Ella Burkhardt Chair in Neurosurgical Oncology
Director, The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center
Associate Dean of Faculty Affairs
Cleveland Clinic Lerner College of Medicine of Case Western Reserve University
Cleveland, Ohio
132: Surgical Navigation for Brain Tumors

Constance M. Barone, MD, FACS
Barone’s Cosmetic Surgery Center
San Antonio, Texas
195: Endoscopic Treatment of Craniosynostosis

Daniel Louis Barrow, MD
Pamela R. Rollins Professor and Chairman
Department of Neurosurgery
Emory University School of Medicine
Atlanta, Georgia
388: Surgical Management of Middle Cerebral Artery Aneurysms

Luigi Bassani, MD
Assistant Professor
Department of Neurosurgery
Rutgers New Jersey Medical School
Newark, New Jersey
204: Management and Prevention of Shunt Infections

Tracy T. Batchelor, MD, MPH
Giovanni Armenise-Harvard Professor of Neurology
Harvard Medical School;
Director, Division of Neuro-Oncology
Massachusetts General Hospital Cancer Center
Boston, Massachusetts
143: Primary Central Nervous System Lymphomas

Nuno Batista, MD, FEBOT
Consultant in Spinal Surgery
Oxford University Hospitals NHS Trust
Oxford, United Kingdom
293: Assessment and Treatment of Primary Malignant Tumors of the Axial Skeleton

H. Hunt Batjer, MD, FAANS, FACS
Professor and Chair
Department of Neurological Surgery
University of Texas Southwestern Medical School
Dallas, Texas
390: Microsurgery of Basilar Apex Aneurysms

Griffin R. Baum, MD
Resident
Department of Neurological Surgery
Emory University School of Medicine
Atlanta, Georgia
388: Surgical Management of Middle Cerebral Artery Aneurysms

Michael S. Beattie, PhD
Professor of Neurological Surgery
Director of Research, Department of Neurological Surgery
Brain and Spinal Injury Center
University of California, San Francisco
San Francisco, California
339: Animal Models of Traumatic Brain Injury

Andrew Beaumont, MD, PhD
Neurosurgeon and Clinical Director
Aspinal Spine & Neuroscience Department
Aspinal Wausau Hospital
Wausau, Wisconsin
52: Physiology of the Cerebrospinal Fluid and Intracranial Pressure

Danielle A. Becker, MD, MS
Assistant Professor of Clinical Neurology
Department of Neurology
Hospital of the University of Pennsylvania
Philadelphia, Pennsylvania
62: Antiepileptic Medications: Principles of Clinical Use

Joshua M. Beckman, MD
Resident Neurosurgeon
University of South Florida Morsani College of Medicine
Tampa, Florida
278: Electrophysiologic Studies and Monitoring

Tibor Becske, MD
Assistant Professor
Neuroendovascular Service
Neurosciences Division
Rochester Regional Health System
Rochester, New York
122: Endovascular Techniques for Tumor Embolization

Joshua B. Bederson, MD
Professor and Chairman
Department of Neurosurgery
Icahn School of Medicine at Mount Sinai
Mount Sinai Health System
New York, New York
19: Surgical Simulation and Robotic Surgery
396: Infectious Aneurysms

Rudolf W. Beisse, MD
Medical Director and Chief Spine Center
Benedictus Krankenhaus
Tutzming am Starnberger See, Germany
27: Thoracoscopic Spine Surgery

Kim Belyk, MD
Chief Resident
Department of Neurosurgery
Dartmouth-Hitchcock Medical Center
Lebanon, New Hampshire
16: Principles of Neurocritical Care

Randi S. Bell, MD
Assistant Professor of Surgery
Department of Neurosurgery
Uniformed Services University of the Health Sciences
Bethesda, Maryland
352: Traumatic and Penetrating Head Injuries

Allan J. Belzberg, MD, FRCS
George J. Heuer Professor of Neurosurgery
Johns Hopkins School of Medicine
Baltimore, Maryland
Overview and Controversies (PNS)
235: Early Management of Brachial Plexus Injuries
258: Benign and Malignant Tumors of the Peripheral Nerve

Eduardo E. Benarroch, MD, DSc
Professor and Consultant
Department of Neurology
Mayo Clinic
Rochester, Minnesota
359: Cerebral Blood Flow and Metabolism and Cerebral Ischemia

Bernard R. Bendok, MD
Professor and Chair
Department of Neurosurgery
Mayo Clinic
Rochester, Minnesota
390: Microsurgery of Basilar Apex Aneurysms

Arnau Benet, MD
Assistant Professor of Neurosurgery
Director, Skull Base & Cerebrovascular Laboratory
Department of Neurological Surgery
University of California, San Francisco
San Francisco, California
3: Surgical Anatomy of the Skull Base
Henry Brem, MD
Professor of Neurosurgery
Perelman School of Medicine at the University of Pennsylvania
Department of Neurosurgery
School of Medicine
Philadelphia, Pennsylvania
116: Angiogenesis and Brain Tumors: Scientific Principles, Current Therapy, and Future Directions

Jacqueline C. Bresnahan, PhD
Adjunct Professor of Neurological Surgery
University of California, San Francisco
San Francisco, California
339: Animal Models of Traumatic Brain Injury

Benjamin H. Brinkmann, PhD
Assistant Professor of Neurology
Mayo Clinic
Rochester, Minnesota
67: Single-Photon Emission Computed Tomography in Epilepsy Surgery Evaluation

Andrei Brînzeu, MD
Fellow in Functional Neurosurgery
Timisoara Medical University
Timisoara, Romania
182: Dorsal Root Entry Zone Lesions for Pain

Gavin W. Britz, MD, MBBCh, MPH, MBA, FAANS
Professor and Chair
Department of Neurosurgery
Mayo Clinic
Rochester, Minnesota
401: Epidemiology and Natural History of Intracranial Vascular Malformations

Jeffrey N. Bruce, MD
Edgar M. Housepian Professor of Neurological Surgery
Columbia University Medical Center
New York, New York
141: Pineal Tumors

Janice E. Brunstrom-Hernandez, MD
Direction, 1 CP Place, PLLC
Plano, Texas
Adjunct Professor of Neurology
Washington University School of Medicine in St. Louis
St. Louis, Missouri
241: Clinical Features and Management of Cerebral Palsy

Andrew Brunswick, MD
Neurosurgery Resident
New York University School of Medicine
NYU Langone Medical Center
New York, New York
217: Neurorutaneous Tumor Syndromes

Thomas J. Buell, MD
Resident Physician
Department of Neurosurgery
University of Virginia Health System
Charlottesville, Virginia
374: Cerebral Venous and Sinus Thrombosis

M. Ross Bullock, MD, PhD
Professor of Neurosurgery
University of Miami Miller School of Medicine
Miami, Florida
343: Therapeutic Strategies for Repair and Regeneration following Traumatic Brain Injury

Kim J. Burchiel, MD, FACS
John Raaf Professor
Department of Neurological Surgery
Professor, Department of Anesthesiology and Perioperative Medicine
Oregon Health & Science University
Portland, Oregon
Overview and Controversies (Neurosurgery)
174: Microvascular Decompression for Trigeminal Neuralgia
179: Evidence Base for Destructive Procedures
182: Dorsal Root Entry Zone Lesions for Pain

Anthony M. Burrows, MD
Resident Neurosurgeon
Mayo Clinic
Rochester, Minnesota
359: Cerebral Blood Flow and Metabolism and Cerebral Ischemia
398: Multimodality Treatments of Cerebrovascular Disorders
Mohamad Bydon, MD
Assistant Professor
Departments of Neurosurgery and Orthopedics
Mayo Clinic
Rochester, Minnesota
123: Brain Tumors during Pregnancy
292: Assessment and Treatment of Benign Tumors of the Axial Skeleton

Richard W. Byrne, MD
Professor of Neurosurgery
Rush University Medical Center
Chicago, Illinois
73: Surgical Techniques for Non–Temporal Lobe Epilepsy: Corpus Callosotomy, Multiple Subpial Transection, and Tepotectomy

Daniel P. Cahill, MD, PhD
Assistant Professor of Neurosurgery
Harvard Medical School
Massachusetts General Hospital
Dana-Farber/Harvard Cancer Center
Boston, Massachusetts
126: Brain Tumor Outcome Studies: Design and Interpretation

Kevin S. Cahill, MD, PhD, MPH
Carolina Neurosurgery and Spine Associates
Charlotte, North Carolina
330: Posterior, Transforaminal, and Anterior Lumbar Interbody Fusion: Techniques and Instrumentation

Maria Elisa Calcagnotto, MD, PhD
Professor
Biochemistry Department
Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Labotatory
Federal University of Rio Grande do Sul
Porto Alegre, Brazil
59: Animal Models of Epilepsy

Justin M. Caplan, MD
Resident
Department of Neurosurgery
Johns Hopkins University School of Medicine
Baltimore, Maryland
386: Radiosurgery for Benign Intracranial Tumors

C. Michael Cawley, MD
Associate Professor
Department of Neurosurgery
Emory University School of Medicine
Atlanta, Georgia
408: Treatment of Other Intracranial Dural Arteriovenous Fistulas

Ibobja Cernak, MD, PhD, ME, MHS
Professor and Chair
Military and Veterans’ Clinical Rehabilitation Research
Faculty of Rehabilitation Medicine
University of Alberta
Edmonton, Alberta, Canada
353: Blast-Induced Neurotrauma

Francesco Certo, MD
Neurosurgeon
Polinclinico G. Rodolico University Hospital
Catania, Italy
323: Nucleoplasty and Posterior Dynamic Stabilization Systems

Justin S. Cetas, MD, PhD
Assistant Professor of Neurological Surgery
Oregon Health & Science University; Chief of Neurosurgery, Operative Care Division
Portland VA Medical Center
Portland, Oregon
179: Evidence Based for Destructive Procedures

Michael D. Chan, MD
Professor
Department of Radiation Oncology
Co-Director, Gamma Knife Program
Wake Forest School of Medicine
Winston-Salem, North Carolina
263: Radiation Therapy Technique

Amitabha Chanda, MBBS, MS, MCh (Neurosurgery)
Senior Consultant
Department of Neurosurgery
Fortis Hospitals
Kolkata, India
291: Evaluation and Treatment of Fungal and Tubercular Infections of the Spine

Edward F. Chang, MD
Associate Professor of Neurological Surgery
University of California, San Francisco School of Medicine
San Francisco, California
74: Surgery for Extratemporal Lobe Epilepsy

Steven D. Chang, MD
Robert C. and Jeannette Powell Professor
Department of Neurosurgery
Stanford School of Medicine
Stanford, California
272: Radiosurgery for Benign Spine Tumors and Vascular Malformations

406: Surgical and Radiosurgical Management of Grade IV and V Arteriovenous Malformations

Fady T. Charbel, MD
Professor and Head
Department of Neurosurgery
University of Illinois at Chicago
Chicago, Illinois
364: Neurovascular Imaging
370: Extracranial Vertebral Artery Diseases

Aswin Chari, MA, BMBCh, MRCS
Academic Foundation Trainee
Division of Neurosurgery, Department of Clinical Neuroscience
University of Cambridge
Addenbrooke’s Hospital
Cambridge, United Kingdom
34: Medical and Surgical Management of Chronic Subdural Hematomas

Navjot Chaudhary, MD
Clinical Assistant Professor
Department of Neurosurgery
Stanford School of Medicine
Palo Alto, California
272: Radiosurgery for Benign Spine Tumors and Vascular Malformations

Patrick Chauvel, MD
Professor
Institut de Neurosciences des Systèmes Aix–Marseille University
Marseille, France
276: Intracranial Monitoring: Stereoelectroencephalography Recording

Kevin S. Chen, MD, PhD
Resident Neurosurgeon
University of Michigan Health System
Ann Arbor, Michigan
246: Peripheral Neuropathies
288: Evaluation and Treatment of Degenerative Lumbar Spondylolisthesis
313: Evaluation and Treatment of Cervical Deformity

Liang Chen, MD, PhD
Professor
Hand Surgery Department
Huashan Hospital of Fudan University
Shanghai, China
Overview and Controversies (PNS)
252: Techniques in Nerve Reconstruction and Repair
253: Nerve Transfers

Joseph S. Cheng, MD, MS
Professor and Vice-Chair
Department of Neurosurgery
Yale School of Medicine
New Haven, Connecticut
275: Spinal Biomechanics and Basics of Spinal Instrumentation

Yuwei Cheng, MS, PhD
Department of Computational Biology and Bioinformatics
Yale University
New Haven, Connecticut
376: Genetics of Intracranial Aneurysms
Contributors

Bassel G. Diebo, MD
Postdoctoral Fellow (Spine)
Hospital for Special Surgery
New York, New York
311: Classification of Spinal Deformity

Michael L. DiLuna, MD
Assistant Professor of Neurosurgery and Pediatrics
Yale School of Medicine
New Haven, Connecticut
139: Unusual Gliomas

Francesco DiMeco, MD
Chairman
Department of Neurosurgery
Fondazione Istituto Neurologico C. Besta
Milan, Italy;
Assistant Professor
Department of Neurological Surgery
Johns Hopkins University School of Medicine
Baltimore, Maryland
112: Brain Tumor Stem Cells

Peter Dirks, MD, PhD, FRCSC
Professor of Neurosurgery
University of Toronto Faculty of Medicine;
Staff Surgeon
Division of Neurosurgery
The Hospital for Sick Children
Toronto, Ontario, Canada
208: Thalamic Tumors

Brian J. Dlouhy, MD
Assistant Professor
Department of Neurosurgery
University of Iowa Hospitals and Clinics
Iowa City, Iowa
233: Developmental Anomalies of the Craniovertebral Junction and Surgical Management
243: Selective Dorsal Rhizotomy for Spastic Cerebral Palsy

Amish H. Doshi, MD
Assistant Professor of Radiology
Icahn School of Medicine at Mount Sinai
New York, New York
13: Physiologic Evaluation of the Brain with Magnetic Resonance Imaging

James M. Drake, MBChB, MSc, FRCSC
Professor of Surgery
Harold Hoffman Shoppers Drug Mart Chair, Pediatric Neurosurgery
University of Toronto Faculty of Medicine;
Head, Department of Neurosurgery
The Hospital for Sick Children
Toronto, Ontario, Canada
32: The Role of Third Ventriculostomy in Adults and Children: A Critical Review
203: Cerebrospinal Fluid Devices

Alexander Drofa, MD, FRCSC
Cerebrovascular Neurosurgeon
Sanford Brain and Spine Center
Sanford Medical Center Fargo;
Clinical Instructor of Surgery
Department of Surgery
University of North Dakota
Fargo, North Dakota
393: Endovascular Flow Diversion for Intracranial Aneurysms

Andrew F. Ducruet, MD
Assistant Professor
Department of Neurosurgery
Barrow Neurological Institute
Phoenix, Arizona
361: Acute Surgical and Endovascular Management of Ischemic and Hemorrhagic Stroke

Hugues Duffau, MD, PhD
Professor and Chairman
Neurosurgery and INSERM 1051
Montpellier University Medical Center
Hôpital Gui de Chauliac
Montpellier, France
134: Awake Craniotomy and Intraoperative Mapping

Ann-Christine Duhaime, MD
Nicholas T. Zervas Professor of Neurosurgery
Harvard Medical School
Director, Pediatric Neurosurgery
Massachusetts General Hospital
Boston, Massachusetts
225: Inflicted Trauma (Child Abuse)

Aaron S. Dumont, MD
Charles B. Wilson Professor and Chair
Department of Neurosurgery
Tulane University School of Medicine
New Orleans, Louisiana
414: Microsurgical Treatment of Spinal Vascular Malformations

Gavin P. Dunn, MD, PhD
Assistant Professor
Departments of Neurological Surgery and Pathology and Immunology
Center for Human Immunology and Immunotherapy Programs
Washington University School of Medicine in St. Louis
St. Louis, Missouri
143: Intracranial Ependymomas in Adults

Ian F. Dunn, MD
Assistant Professor
Department of Neurosurgery
Harvard Medical School
Brigham and Women’s Hospital
Boston, Massachusetts
143: Intracranial Ependymomas in Adults
150: Pituitary Tumors: Functioning and Nonfunctioning
202: Neuroendoscopy

Joshua R. Dusick, MD
Research Associate
Department of Neurosurgery
David Geffen School of Medicine at UCLA
Los Angeles, California
397: Revascularization Techniques for Complex Aneurysms and Skull Base Tumors

James H. Eberwine, PhD
Elmer Holmes Professor
Department of Systems Pharmacology and Experimental Therapeutics
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, Pennsylvania
44: Molecular Biology and Genomics: A Primer for Neurosurgeons

Paula Eboli, MD
Fellow
Endovascular Neurosurgery
Cedars-Sinai Medical Center
Los Angeles, California
369: Nonatherosclerotic Carotid Lesions

Gerald W. Eckardt, MD
Global Neurosciences Institute
Capital Health Regional Medical Center
Trenton, New Jersey
326: Posterior Subaxial and Cervicothoracic Instrumentation

Michael S.B. Edwards, MD
Lucile Packard Endowed Professor of Neurosurgery and Pediatrics
Director of Pediatric Brain Tumor Center
Stanford University School of Medicine
Stanford, California
212: Ependymomas

Richard J. Edwards, MBBS, MD, FRCSC (Neuro.Surg)
Consultant Neurosurgeon
Department of Pediatric Neurosurgery
Bristol Royal Hospital for Children and North Bristol NHS Trust;
Senior Clinical Lecturer in Neurosurgery
School of Clinical Sciences
University of Bristol Faculty of Biomedical Sciences
Bristol, United Kingdom
203: Cerebrospinal Fluid Devices

J. Bradley Elder, MD
Associate Professor
Department of Neurological Surgery
The Ohio State University Wexner Medical Center
Columbus, Ohio
119: Local Therapies for Gliomas

Mohamed Samy A. Elhammady, MD
Associate Professor
Department of Neurological Surgery
University of Miami
Miami, Florida
405: Microsurgery of Arteriovenous Malformations
W. Jeffrey Elias, MD
Professor of Neurosurgery and Neurology
University of Virginia School of Medicine
Charlottesville, Virginia
- Transcranial Magnetic Resonance Imaging–Guided Focused Ultrasound Thalamotomy for Tremor

Jason A. Ellis, MD
Chief Resident
Department of Neurological Surgery
Columbia University Medical Center
New York, New York
- Positioning for Spinal Surgery
- Overview and Controversies (Vascular)
- Microsurgery of Distal Anterior Cerebral Artery Aneurysms
- Adjunct Endovascular Management of Brain Arteriovenous Malformations

Tarek M.I. Elmadhoun, MD, PhD, FICS
Clinical Fellow
Department of Clinical Neurosciences
University of Calgary Cumming School of Medicine;
Hotchkiss Brain Institute
Calgary, Alberta, Canada
- Stem Cell Biology in the Central Nervous System

Todd M. Emch, MD
Staff
Division of Neuroradiology, Imaging Institute
Cleveland Clinic
Cleveland, Ohio
- Radiology of the Spine

Samuel Emerson, MD, PhD
Resident Neurosurgeon
University of Washington School of Medicine
Seattle, Washington
- Stem Cell Biology in the Central Nervous System

Chibawanye Ene, MD, PhD
Resident
Department of Neurological Surgery
University of Washington School of Medicine
Seattle, Washington
- Molecular Genetics and the Development of Targets for Glioma Therapy

Dario J. Englot, MD, PhD
Resident Neurosurgeon
University of California, San Francisco
San Francisco, California
- Genetics of Traumatic Brain Injury

Ramin Eskandari, MD, MS
Assistant Professor of Neurosurgery
Director, Pediatric Neurosurgery
Medical University of South Carolina
Charleston, South Carolina
- Experimental Hydrocephalus

Matthew G. Ewend, MD
Van L. Weatherspoon, Jr., Eminent Distinguished Professor and Chair
Department of Neurosurgery
University of North Carolina School of Medicine at Chapel Hill
UNC Chapel Hill Hospital
Chapel Hill, North Carolina
- Meningeal Sarcomas and Hemangiopericytomas

Shayan Fakurnejad, BS
Department of Neurological Surgery
Northwestern University Feinberg School of Medicine
Chicago, Illinois
- Assessment and Treatment of Proximal Functional Kyphosis

Asdrubal Falavigna, MD, PhD
Professor of Neurosurgery
Dean, Medical School
University of Caxias do Sul
Caxias do Sul, Brazil
- Treatment of Discitis and Epidural Abscess

Xi Fan, MD, PhD
Assistant Professor
Departments of Radiation Oncology and Neurosurgery
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, Pennsylvania
- Angiogenesis and Brain Tumors: Scientific Principles, Current Therapy, and Future Directions

Dario Farina, PhD
Professor and Chair
Department of Neurorehabilitation Engineering
Georg-August University; Director, Institute for Neurorehabilitation Systems
Bernstein Focus Neurotechnology
University Medical Center Göttingen
Göttingen, Germany
- Neuroelectronic Systems

Christopher J. Farrell, MD
Assistant Professor of Neurological Surgery
Thomas Jefferson University
Philadelphia, Pennsylvania
- Postoperative Infections of the Head and Brain

Michael G. Fehlings, MD, PhD,
FRSC, FACS
Professor of Neurosurgery,
Vice Chair, Research, Department of Surgery, University of Toronto Faculty of Medicine;
Co-Director of the University of Toronto Spine Program, Director of the Spinal Program at the Toronto Western Hospital;
Gerald and Tootsie Halbert Chair in Neuro Repair and Regeneration, University Health Network;
Senior Scientist, Toronto Western Research Institute, University Health Network
Toronto, Ontario, Canada
- Overview and Controversies (Spine)
- Assessment and Treatment of Metastatic Spinal Lesions
- Medical Management of Spinal Cord Injury

Valery Feigin, MD, PhD, FAAN
Professor of Epidemiology and Neurology
Auckland University of Technology;
Director, National Institute for Stroke and Applied Neurosciences
Auckland, New Zealand
- Epidemiology of Traumatic Brain Injury

Eva L. Feldman, MD, PhD
Russell N. DeJong Professor of Neurology
University of Michigan School of Medicine
Ann Arbor, Michigan
- Peripheral Neuropathies

Neil Feldstein, MD, FACS
Associate Professor of Neurological Surgery
Director of Pediatric Neurosurgery
Columbia University Medical Center
New York, New York
- Myelomeningocele and Myelocystocele

James E. Feng, BA
New York University School of Medicine
New York, New York
- Classification of Spinal Deformity

Lief E. Fenno, PhD
Department of Neuroscience
Stanford School of Medicine
Stanford, California
- Optogenetics and CLARITY

Sherise D. Ferguson, MD
Assistant Professor of Neurosurgery
University of Texas MD Anderson Cancer Center
Houston, Texas
- Meningitis and Encephalitis
Matheus Fernandes de Oliveira, MD, MSci
Department of Neurosurgery
Hospital do Servidor Público Estadual de São Paulo;
Department of Neurosurgery
DFV Neuro
São Paulo, Brazil
280: Differential Diagnosis of Spinal Disease

Javier M. Figueroa, MD, PhD
Neurosurgery Resident
Neurosurgery
Barrow Neurological Institute
Phoenix, Arizona
136: Low-Grade Gliomas: Astrocytomas, Oligodendrogliomas, and Mixed Gliomas

Juan J. Figueroa, MD
Assistant Professor of Neurology
Medical College of Wisconsin
Milwaukee, Wisconsin
42: Parasitic Infections

Aaron G. Filler, MD, PhD, JD, FRCS
Medical Director
Institute for Nerve Medicine
Santa Monica, California
Overview and Controversies (PNS)
248: Imaging for Peripheral Nerve Disorders
250: Brachial Plexus Nerve Entrapments and Thoracic Outlet Syndromes
251: Perifemoral Syndrome, Obturator Internus Syndrome, Pudendal Nerve Entrapment, and Other Pelvic Entrapments
257: Nerve Injuries of the Lower Extremity
259: Pain, Complications, and Iatrogenic Injury in Nerve Surgery

J. Max Findlay, MD, PhD
Department of Surgery
University of Alberta Hospital
Clinical Professor
Department of Medicine
University of Alberta
Edmonton, Alberta, Canada
381: Medical Management of Cerebral Vasospasm

Michael A. Finn, MD
Assistant Professor of Neurosurgery
University of Colorado School of Medicine
Denver, Colorado
37: Postoperative Infections of the Spine

Richard H. Finnell, MSc, PhD
Professor
Departments of Nutritional Sciences and Chemistry and Biochemistry
College of Natural Sciences
The University of Texas at Austin
Austin, Texas
186: Neuroembryology and Molecular Genetics of the Brain

Charles G. Fisher, MD, MHSc, FRCSC
Professor and Division Head, Spine Surgery
Department of Orthopaedic Surgery
University of British Columbia Faculty of Medicine;
Vancouver General Hospital
Vancouver Spine and Spinal Cord Institute
Vancouver, British Columbia, Canada
293: Assessment and Treatment of Primary Malignant Tumors of the Axial Skeleton

Eugene S. Flamm, MD
Chairman, Department of Neurosurgery
Leo Davidoff Department of Neurosurgery
Professor of Neurosurgery
Montefiore Medical Center
New York, New York;
Albert Einstein College of Medicine
Bronx, New York
1: Historical Overview of Neurosurgery

Kelly D. Flemming, MD
Neurologist
Department of Neurology
Mayo Clinic
Rochester, Minnesota
401: Epidemiology and Natural History of Intracranial Vascular Malformations

Laura Flores-Samat, MD
Research Professor
Department of Clinical Neurosciences
University of Calgary Faculty of Medicine
and Alberta Children’s Hospital Research Institute
Calgary, Alberta, Canada
46: Neuroembryology

Kenneth A. Follett, MD, PhD
Professor and Chief
Division of Neurosurgery
University of Nebraska Medical Center
Omaha, Nebraska
175: Neurosurgical Management of Intractable Pain

Paul M. Foreman, MD
Resident Neurosurgeon
University of Alabama at Birmingham
Birmingham, Alabama
368: Blunt Cerebrovascular Injury

Kimberly A. Foster, MD
Pediatric Neurosurgery Fellow
Le Bonheur Children’s Hospital
St. Jude Children’s Research Hospital
Memphis, Tennessee
216: Intracranial Germ Cell Tumors

Benjamin S. Freeze, MD, PhD
Resident Physician
Department of Radiology
Weill Cornell Medical College
New York, New York
340: Genetics of Traumatic Brain Injury

Izhak Fried, MD, PhD
Professor of Surgery (Neurosurgery) and Psychiatry and Bio-behavioral Sciences
Director of Epilepsy Surgery
Department of Neurosurgery
David Geffen School of Medicine at UCLA
Co-Director, Seizure Disorder Center
UCLA Medical Center
Los Angeles, California;
Professor of Surgery (Neurosurgery)
Tel-Aviv Medical Center
Tel-Aviv, Israel
Overview and Controversies (Epilepsy)

Robert M. Friedlander, MD, MA
Walter E. Dandy Professor and Chairman
Department of Neurological Surgery
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania
Overview and Future Opportunities (Basic Science)

Donald E. Fry, MD
Adjunct Professor of Surgery
Northwestern University Feinberg School of Medicine
Chicago, Illinois;
Emeritus Professor of Surgery
University of New Mexico School of Medicine
Albuquerque, New Mexico
43: Surgical Risk of Transmissible Disease

Kai-Ming Gregory Fu, MD, PhD
Assistant Professor of Neurosurgery
Weill Cornell Medical College
New York, New York
273: Spinal Anatomy

Daniel H. Fulkerson, MD
Assistant Professor of Neurological Surgery
Indiana University School of Medicine
Goodman Campbell Brain and Spine Institute
Indianapolis, Indiana
239: Pediatric Vertebral Column and Spinal Cord Injuries

Gregory N. Fuller, MD, PhD
Professor of Pathology
Chief, Section of Neuropathology
University of Texas M. D. Anderson Cancer Center
Houston, Texas
110: Brain Tumors: An Overview of Current Histopathologic and Genetic Classifications

Matthew R. Fusco, MD
Assistant Professor
Departments of Neurological Surgery and Radiology
Vanderbilt University Medical Center
Nashville, Tennessee
389: Microsurgery of Vertebral Artery and Posterior Inferior Cerebellar Artery Aneurysms
Adriana Galvan, PhD
Assistant Professor of Neurology
Emory University School of Medicine;
Yerkes National Primate Research Center
Emory University
Atlanta, Georgia
81: Anatomy and Synaptic Connectivity of the Basal Ganglia

Gurpreet S. Gandhoke, MD
Department of Neurological Surgery
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania
308: Transient Quadriparesis and Athletic Injuries of the Cervical Spine
332: Sacropelvic Fixation: Anterior and Posterior Options

Hector H. Garcia, MD, PhD
Head, Cysticercosis Unit
Instituto Nacional de Ciencias Neurologicas;
Director, Center for Global Health - Tumbes
Universidad Peruana Cayetano Heredia
Lima, Peru
42: Parasitic Infections

Paul A. Gardner, MD
Associate Professor of Neurological Surgery
University of Pittsburgh School of Medicine
Co-Director, Center for Cranial Base Surgery
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania
161: Tumors of the Orbit

Hugh Garton, MD, MHS
Associate Professor
Department of Neurosurgery
University of Michigan School of Medicine
Ann Arbor, Michigan
57: Neurosurgical Epidemiology and Outcomes Assessment

Cormac G. Gavin, MB, BCh, BAO, FRCS(II), FRCS(SN)
Neurosurgeon
Victor Horsley Department of Neurosurgery
The National Hospital for Neurology and Neurosurgery
London, United Kingdom
400: Pathobiology of True Arteriovenous Malformations

Brandon G. Gaynor, MD
Resident
Department of Neurological Surgery
Jackson Memorial Hospital
Miami, Florida
405: Microsurgery of Arteriovenous Malformations

Timothy M. George, MD
Professor of Surgery
Dell Medical School
The University of Texas at Austin
Chief, Department of Pediatric Neurosurgery
Dell Children's Medical Center
Austin, Texas
186: Neuroembryology and Molecular Genetics of the Brain

George Georgoulis, MD
Neurosurgeon
Hôpital Neurologique Pierre Wertheimer
Lyon, France;
Medical School, University of Athens
Athens, Greece
103: Lesioning Surgery for Spasticity

Carter S. Gerard, MD
Resident Neurosurgeon
Rush University Medical Center
Chicago, Illinois
73: Surgical Techniques for Non-Temporal Lobe Epilepsy: Corpus Callosotomy, Multiple Subpial Transection, and Tocophony

Luke Gerke, MD
Assistant Professor of Radiology
Icahn School of Medicine at Mount Sinai
New York, New York
13: Physiologic Evaluation of the Brain with Magnetic Resonance Imaging

Massimo Gerosa, MD
Professor of Neurosurgery
University of Verona
University Hospital;
President, Verona Brain Research Foundation
Verona, Italy
156: Glomus Tumors

Kristina Gerszten, MD
Department of Radiation Oncology
Veteran's Administration of Pittsburgh Healthcare System
Pittsburgh, Pennsylvania
271: Radiosurgery for Malignant Spine Tumors

Peter C. Gerszten, MD, MPH, FACS
Peter E. Sheptak Professor
Departments of Neurological Surgery and Radiation Oncology
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania
271: Radiosurgery for Malignant Spine Tumors

Saadi Ghatan, MD
Associate Professor of Neurosurgery
Icahn School of Medicine at Mount Sinai
Site Chair, Department of Neurosurgery
Mount Sinai West and Mount Sinai St. Luke's Medical Centers
Director of Pediatric Neurosurgery
Mount Sinai Health System
New York, New York
160: Juvenile Nasopharyngeal Angiofibromas
189: Arachnoid Cysts in Childhood
240: Pediatric Epilepsy Surgery

George M. Ghobrial, MD
Resident Neurosurgeon
Thomas Jefferson University Hospital
Philadelphia, Pennsylvania
309: Evaluation, Classification, and Treatment of Thoracolumbar Spine Injuries

Chaitali Ghosh, MD
Assistant Professor of Molecular Medicine
Cleveland Clinic Lerner School of Medicine of Case Western Reserve University
Cleveland, Ohio
51: The Blood-Brain Barrier

Peter Giacobbe, MD, MSc, FRCPC
Assistant Professor
Department of Psychiatry
University of Toronto Faculty of Medicine;
Toronto, Ontario, Canada
101: Surgery for Major Depressive Disorder

Thomas J. Gianaris, MD
Resident Neurosurgeon
Indiana University School of Medicine
Indianapolis, Indiana
78: Radiosurgical Treatment for Epilepsy

Pierre Giglio, MD
Associate Professor
Division of Neuro-Oncology
The Ohio State University Comprehensive Cancer Center
Columbus, Ohio
120: Clinical Features: Neurology of Brain Tumor and Paraneoplastic Disorders

Ronit Gilad, MD
Assistant Professor of Neurosurgery
Icahn School of Medicine at Mount Sinai
New York, New York
6: Complication Avoidance in Neurosurgery
M. Sean Grady, MD
Charles Harrison Frazier Professor and Chairman
Department of Neurosurgery
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, Pennsylvania
28: Cranioplasty
348: Initial Resuscitation, Prehospital Care, and Emergency Room Care in Traumatic Brain Injury
357: Traumatic Cerebrospinal Fluid Fistulas

Jordan H. Grafman, PhD
Chief, Cognitive Neuroscience Laboratory
Brain Injury Research Program
Rehabilitation Institute of Chicago; Professor, Physical Medicine and Rehabilitation
Northwestern University Feinberg School of Medicine
Chicago, Illinois
56: Neuropsychological Testing

Cristian Gragnaniello, MD, PhD, MSurg, MAAdvSurg
Neurosurgeon and Surgical Director
Harvey H. Ammerman Microsurgical Laboratory
Department of Neurosurgery
Georgetown University School of Medicine
Washington, DC
177: Peripheral Nerve Stimulation for Neuropathic Pain

Andrew W. Grande, MD
Assistant Professor of Neurosurgery
Department of Neurosurgery
University of Minnesota
Minneapolis, Minnesota
25: Visualization and Optics in Neurosurgery
382: Endovascular Management of Cerebral Vasospasm

Gerald A. Grant, MD, FACS
Associate Professor of Neurosurgery
Arline and Pete Harman Endowed Faculty Scholar
Division Chief, Pediatric Neurosurgery
Stanford University School of Medicine
Stanford, California
7: Coagulation for the Neurosurgeon
51: The Blood-Brain Barrier Overview and Controversies (Pediatrics)
206: General Approaches and Considerations for Pediatric Brain Tumors
214: Cerebellar Astrocytomas
224: Management of Head Injury: Special Considerations in Children

Ryan A. Grant, MD, MS
Neurosurgery Resident
Yale School of Medicine
New Haven, Connecticut
139: Unusual Gliomas

Christoph J. Griesenauer, MD
Clinical Fellow in Neurosurgery
Beth Israel Deaconess Medical Center
Boston, Massachusetts
368: Blunt Cerebrovascular Injury

Michael W. Groff, MD
Harvard Medical School
Director of Spinal Surgery
Brigham and Women’s Hospital
Boston, Massachusetts
296: Assessment and Treatment of Malignant Primary Spinal Tumors

Robert E. Gross, MD, PhD
MBNA/Bowman Endowed Professor
Departments of Neurosurgery and Neurology
Emory University School of Medicine
Atlanta, Georgia
79: Electrical Stimulation for Epilepsy (VNS, DBS, and RNS)
88: Ablative Procedures for Parkinson’s Disease

Jonathan A. Grossberg, MD
Assistant Professor
Department of Neurology
Comprehensive Stroke Center at UC Neuroscience Institute
University of Cincinnati
Cincinnati, Ohio
408: Treatment of Other Intracranial Dural Arteriovenous Fistulas

Aaron W. Grossman, MD, PhD
Assistant Professor
Department of Neurology
Comprehensive Stroke Center at UC Neuroscience Institute
University of Cincinnati
Cincinnati, Ohio
382: Endovascular Management of Cerebral Vasospasm

Rachel Grossman, MD
Vice Chair
Department of Neurosurgery
Tel-Aviv Medical Center
Tel-Aviv, Israel
Overview and Controversies (Oncology)
127: Neurocognition in Brain Tumor Patients

Mari L. Groves, MD
Assistant Professor
Department of Neurosurgery
Johns Hopkins University School of Medicine
Baltimore, Maryland
234: Achondroplasia and Other Dwarfisms

Marcelo Fernando Gruenberg, MD
Spine Surgeon
Orthopaedic Department
Hospital Italiano de Buenos Aires
Buenos Aires, Argentina
290: Treatment of Pyogenic Vertebral Spondylodiscitis

Jennifer Moliterno Gunel, MD
Assistant Professor of Neurosurgery
Yale School of Medicine
New Haven, Connecticut
139: Unusual Gliomas

Murat Günel, MD, FACS, FAHA
Nixdorff-German Professor of Neurosurgery
Professor of Genetics and of Neuroscience
Co-Director, Yale Program on Neurogenetics
Department of Neurosurgery
Yale School of Medicine
New Haven, Connecticut
376: Genetics of Intracranial Aneurysms
410: Genetics of Cerebral Cavernous Malformations

Nalin Gupta, MD, PhD
Professor
Departments of Neurological Surgery and Pediatrics
University of California, San Francisco; Chief, Division of Pediatric Neurosurgery
UCSF Benioff Children’s Hospital
San Francisco, California
209: Choroid Plexus Tumors

Georges F. Haddad, MD, FRCS(C)
Clinical Associate Professor of Neurosurgery
Department of Surgery
American University of Beirut
Beirut, Lebanon
147: Meningiomas

Michael M. Haglund, MD, PhD
Professor of Neurosurgery, Neurobiology, and Global Health
Department of Neurosurgery
Duke University School of Medicine
Durham, North Carolina
7: Coagulation for the Neurosurgeon Overview and Future Opportunities (Basic Science)
69: Motor, Sensory, and Language Mapping and Monitoring for Cortical Resections

Stephen J. Haines, MD
Lyle A. French Chair
Professor and Head, Department of Neurosurgery
University of Minnesota School of Medicine
Minneapolis, Minnesota
38: The Use and Misuse of Antibiotics in Neurosurgery
57: Neurosurgical Epidemiology and Outcomes Assessment

Clayton L. Haldeman, MD, MHS
Resident Neurosurgeon
University of Wisconsin Hospitals and Clinics
Madison, Wisconsin
307: Treatment of Cervicothoracic Junction Injuries
CONTRIBUTORS

Roberto C. Heros, MD
Professor
Department of Neurosurgery
University of Miami
Miami, Florida
405: Microsurgery of Arteriovenous Malformations

Karl Herrup, PhD
Chair Professor and Head
Division of Life Science
Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
48: Neurons and Neuroglia

Shawn Hervey-Jumper, MD
Assistant Professor of Neurological Surgery
University of Michigan Medical School
Ann Arbor, Michigan
140: Primitive Neuroectodermal Tumors

Gregory G. Heuer, MD, PhD
Assistant Professor of Neurosurgery
Perelman School of Medicine at the University of Pennsylvania
Children's Hospital of Philadelphia
Philadelphia, Pennsylvania
60: Malformations of Cortical Development
71: Intracranial Monitoring: Subdural Strip and Grid Recording

Yoshinori Higuchi, MD, PhD
Associate Professor of Neurological Surgery
Chiba University Graduate School of Medicine
Chiba, Japan
267: Radiosurgery for Malignant Intracranial Tumors

Holly S. Gilmer Hill, MD
Associate Professor of Neurosurgery
Oakland University William Beaumont School of Medicine;
Chief, Division of Pediatric Neurosurgery
Beaumont Hospital
Royal Oak, Michigan
251: Perforans Syndrome, Obturator Internus Syndrome, Pudendal Nerve Entrapment, and Other Pelvic Entrapments

Lawrence J. Hirsch, MD
Professor
Department of Neurology
Chief, Division of Epilepsy/EEG
Comprehensive Epilepsy Center
Yale School of Medicine
New Haven, Connecticut
61: Diagnosis and Classification of Seizures and Epilepsy

S. Alan Hoffer, MD
Assistant Professor of Neurological Surgery
Case Western Reserve University School of Medicine
University Hospitals Case Medical Center
Cleveland, Ohio
362: Intraoperative Cerebral Protection

Eric Holland, MD, PhD
Professor and Chair
Department of Neurosurgery
Director, Alvord Brain Tumor Center
University of Washington School of Medicine;
Director, Human Biology
Director, Solid Tumor Translational Research
Fred Hutchinson Cancer Research Center
Seattle, Washington
115: Molecular Genetics and the Development of Targets for Glioma Therapy

Ryan Holland, MDC
Department of Neurological Surgery
Rutgers New Jersey Medical School
Newark, New Jersey
24: Brain Retraction

Kazuhiro Hongo, MD, PhD
Professor and Chair
Department of Neurosurgery
Shinshu University School of Medicine
Matsumoto, Japan
Overview and Controversies (Vascular)

Shiro Horisawa, MD
Tokyo Women's Medical University
Tokyo, Japan
97: Thalamotomy for Focal Hand Dystonia

Philip J. Horner, PhD
Scientific Director, Center for Neuroregenerative Medicine
Co-Director, Center for Regenerative and Restorative Neurosurgery
Houston Methodist Research Institute
Houston, Texas
47: Stem Cell Biology in the Central Nervous System

Clifford M. Houseman, DO
Clinical Assistant Professor
Department of Osteopathic Surgical Specialties
Faculty Neurosurgeon
Michigan State University College of Osteopathic Medicine
Southfield, Michigan
275: Spinal Biomechanics and Basics of Spinal Instrumentation

Matthew A. Howard III, MD
Professor and Chair
Department of Neurosurgery
University of Iowa Carver College of Medicine
Iowa City, Iowa
70: Investigation of Human Cognition in Epilepsy Surgery Patients

Brian Hsueh, AB
Departments of Bioengineering and Neuroscience
Stanford University
Stanford, California
45: Optogenetics and CLARITY

Judy Huang, MD, FAANS
Professor of Neurosurgery
Director, Neurosurgery Residency Program
Fellowship Director, Cerebrovascular Neurosurgery
Johns Hopkins University School of Medicine
Baltimore, Maryland
386: Microsurgery of Anterior Communicating Artery Aneurysms

Michael C. Huang, MD
Assistant Clinical Professor
Department of Neurological Surgery
University of California, San Francisco
San Francisco, California
15: Intracranial Pressure Monitoring Overview and Controversies (Trauma)
351: Surgical Management of Traumatic Brain Injury

Raymond Y. Huang, MD, PhD
Instructor
Department of Radiology
Harvard Medical School
Brigham and Women’s Hospital
Boston, Massachusetts
121: Radiologic Features of Central Nervous System Tumors

Eric Hudgins, MD, PhD
Resident Neurosurgeon
Hospital of the University of Pennsylvania
Philadelphia, Pennsylvania
348: Initial Resuscitation, Prehospital Care, and Emergency Room Care in Traumatic Brain Injury

Matthew A. Hunt, MD
Associate Professor
Department of Neurosurgery
University of Minnesota School of Medicine
Minneapolis, Minnesota
38: The Use and Misuse of Antibiotics in Neurosurgery
R. John Hurlbert, MD, PhD, FRCSC, FACS
Associate Professor of Clinical Neurosciences
University of Calgary Faculty of Medicine
Calgary, Alberta, Canada
281: Nonsurgical and Postsurgical Management of Low Back Pain

Peter J. Hutchinson, MBBS, PhD, FRCSSurgNeur
Professor of Neurosurgery and NIHR Research Professor
Division of Neurosurgery, Department of Clinical Neurosciences
University of Cambridge
Cambridge, United Kingdom
34: Medical and Surgical Management of Chronic Subdural Hematomas
Overview and Controversies (Trauma)

Anita Huttner, MD
Assistant Professor of Pathology
Yale School of Medicine
New Haven, Connecticut
139: Unusual Gliomas

Steven W. Hwang, MD
Assistant Professor of Neurosurgery
Chief, Pediatric Neurosurgery
Tufts University School of Medicine
Floating Hospital for Children at Tufts Medical Center
Boston, Massachusetts
237: Introduction to Spinal Deformities in Children
300: Adult Tethered Cord Syndrome
301: Adult Syringomyelia

Jeffrey J. Iliff, PhD
Assistant Professor of Anesthesiology and Perioperative Medicine
Oregon Health & Science University
Portland, Oregon
54: Extracellular Fluid Movement and Clearance in the Brain: The Glymphatic Pathway

Susan L. Ingram, PhD
Associate Professor
Department of Neurological Surgery
Oregon Health & Science University
Portland, Oregon
167: Molecular Basis of Nociception

Ioannis U. Isaia, MD
I.C.P. Parkinson Institute
Motion Analysis Laboratory
Department of Human Physiology
University of Milan
Milan, Italy
85: Patient Selection Criteria for Deep Brain Stimulation in Movement Disorders

Bermans J. Iskandar, MD
Professor of Neurosurgery and Pediatrics
Director, Pediatric Neurosurgery
University of Wisconsin School of Medicine and Public Health
Madison, Wisconsin
230: Lipomyelomeningocele

Aditya K. Iyer, MD, MEng
Resident Neurosurgeon
Stanford School of Medicine
Stanford, California
272: Radiosurgery for Benign Spine Tumors and Vascular Malformations

R. Patrick Jacob, MD, FACS
Chief, Neurosurgery Section
Malcolm Randall VA Hospital;
Adjunct Professor of Neurosurgery
University of Florida School of Medicine
Gainesville, Florida
279: Bone Metabolism and Osteoporosis

Ajit Jada, MD
Resident Neurosurgeon
Albert Einstein College of Medicine
Montefiore Medical Center
Bronx, New York
236: Intraspinal Tumors in Children

Ashutosh P. Jadhav, MD, PhD
Assistant Professor
Departments of Neurology and Neurological Surgery
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania
361: Acute Surgical and Endovascular Management of Ischemic and Hemorrhagic Stroke

Hayder Jaffer, MD
Fellow in Pediatric Neurosurgery
Department of Neurosurgery
Cleveland Clinic Lerner School of Medicine
Case Western Reserve University
Cleveland, Ohio
199: Cerebellar Spinal Disorders and Transitional Neurosurgery

Regina I. Jakacki, MD
AstraZeneca
Gaithersburg, Maryland
216: Intracranial Germ Cell Tumors

George I. Jalal, MD
Professor of Neurosurgery, Pediatrics, and Oncology
Johns Hopkins University School of Medicine
Baltimore, Maryland
234: Achondroplasia and Other Dwarfisms

Jack I. Jalal, MD, PhD
Professor of Neurosurgery
Thomas Jefferson University and Hospitals
Philadelphia, Pennsylvania
17: The Neurosurgical Intensive Care Unit and the Unique Role of the Neurosurgeon

Osama Jamil, MD
Resident
Department of Neurosurgery
University of Utah School of Medicine
University of Utah Medical Center and Primary Children’s Medical Center
Salt Lake City, Utah
197: Hydrocephalus in Children: Etiology and Overall Management

John A. Jane, Jr., MD
Professor of Neurosurgery and Pediatrics
Neurosurgery Residency Program Director
University of Virginia School of Medicine
Charlottesville, Virginia
193: Nonsyndromic Craniosynostosis: Introduction and Single-Suture Synostosis

John A. Jane, Sr., MD, PhD†
Professor of Neurosurgery
University of Virginia School of Medicine
Charlottesville, Virginia
193: Nonsyndromic Craniosynostosis: Introduction and Single-Suture Synostosis

Damir Janigro, PhD
Scientific Director
Flocel, Inc.;
Professor
Case Western Reserve University
Cleveland, Ohio
51: The Blood-Brain Barrier
58: Electrophysiologic Properties of the Mammalian Central Nervous System

Brian T. Jankowitz, MD
Assistant Professor of Neurosurgery
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania
361: Acute Surgical and Endovascular Management of Ischemic and Hemorrhagic Stroke

Andrew H. Jea, MD
Professor and Chief of Pediatric Neurosurgery
Indiana University School of Medicine;
Goodman Campbell Brain and Spine Fellowship Program Director
Riley Hospital for Children
Indianapolis, Indiana
Overview and Controversies (Pediatrics)

Owase Jeelani, MBBS, MBA, MPhil, FRCSSurgNeuroSurg
Consultant Paediatric Neurosurgeon
Head of Clinical Services
Department of Neurosurgery
Great Ormond Street Hospital
London, United Kingdom
208: Thalamic Tumors

†Deceased.
John D. Koerner, MD
Orthopaedic Spine Surgeon
Hackensack University Medical Center
Hackensack, New Jersey
306: Evaluation, Classification, and Treatment of Cervical (C3-C7) Injuries

Malgosia A. Kokoszka, PhD
Assistant Professor
Neurosurgery
Mount Sinai Health System
New York, New York
240: Pediatric Epilepsy Surgery

Angelos G. Kolas, BM, MSc, MRCS
Academic Clinical Registrar in Neurosurgery
Division of Neurosurgery, Department of Clinical Neurosciences
University of Cambridge
Addenbrooke’s Hospital
Cambridge, United Kingdom
34: Medical and Surgical Management of Chronic Subdural Hematomas
Overview and Controversies (Trauma)

Miikka Korja, MD
Associate Professor
Department of Neurosurgery
Helsinki University Central Hospital
Helsinki, Finland
402: Therapeutic Decision Making in the Management of Arteriovenous Malformations of the Brain

Thomas Kosztowski, MD
Resident Neurosurgeon
Johns Hopkins University
Baltimore, Maryland
123: Brain Tumors during Pregnancy

Joachim K. Krauss, Prof. Dr. med.
Chairman and Director
Department of Neurosurgery
Medical School Hannover, MHH
Hannover, Germany
60: Selective Peripheral Denervation for Cervical Dystonia

Chandan Krishna, MD
Department of Neurosurgery
Mayo Clinic
Scottsdale, Arizona
367: Carotid Artery Angioplasty and Stenting

Vibhor Krishna, MD
Assistant Professor of Neurosurgery
Center for Neuromodulation
The Ohio State University Wexner Medical Center
Columbus, Ohio
108: Deep Brain Stimulation for Alzheimer’s Disease

Ajit A. Krishnaney, MD
Staff Surgeon
Department of Neurosurgery
Cleveland Clinic
Cleveland, Ohio
60: Selective Peripheral Denervation for Cervical Dystonia

Pieter L. Kubben, MD, PhD
Neurosurgeon
Department of Neurosurgery
Maastricht University Medical Center
Maastricht, The Netherlands
135: Intraoperative Magnetic Resonance Imaging

Jens Kuhn, MD
Professor
Department of Psychiatry and Psychotherapy
University Hospital of Cologne
Cologne, Germany
99: Surgery for Tourette’s Syndrome

Abhaya V. Kulkarni, MD, PhD, FRCS
Associate Professor of Neurosurgery
Department of Surgery
University of Toronto Faculty of Medicine
The Hospital for Sick Children
Toronto, Ontario, Canada
201: Ventricular Shunting Procedures

Gomatam R. Vijay Kumar, MBBS,
FRCS(Eng), FRCS(Neurosurgery)
Head of Neurosurgery
AMRI Hospitals
Salt Lake, Kolkata, India
291: Evaluation and Treatment of Fungal and Tubercular Infections of the Spine

Charles Kuntz IV, MD†
Professor and Vice Chairman
Department of Neurosurgery
University of Cincinnati College of Medicine;
Director, Division of Spine and Peripheral Nerve Surgery
Mayfield Clinic
Cincinnati, Ohio
60: Selective Peripheral Denervation for Cervical Dystonia

Frank La Marca, MD
Clinical Assistant Professor
Department of Neurosurgery
University of Michigan
Ann Arbor, Michigan
313: Evaluation and Treatment of Cervical Deformity

Nadia N. Issa Laack, MD, MS
Assistant Professor of Radiation Oncology
Mayo Clinic
Rochester, Minnesota
266: Fractionated Radiotherapy for Spine Tumors

Alim M. Ladha, MD
Department of Neurological Surgery
Midland Memorial Hospital
Odessa, Texas
148: Meningeal Sarcomas and Hemangiopericytomas

Virginia Laffage, PhD
Director, Spine Research
Hospital for Special Surgery
New York, New York
311: Classification of Spinal Deformity

Arthur M. Lam, MD, FRCPC, FNCS
Clinical Professor of Anesthesiology and Pain Medicine
University of Washington School of Medicine;
Medical Director, Neuroanesthesia and Neurocritical Care
Swedish Neuroscience Institute
Swedish Medical Center
Seattle, Washington
5: Neuranaesthesia: Preoperative Evaluation

Tariq Lamki, MD
Fellow in Skull Base Neurosurgery and Radiosurgery
Department of Neurological Surgery
The Ohio State University Wexner Medical Center
Columbus, Ohio
154: Overview of Skull Base Tumors

Frederick F. Lang, MD
Professor of Neurosurgery
University of Texas MD Anderson Cancer Center
Houston, Texas
146: Metastatic Brain Tumors

Giuseppe Lanzino, MD
Professor of Neurosurgical Surgery and Radiology
Department of Neurological Surgery
Mayo Clinic
Rochester, Minnesota
398: Multimodality Treatments of Cerebrovascular Disorders
407: Carotid-Cavernous Fistulas

1Deceased.
Paul Larson, MD
Associate Professor and Vice Chair
Department of Neurological Surgery
University of California, San Francisco
San Francisco, California
89: Deep Brain Stimulation for Parkinson’s Disease

Catherine Y. Lau, MD
Assistant Clinical Professor
Department of Medicine
University of California, San Francisco
San Francisco, California
4: Improving Patient Safety

Darryl Lau, MD
Resident Neurosurgeon
University of California, San Francisco
San Francisco, California
315: Evaluation and Treatment of Scheuermann’s Kyphosis

Sean D. Lavine, MD
Associate Professor of Neurological Surgery
Columbia University College of Physicians and Surgeons
New York, New York
394: Endovascular Hunterian Ligation

Sean E. Lawler, PhD
Assistant Professor of Neurosurgery
Harvard Medical School
Boston, Massachusetts
115: Malignant Glioma Microenvironment

Edward R. Laws, Jr., MD
Professor of Neurosurgery
Harvard Medical School
Brigham and Women’s Hospital
Boston, Massachusetts
150: Pituitary Tumors: Functioning and Nonfunctioning

Michael T. Lawton, MD
Professor in Residence, Vice-Chairman, and Tong Po Kan Endowed Chair
Department of Neurological Surgery
Chief, Cerebrovascular and Skull Base Surgery Programs
Director, Cerebrovascular Disorders Program
Principal Investigator, Center for Cerebrovascular Research
University of California, San Francisco
San Francisco, California
3: Surgical Anatomy of the Skull Base: Overview and Controversies (Vascular)
395: Microsurgical Management of Giant Intracranial Aneurysms

Nealen G. Laxpati, MD, PhD
Department of Neurosurgery
Emory University School of Medicine;
Coulter Department of Biomedical Engineering
Georgia Institute of Technology
Atlanta, Georgia
79: Electrical Stimulation for Epilepsy (VNS, DBS, and RNS)

Joash T. Lazarus, MD
Movement Disorder Fellow
Department of Neurology
Emory University School of Medicine
Atlanta, Georgia
88: Ablative Procedures for Parkinson’s Disease

Peter D. Le Roux, MD, FACS
Professor of Neurosurgery
Sidney Kimmel Medical College
Thomas Jefferson University
Philadelphia, Pennsylvania;
Co-Director, Brain and Spine Center
Lankenau Medical Center
Wynnewood, Pennsylvania
350: Physiologic Monitoring for Traumatic Brain Injury
379: Surgical Decision Making for the Treatment of Intracranial Aneurysms

Brett D. Lebed, MD
Attending Urologist
Department of Urologic Surgery
Urologic Associates of San Luis Obispo
San Luis Obispo, California
10: Neurourology

Cheng-Chia Lee, MD
Attending Physician and Clinical Lecturer
Department of Neurosurgery
Neurological Institute, Taipei Veterans General Hospital
Taipei, Taiwan;
Department of Surgery
Hsinchu Branch
Taipei Veterans General Hospital
Hsinchu, Taiwan
264: Radiosurgery Technique

Sangmi Lee, PhD
Research Scientist
Department of Neurological Surgery
Brain and Spinal Injury Center
University of California, San Francisco
School of Medicine
San Francisco, California
339: Animal Models of Traumatic Brain Injury

Young M. Lee, MD
Department of Neurological Surgery
University of California, San Francisco
San Francisco, California
360: Acute Medical Management of Ischemic and Hemorrhagic Stroke
372: Endovascular Management of Intracranial Occlusion Disease

Ronald A. Lehman, Jr., MD
Professor of Orthopaedic Surgery
Columbia University College of Physicians and Surgeons
Chief, Degenerative and Minimally Invasive Spine Surgery
Director, Robotic Spine Surgery
Director, Athletes Spine Center
Co-Director, Spine Fellowship
Director, Clinical Spine Research
Co-Director, Orthopaedic Clinical Research
Advanced Pediatric and Adult Deformity Service
Columbia University Medical Center
New York, New York
314: Evaluation and Treatment of Adolescent Idiopathic Scoliosis

Lawrence G. Lenke, MD
Professor of Orthopaedic Surgery
Columbia University Medical Center;
Surgeon-in-Chief
The Spine Hospital at New York-Presbyterian/The Allen Hospital
Chief, Spine Division
Department of Orthopaedic Surgery
Chief, Spinal Deformity Surgery
Co-Director, Adult and Pediatric Comprehensive Spine Fellowship
New York, New York
314: Evaluation and Treatment of Adolescent Idiopathic Scoliosis

Eric C. Leuthardt, MD
Associate Professor
Departments of Neurosurgery, Biomedical Engineering, and Mechanical Engineering and Materials Science
Director, Center for Innovation in Neuroscience and Technology
Washington University School of Medicine in St. Louis
St. Louis, Missouri
109: Neuroprosthetics

Emily Lehmann Levin, MD
Assistant Professor of Neurosurgery
University of Michigan
Ann Arbor, Michigan
178: Spinal Cord Stimulation

Michael R. Levitt, MD
Assistant Professor
Department of Neurological Surgery
University of Washington
Assistant Professor
Department of Radiology
University of Washington
Adjunct Assistant Professor
Department of Mechanical Engineering
University of Washington
Seattle, Washington
392: Endovascular Approaches to Wide-Necked Intracranial Aneurysms
Evan M. Lewis, MD
Resident Neurosurgeon
University of Maryland School of Medicine
Baltimore, Maryland
282: Complication Avoidance in Spine Surgery

Dianyou Li, MD, PhD
Department of Stereotactic and Functional Neurosurgery
Shanghai Jiao Tong University
Rui Jin Hospital
Shanghai, China
102: Surgery for Anorexia Nervosa

Lydia J. Liang, BA
Research Assistant
Department of Neurosurgery
Johns Hopkins University School of Medicine
Baltimore, Maryland
155: Chordomas and Chondrosarcomas

Mark E. Linskey, MD
Professor of Neurological Surgery
University of California, Irvine
UC Irvine Medical Center
Orange, California
171: Trigeminal Neuralgia: Diagnosis and Nonoperative Management
261: General and Historical Considerations of Radiotherapy and Radiosurgery

Nir Lipsman, MD, PhD
Resident Neurosurgeon
University of Toronto Faculty of Medicine
Toronto, Ontario, Canada
101: Surgery for Major Depressive Disorder
108: Deep Brain Stimulation for Alzheimer's Disease

Zachary N. Litvak, MD, MCR
Assistant Professor of Neurological Surgery and Surgery (Otolaryngology)
Director, Minimally Invasive Cranial Surgery
Co-Director, Endoscopic Pituitary and Skull Base Surgery Program
George Washington University
Washington, DC
231: Split Spinal Cord

James K. Liu, MD, FACS, FAANS
Associate Professor and Director
Center for Skull Base and Pituitary Surgery
Departments of Neurological Surgery and Otolaryngology-Head and Neck Surgery
Rutgers University New Jersey Medical School;
Neurological Institute of New Jersey
Newark, New Jersey
26: Advantages and Limitations of Cranial Endoscopy

Kenneth C. Liu, MD, FAANS
Associate Professor of Neurosurgery and Radiology
Co-Director, Cerebrovascular and Skull Base Surgery
Co-Director, University of Virginia Stroke Center
Department of Neurosurgery
University of Virginia
Charlottesville, Virginia
374: Cerebral Venous and Sinus Thrombosis

Wei Liu, MD, PhD
Department of Stereotactic and Functional Neurosurgery
Shanghai Jiao Tong University
Rui Jin Hospital
Shanghai, China
102: Surgery for Anorexia Nervosa

Mark G. Luciano, MD, PhD
Professor of Neurosurgery
Director, Cerebral Fluid Center
Johns Hopkins University School of Medicine
Baltimore, Maryland
199: Cerebrospinal Fluid Disorders and Transitional Neurosurgery
CONTRIBUTORS

Rimas V. Lukas, MD
Associate Professor of Neurology
University of Chicago Pritzker School of Medicine
Chicago, Illinois
41: Acquired Immunodeficiency Syndrome

Teija Lund, MD, PhD
Helsinki University Hospital
Helsinki, Finland
287: Cervical, Thoracic, and Lumbar Stenosis

Lijun Ma, PhD
Professor of Radiation Oncology
University of California, San Francisco School of Medicine
San Francisco, California
262: Radiobiology of Radiotherapy and Radiosurgery

Tracy S. Ma, MD
Resident Neurosurgeon
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, Pennsylvania
357: Traumatic Cerebrospinal Fluid Fistulas

Andrew I.R. Maas, MD, PhD
Professor and Chair
Department of Neurosurgery
University Hospital Antwerp and University of Antwerp
Antwerp, Belgium
Overview and Controversies (Trauma)
336: Epidemiology of Traumatic Brain Injury
335: Prognosis after Traumatic Brain Injury

R. Loch Macdonald, MD, PhD, FRCS(C), FACS, FAANS
Professor of Surgery and Keenan Endowed Chair in Surgery
Division of Neurosurgery
University of Toronto Faculty of Medicine; Scientist, Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre for Biomedical Science
St. Michael's Hospital
Toronto, Ontario, Canada
33: Pathophysiology of Chronic Subdural Hematomas
380: Perioperative Management of Subarachnoid Hemorrhage

Stephen C. Mack, PhD
Post-Doctoral Research Fellow
Cleveland Clinic Lerner Research Institute
Cleveland, Ohio
205: Genetics of Pediatric Brain Tumors

Lara S. MacLachlan, MD
Clinical Instructor
Department of Urology
Medical University of South Carolina
Charleston, South Carolina
10: Neurourology

Luke Macyszyn, MD, MA
Assistant Professor of Neurosurgery
Department of Neurosurgery
University of California, Los Angeles
Los Angeles, California
30: Clinical Evaluation of Adult Hydrocephalus

Jordan A. Magarak, MD, MS
Department of Neurological Surgery
Vanderbilt University Medical Center
Nashville, Tennessee
360: Acute Medical Management of Ischemic and Hemorrhagic Stroke
372: Endovascular Management of Intracranial Occlusion Disease

Dominic Maggio, MD, MBA
Resident Neurosurgeon
University of Virginia
Charlottesville, Virginia; Physician
National Institute of Neurological Disorders and Stroke
National Institute of Health
Bethesda, Maryland
317: Evaluation and Treatment of Adult Scoliosis and Sagittal Plane Deformity

R. Loch Macdonald, MD, PhD, FRCS(C), FACS, FAANS
Professor of Surgery and Keenan Endowed Chair in Surgery
Division of Neurosurgery
University of Toronto Faculty of Medicine; Scientist, Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre for Biomedical Science
St. Michael's Hospital
Toronto, Ontario, Canada
33: Pathophysiology of Chronic Subdural Hematomas
380: Perioperative Management of Subarachnoid Hemorrhage

Stephen C. Mack, PhD
Post-Doctoral Research Fellow
Cleveland Clinic Lerner Research Institute
Cleveland, Ohio
205: Genetics of Pediatric Brain Tumors

Lara S. MacLachlan, MD
Clinical Instructor
Department of Urology
Medical University of South Carolina
Charleston, South Carolina
10: Neurourology

Luke Macyszyn, MD, MA
Assistant Professor of Neurosurgery
Department of Neurosurgery
University of California, Los Angeles
Los Angeles, California
30: Clinical Evaluation of Adult Hydrocephalus

Jordan A. Magarak, MD, MS
Department of Neurological Surgery
Vanderbilt University Medical Center
Nashville, Tennessee
360: Acute Medical Management of Ischemic and Hemorrhagic Stroke
372: Endovascular Management of Intracranial Occlusion Disease

Dominic Maggio, MD, MBA
Resident Neurosurgeon
University of Virginia
Charlottesville, Virginia; Physician
National Institute of Neurological Disorders and Stroke
National Institute of Health
Bethesda, Maryland
317: Evaluation and Treatment of Adult Scoliosis and Sagittal Plane Deformity

Pierre J. Magistretti, MD, PhD
Professor and Director
Brain Mind Institute
École Polytechnique Fédérale de Lausanne; Director, Center for Psychiatric Neuroscience
Department of Psychiatry
Centre Hospitalier Universitaire Vaudois
Lausanne, Switzerland
Overview and Future Opportunities (Basic Science)
49: Cellular Mechanisms of Brain Energy Metabolism

Kelly B. Mahaney, MD, MS
Assistant Professor of Neurosurgery
University of Virginia School of Medicine
Charlottesville, Virginia
142: Medulloblastomas in Adults
213: Medulloblastomas

Cormac O. Maher, MD
Associate Professor of Neurosurgery
University of Michigan Medical School
Ann Arbor, Michigan
223: Pediatric Arteriovenous Malformations

Ramin Mahmoodi, MD, PhD
Clinical Fellow
Department of Neurosurgery
International Neuroscience Institute
Hannover, Germany
153: Ventricular Tumors

Babak Mahmoudi, PhD
Post-Doctoral Fellow
Department of Neurosurgery
Emory Neuromodulation and Technology Innovation Center
Emory University School of Medicine
Atlanta, Georgia
79: Electrical Stimulation for Epilepsy (VNS, DBS, and RNS)

Martijn J.A. Malesy, MD, PhD
Professor of Nerve Surgery
Department of Neurosurgery
Leiden University Medical Center
Leiden, The Netherlands
Overview and Controversies (PNS)
252: Techniques in Nerve Reconstruction and Repair
253: Nerve Transfers
255: Early Management of Brachial Plexus Injuries

Conor Mallucci, MBBS, FRCS
Consultant Paediatric Neurosurgeon
Alder Hey Childrens NHS Foundation Trust
Liverpool, United Kingdom
207: Optic Pathway Hypothalamic Gliomas

Francesco T. Mangano, DO, FACS, FACOS
Associate Professor of Neurosurgery
University of Cincinnati College of Medicine; Chief, Division of Pediatric Neurosurgery
Cincinnati Children's Hospital and Medical Center
Cincinnati, Ohio
188: Dandy-Walker Syndrome

Allen H. Maniker, MD
Professor of Neurosurgery
Mount Sinai School of Medicine
Chief of Neurosurgery
Sinai Beth Israel Medical Center
New York, New York
22: Positioning for Peripheral Nerve Surgery
259: Pain, Complications, and Iatrogenic Injury in Nerve Surgery

Geoffrey T. Manley, MD, PhD
Professor in Residence and Vice Chairman
Department of Neurological Surgery
Co-Director and Principal Investigator, Brain and Spinal Injury Center (BASIC) University of California, San Francisco; Chief of Neurosurgery
San Francisco General Hospital
San Francisco, California
15: Intracranial Pressure Monitoring
Overview and Controversies (Trauma)
340: Genetics of Traumatic Brain Injury
Spiros Manolidis, MD
Associate Professor of Neurosurgery
Albert Einstein College of Medicine
Beth Israel Medical Center
New York, New York
160: Juvenile Nasopharyngeal Angiofibromas

Daniel Marchac, MD†
Professor
Chirurgie Plastique Reconstructrice et Esthétique
Chirurgie Crani-Faciale
Collège de Médecine des Hôpitaux de Paris
Paris, France
194: Syndromic Craniosynostosis

Joseph Marchione, MD
Radiology Resident
Icahn School of Medicine at Mount Sinai
New York, New York
13: Physiologic Evaluation of the Brain with Magnetic Resonance Imaging

Joshua Marcus, MD
Postdoctoral Fellow in Endovascular Neurosurgery and Interventional Neuroradiology
New York–Presbyterian Hospital/Weill Cornell Medical Center
New York, New York
366: Carotid Endarterectomy

Joseph C. Maroon, MD
Clinical Professor, Heindl Scholar in Neuroscience
Department of Neurological Surgery
University of Pittsburgh School of Medicine;
Vice Chair, Community Medicine
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania
161: Tumors of the Orbit

Alastair Martin, PhD
Adjunct Professor of Radiology
Co-Director, Image-Guided Surgery Specialized Resource Group
University of California, San Francisco
San Francisco, California
89: Deep Brain Stimulation for Parkinson’s Disease

Neil A. Martin, MD
Professor and Chair
Department of Neurosurgery
David Geffen School of Medicine at UCLA
Los Angeles, California
397: Revascularization Techniques for Complex Aneurysms and Skull Base Tumors

Justin R. Mascitelli, MD
Resident
Department of Neurosurgery
Mount Sinai Health System
New York, New York
413: Endovascular Treatment of Spinal Vascular Malformations

Amit Mathur, MBBS, MD, MRCP (UK)
Professor of Pediatrics
Division of Newborn Medicine
Washington University School of Medicine in St. Louis;
St. Louis Children’s Hospital
St. Louis, Missouri
227: Neonatal Brain Injury

Christopher M. Maucci, MD
Neurosurgery Spine Fellow
Thomas Jefferson University Hospital
Philadelphia, Pennsylvania
309: Evaluation, Classification, and Treatment of Thoracolumbar Spine Injuries

Marcus D. Mazur, MD
Resident Neurosurgeon
Clinical Neurosciences Center
University of Utah School of Medicine
Salt Lake City, Utah
274: Assessment of Spinal Imaging

Nicole Mazwi, MD
Instructor in Physical Medicine and Rehabilitation
Harvard Medical School
Spaulding Rehabilitation Hospital
Boston, Massachusetts
358: Rehabilitation of Patients with Traumatic Brain Injury

James P. McAllister II, PhD
Professor of Neurosurgery
Washington University School of Medicine in St. Louis
St. Louis Children’s Hospital
St. Louis, Missouri
200: Experimental Hydrocephalus

Craig D. McClain, MD, MPH
Assistant Professor
Department of Anesthesia, Critical Care and Pain Medicine
Harvard Medical School;
Associate in Anesthesia
Department of Anesthesiology, Perioperative and Pain Medicine
Boston Children’s Hospital
Boston, Massachusetts
184: Neuromonitoring in Children

Ian E. McCutcheon, MD
Professor of Neurosurgery
University of Texas MD Anderson Cancer Center
Houston, Texas
40: Meningitis and Encephalitis
162: Skull Tumors

Cameron G. McDougall, MD, FRCSC
Director of Endovascular Neurosurgery
Department of Neurosurgery
Barrow Neurological Institute
Phoenix, Arizona
391: Endovascular Approaches to Narrow-Necked Intracranial Aneurysms
392: Endovascular Approaches to Wide-Necked Intracranial Aneurysms

Andrew W. McEvoy, MBBS, MD, FRCs(Lond), FRCs(SN)
Consultant Neurosurgeon
National Hospital for Neurology and Neurosurgery
Institute of Neurology
University College London;
Honorary Consultant Neurosurgeon
Great Ormond Street Hospital for Children
London, United Kingdom
Overview and Controversies (Epilepsy)
65: Neuroradiologic Evaluation for Epilepsy Surgery; Magnetic Resonance Imaging

Patricia E. McGoldrick, NP, MPA, MSN
Instructor in Clinical Nursing
Columbia University College of Physicians and Surgeons
New York, New York
240: Pediatric Epilepsy Surgery

Robert A. McGovern III, MD
Chief Resident
Department of Neurological Surgery
New York–Presbyterian Columbia University Medical Center
New York, New York
Overview and Controversies (Epilepsy)
76: Selective Approaches to the Mesial Temporal Lobe

Guy M. McKhann II, MD
Florence Irving Associate Professor of Neurological Surgery
Columbia University College of Physicians and Surgeons;
Director, Epilepsy and Movement Disorder Surgery
Director, Adult Hydrocephalus Center
Director, Awake Brain Mapping for Tumors and Epilepsy
New York–Presbyterian Columbia University Medical Center
New York, New York
Overview and Controversies (Epilepsy)
58: Electrophysiologic Properties of the Mammalian Central Nervous System
76: Selective Approaches to the Mesial Temporal Lobe

David F. Meaney, PhD
Solomon R. Pollack Professor and Chair
Department of Bioengineering
University of Pennsylvania
Philadelphia, Pennsylvania
337: Biomechanical Basis of Traumatic Brain Injury

Ricky Medel, MD
Assistant Professor
Co-Director of Cerebrovascular, Endovascular, and Skull Base Surgery
Department of Neurosurgery
Tulane University
New Orleans, Louisiana
414: Microsurgical Treatment of Spinal Vascular Malformations

†Deceased.
Antônio C.M. Mussi, MD
Attending Neurosurgeon
Hospital de Caridade Florianópolis,
Santa Catarina, Brazil;
Former Research Fellow
Department of Neurological Surgery
University of Florida College of Medicine
Gainesville, Florida
277: Pathophysiology and Treatment of Spinal Cord Injury

Anick Nater, MD
Resident Neurosurgeon
University of Toronto Faculty of Medicine
Toronto, Ontario, Canada
295: Assessment and Treatment of Metastatic Spinal Lesions

Rodrigo Navarro-Ramirez, MD, MSc
Spine Surgery Fellow
Weill Cornell Medical College
New York-Presbyterian Hospital
New York, New York
335: Minimally Invasive Techniques for Degenerative Disease

Edjah K. Nduom, MD
Staff Clinician
Surgical Neurology Branch
National Institute of Neurological Disorders and Stroke
Bethesda, Maryland
111: Brain Tumor Immunology and Immunotherapy

Taylor B. Nelp, BA
Department of Neurological Surgery
Columbia University College of Physicians and Surgeons
New York, New York
181: Diagnosis and Management of Painful Neuromas

John D. Nerva, MD
Chief Resident
Department of Neurological Surgery
University of Cincinnati College of Medicine
Cincinnati, Ohio
412: Classification of Spinal Arteriovenous Malformations

Breno Nery, MD
Resident Neurosurgeon
Hospital Heliópolis
São Paulo, Brazil
150: Pituitary Tumors: Functioning and Nonfunctioning

David W. Newell, MD
Cerebrovascular Surgery
Swedish Neuroscience Institute
Swedish Health System
Seattle, Washington
363: Diagnostic and Therapeutic Neuroimaging

Angela Li Ching Ng, MBChB
Senior Resident Neurosurgeon
Neurology Registrar
Royal Hobart Hospital
Hobart, Australia
177: Peripheral Nerve Stimulation for Neuropathic Pain

M. Kelly Nicholas, MD, PhD
Associate Professor of Clinical Medicine
Department of Neurology and Rehabilitation
University of Illinois College of Medicine at Chicago
Chicago, Illinois
41: Acquired Immunodeficiency Syndrome

Yasunari Niimi, MD
Director, Center for Neurological Diseases and Therapy
St. Luke's International Hospital
Tokyo, Japan
221: Vein of Galen Aneurysmal Malformation

Shahid M. Nimjee, MD, PhD
Assistant Professor
Departments of Neurological Surgery, Radiology, and Neuroscience
The Ohio State University Wexner Medical Center
Columbus, Ohio
175: Neurosurgical Management of Intractable Pain

Peter Nakaji, MD
Professor of Neurological Surgery
Barrow Neurological Institute
St. Joseph's Hospital and Medical Center
Phoenix, Arizona
222: Pediatric Cerebral Aneurysms

Takeshi Nakajima, MD, PhD
Assistant Professor
Department of Neurosurgery
Jichi Medical University
Shimotsuke, Tochigi, Japan
97: Thalamotomy for Focal Dystonia

Hiroaki Nakashima, MD, PhD
Division of Neurosurgery
University of Toronto Faculty of Medicine
Toronto, Ontario, Canada;
Department of Orthopedic Surgery
Nagoya University Graduate School of Medicine
Nagoya, Japan
277: Pathophysiology and Treatment of Spinal Cord Injury

Taylor B. Nelp, BA
Department of Neurological Surgery
Columbia University College of Physicians and Surgeons
New York, New York
181: Diagnosis and Management of Painful Neuromas

John D. Nerva, MD
Chief Resident
Department of Neurological Surgery
University of Cincinnati College of Medicine
Cincinnati, Ohio
412: Classification of Spinal Arteriovenous Malformations

Breno Nery, MD
Resident Neurosurgeon
Hospital Heliópolis
São Paulo, Brazil
150: Pituitary Tumors: Functioning and Nonfunctioning

David W. Newell, MD
Cerebrovascular Surgery
Swedish Neuroscience Institute
Swedish Health System
Seattle, Washington
363: Diagnostic and Therapeutic Neuroimaging

Angela Li Ching Ng, MBChB
Senior Resident Neurosurgeon
Neurology Registrar
Royal Hobart Hospital
Hobart, Australia
177: Peripheral Nerve Stimulation for Neuropathic Pain

M. Kelly Nicholas, MD, PhD
Associate Professor of Clinical Medicine
Department of Neurology and Rehabilitation
University of Illinois College of Medicine at Chicago
Chicago, Illinois
41: Acquired Immunodeficiency Syndrome

Yasunari Niimi, MD
Director, Center for Neurological Diseases and Therapy
St. Luke's International Hospital
Tokyo, Japan
221: Vein of Galen Aneurysmal Malformation

Shahid M. Nimjee, MD, PhD
Assistant Professor
Departments of Neurological Surgery, Radiology, and Neuroscience
The Ohio State University Wexner Medical Center
Columbus, Ohio
175: Neurosurgical Management of Intractable Pain

Peter Nakaji, MD
Professor of Neurological Surgery
Barrow Neurological Institute
St. Joseph's Hospital and Medical Center
Phoenix, Arizona
222: Pediatric Cerebral Aneurysms

Takeshi Nakajima, MD, PhD
Assistant Professor
Department of Neurosurgery
Jichi Medical University
Shimotsuke, Tochigi, Japan
97: Thalamotomy for Focal Dystonia

Hiroaki Nakashima, MD, PhD
Division of Neurosurgery
University of Toronto Faculty of Medicine
Toronto, Ontario, Canada;
Department of Orthopedic Surgery
Nagoya University Graduate School of Medicine
Nagoya, Japan
277: Pathophysiology and Treatment of Spinal Cord Injury

Taylor B. Nelp, BA
Department of Neurological Surgery
Columbia University College of Physicians and Surgeons
New York, New York
181: Diagnosis and Management of Painful Neuromas

John D. Nerva, MD
Chief Resident
Department of Neurological Surgery
University of Cincinnati College of Medicine
Cincinnati, Ohio
412: Classification of Spinal Arteriovenous Malformations

Breno Nery, MD
Resident Neurosurgeon
Hospital Heliópolis
São Paulo, Brazil
150: Pituitary Tumors: Functioning and Nonfunctioning

David W. Newell, MD
Cerebrovascular Surgery
Swedish Neuroscience Institute
Swedish Health System
Seattle, Washington
363: Diagnostic and Therapeutic Neuroimaging

Angela Li Ching Ng, MBChB
Senior Resident Neurosurgeon
Neurology Registrar
Royal Hobart Hospital
Hobart, Australia
177: Peripheral Nerve Stimulation for Neuropathic Pain

M. Kelly Nicholas, MD, PhD
Associate Professor of Clinical Medicine
Department of Neurology and Rehabilitation
University of Illinois College of Medicine at Chicago
Chicago, Illinois
41: Acquired Immunodeficiency Syndrome

Yasunari Niimi, MD
Director, Center for Neurological Diseases and Therapy
St. Luke's International Hospital
Tokyo, Japan
221: Vein of Galen Aneurysmal Malformation

Shahid M. Nimjee, MD, PhD
Assistant Professor
Departments of Neurological Surgery, Radiology, and Neuroscience
The Ohio State University Wexner Medical Center
Columbus, Ohio
175: Neurosurgical Management of Intractable Pain
Marc R. Nuwer, MD, PhD
Professor and Vice Chair, Department of Neurology
David Geffen School of Medicine at UCLA;
Head, Department of Clinical Neurophysiology
Ronald Reagan UCLA Medical Center
Los Angeles, California
247: Monitoring of Neural Function: Electromyography, Nerve Conduction, and Evoked Potentials

W. Jerry Oakes, MD
Hendley Professor of Pediatric Neurosurgery
University of Alabama Birmingham School of Medicine
Children’s of Alabama
Birmingham, Alabama
190: Chiari Malformations

Taku Ochiai, MD, PhD
Ochiai Neurological Clinic
Saitama, Japan
97: Thalamotomy for Focal Hand Dystonia

Christopher S. Ogilvy, MD
Professor of Neurosurgery
Harvard Medical School
Director, BIDMC Brain Aneurysm Institute
Director, Endovascular and Operative Neurovascular Surgery
Beth Israel Deaconess Medical Center
Boston, Massachusetts
389: Microsurgery of Vertebral Artery and Posterior Inferior Cerebellar Artery Aneurysms

Michael Y. Oh, MD
Vice Chair, Department of Neurosurgery
Program Director, Neurosurgery Residency Program
Chief, Division of Stereotactic and Functional Neurosurgery
Department of Neurosurgery
Allegheny Health Network
Pittsburgh, Pennsylvania
107: Deep Brain Stimulation for Obesity

Nathan Oh, DO
Resident Neurosurgeon
Loma Linda University Medical Center
Loma Linda, California
7: Coagulation for the Neurosurgeon

David O. Okonkwo, MD, PhD
Professor of Neurological Surgery
Executive Vice Chairman, Clinical Operations
Clinical Director, Brain Trauma Research Center
Chief, Division of Neurotrauma
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania
302: Assessment and Classification of Spinal Instability
332: Sacropelvic Fixation: Anterior and Posterior Options
342: Traumatic Brain Injury: Proteomic Biomarkers

Michael S. Okun, MD
Professor of Neurology
Center for Movement Disorders and Neurorestoration
University of Florida College of Medicine
Gainesville, Florida
84: Clinical Overview of Movement Disorders

Edward H. Oldfield, MD
Professor
Departments of Neurosurgery and Internal Medicine
University of Virginia School of Medicine
Charlottesville, Virginia
53: Cerebral Edema
144: Hemangioblastomas
414: Microsurgical Treatment of Spinal Vascular Malformations

Alessandro Olivi, MD
Professor and Chairman of Neurosurgery
Catholic University of the Sacred Heart
Agostino Gemelli Teaching Hospital
Rome, Italy
123: Brain Tumors during Pregnancy
128: Frame and Frameless Stereotactic Brain Biopsy

Francis O’Neill, PhD, MBChB, BDS
Clinical Senior Lecturer in Oral Surgery
University of Liverpool
Liverpool, United Kingdom
170: Evidence-Based Approach to the Treatment of Facial Pain

Dennis P. Orgill, MD, PhD
Professor of Surgery
Harvard Medical School;
Medical Director, Wound Care Center
Vice Chairman for Quality Improvement
Department of Surgery
Brigham and Women’s Hospital
Boston, Massachusetts
163: Scalp Tuors

Joshua W. Osbun, MD
Assistant Professor of Neurological Surgery
Washington University School of Medicine in St. Louis
St. Louis, Missouri
412: Classification of Spinal Arteriovenous Lesions

Koray Özdeman, MD
Associate Professor
Department of Neurosurgery
Acibadem University School of Medicine
Istanbul, Turkey
159: Trigeminal Schwannomas

Steven V. Pacia, MD
Associate Professor of Neurology
New York University School of Medicine; Director, Epilepsy Center
Lenox Hill Hospital
New York, New York
Overview and Controversies (Epilepsy)
62: Antiepileptic Medications: Principles of Clinical Use

Nikhil S. Pai, MD
Research Associate
Department of Neurosurgery
Houston Methodist Neurological Institute
Houston, Texas
383: Surgical Approaches to Intracranial Aneurysms

Margaret Pain, MD
Resident Neurosurgeon
Mount Sinai Hospital
New York, New York
160: Juvenile Nasopharyngeal Angiofibromas
189: Arachnoid Cysts in Childhood

Eva M. Palacios, PhD
Research Fellow in Neuroradiology
Department of Radiology
University of California, San Francisco
San Francisco, California
345: Advanced Structural and Functional Imaging of Traumatic Brain Injury

James N. Palmer, MD
Professor of Otorhinolaryngology
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, Pennsylvania
357: Traumatic Cerebrospinal Fluid Fistulas

M. Necmettin Pamir, MD
Professor and Chair
Department of Neurosurgery
Acibadem University School of Medicine
Istanbul, Turkey
159: Trigeminal Schwannomas

Edward Pan, MD
Medical Director, Neuro-Oncology Program
Department of Neurology and Neurotherapeutics
University of Texas Southwestern Medical Center
Dallas, Texas
116: Angiogenesis and Brain Tumors: Scientific Principles, Current Therapy, and Future Directions

David M. Panczykowski, MD
Resident, Neurological Surgery
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania
302: Assessment and Classification of Spinal Instability
342: Traumatic Brain Injury: Proteomic Biomarkers

Fedor E. Panov, MD
Resident Professor of Neurosurgery
Icahn School of Medicine at Mount Sinai
Associate Director of Adult Epilepsy Mount Sinai Health System
New York, New York
89: Deep Brain Stimulation for Parkinson’s Disease
Eric C. Peterson, MD, MS
Assistant Professor
Department of Neurological Surgery
University of Miami Miller School of Medicine
Miami, Florida
405: Microsurgery of Arteriovenous Malformations

Anthony L. Petraglia, MD
Division of Neurosurgery
Rochester Regional Health
Rochester, New York
347: Mild Traumatic Brain Injury in Adults and Concussion in Sports

Martin Pham, MD
Resident Neurosurgeon
Keck School of Medicine
University of Southern California
Los Angeles, California
18: Surgical Planning: An Overview

Matthew A. Piazza, MD
Resident Neurosurgeon
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, Pennsylvania
28: Cranioplasty

Joseph M. Piepmeier, MD
Nixdorff-German Professor of Neurosurgery
Vice Chair of Clinical Affairs, Neurosurgery
Section Chief, Neuro-Oncology
Yale School of Medicine
New Haven, Connecticut
139: Unusual Gliomas

Webster H. Pilcher, MD, PhD
Professor and Chair
Department of Neurosurgery
University of Rochester School of Medicine
Rochester, New York
80: Epilepsy Surgery: Outcome and Complications

Heather N. Pinckard-Dover, MD
Resident Neurosurgeon
University of Arkansas for Medical Sciences
Little Rock, Arkansas
169: Pharmacologic Treatment of Pain

José A. Pineda, MD, MSCI
Associate Professor
Departments of Pediatrics and Neurology
Washington University School of Medicine in St Louis;
Director, Neurocritical Care Program
St. Louis Children's Hospital
St. Louis, Missouri
185: Neurocritical Care in Children

Joseph D. Pinter, MD
Professor of Clinical Pediatrics
Institute on Development and Disability
Oregon Health & Science University
Portland, Oregon
46: Neuropsychology

Jared M. Pisapia, MD, MTR
Resident Neurosurgeon
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, Pennsylvania
71: Intracranial Monitoring: Subdural Strip and Grid Recording

Mary L. Pisculli, MD, MPH
Division of Infectious Diseases
Brigham and Women's Hospital
Boston, Massachusetts
36: Postoperative Infections of the Head and Brain

Thomas Pittman, MD
Professor of Neurosurgery
University of Kentucky College of Medicine;
Kentucky Children's Hospital
Lexington, Kentucky
226: Growing Skull Fractures

Pedro H.I. Pohl, MD
Orthopaedic Spine Surgeon and Affiliated Professor
ABC Medical School
São Paulo, Brazil;
Research Fellow
Ferguson Laboratory for Orthopaedic and Spine Research
Department of Orthopaedic Surgery
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania
276: Disk Degeneration and Regeneration

Ian F. Pollack, MD
Leland Albright Professor of Neurological Surgery
Vice-Chairman for Academic Affairs,
Department of Neurological Surgery
Co-Director, UPCI Brain Tumor Program
Distinguished Professor of Neurosurgery
University of Pittsburgh School of Medicine;
Chief, Pediatric Neurosurgery
Children's Hospital of Pittsburgh
Pittsburgh, Pennsylvania
216: Intracranial Germ Cell Tumors

Bruce E. Pollock, MD
Professor of Neurological Surgery and Radiation Oncology
Mayo Clinic
Rochester, Minnesota
261: Radiosurgery of Intracranial Vascular Malformations
398: Multimodality Treatments of Cerebrovascular Disorders

Kalmon D. Post, MD
Professor and Chairman Emeritus
Department of Neurosurgery
Icahn School of Medicine at Mount Sinai
New York, New York
6: Complication Avoidance in Neurosurgery
149: Vestibular Schwannomas

Wyatt Potter, PhD
Epilepsy Research Laboratory
Department of Neurological Surgery
University of California, San Francisco School of Medicine
San Francisco, California
59: Animal Models of Epilepsy

Matthew B. Potts, MD
Assistant Professor
Departments of Neurological Surgery and Radiology
Northwestern University Feinberg School of Medicine
Chicago, Illinois
122: Endovascular Techniques for Tumor Embolization

Nader Pouratian, MD, PhD
Associate Professor of Neurosurgery
David Geffen School of Medicine at UCLA
Los Angeles, California
247: Monitoring of Neural Function: Electromyography, Nerve Conduction, and Evoked Potentials

Gustavo Pradilla, MD
Assistant Professor
Department of Neurological Surgery
Emory University School of Medicine;
Chief
Department of Neurosurgery Service
Grady Memorial Hospital
Atlanta, Georgia
388: Surgical Management of Middle Cerebral Artery Aneurysms

Brian C. Prager, BS
Cleveland Clinic Lerner College of Medicine at Case Western Reserve University
Cleveland, Ohio
51: The Blood-Brain Barrier

Charles J. Prestigiacomo, MD, FAANS, FACS
Professor of Neurological Surgery
University of Medicine and Dentistry of New Jersey
New Jersey Medical School
Newark, New Jersey
24: Brain Retraction

Mark R. Proctor, MD
Associate Professor of Neurosurgery
Harvard Medical School;
Boston Children's Hospital
Boston, Massachusetts
192: Molecular Genetics and Principles of Craniosynostosis

Laura M. Prolo, MD, PhD
Tashia and John Morgridge Scholar
Department of Neurological Surgery
Stanford University School of Medicine
Stanford, California
212: Ependymomas
Contributors

Dominique Renier, MD
Pediatric Neurosurgeon
Unité de Chirurgie Craniofaciale
Hôpital Necker Enfants Malades
Paris, France
194: Syndromic Craniosynostosis

Daniel K. Resnick, MD, MS
Professor and Vice Chairman
Department of Neurosurgery
University of Wisconsin School of Medicine and Public Health
Madison, Wisconsin
Overview and Controversies (Spine)
307: Treatment of Cervicothoracic Junction Injuries

Renee Reynolds, MD
Assistant Professor of Neurosurgery
Division of Pediatric Neurosurgery
State University of New York at Buffalo
Buffalo, New York
206: General Approaches and Considerations for Pediatric Brain Tumors

Ali Rezaei, MD
Professor and Stanley D. and Joan H. Ross Chair in Neuromodulation
Department of Neurosurgery; Associate Dean and Director Neuroscience Program; Director, Center for Neuromodulation
The Ohio State University Wexner Medical Center
Columbus, Ohio
163: Scalp Tumors

Laurence D. Rhines, MD
Professor of Neurosurgery
Director, Spine Program
University of Texas MD Anderson Cancer Center
Houston, Texas
204: Management and Prevention of Shunt Infections

Albert L. Rhoton, Jr., MD1
R.D. Keene Family Professor of Neurological Surgery
Department of Surgery
University of Florida College of Medicine; Chairman Emeritus
Department of Neurological Surgery
Shands Hospital at the University of Florida
Gainesville, Florida
2: Surgical Anatomy of the Brain

Teresa Ribalta, MD, PhD
Chief, Department of Pathology
Scientific Director, Biobank
Sant Joan de Deu Barcelona Children's Hospital
Esplugues de Llobregat; Professor of Pathology
Department of Fonaments Clinics Faculty of Medicine, University of Barcelona;
Chief of Section
Department of Pathology: Neuropathology Hospital Clinic of Barcelona
Barcelona, Spain
110: Brain Tumors: An Overview of Current Histopathologic and Genetic Classifications

Joseph A. Ricci, MD
Plastic Surgery Resident
Harvard Medical School Brigham and Women's Hospital
Boston, Massachusetts
163: Scalp Tumors

R. Mark Richardson, MD, PhD, FAANS
Associate Professor of Neurological Surgery
Director, Epilepsy and Movement Disorders Surgery
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania
343: Therapeutic Strategies for Repair and Regeneration following Traumatic Brain Injury

Callen J. Riggins
Department of Neurosurgery
Johns Hopkins University School of Medicine
Baltimore, Maryland
114: Genetic Origins of Brain Tumors

Gregory J. Riggins, MD, PhD
Professor of Neurosurgery and Oncology
Johns Hopkins University School of Medicine
Baltimore, Maryland
114: Genetic Origins of Brain Tumors

Howard A. Rilna, MD, MPH
Vice Chair and Director of the Neurosurgery Residency Training Program
Professor, Departments of Neurological Surgery, Neurology, and Radiology
New York University School of Medicine
New York, New York
122: Endovascular Techniques for Tumor Embolization

Jordina Rincon-Torroella, MD
Post-Doctoral Fellow
Department of Neurosurgery
Johns Hopkins University School of Medicine
Baltimore, Maryland
137: Malignant Gliomas: Anaplastic Astrocytoma, Glioblastoma, Gliosarcoma, and Anaplastic Oligodendroglioma

Andrew J. Ringer, MD
Professor of Neurosurgery and Director of Cerebrovascular Surgery
Department of Neurosurgery
Comprehensive Stroke Center at UC Neuroscience Institute
University of Cincinnati, Mayfield Clinic
Cincinnati, Ohio
382: Endovascular Management of Cerebral Vasospasm

Jay Riva-Cambrin, MD, MSc, FRCSC
Associate Professor
Division of Pediatric Neurosurgery
Department of Clinical Neuroscience, University of Calgary Faculty of Medicine;
Alberta Children's Hospital
Calgary, Alberta, Canada
32: The Role of Third Ventriculostomy in Adults and Children: A Critical Review
204: Management and Prevention of Shunt Infections

Christopher D. Roark, MD, MS
Assistant Professor
Department of Neurosurgery
University of Colorado Denver, Colorado
415: Pregnancy and the Vascular Lesion

David W. Roberts, MD
Professor of Surgery (Neurosurgery)
Geisel School of Medicine at Dartmouth Hanover, New Hampshire
Chief, Section of Neurosurgery
Dartmouth-Hitchcock Medical Center Lebanon, New Hampshire
74: Surgery for Extratemporal Lobe Epilepsy

Clauada S. Robertson, MD, FCCM
Professor of Neurosurgery
Baylor College of Medicine
Houston, Texas
349: Critical Care Management of Cerebral Vascular Surgery

Jon H. Robertson, MD
Professor of Neurosurgery
Semes-Murphey Clinic
University of Tennessee College of Medicine
Memphis, Tennessee
25: Visualization and Optics in Neurosurgery

Shenandoah Robinson, MD, FAAP, FACS
Department of Pediatric Neurosurgery
Johns Hopkins University School of Medicine
Baltimore, Maryland
Overview and Controversies (Pediatrics)
198: Infantile Posthemorrhagic Hydrocephalus

1Deceased.
Aidan D. Roche, MBBS, PhD, BEng
Clinical Postdoctoral Research Fellow,
Department of Surgery
Division of Plastic and Reconstructive Surgery
Christian Doppler Laboratory for
Restoration of Extremity Function
Medical University of Vienna
Vienna, Austria;
Core Surgical Trainee
Department of Plastic and Reconstructive Surgery
North Bristol NHS Trust
Bristol, United Kingdom
260: Neuroelectronic Systems

Pierre-Hugues Roche, MD
Professor and Head
Department of Neurosurgery
Aix-Marseille University
Assistance Publique Hôpitaux de Marseille
Marseille, France
268: Radiosurgery for Malignant Intracranial Tumors

Ana Rodríguez-Hernández, MD, PhD
Neurosurgeon, Attending
Department of Neurological Surgery
Vall d’Hebron University Hospital
Barcelona, Spain
395: Microsurgical Management of Giant Intracranial Aneurysms

Marie Roguski, MD, MPH
Resident Neurosurgeon
Tufts Medical Center
Boston, Massachusetts
300: Adult Tethered Cord Syndrome
301: Adult Syringomyelia

Jarod L. Roland, MD
Neurosurgery Resident
Washington University School of Medicine in St. Louis
St. Louis, Missouri
109: Neuroprosthetics

John D. Rolston, MD, PhD
Neurosurgery Resident
Department of Neurological Surgery
University of California, San Francisco
San Francisco, California
4: Improving Patient Safety

Brandon K. Root, MD
Resident
Department of Neurosurgery
Dartmouth-Hitchcock Medical Center
Lebanon, New Hampshire
16: Principles of Neurocritical Care

William S. Rosenberg, MD
Medical Director
Center for the Relief of Pain
Midwest Neuroscience Institute; President, Cancer Pain Research Consortium
Kansas City, Missouri
175: Neurosurgical Management of Intractable Pain

Joshua M. Rosenow, MD, FAANS, FACS
Associate Professor of Neurosurgery, Neurology, and Physical Medicine and Rehabilitation
Northwestern University Feinberg School of Medicine;
Director of Functional Neurosurgery
Northwestern Memorial Hospital
Chicago, Illinois
168: Approach to the Patient with Chronic Pain

Guy Rosenthal, MD
Senior Staff
Department of Neurosurgery
Hadassah Medical Center
Jerusalem, Israel
Overview and Controversies (Trauma)
350: Physiologic Monitoring for Traumatic Brain Injury

Robert H. Rosenwasser, MD
Professor and Chair
Department of Neurological Surgery
Thomas Jefferson University and Hospitals
Philadelphia, Pennsylvania
17: The Neurosurgical Intensive Care Unit and the Unique Role of the Neurosurgeon

Michael K. Rosner, MD
Chief
Neurosurgery Service
Walter Reed National Military Medical Center
Bethesda, Maryland
286: Evaluation and Treatment of Lumbar Disk Disease
298: Assessment and Treatment of Ankylosing Spondylitis and Diffuse Idiopathic Skeletal Hyperostosis

Eric S. Rovner, MD
Professor
Department of Urology
Medical University of South Carolina
Charleston, South Carolina
10: Neuro-ophthalmology

Janet C. Rucker, MD
Bernard A. and Charlotte Marden Professor of Neurology
Associate Professor of Neurology
New York University School of Medicine
NYU Langone Medical Center
New York, New York
8: Neuro-ophthalmology

Stephen M. Russell, MD
Professor of Neurosurgery and Orthopaedic Surgery
New York University School of Medicine
NYU Langone Medical Center
New York, New York
259: Pain, Complications, and Iatrogenic Injury in Nerve Surgery

Jonathan J. Russin, MD
Cerebrovascular Fellow
Division of Neurological Surgery
Barrow Neurological Institute
St. Joseph’s Hospital and Medical Center
Phoenix, Arizona
411: Microsurgery for Cerebral Cavernous Malformations

James T. Rutka, MD, PhD
Professor and R.S. McLaughlin Chair
Department of Surgery
University of Toronto Faculty of Medicine;
Director of the Arthur and Sonia Labatt Brain Tumour Research Centre
Division of Paediatric Neurosurgery
The Hospital for Sick Children
Toronto, Ontario, Canada
142: Medulloblastomas in Adults
Overview and Controversies (Pediadrics)
213: Medulloblastomas

Mina G. Safain, MD
Resident Neurosurgeon
Tufts Medical Center
Boston, Massachusetts
257: Introduction to Spinal Deformities in Children

Oren Sagher, MD
William Chandler Professor of Neurosurgery
University of Michigan
Ann Arbor, Michigan
178: Spinal Cord Stimulation

Arjun Sahgal, MD
Associate Professor of Radiation Oncology and Surgery
Deputy Chief, Department of Radiation Oncology
Sunnybrook Health Sciences Center
University of Toronto Faculty of Medicine
Toronto, Ontario, Canada
262: Radiobiology of Radiotherapy and Radiosurgery

Rajiv Saigal, MD, PhD
Assistant Professor of Neurosurgery
University of Washington
Seattle, Washington
30: Cellular and Molecular Responses in the Peripheral and Central Nervous Systems: Similarities and Differences
315: Evaluation and Treatment of Scheuermann’s Kyphosis

Nobuhiro Saito, MD, PhD
Professor of Neurosurgery
University of Tokyo Graduate School of Medicine
Tokyo, Japan
267: Radiosurgery for Malignant Intracranial Tumors
Paul J. Schmitt, MD
Resident Physician
Department of Neurosurgery
University of Virginia Health System
Charlottesville, Virginia
374: Cerebral Venous and Sinus Thrombosis

Johannes Schramm, MD, PhD
Professor of Neurosurgery
Bonn University Faculty of Medicine
Bonn, Germany
77: Hemispheric Disconnection Procedures

Frank J. Schwab, MD
Professor of Clinical Orthopaedic Surgery
Weill Cornell Medical College
Chief, Spine Service
Hospital for Special Surgery
New York, New York
311: Classification of Spinal Deformity

Daniel M. Scuibba, MD
Associate Professor
Departments of Neurosurgery, Oncology, Orthopaedic Surgery, and Radiation Oncology
Director, Spine Tumor and Spine Deformity Research
Johns Hopkins University School of Medicine
Baltimore, Maryland
133: Chordomas and Chondrosarcomas

R. Michael Scott, MD
Neurosurgeon-in-Chief, Emeritus
Boston Children's Hospital; Professor of Neurosurgery
Harvard Medical School
Boston, Massachusetts
220: Moyamoya Disease

Robert A. Scranton, MD
Resident Neurosurgeon
Department of Neurosurgery
Houston Methodist Neurological Institute
Houston, Texas
383: Surgical Approaches to Intracranial Aneurysms

Volker Seifert, MD, PhD
Professor and Chairman
Department of Neurosurgery
Director, Center of Clinical Neurosciences
Johann Wolfgang Goethe-University
Frankfurt am Main Germany
Frankfurt am Main, Germany
Overview and Controversies (General)

Nathan R. Seiden, MD, PhD, FACS, FAAP
Campagna Chair of Neurological Surgery
Residency Program Director
Department of Neurological Surgery
Oregon Health & Science University
Portland, Oregon
231: Split Spinal Cord

Jonathan N. Sellin, MD
Resident Neurosurgeon
Baylor College of Medicine
Houston, Texas
294: Assessment and Treatment of Benign Intradural Extramedullary Tumors

Warren R. Selman, MD
Harvey Huntington Brown, Jr. Professor and Chairman
Department of Neurological Surgery
Case Western Reserve University School of Medicine;
Director, The Neurological Institute
University Hospitals Case Medical Center
Cleveland, Ohio
19: Surgical Simulation and Robotic Surgery
362: Intraoperative Cerebral Protection

Sandra Serafini, PhD
Assistant Professor of Surgery
Duke University Medical Center
Durham, North Carolina
69: Motor, Sensory, and Language Mapping and Monitoring for Cortical Resections

Toru Serizawa, MD, PhD
President
Tokyo Gamma Unit Center
Tsukiji Neurological Clinic
Tokyo, Japan
267: Radiosurgery for Malignant Intracranial Tumors

Christopher I. Shaffrey, Sr., MD
John A. Jane Professor
Departments of Neurological and Orthopaedic Surgery
University of Virginia Health System
Charlottesville, Virginia
238: Thoracolumbar Spinal Disorders in Pediatric Patients
Overview and Controversies (Spine)
317: Evaluation and Treatment of Adult Scoliosis and Sagittal Plane Deformity
319: Treatment of High-Grade Spondylolisthesis

Kushal J. Shah, MD
Resident Neurosurgeon
University of Kansas Medical Center
Kansas City, Kansas
305: Evaluation and Treatment of C2 (Axis) Fractures

Lubdha M. Shah, MD
Associate Professor of Radiology
Clinical Neurosciences Center
University of Utah School of Medicine
Salt Lake City, Utah
274: Assessment of Spinal Imaging

Manish N. Shah, MD
Assistant Professor of Pediatric Surgery and Neurosurgery
The University of Texas Health Science Center at Houston
Houston, Texas
299: Adult Congenital Malformations of the Thoracic and Lumbar Spine

Kiarash Shahlaie, MD, PhD
Associate Professor of Neurological Surgery
University of California, Davis School of Medicine
Sacramento, California
346: Clinical Pathophysiology of Traumatic Brain Injury

Yuval Shapiro, MD
Senior Neurosurgeon
Division of Peripheral Nerve Surgery
Department of Neurosurgery
Tel Aviv Medical Center and Tel Aviv University
Tel Aviv, Israel
244: Pathophysiology of Surgical Nerve Disorders

Maksim Shapiro, MD
Assistant Professor
Departments of Radiology and Neurology
New York University School of Medicine
New York, New York
122: Endovascular Techniques for Tumor Embolization

Deepak Sharma, MBBS, MD, DM
Professor of Anesthesiology and Pain Medicine
Division Chief, Neuroanesthesiology and Perioperative Neurosciences
University of Washington School of Medicine
Seattle, Washington
5: Neuroanesthesia: Preoperative Evaluation

Mayur Sharma, MD, MCh
Clinical Fellow
Center for Neuromodulation
The Ohio State University
Wexner Medical Center
Columbus, Ohio
100: Surgery for Obsessive-Compulsive Disorder

Mohan Raj Sharma, MD
Professor of Neurosurgery
Tribhuvan University Teaching Hospital
Kathmandu, Nepal
396: Infectious Aneurysms

Andrew Shaw, MD
Clinical Instructor House Staff
Department of Neurological Surgery
The Ohio State University
Wexner Medical Center
Columbus, Ohio
100: Surgery for Obsessive-Compulsive Disorder

Jason P. Sheehan, MD, PhD
Harrison Distinguished Professor and Vice Chair
Department of Neurological Surgery
University of Virginia
Charlottesville, Virginia
173: Stereotactic Radiosurgery for Trigeminal Neuralgia
264: Radiosurgery Technique
Jeffrey M. Sorenson, MD
Associate Professor of Neurosurgery
Senners-Murphey Clinic
University of Tennessee College of Medicine
Memphis, Tennessee
25: Visualization and Optics in Neurosurgery

Sulpicio G. Soriano, MD
Professor
Department of Anesthesia, Critical Care and Pain Medicine
Harvard Medical School;
Endowed Chair in Pediatric Neuroanesthesia
Boston Children's Hospital
Boston, Massachusetts
184: Neuroanesthesia in Children

Hector Soriano-Baron, MD
Postdoctoral Fellow in Spine Biomechanics
Department of Neurosurgery
Barrow Neurological Institute
Phoenix, Arizona
304: Classification and Treatment of O-C1 Cervicocervical Injuries
325: Anterior Cervical Instrumentation

Mark M. Souweidane, MD, FACS, FAAP
Professor and Vice Chair
Department of Neurological Surgery
Weill Cornell Medical College;
Director, Pediatric Neurosurgery
New York–Presbyterian Hospital
Weill Cornell Medical Center
Memorial Sloan Kettering Cancer Center
New York, New York
218: Pediatric Intraventricular and Periventricular Tumors

Gwendolyn A. Sowa, MD, PhD
Associate Professor of Physical Medicine and Rehabilitation
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania
276: Disk Degeneration and Regeneration

Giorgio Spatola, MD
Medical Doctor, Neurosurgeon
Departments of Neurosurgery and Radiosurgery
Ospedale San Raffaele
Milan, Italy
268: Microsurgery for Cerebral Cavernous Malformations

Dennis D. Spencer, MD
Harvey and Kate Cushing Professor of Surgery
Department of Neurosurgery
Yale University School of Medicine
New Haven, Connecticut
75: Standard Temporal Lobectomy

Robert F. Spetzler, MD
Director and J.N. Harber Chair of Neurological Surgery
Barrow Neurological Institute
St. Joseph’s Hospital and Medical Center
Phoenix, Arizona;
Professor of Neurosurgery
Department of Surgery
University of Arizona College of Medicine
Tucson, Arizona
222: Pediatric Cerebral Aneurysms
411: Microsurgery for Cerebral Cavernous Malformations

Robert J. Spinner, MD
Chair, Department of Neurologic Surgery
Professor
Departments of Anatomy, Neurologic Surgery, and Orthopedic Surgery
Mayo Clinic
Rochester, Minnesota
256: Secondary Procedures for Brachial Plexus Injuries

Eric G. St. Clair, MD
Director of Neurosurgery
Cancer Treatment Centers of America at Eastern Regional Medical Center
Philadelphia, Pennsylvania
162: Skull Tumors

Robert M. Starke, MD, MSc
Assistant Professor of Clinical Neurosurgery and Radiology
Co-Director, Endovascular Neurosurgery
JMH
Director of Neurovascular Research
Department of Neurological Surgery
University of Miami
Miami, Florida
374: Cerebral Venous and Sinus Thrombosis

Philip Starr, MD, PhD
Professor and Dolores Cakebread Endowed Chair
Department of Neurological Surgery
Co-Director, Functional Neurosurgery Program
University of California, San Francisco;
Surgical Director, Parkinson's Disease Research, Education and Care Center
San Francisco Veteran's Affairs Medical Center
San Francisco, California
89: Deep Brain Stimulation for Parkinson's Disease

S. Tonya Stefko, MD, FACS
Associate Professor of Ophthalmology, Otolaryngology and Neurological Surgery
University of Pittsburgh School of Medicine;
Director, Orbital, Oculoplastics and Aesthetic Surgery Service
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania
161: Tumors of the Orbit

Sherman C. Stein, MD
Clinical Professor
Department of Neurosurgery
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, Pennsylvania
30: Clinical Evaluation of Adult Hydrocephalus

Gary K. Steinberg, MD, PhD
Bernard and Ronni Lacroute–William Randolph Hearst Professor of Neurosurgery and the Neurosciences
Chairman
Department of Neurosurgery
Stanford University School of Medicine
Chief
Department of Neurosurgery
Stanford Hospital and Clinics
Stanford, California
406: Surgical and Radiosurgical Management of Grade IV and V Arteriovenous Malformations

Bradley H. Stephens, MD, MPH
Resident Neurosurgeon
Washington University School of Medicine in St. Louis
St. Louis, Missouri
299: Adult Congenital Malformations of the Thoracic and Lumbar Spine

Frederick L. Stephens, MD
Madigan Army Medical Center
Tacoma, Washington
352: Traumatic and Penetrating Head Injuries

Matthew A. Stern, BS
Emory University School of Medicine
Atlanta, Georgia
88: Ablative Procedures for Parkinson’s Disease

Ewout W. Steyerberg, PhD
Professor of Medical Decision Making
Department of Public Health
Erasmus MC, University Medical Center Rotterdam, The Netherlands
356: Prognosis after Traumatic Brain Injury

Philip E. Stieg, MD, PhD
Chairman and Neurosurgeon-in-Chief
Professor of Neurological Surgery
New York–Presbyterian Hospital/Weill Cornell Medical Center
New York, New York
366: Carotid Endarterectomy
CONTRIBUTORS

Scellig S.D. Stone, MD, PhD, FRCSC
Assistant Professor of Neurosurgery
Harvard Medical School;
Director, Movement Disorder Program
Boston Children’s Hospital
Boston, Massachusetts
90: Deep Brain Stimulation for Dystonia

Russell G. Strom, MD
Department of Neurosurgery
NYU Langone Medical Center
New York, New York
20: Positioning for Cranial Surgery

Roy E. Strowd III, MD
Adjunct Assistant Professor
Department of Neurology
Johns Hopkins University School of Medicine
Baltimore, Maryland;
Assistant Professor
Departments of Neurology and Internal Medicine
Wake Forest School of Medicine
Winston-Salem, North Carolina
124: Genetic Syndromes of Brain Tumors

Michael E. Sughrue, MD
Associate Professor
Department of Neurosurgery
University of Oklahoma Health Sciences Center
Oklahoma City, Oklahoma
133: Endoscopic Approaches to Brain Tumors

John H. Suh, MD
Professor and Chairman
Department of Radiation Oncology
Cleveland Clinic
Cleveland, Ohio
262: Radiobiology of Radiotherapy and Radiosurgery

Dima Suki, PhD
Professor of Neurosurgery
University of Texas MD Anderson Cancer Center
Houston, Texas
146: Metastatic Brain Tumors

Wale A.R. Sulaiman, MD, PhD, FRCS(C)
System Chairman
Department of Neurosurgery
Medical Director, Spine Center
Ochsner Health Systems
New Orleans, Louisiana
254: Management of Acute Peripheral Nerve Injuries

Bomin Sun, MD, PhD
Director, Department of Stereotactic and Functional Neurosurgery
Shanghai Jiao Tong University
Rui Jin Hospital
Shanghai, China
102: Surgery for Anorexia Nervosa

Michele Tagliati, MD, FAAN
Associate Professor
Director of Movement Disorders
Department of Neurology
Cedars-Sinai Medical Center
Los Angeles, California
85: Patient Selection Criteria for Deep Brain Stimulation in Movement Disorders

Takao Taira, MD, PhD
Professor
Department of Neurosurgery
Tokyo Women’s Medical University
Tokyo, Japan
Overview and Controversies (Functional)
97: Thalamotomy for Focal Hand Dystonia

Yasushi Takagi, MD, PhD
Associate Professor of Neurosurgery
Kyoto University Graduate School of Medicine
Kyoto, Japan
373: Adult Moyamoya Disease

Rafael J. Tamargo, MD, FACS
Walter E. Dandy Professor of Neurosurgery
Professor of Neurosurgery and Otolaryngology-Head and Neck Surgery
Director, Cerebrovascular Neurosurgery
Neurosurgical Co-Director, Neurocritical Care Unit
Johns Hopkins University School of Medicine
Baltimore, Maryland
386: Microsurgery of Anterior Communicating Artery Aneurysms

Shota Tanaka, MD
Assistant Professor of Neurosurgery
University of Tokyo Graduate School of Medicine
Tokyo, Japan
267: Radiosurgery for Malignant Intracranial Tumors

Nitin Tandon, MD, FAANS
Professor of Neurosurgery
University of Texas Health Science Center;
Director, Epilepsy Surgery
Memorial Hermann Hospital;
Adjunct Associate Professor
Department of Electrical and Computer Engineering
Rice University
Houston, Texas
Overview and Controversies (Epilepsy)

Omar Tanweer, MD
Resident Neurosurgeon
New York University School of Medicine
New York, New York
122: Endovascular Techniques for Tumor Embolization

Jessica A. Tate, MD
Assistant Professor of Neurology
Wake Forest School of Medicine
Winston-Salem, North Carolina
84: Clinical Overview of Movement Disorders

Matthew C. Tate, MD, PhD
Assistant Professor
Department of Neurological Surgery
Northwestern University Feinberg School of Medicine
Chicago, Illinois
134: Awake Cereotomy and Intraoperative Mapping

Claudio E. Tatsui, MD
Assistant Professor of Neurosurgery
University of Texas MD Anderson Cancer Center
Houston, Texas
294: Assessment and Treatment of Benign Intradural Extramedullary Tumors

Blake E.S. Taylor, BA, MDc
Resident
College of Physicians and Surgeons
Columbia University
New York, New York
404: Endovascular Management of Arteriovenous Malformations for Cure

Michael D. Taylor, MD, PhD, FRCS(C)
Associate Professor
Departments of Surgery and Laboratory Medicine and Pathobiology
University of Toronto
The Hospital for Sick Children
Toronto, Ontario, Canada
205: Genetics of Pediatric Brain Tumors

Steven A. Telian, MD
John L. Kemink Professor of Neurotology
Director, Division of Otolaryngology-Neurotology
Department of Otolaryngology-Head and Neck Surgery
University of Michigan Medical School
Ann Arbor, Michigan
105: Treatment of Intractable Vertigo

Zachary J. Tempel, MD
Resident Neurosurgeon and Spine Fellow
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania
332: Sacropelvic Fixation: Anterior and Posterior Options

Charles Teo, MBBS, FRACS
Conjoint Associate Professor
Department of Neurosurgery
University of New South Wales
Sydney, Australia;
Director, Center for Minimally Invasive Neurosurgery
Prince of Wales Private Hospital
Randwick, Australia
133: Endoscopic Approaches to Brain Tumors
Contributors

Jeffrey M. Tessier, MD
Transplant Infectious Diseases
Texas Health Care, PLLC
Fort Worth, Texas
35: Basic Science of Central Nervous System Infections

Khoi D. Than, MD
Assistant Professor
Department of Neurosurgery
Oregon Health & Science University
Portland, Oregon
288: Evaluation and Treatment of Degenerative Lumbar Spondylolisthesis

Alice Theadom, PhD, MNZPSS, MIHP
Senior Research Fellow
National Institute for Stroke and Applied Neuroscience
Auckland University of Technology
Auckland, New Zealand
336: Epidemiology of Traumatic Brain Injury

Nicholas Theodore, MD, FACS, FAANS
Professor of Neurological Surgery
Chief, Spine Section
Director, Neurotrauma Program
Barrow Neurological Institute
Phoenix, Arizona
304: Classification and Treatment of O-C1 Craniovertebral Junction Injuries
325: Anterior Cervical Instrumentation

B. Gregory Thompson, Jr., MD
Professor and Program Director
Department of Neurosurgery
University of Michigan
Ann Arbor, Michigan
415: Pregnancy and the Vascular Lesion

Ann H. Tilton, MD
Professor of Neurology and Pediatrics
Section Chair, Child Neurology
Louisiana State Health Science Center
Director, Children's Hospital Rehabilitation Center
Children's Hospital of New Orleans
New Orleans, Louisiana
241: Clinical Features and Management of Cerebral Palsy

Shelly D. Timmons, MD, PhD, FACS, FAANS
Professor of Neurosurgery
Vice Chair for Administration
Director of Neurotrauma
Penn State Milton S. Hershey Medical Center
Hershey, Pennsylvania
354: Indications and Techniques for Cranial Decompression after Traumatic Brain Injury

Nestor D. Tomycz, MD
Department of Neurosurgery
Allegheny Health Network
Pittsburgh, Pennsylvania
107: Deep Brain Stimulation for Obesity

Juan Torres-Reveron, MD, PhD
Assistant Clinical Professor
Functional and Epilepsy Surgery
Wright State University Boonshoft School of Medicine
Premier Health Clinical Neuroscience Institute
Dayton, Ohio
75: Standard Temporal Lobectomy

Gabor Toth, MD
Resident Physician
Cerebrovascular Center
Cleveland Clinic
Cleveland, Ohio
393: Endovascular Flow Diversion for Intracranial Aneurysms

Charles P. Toussaint, MD
Assistant Professor of Clinical Surgery
Department of Neurosurgery
University of South Carolina School of Medicine
Columbia, South Carolina
249: Distal Entrapment Syndromes: Carpal Tunnel, Cubital Tunnel, Peroneal, and Tarsal Tunnel

Duc A. Tran, MD, PhD
Assistant Professor of Physical Medicine and Rehabilitation
Director of Traumatic Brain Injury Rehabilitation
Loma Linda University School of Medicine
Loma Linda, California
358: Rehabilitation of Patients with Traumatic Brain Injury

Bruce D. Trapp, PhD
Chairman
Department of Neurosciences
Cleveland Clinic
Cleveland, Ohio
48: Neurons and Neuroglia

R. Shane Tubbs, MS, PA-C, PhD
Chief Scientific Officer
Seattle Science Foundation
Seattle, Washington;
Adjunct Professor
University of Dundee
Dundee, United Kingdom
190: Chiari Malformations
232: Teribed Spinal Cord: Fatty Filum Terminale, Meningocele Manqué, and Dermal Sinus Tracts

Allan R. Tunkel, MD, PhD
Professor of Medicine and Medical Science
Associate Dean for Medical Education
Warren Alpert Medical School of Brown University
Providence, Rhode Island
39: Brain Abscess

Ugur Türe, MD
Professor and Chair
Department of Neurosurgery
Hacettepe University School of Medicine
Ankara, Turkey
Overview and Controversies (General)

Ali Hassoun Turkmani, MD
Resident Physician
Department of Neurosurgery
The University of Texas at Houston
Houston, Texas
384: Microsurgery of Paracoccygeal Aneurysms

Juan S. Uribe, MD
Assistant Professor of Neurosurgery
Director, Cahill Spine Institute
University of South Florida Morsani College of Medicine
Tampa, Florida
278: Electrophysiologic Studies and Monitoring
328: Anterior and Lateral Lumbar Instrumentation

Mwiza Ushe, MD, MA
Assistant Professor of Neurology
Washington University School of Medicine in St. Louis
St. Louis, Missouri
86: Functional Imaging in Movement Disorders

Alexander R. Vaccaro, MD, PhD
Professor and Vice Chairman
Department of Orthopaedic Surgery
Thomas Jefferson University and Hospitals
Philadelphia, Pennsylvania
306: Evaluation, Classification, and Treatment of Cervical (C3-C7) Injuries

Martin J. van den Bent, MD
Professor of Neuro-Oncology
Erasmus MC Cancer Center
Rotterdam, The Netherlands
138: Radiologic and Clinical Criteria of Treatment Response

Jamie J. Van Gompel, MD
Associate Professor
Departments of Neurosurgery and Otolaryngology
Mayo Clinic
Rochester, Minnesota
67: Single-Photon Emission Computed Tomography in Epilepsy Surgery Evaluation

J.J. van Overbeeke, MD, PhD
Professor and Chair
Department of Neurosurgery
Maastricht University Medical Center
Maastricht, The Netherlands
135: Intraoperative Magnetic Resonance Imaging
Shelly Wang, MD
Resident Neurosurgery
University of Toronto Faculty of Medicine
Toronto, Ontario, Canada; Student Epidemiology and Biostatistics
Harvard School of Public Health
Boston, Massachusetts
303: Medical Management of Spinal Cord Injury

Tony R. Wang, MD
Resident Neurosurgeon
University of Virginia School of Medicine
Charlottesville, Virginia
95: Transcranial Magnetic Resonance Imaging–Guided Focused Ultrasound Thalamotomy for Tremor

Vincent Y. Wang, MD, PhD
Seton Brain and Spine Institute
Austin, Texas
15: Intracranial Pressure Monitoring

Xin Wang, BHSc
Departments of Neurosurgery and Laboratory Medicine and Pathobiology
University of Toronto
The Hospital for Sick Children
Toronto, Ontario, Canada
203: Genetics of Pediatric Brain Tumors

Ronald E. Warnick, MD
Professor of Neurosurgery
University of Cincinnati College of Medicine;
Director, Brain Tumor Center
University of Cincinnati Neuroscience Institute;
Neurosurgeon
Mayfield Clinic
Cincinnati, Ohio
131: Risks of Intrinsic Brain Tumor Surgery and Avoidance of Complications

Robert J. Weil, MD, FAANS, FACS
Chief Medical Executive
Geisinger Health System Northeast Region
System Associate Chief Scientific Officer and Medical Director
Geisinger Care Support Systems
Danville, Pennsylvania
53: Cerebral Edema

Howard L. Weiner, MD, FACS, FAAP
Professor of Neurosurgery
Baylor College of Medicine;
Chief of Neurosurgery
Texas Children’s Hospital
Houston, Texas
217: Neurocutaneous Tumor Syndromes

Jon D. Weingart, MD
Professor of Neurosurgery
Johns Hopkins University School of Medicine
Baltimore, Maryland
128: Frame and Frameless Stereotactic Brain Biopsy
129: Basic Principles of Cranial Surgery for Brain Tumors

Martin H. Weiss, MD
Professor of Neurological Surgery and The Martin H. Weiss Chair in Neurosurgical Surgery
Keck School of Medicine
University of Southern California
Los Angeles, California
18: Surgical Planning: An Overview

Nirit Weiss, MD
Assistant Professor of Neurosurgery
Icahn School of Medicine at Mount Sinai
New York, New York
6: Complication Avoidance in Neurosurgery

Michael Weller, MD
Professor and Chair
Department of Neurology
University Hospital Zurich
Zurich, Switzerland
111: Brain Tumor Immunology and Immunotherapy

John C. Wellons III, MD, MSPH
Professor of Neurological Surgery and Pediatrics
Chief, Division of Pediatric Neurosurgery
Vanderbilt University Medical Center
Nashville, Tennessee
232: Tethered Spinal Cord: Fatty Filum Terminale, Meningocele, and Dermal Sinus Tracts

Hung Tzu Weng, MD, PhD
Attending Neurosurgeon
Hospital das Clinicas
University of São Paulo College of Medicine
São Paulo, Brazil
Former Co-Clinical Assistant Professor of Neurological Surgery
University of Florida College of Medicine
Gainesville, Florida
2: Surgical Anatomy of the Brain

Patrick Y. Wen, MD
Professor of Neurology
Harvard Medical School;
Director, Center for Neuro-Oncology
Dana-Farber Cancer Institute;
Director, Division of Neuro-Oncology
Department of Neurology
Brigham and Women’s Hospital
Boston, Massachusetts
125: Principles of Chemotherapy

G. Alexander West, MD, PhD
Department of Neurosurgery
Houston Methodist Neurological Institute
Houston, Texas;
Assistant Professor of Clinical Neurological Surgery
Well Cornell Medical Center
New York, New York
383: Surgical Approaches to Intracranial Aneurysms
399: Traumatic Cerebral Aneurysms Secondary to Penetrating Intracranial Injuries

Jonathan White, MD
Professor
Departments of Neurological Surgery and Radiology
University of Texas Southwestern Medical Center
Dallas, Texas
390: Microsurgery of Basilar Apex Aneurysms

Alexander C. Whiting, MD
Department of Neurosurgery
Barrow Neurological Institute
Phoenix, Arizona
107: Deep Brain Stimulation for Obesity

Ronald M. Whiting, MD, MS
Chair, Department of Neurosurgery
Allegheny Health Network
Pittsburgh, Pennsylvania
107: Deep Brain Stimulation for Obesity

Thomas Wichmann, MD
Professor of Neurology
Emory University School of Medicine
Atlanta, Georgia
82: Rationale for Surgical Interventions in Movement Disorders

David M. Wildrick, PhD
Surgery Publications Program Manager
Department of Neurosurgery
University of Texas MD Anderson Cancer Center
Houston, Texas
110: Brain Tumors: An Overview of Current Histopathologic and Genetic Classifications
146: Metastatic Brain Tumors

D. Andrew Wilkinson, MD, MS
Resident Neurosurgeon
University of Michigan Medical School
Ann Arbor, Michigan
223: Pediatric Arteriovenous Malformations

Jesse L. Winer, MD
Department of Neurosurgery
Boston Children’s Hospital
Boston, Massachusetts
198: Infantile Posthemorrhagic Hydrocephalus
CONTRIBUTORS

Christopher J. Winfree, MD
Assistant Professor
Department of Neurological Surgery
Columbia University College of Physicians and Surgeons
New York, New York
181: Diagnosis and Management of Painful Neuromas

Ethan A. Winkler, MD, PhD
Resident Neurosurgeon
University of California, San Francisco
San Francisco, California
340: Genetics of Traumatic Brain Injury

H. Richard Winn, MD
Professor of Neurosurgery
University of Iowa Carver College of Medicine
Iowa City, Iowa;
Professor of Neurosurgery and Neuroscience
Icahn School of Medicine at Mount Sinai
New York, New York
Overview and Controversies (General)
39: Brain Abscess
377: The Natural History of Cerebral Aneurysms
379: Surgical Decision Making for the Treatment of Intracranial Aneurysms
396: Infections Aneurysms

Jeffrey H. Wisoff, MD, FAANS, FAAP
Professor of Neurosurgery and Pediatrics
New York University School of Medicine
New York, New York
Department of Pediatric Neurosurgery
NYU Langone Medical Center
New York, New York
151: Craniopharyngiomas in Adults
210: Pediatric Craniofibaryngiomas

Jens Witsch, MD
Research Fellow
Division of Critical Care Neurology
Department of Neurology
Columbia University College of Physicians and Surgeons
New York, New York
63: Continuous Electroencephalography in Neurological-Neurosurgical Intensive Care: Applications and Considerations

Steven M. Wolf, MD
Associate Professor
Departments of Neurology and Pediatrics
Icahn School of Medicine at Mount Sinai
New York, New York
240: Pediatric Epilepsy Surgery

Christopher E. Wolff, MD
Professor of Neurosurgery
Medical College of Wisconsin
Milwaukee, Wisconsin
326: Posterior Subaxial and Cervicobrachial Instrumentation

Jean-Paul Wolinsky, MD
Professor of Neurosurgery
Director, Spine Program
Johns Hopkins University School of Medicine
Baltimore, Maryland
292: Assessment and Treatment of Benign Tumors of the Axial Skeleton

Cyrus C. Wong, MD
Neurological Surgery
North Texas Neurosurgical and Spine Center
Fort Worth, Texas
275: Spinal Biomechanics and Basics of Spinal Instrumentation

Eric T. Wong, MD
Associate Professor of Neurology
Harvard Medical School;
Director, Brain Tumor Center and Neuro-Oncology Unit
Beth Israel Deaconess Medical Center
Boston, Massachusetts
116: Angiogenesis and Brain Tumors: Scientific Principles, Current Therapy, and Future Directions

Margaret R. Wrensch, PhD
Professor and Virginia and Stanley Lewis Chair in Brain Tumor Research
Department of Neurological Surgery
University of California, San Francisco
San Francisco, California
118: Epidemiology of Brain Tumors

Jau-Ching Wu, MD, PhD
Assistant Professor
Department of Neurosurgery
Neurological Institute, Taipei Veterans General Hospital
National Yang-Ming University
Taipei, Taiwan
321: Cervical Arthroplasty

Linda Wei Xu, MD
Resident Neurosurgeon
Stanford University Hospital and Clinics
Palo Alto, California
224: Management of Head Injury: Special Considerations in Children

Zhiyuan Xu, MD, MSc
Clinical Instructor
Department of Neurological Surgery
University of Virginia
Charlottesville, Virginia
173: Stereotactic Radiosurgery for Trigeminal Neuropathy

Carol H. Yan, MD
Resident Physician
Department of Otorhinolaryngology
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, Pennsylvania
357: Traumatic Cerebrospinal Fluid Fistulas

Edward Yap, MD
Resident Neurosurgeon
University of North Carolina School of Medicine at Chapel Hill
Chapel Hill, North Carolina
148: Meningeal Sarcomas and Hemangiopericytomas

Chester K. Yarbrough, MD, MPH
Chief Resident
Department of Neurosurgery
Washington University School of Medicine in St. Louis
St. Louis, Missouri
257: Nerve Injuries of the Lower Extremity

Katsuhito Yasuno, PhD
Research Scientist
Department of Neurosurgery
Yale University School of Medicine
New Haven, Connecticut
376: Genetics of Intracranial Aneurysms

Daniel Yavin, MD
Resident Neurosurgeon
Departments of Clinical Neurosciences and Community Health Sciences
University of Calgary Faculty of Medicine
Calgary, Alberta, Canada
281: Nonsurgical and Postsurgical Management of Low Back Pain

Ulaş Yener, MD
Assistant Professor
Department of Neurosurgery
Acibadem University School of Medicine
Istanbul, Turkey
159: Trigeminal Schwannomas

Yasuhiro Yonekawa, MD
Professor of Neurosurgery
University Hospital Zurich
Zurich, Switzerland
373: Adult Moyamoya Disease

Timothy P. Young, MD
Instructor in Physical Medicine and Rehabilitation
Harvard Medical School
Spaulding Rehabilitation Hospital
Boston, Massachusetts
358: Rehabilitation of Patients with Traumatic Brain Injury

Mark W. Youngblood, MDC, PhD
Department of Genetics
Yale University School of Medicine
New Haven, Connecticut
376: Genetics of Intracranial Aneurysms

Brett E. Youngerman, MD
Resident
Department of Neurological Surgery
Columbia University College of Physicians and Surgeons
New York, New York
181: Diagnosis and Management of Painful Neuromas
Jennifer S. Yu, MD, PhD
Assistant Professor
Departments of Radiation Oncology and Stem Cell Biology and Regenerative Medicine
Cleveland Clinic
Cleveland, Ohio
262: Radiobiology of Radiotherapy and Radiosurgery

John K. Yue, BA
Department of Neurological Surgery
University of California, San Francisco
San Francisco, California
340: Genetics of Traumatic Brain Injury

Esther L. Yuh, MD, PhD
Associate Professor
Departments of Radiology and Biomedical Imaging
University of California, San Francisco
School of Medicine
San Francisco, California
344: Structural Imaging of Traumatic Brain Injury

Joseph M. Zabramski, MD
Professor
Department of Neurosurgery
Barrow Neurological Institute
Phoenix, Arizona
409: Natural History of Cavernous Malformations

Andrew C. Zacest, MBBS, MS, FRACS, FFPMANZCA
Consultant Neurosurgeon
Royal Adelaide Hospital
Associate Clinical Professor of Neurosurgery and Pain Medicine
University of Adelaide
Adelaide, Australia
Overview and Controversies (Pain)
177: Peripheral Nerve Stimulation for Neuropathic Pain

J. Christopher Zacko, MD, MS
Assistant Professor of Neurosurgery
Director, Neurotrauma and Neurocritical Care
Penn State Milton S. Hershey Medical Center
Hershey, Pennsylvania
341: Neurochemical Pathomechanisms in Traumatic Brain Injury

Gabriel Zada, MD, MS
Assistant Professor of Neurological Surgery
Director, Endoscopic Cranial Base Surgery
Keck School of Medicine
University of Southern California, Los Angeles
Los Angeles, California
18: Surgical Planning: An Overview

Eyal Zadicario, MSc
Vice President, Research and Development
Director, Neurosurgery Program
Insightec, Ltd.
Haifa, Israel
95: Transcranial Magnetic Resonance Imaging–Guided Focused Ultrasound Thalamotomy for Tremor

Patricia Leigh Zadnik, MD
Research Fellow
Department of Neurosurgery
Johns Hopkins University School of Medicine
Baltimore, Maryland
153: Chordomas and Chondrosarcomas

Ross D. Zafonte, DO
Ida S. Charlton Professor and Chair
Department of Physical Medicine and Rehabilitation
Harvard Medical School;
Vice President of Medical Affairs
Spaulding Rehabilitation Hospital;
Chief of Physical Medicine and Rehabilitation
Massachusetts General Hospital
Brigham and Women's Hospital
Boston, Massachusetts
358: Rehabilitation of Patients with Traumatic Brain Injury

Eric L. Zager, MD
Professor of Neurosurgery
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, Pennsylvania
249: Distal Entrapment Syndromes: Carpal Tunnel, Cubital Tunnel, Peroneal, and Tarsal Tunnel

Bruno Zanotti, MD, PhD
Unit of Neurosurgery
Neuroscience Department
S.M. della Misericordia University Hospital
Udine, Italy
156: Glomus Tumors

Elizabeth G. Zellner, MD
Resident Surgeon
Section of Plastic Surgery
Yale School of Medicine
New Haven, Connecticut
23: Incisions and Closures

Shikun Zhan, MD, PhD
Department of Stereotactic and Functional Neurosurgery
Shanghai Jiao Tong University
Rui Jin Hospital
Shanghai, China
102: Surgery for Anorexia Nervosa

Chencheng Zhang, MD
Department of Stereotactic and Functional Neurosurgery
Shanghai Jiao Tong University
Rui Jin Hospital
Shanghai, China
102: Surgery for Anorexia Nervosa

Xiaoxiao Zhang, MD
Department of Stereotactic and Functional Neurosurgery
Shanghai Jiao Tong University
Rui Jin Hospital
Shanghai, China
102: Surgery for Anorexia Nervosa

Y. Jonathan Zhang, MD
Department of Neurosurgery
Houston Methodist Neurological Institute
Houston, Texas;
Assistant Professor of Clinical Neurological Surgery
Weill Cornell Medical Center
New York, New York
383: Surgical Approaches to Intracranial Aneurysms

Athanasiou K. Zisakis, MSc, MBBS, MD, PhD
Senior Fellow in Functional and Stereotactic Neurosurgery
Department of Neurosurgery
Pamukkale University
Denizli, Turkey
176: Evidence-Based Neurostimulation for Pain
180: Dorsal Rhizotomy and Dorsal Root Ganglionectomy

Scott L. Zuckerman, MD
Resident Neurosurgeon
Vanderbilt University Medical Center
Nashville, Tennessee
275: Spinal Biomechanics and Basics of Spinal Instrumentation

Daniel W. Zumofen, MD
Clinical Instructor, Department of Radiology
Neurointerventional Section
New York University School of Medicine
New York, New York;
Attending Physician
Klinik und Poliklinik fuer Neurochirurgie und Abteilung fuer Diagnostische und Interventionelle Universitaetsspital Basel
Basel, Switzerland
122: Endovascular Techniques for Tumor Embolization

Marike Zwienevberg-Lee, MD
Assistant Clinical Professor
Department of Neurological Surgery
University of California, Davis School of Medicine
Sacramento, California
346: Clinical Pathophysiology of Traumatic Brain Injury
The human brain, it has often been observed, is the most complicated object in the known universe. The sheer size and scale of *Youmans and Winn Neurological Surgery*, now in its seventh edition and surely the Bible of our craft, is testament to that. It is, however, a salutary thought that despite immense strides in neuroscience in the last few decades, we still understand remarkably little about how our brains really work. We are like Newton, who described himself as a boy, standing on the seashore, playing with pebbles, while “the great ocean of truth lay all undiscovered” before him.

Despite all the science, technology, and clinical knowledge with which, as neurosurgeons, we must remain conversant at all stages of our careers, and which this great textbook embodies so well, the fundamental purpose of everything we do is to help our patients. Neurosurgery has the justifiable reputation of being difficult, and many people (especially neurosurgeons!) consider it to be the acme of surgery. Yet once we have mastered all the intricacies of operating and acquired an understanding of the brain, both in health and disease, most neurosurgeons come to understand that the greatest difficulty of their work is not so much in the technicalities of operating (which for most of us is a joy, albeit at times a painful one) but instead in the decision-making—when to operate and especially when not to operate. Neurosurgical procedures, despite all the recent technological advances, are still very dangerous because the brain is so complex, delicate, and vital to all that makes life worth living. Our patients are very vulnerable. To make the right decisions and to give our patients the best advice, we depend not just on our own experience but on the experience and accumulated knowledge of the thousands of surgeons and scientists who have gone before us or who are continually carrying the specialty forward with new research. It can be a daunting experience to open a textbook as massive as *Youmans and Winn*, edited so expertly for many years by H. Richard Winn. It can fill you with both amazement and alarm that there is so much you do not know but feel that you should. No neurosurgeon can hope—or should try—to assimilate all of it. Besides, in this age of increasing specialization, it is unlikely to be necessary. Nevertheless, here in one place, we can find all that we need to know to remain fully grounded and up-to-date in the science and craft of neurological surgery, the practice of which for most of us is more than just a career and instead something that fills us with the deepest awe and love.

Henry T. Marsh, CBE, FRCS
St. George's Hospital
London

Henry T. Marsh was the senior neurosurgeon at Atkinson Morley Hospital/St. George’s, University of London until he retired in 2015. He was made Commander of the British Empire (CBE) by Queen Elizabeth II for his contributions to British and international neurosurgery in 2010. Dr. Marsh has worked as a neurosurgeon in many countries as noted in the documentary film, *The English Surgeon* (2009). He is the author of two widely acclaimed books about neurosurgery and neurosurgeons: *Do No Harm* (2014) and *Admission* (2016).
Preface

The seventh edition of Youmans and Winn Neurological Surgery reflects the dynamic and expansive nature of neurosurgery in the second decade of the 21st century and endeavors to provide an encyclopedic overview of neurological surgery for both the experienced and nascent clinician. Time alone will not convert the latter to the former; the acquisition of knowledge and judgment are essential for this transformation.

This edition is larger than its predecessor, introduces more than 50 new topics and chapters, has both printed and Web-based content, and utilizes hundreds of videos. To a significant extent, we have redesigned the entire book with every illustration, photograph, chart, and table now in color. Some of the changes are described as follows.

- A totally new feature is the addition of introductory chapters for each of the 12 sections. These introductory chapters, written by the subspecialty section editors, are composed of two components: a review of the contents of the section and a thoughtful evaluation of ongoing controversies related to the subspecialty. Thus, each introduction discusses multiple unresolved questions that neurosurgeons, irrespective of their level of training and years of experience, may need to address in dealing with patients.

- The vast majority of chapters now contain videos to supplement the written text. In addition, we have upgraded the quality and added audio commentary. These electronic features are designed to facilitate understanding of the complexities of neurological procedures. The seventh edition also includes videos on perioperative techniques such as patient positioning. For example, Chapter 22 contains 18 different videos on positioning for peripheral nerve surgery. These videos, however, are not restricted to the operating room but are critical components of chapters focused on basic sciences and clinical topics. For example, the 36 videos in Chapter 2, “Surgical Anatomy of the Brain,” by Rhoton and his colleagues, provide a broad yet in-depth educational supplement.

- An example of electronic enhancement in the clinical realm is Chapter 8, which deals with ophthalmology and contains many videos demonstrating multiple eye movement disorders associated with cranial nerve dysfunction. Written descriptions of such disorders can be confusing, whereas these videos quickly and more clearly convey the neurological abnormalities.

- We extensively revised and totally rewrote all retained chapters. References were likewise rigorously updated. Retention of previous topics and chapters required a clear indication of relevance and importance to neurosurgical education and practice.

- Because of the dynamic nature of fundamental research, all the basic science chapters have been extensively revised to provide cutting-edge information. In addition, several new topics have been added: examples include “Optogenetics and Clarity” (Chapter 45) and “Extracellular Fluid Movement and Clearance in the Brain” (Chapter 54). The latter has been termed the “glymphatic pathway” and may have a significant impact on patient disorders.

- We have extensively expanded our focus on anatomy by adding a new chapter, “Surgical Anatomy of the Skull Base” (Chapter 3), which complements Rhoton’s chapter, “Surgical Anatomy of the Brain” (Chapter 2). In addition, each subspecialty section contains a chapter focused on the relevant anatomy pertinent to the subspecialty topics.

- Radiology, especially magnetic resonance imaging, is the technique by which neurosurgeons study anatomy in the 21st century. Accordingly and reflecting our approach to anatomy, we have expanded the radiology components in the seventh edition. There are initial introductory overviews of brain and spine radiology, including physiologic techniques, and then more highly focused radiology chapters contained within each subspecialty section.

- Patient safety must be of paramount concern for neurosurgeons, and consequently we added new chapters on this topic: “Improving Patient Safety” (Chapter 4) and “Coagulation for the Neurosurgeon” (Chapter 7). In addition, we upgraded several chapters that deal with complication avoidance, which is covered broadly in the initial section and more narrowly in each subspecialty section.

- Cutting-edge practice of neurosurgery demands the knowledge of new technologies, many of which have been added in the seventh edition (e.g., see Chapter 25, “Visualization and Optics in Neurosurgery”). Even new twists on older methods are contained in new chapters such as Chapter 24 (“Brain Retraction”).

- Because advances in the neurosciences and neurological surgery are not limited by national boundaries, we have significantly broadened our international authorship to reflect this global basis of knowledge.

The first edition of Neurological Surgery by Julian Youmans appeared in 1973 and contained 112 chapters and 2024 pages. Now, almost five decades later, the seventh edition, with much larger pages and resultant 30% increase in the number of words per page, has expanded to 415 chapters and almost 5000 pages. By comparing each section of the first and seventh editions, one can easily see how much has changed in the knowledge base of neuroscience and neurosurgery and the breadth and practice of neurosurgery. Consequently, the neurosurgery trainee of today (and tomorrow) must master considerably more information and techniques while simultaneously assimilating the existing knowledge base. Not to be forgotten are the historical precedents responsible for present-day neurosurgery practice, which are reviewed in detail in the first chapter of the seventh edition.

It should be self-evident that the provision of this knowledge in the seventh edition represents the diligent work of many individual experts. I enthusiastically express my appreciation to the stellar and thoughtful authors of the 415 chapters. Their work represents the essential building blocks for the practice of neurological surgery.

The creation of this multi-authored textbook required hard work and discipline by the section editors, to whom I offer much gratitude. If the individual authors are the building blocks, then the following section editors represent the mortar:

Introduction and General Neurosurgery Section

- William T. Coulldowell, MD, PhD
- Basant K. Misra, MBBS, MS, MCh, Diplomate National Board
- Volker Seifert, MD, PhD
- Uğur Türe, MD
I thank my long-time associates, Mitchel S. Berger, MD, MA; Kim J. Burchiel, MD, FACS; Ralph G. Dacey, Jr., MD; M. Sean Grady, MD; Matthew A. Howard III, MD; and Marc R. Mayberg, MD, for their creative input. These deputy editors-in-chief were critical architects in helping with the intellectual design of the seventh edition. And I thank my former laboratory postdoc and neurosurgical colleague, Kathryn Ko, MD, MFA, for allowing her insightful paintings to grace the cover of the seventh edition.

To bring to fruition a work of this magnitude requires a highly professional editorial effort, and for this, I thank the members of the Elsevier global team. Firstly, I thank Senior Content Development Specialist Jennifer Shreiner in Philadelphia, Pennsylvania, who was indispensable on a daily basis in the hard work of organizing chapters and prodding the authors, section editors, and me; Book Production Specialist Kristine Feeherty in St. Louis, Missouri, who masterfully oversaw copyediting, proofreading, and conversion of manuscripts into printed proofs; and lastly, Senior Content Strategist Charlotta Kryhl in London, England, for her long-term advice, input, and patience. The seventh edition would not have been brought to fruition without the assistance of Mss. Shreiner, Feeherty, and Kryhl.

A personal note of gratitude goes to my wife, Debbie, for her sustaining support and editorial assistance; our son, Randy, and his wife, Tamara; our daughter, Allison, and her husband, Adam; and Campbell, Mia, Amelia, Lexi, and Charlie for being here.

H. Richard Winn

1Deceased.
The “Introduction and General Neurosurgery” section is composed of 43 chapters that are divided into seven subparts: “History and Background”; “Related Systems”; “Overview of Radiology”; “Intensive Care”; “The Operating Room”; “Geriatric Neurosurgery”; and “Infections.” We designed the “Introduction and General Neurosurgery” section with the goal of providing neurosurgeons in practice and those still in training with comprehensive, up-to-date information on a broad scope of topics central for the mastery of neurosurgery. In this introduction, the section editors initially review the topics contained in the “Introduction and General Neurosurgery” section and then present a series of essays about controversies and unresolved questions related to these topics.

OVERVIEW

The first part of this section opens with a superb chapter on an important topic: the history of neurosurgery. Neurosurgeons have shown an increasing interest in the history of their discipline, as demonstrated by the expanding history section of the American Association of Neurological Surgeons. Neurosurgeons should remember George Santayana’s warning that “those who cannot remember the past are condemned to repeat it.” The next two chapters comprehensively review the anatomy of the brain and skull base. Chapter 2, by Rhoton and colleagues, contains 35 videos, and Chapter 3 is a totally new entity in which bony cranial and brain landmarks are correlated. Each of the subsequent chapters in the “History and Background” part discusses a subject that is critical for patient care: improving patient safety (Chapter 4), preoperative evaluation for neuroanesthesia (Chapter 5), and complication avoidance (Chapter 6). The final chapter in this part, “Coagulation for the Neurosurgeon,” is another new topic and succinctly contains vital insights.

The second part of this section, “Related Systems,” focuses on the related topics and systems of neuro-ophthalmology (Chapter 8), neurotology (Chapter 9), and neurourology (Chapter 10). Neurosurgeons have many patients whose problems involve these systems; consequently, they work closely and consult frequently with colleagues in these fields. These chapters are highly focused on the essential information that allows neurosurgeons to knowledgeably provide care and seek appropriate and timely consultation.

The third part of this section, “Overview of Radiology,” comprehensively covers basic neuroradiology with separate chapters on computed tomography (CT) and magnetic resonance imaging (MRI) of the brain (Chapter 11) and spine (Chapter 12) and then intensive chapters on physiologic analysis involving the use of MRI (Chapter 13) and positron emission tomography (PET; Chapter 14). This entire part on neuroradiology and imaging serves as a cornerstone for multiple individual neuroradiologic chapters that appear in the specialty sections (e.g., “Oncology” [Section V], “Pediatrics” [Section VII], and “Vascular” [Section XII]) later in the book.

The fourth part of this section, “Intensive Care,” begins with Chapter 15, in which the scientific basis of intracranial pressure is reviewed and the various approaches to monitoring intracranial pressure are described. Separate chapters then deal with principles of intensive care unit (ICU) treatment (Chapter 16) and the unique role of neurosurgeons in providing care in the neurosurgical ICU (Chapter 17).

The fifth part of this section, “The Operating Room,” opens with Chapter 18, an overview of surgical planning. Surgical simulation and surgical robotics, a new and emerging field with the potential for a major influence on neurosurgery, is then explored in Chapter 19. Positioning is a critical component of neurosurgery and is covered in separate chapters related to cranial, spinal, and peripheral nerve surgery. All these positioning chapters contain illustrative and extensive videos. For example, Chapter 22 (“Positioning for Peripheral Nerve Surgery”) contains 18 separate videos. Although incisions and closings are seemingly routine, many difficulties can arise when they are performed. We thus included Chapter 23, which deals with these two topics. Chapter 24, a new topic, provides insights on a technique “routinely” used but not frequently discussed in neurosurgery: retraction. Continuing the “insights” theme, Chapter 25 covers visualization and optics. Chapter 26 explores the advantages and disadvantages of endoscopic surgery. With this background, the reader is then presented with Chapter 27, which focuses on thoracic endoscopic surgery. “The Operating Room” part of this section then concludes with Chapter 28, about another “routine” procedure that necessitates attention to detail to achieve success: cranioplasty.

Because of the aging population throughout the world, the sixth part of this section, “Geriatric Neurosurgery,” concentrates on two topics: normal-pressure hydrocephalus (NPH) and chronic subdural hematomas. For each of these entities, we provide chapters describing the relevant basic science and pathophysiologic features, patient evaluation, and treatment options, including a critical review of third ventricular ventriculostomy (Chapter 32).

The seventh part of this section, “Infections,” covers this important topic broadly, starting with Chapter 35, a very comprehensive discussion of the basic science of central nervous system (CNS) infections. Separate chapters (36 and 37) deal with postoperative infections of the brain (and head) and the spine. Next, the important topic of antibiotic usage is explored in Chapter 38. Specific types of infections affecting the CNS are then discussed in separate chapters: brain abscess (Chapter 39), meningitis and encephalitis (Chapter 40), acquired immunodeficiency syndrome (Chapter 41), and parasitic infections (Chapter 42). This section closes with an increasingly important topic for surgeons: surgical risk of transmittable diseases (Chapter 43).

CONTROVERSIES AND UNRESOLVED QUESTIONS

In this part of the introduction, we discuss a number of important and controversial topics in modern neurosurgery: treatment of hydrocephalus; coagulation for the neurosurgeon; the proper treatment of chronic subdural hematomas; the use of endoscopy with transfacial surgery; technical advances involving
robotic surgery, visualization and optics, and brain retraction; the
glyphic system; the role of the neurosurgeon in neurointensive care; and education and training of neurosurgeons. Although perhaps we do not offer definitive answers, our goal is to focus attention, raise awareness, provide context, and perhaps point the way to answering unresolved questions.

Question 1: Adult and Pediatric Hydrocephalus: The Role of Third Ventriculostomy and Choroid Plexus Cauterization

Endoscopic third ventriculostomy (ETV) has been increasingly used for treating both adult and pediatric hydrocephalus since the early 2000s (see Chapter 32). This procedure has much inherent appeal, in that avoiding or removing an indwelling ventricular shunt—which condemns the patient to probable lifelong dependency on a device with a high failure rate over time—is a laudable goal. Rates of success with ETV vary from 50% to 90%. The indications for this procedure are in evolution. It is clear that the success of the procedure is highly dependent on the cause of the hydrocephalus. Patient selection is the key to achieving clinical success.

In the adult population, late-onset idiopathic aqueductal stenosis is the indication for which the implantation of a shunt has the highest success rate. In addition, lesions obstructive hydrocephalus (secondary obstructive hydrocephalus) remains an intuitively appealing indication for which shunt implantation has a high success rate. Perhaps more surprisingly, NPH, long believed to be a disorder of cerebrospinal fluid (CSF) dynamics and absorption, is an emerging indication. The published rates of success with ETVs in patients with NPH have been variable, ranging from 21% in a study of 14 patients to 87% in a study of 15 patients with 27 months of follow-up. Gangemi and colleagues had a success rate of 69% in their series of 110 patients with NPH treated with ETVs at four centers and monitored for a minimum of 2 years. Potential predictors of success included a shorter duration of symptoms and milder symptoms; patient age was not predictive of response. In adult patients with shunts, conversion to ETV and removal of the shunt has been successful in 70% at a median follow-up of 36 months. This population represents a considerable opportunity.

The success rate of ETV in children with hydrocephalus secondary to tectal gliomas is high (close to 90%), whereas ETVs performed in the context of intraventricular hemorrhage associated with prematurity succeed in only a third or fewer of cases. Young age (<6 months) is associated with a lower success rate, independent of cause; however, this age effect either plateaus or diminishes after the age of 2 years, perhaps because of cranial maturation. The literature indicates that the rate of success with ETV is high in patients older than 2 years in whom non-communicating hydrocephalus is caused by aqueductal stenosis, tectal glioma, and posterior fossa tumors.

With regard to the question of whether a choroid plexus coagulation should be added to the ETV procedure, data suggest that in the infant population (<2 years old) with noninfectious hydrocephalus, adding choroid plexus coagulation may further bolster the success rates of this procedure. ETV with choroid plexus coagulation is now routinely performed at children's hospitals around the world and has resulted in an approximately 30% decrease in the placement of new ventricular shunts in the pediatric age group in selected institutions (W.T. Coulldwell, personal communication, University of Utah Department of Neurosurgery).

Question 2: Clotting and the Neurosurgeon

The imperative in neurosurgery, as in other fields of surgery, is to critically balance the risks of bleeding against thrombosis in patients. The assessment of the coagulation system is vital in preoperative management, as well as in the determination of any deleterious effects of medications used by the patient. In this regard, there is a paucity of high-level evidence concerning the effects of antiplatelet agents and anticoagulants on patients with neurosurgical conditions.

Currently, more than 1% of the general population is receiving some form of oral anticoagulation for various cardiovascular conditions. These problems are further confounded by the increasingly common use of dual antiplatelet agents in patients with cardiac, peripheral vascular, and intracranial stents. The management of such patients after neurotrauma represents a controversial area in neurosurgery (see Chapter 7). Although some investigators have focused on the management and outcome of patients with trauma who receive anticoagulants or antiplatelet therapy, there are no strict guidelines (and a lack of class I evidence). Several questions have been raised about testing of antiplatelet and anticoagulation effects on patients at hospital admission, reversal of the pharmacologic effects of these agents to mitigate against neurological deterioration, and the timing of reinstitution of therapy. Patients taking oral anticoagulation medication are considered to be at high risk for neurological deterioration, and more prospective and comparative effectiveness research is necessary to answer these important questions.

Another related dilemma is posed by the use of contemporary anticoagulants for the management of cardiovascular conditions. Several small compounds that specifically block activated coagulation factor X (FXa) or thrombin (FIIa) have become popular alternatives to vitamin K antagonist compounds. As opposed to vitamin K antagonists, direct oral anticoagulants (DOACs) target a specific coagulation factor. Such direct oral anticoagulants include dabigatran etexilate (thrombin inhibitor) and edoxaban and rivaroxaban (inhibitors of FXa). These agents have become popular for venous prophylaxis or treatment of thromboembolism and for prevention of neurological events associated with atrial fibrillation. With regard to intracranial hemorrhage, the safety profile of the DOACs has been shown to be poorer than that of vitamin K antagonists. The difficulty arises with the use of these agents when intracranial hemorrhage occurs, either spontaneously or in relation to trauma. The development of reversal agents has lagged behind the introduction of these agents for therapeutic benefit for common cardiovascular problems; as a result, difficulty arises when bleeding events occur, especially in relation to the CNS. Because most DOACs have a short half-life, time is an efficient way to eliminate the anticoagulant effect if waiting is possible; however, devastating neurological outcomes have been reported with the use of these agents. New agents are currently being developed that should reduce this problem over time.

Question 3: Correct Surgical Management of Chronic Subdural Hematomas: Do Surgeons Now Have the Definitive Answer?

Chronic subdural hematoma, for which the mean age at occurrence is in the eighth decade, represents a growing problem in much of the developed world as the population ages. This demographic shift, together with the increasing use of anticoagulants and antiplatelet agents in older patients, complicates the management of these patients.

Treatment for chronic subdural hematoma remains surgical; observation is recommended for affected patients with minimal or no symptoms. The three options for surgical drainage are burr-hole drainage (which can be performed with the patient under local or general anesthesia, usually in the operating room), twist-drill craniostomy (which is usually performed with the patient under local anesthesia, at the patient’s bedside), or open craniotomy (in the operating room). The results of these options,
compared in a contemporary meta-analysis, were that craniotomy was associated with a lower rate of recurrence (usually less than 10%), but rates of morbidity and mortality may be higher with this procedure. Twist-drill craniotomy produces the least morbidity, but it is associated with a higher recurrence rate (exceeding 30% in some studies). Thus the compromise option, bur-hole drainage, remains the most commonly used because its morbidity and recurrence rates are balanced. There is high-quality evidence that drains reduce the incidence of recurrence and should be used.

The technical controversies in the use of bur-hole drainage are related to the number of bur holes and the type of drain to be used (external drain, subperiosteal, or subgaleal). There appears to be little consensus in the literature on these points.

Furthermore, the recurrence rates between studies are remarkably variable. In studies since the 1990s, the reoperation rate has been reduced to a range of 10% to 20%. This probably indicates that although chronic subdural hematoma is treated as a single entity, it is not advisable to perform procedures without tailoring treatment according to individual hematoma characteristics. Experienced surgeons define treatment on the basis of the patient’s age, comorbid conditions present, and imaging characteristics of the hematoma. In studies, researchers have not stratified data for such factors to provide strong evidence-based conclusions for treatment in this nuanced manner.

In addition, the role of adjuvant therapies such as steroids needs to be better defined. Because the burden of chronic subdural hematoma is likely to rise, outcomes for this common neurosurgical condition must be improved.

Question 4: Endoscopy: When Should Transfacial Endoscopy or Traditional Open Microsurgery Be Used in Skull Base Surgery?

Since the 1990s, neurosurgeons have been increasingly interested in approaching various tumors of the base of the skull by using a transfacial (transnasal or transmaxillary) corridor. This has been the result of enhanced endoscopic techniques primarily developed and used by and with otolaryngologists to address sinus disease and is an extension of the transsphenoidal approach to approach other lesions besides traditional pituitary tumors (see Chapter 26).

The use of an endoscopic approach to a pituitary tumor was first documented by Guiot and associates in Paris in 1962. Although Bushe and Halves reported the first use of the endoscope for pituitary tumors in the literature in 1978, the endoscope was not used widely until the mid-1990s, when endoscopic sinus surgery was universally adopted by otolaryngologists. Neurosurgeons were attracted to its use by the increased visualization of the surgical site and began to explore the possibilities in transsphenoidal surgery. Jho and Carrau reported on a series of 50 patients who underwent endoscopic endonasal transsphenoidal surgery, with encouraging results. Thereafter, the endoscopic approach to transsphenoidal surgery for resection of pituitary macroadenomas was adopted rapidly by neurosurgeons.

With the expansion of the transsphenoidal approach to other tumors of the skull base, the endoscope was an ideal tool to apply to these approaches because it offers wide-angle and side-angle visualization, a capability that is not possible with the microscope from below. In addition, there are several advantages to approaching anterior skull base lesions from below. For example, an anterior endoscopic endonasal transcribriform or transplanum approach may confer advantages to anterior skull base management for certain meningiomas, depending on size and location. Complete resection of hyperostotic bone of the olfactory groove, planum sphenoidale, and tuberculum sellae is more easily accomplished, and manipulation of neurovascular structures and brain retraction on the frontal lobes to increase exposure is avoided. In an endoscopic approach, the craniotomy through the anterior skull base is made directly over the basal dural attachment at the anterior skull base. The meningioma can be devascularized early in the operation to decrease blood loss and facilitate tumor removal. Complete removal of all bone that has become hyperostotic from tumor infiltration facilitates a Simpson grade I resection. The endoscopic approach may be suitable for an anterior skull base meningioma that has recurred or extends into the paranasal sinuses.

Disadvantages of the endonasal endoscopic approach stem from the inherent limitations of its midline exposure. Tumors that have extended beyond the medial orbital wall or over the superior orbital roof and those with dural attachments extending lateral to the optic canal or into the sphenoid wing are difficult to access from a midline endonasal approach and may be better approached via an open transcranial technique. Cranial nerves and vascular structures are identified later in the dissection during an endonasal endoscopic technique and may be prone to injury if manipulated. Tumors encasing the internal carotid arteries or anterior cerebral arteries should be approached by an open technique for more complete visualization and to avoid vascular injury. High-quality studies of the extent of resection, recurrence rates, and complications of each approach are lacking.

CSF leaks that necessitate endonasal exploration to repair may be more common with endoscopic surgery. The osteodural defect is larger when created by an approach from below than when created by a Simpson grade I resection with a transcranial approach from above. Approaching a meningioma in the olfactory groove may necessitate resection of bone and dura extending from the anterior skull base to the planum sphenoidale.

Resection of the hyperostotic endonasal bone and entering the paranasal sinuses further increase the risk of a CSF leak. Modern surgical techniques, such as the use of vascularized nasoseptal mucosal flaps or allogenic acellular dermal allograft (AlloDerm; LifeCell Corporation, Bridgewater, NJ), may decrease the rate of CSF leaks without the need for lumbar drainage and may grant surgeons the confidence to perform a more complete surgical resection; however, prospective trials in which the effectiveness of these newer techniques are evaluated have not yet been published.

Question 5: Technical Advances: Revolutionary or Evolutionary?

Several new chapters deal with innovation and technical advances in operative neurosurgery: simulation and robotics (Chapter 19), brain retraction (Chapter 24), and visualization and optics (Chapter 25). In those chapters, the authors endeavor to place these advances in context, evaluate whether they truly deserve to be termed “revolutionary,” and attempt to address what effect these advances will have on the future of neurosurgery (Fig. 1-1).

With regard to the terms revolutionary and evolutionary, many investigators make claims for the former but rarely for the latter. Revolutionary means a complete or fundamental change. It therefore follows that the majority of innovations contributing to advances in neurosurgery are evolutionary. Gordon reviewed examples of revolutionary changes that transformed the 20th century: the internal combustion engine, distribution of electricity, and public health advances. The internal combustion engine evolved into the automobile and the airplane; distribution of electricity enabled the development of household and business devices such as the refrigerator and, later, the computer; and public health advances led to the delivery of potable drinking water and sanitary collection of sewage. According to Gordon’s line of reasoning, a major revolutionary change in neurosurgery was Wilhelm Röntgen’s discovery of x-rays, and all subsequent events and discoveries were evolutionary, including Walter Dandy’s description of ventriculography and
pneumoencephalography (1918/1919), António Egas Moniz’s achieving opacification of the carotid artery (1927), and Sir Godfrey Hounsfield’s development of the CT scanner (1973).

Before physicians attempt to predict the future, it would be wise to remember that “rational prediction of future developments is, to some degree, an oxymoron. Predictive accuracy would probably be higher with Isaac Asimov and other science-fiction writers than with academics limited by conditioned skepticism.” It would also be prudent to remember Bergland’s 1973 article “Neurosurgery May Die,” published in the New England Journal of Medicine. Unlike Bergland, modern neurosurgeons can use the “retrospectoscope” to see that almost simultaneously with the publication of Bergland’s article predicting the demise of this specialty, Hounsfield and James Ambrose were in the midst of perfecting the CT scanner. The CT scanner and MRI, while evolutionary only from a technology perspective, nevertheless had a revolutionary effect on neurosurgical practice. These devices profoundly expanded the scope of neurosurgery and prevented its demise. However, Bergland based his prediction on the failure of neurosurgical education and, as will be discussed later, he may be correct about future difficulties ahead for neurosurgery.

Simulation and Robotic Surgery
In 1921, Karel Capek, a Czech playwright, introduced the term robots, using it to mean forced labor; today this term applies to tools that can perform a variety of tasks under the direction of a human or computer. The first robotic application in the realm of surgery was in 1988 in neurosurgery—for needle biopsy. Since then, robotics have been applied widely in radiosurgery and, to a lesser extent, in spinal and cranial surgery. However, few studies have demonstrated a clear advantage to robot-assisted surgery across the breadth of surgery.

Instead of surgery itself, perhaps the major application for robotics in the near term will be in simulation and training, as noted in Chapter 19; however, neurosurgeons and engineers need to make significant progress before virtual operations simulate actual conditions in the operating theater. Advances in virtual reality technology are transforming the gaming and other industries and will soon be applied to simulation of neurosurgical procedures. Such advances will not only affect patient safety (see Chapter 4) but will probably also have a major positive effect on neurosurgery training, at a time when education is being eroded (see later discussion).

Should neurosurgeons be concerned about the steady march toward the mechanized and robotic future, or do such concerns represent the reflex protestations against progress by a generation of Luddites who are unfamiliar with emerging technology? Without question, potential losses and negative consequence lie ahead. In the absence of robotics, surgery is at the end of a spectrum that begins with the individual surgeon’s knowledge, mental visualization of the neuroanatomy in three dimensions, correlation of the anatomy and imaging, and then activation of personal executive function to create a surgical plan. Robotic surgery in the future may allow bypass of these important intellectual tasks; therefore, when technology fails, surgeons will be left poorly equipped to handle certain situations.

We are mindful, however, of how the introduction of the CT scanner and MRI, while changing the practice of neurosurgery, has had a secondary effect on neurosurgical education and neuroanatomy. Before the development of CT and MRI, the popularity of neuroanatomy was in decline, considered a nice bit of knowledge to acquire (comparable to knowing the distinction between Doric, Ionic, and Corinthian columns), but not thought to be essential to the practice of neurosurgery. The “imaging studies” before CT were pneumoencephalography and ventriculography. These techniques required some knowledge of the cerebral ventricles and, in general terms, what could displace them, but knowledge about the brain outside of the ventricles was still sparse. With the introduction of CT and MRI, knowledge of neuroanatomy became a necessity, not a luxury, and led to a vastly increased emphasis on neuroanatomy teaching and research. This is reflected in the expansion of chapters devoted to anatomy in the 7th edition of Youmans and Winn Neurological Surgery.

Visualization and Optics
Most neurosurgical procedures on the brain, spine, or peripheral nerves as of the second decade of the 21st century remain “open” surgeries involving direct vision and similar to those performed by Harvey Cushing in the second decade of the 20th century. Ted Kurze’s introduction of the microscope into the neurosurgery operating room, as well as subsequent refinements by Raymond M.P. Donaghie, Gazi Yaşargil, Albert L. Rhoton, and other innovative pioneers, fundamentally expanded the neurosurgical operative universe. Less well recognized and documented is the role that illumination has played in advancing microneurosurgery.

In their insightful Chapter 25, on visualization and optics, Sorensen and colleagues correct this deficit in recognition by reviewing the development and current status of lighting for microsurgery; they also review the past and current status of optics. Obviously, without adequate light, microscopic neurosurgery would be impossible. Similarly, lack of light initially impeded the widespread use of endoscopes (see the earlier section “Question 4: Endoscopy”).

According to the analysis of Sorensen and colleagues, lighting, rather than optics, is rate limiting for the development of magnification more powerful than what is used today, which is based primarily on human vision. Increasing the power of illumination has limitations related to effects on tissue and the inability to discriminate difference in contrasts. Sorensen and colleagues believe that the use of digital technology and high dynamic range (HDR) imaging will replace the current optical systems. Such tools could ensure superb illumination and focus that will exceed today’s optic systems, which are dependent on human vision.

* A famous science fiction writer who popularized the term robotics in 1941.
alone. In addition, they envision the development of systems that will allow the neurosurgeon to “see through the brain,” truly “image”-guided surgery, and they even foresee the introduction of detached remote visual techniques. Such developments, like the effect of digital cameras on photography, are destined to expand the current microsurgical world.

Brain Retraction

Is old technology with staying power no longer critical in today’s “micro”/“endo” world of neurosurgery? Improvements in visualization may have a secondary effect by altering the degree of and even the need for brain retraction (see Chapter 24). As with the case of illumination, the development of retractors specialized for neurosurgery contributed to the expansion of microsurgery. As outlined in Chapter 24, replacing handheld retraction with self-retaining systems increased the surgeon’s manual options. One- or three-handed surgery was expanded to two- or four-handed procedures and undoubtedly increased patient safety. The neurosurgery literature has largely ignored the contribution of self-retaining retractors to patient safety.

Although retractors are universally used in neurosurgery, the science of brain retraction and the causes of retraction injury are not as well studied. Few laboratory-based studies have documented the pressure/duration limits of neural tissue or biologic strategies designed to decrease retraction injuries. Mechanical and engineering advances have been made in retractor design, but on-line pressure-sensing retractors remain primitive. The increasing advocacy for minimal retracting techniques may reflect the acknowledgment and underreporting of the frequency of retraction injuries. Minimal retraction methods may also be related to more radical skull base dissection and advances in anesthesia methods to maximize brain relaxation.

The correct, rational, step-by-step application of retractors is based on achieving appropriate exposure with minimal risk to neural tissue while simultaneously enabling operating surgeons’ access. Success or failure may depend on initial placement of the head holder and subsequent stabilization of the flexible arms. These seemingly minor steps can optimize surgical access or, if retraction is incorrectly applied, result in significant neural injury. An infrequently recognized truth is that brain retraction does indeed involve an art, as well as a science.

In summary, historic and more recent technical advances in neurosurgery have been impressive, but in the current and future environment, there remains the risk of overreliance on technology. As with humans, technology can fail and, at some point, the individual neurosurgeon must recognize this failure. For example, as reported in the *Daily Mail*, a woman, planning to drive to a railroad station 38 miles from home, instead drove 900 miles over 2 days because she slavishly followed the incorrect directions provided by her global positioning system (GPS) device (Fig. I-2: Drive of 38 miles to a local train station became a 900-mile, 2-day journey (red arrows) because of the driver’s adherence to erroneous directions by a global positioning system (GPS)).

Question 6: Advances in Basic Sciences: New Information and Possible Clinical Implications

As noted previously in the preceding discussion, revolutionary changes occur infrequently in neurosciences and neurosurgery; evolutionary changes are more common. We would describe Chapter 43 (“Optogenetics and Clarity,” by Fenno, Hsueh, Purger, and Kalanithi) and Chapter 54 (“Extracellular Fluid Movement and Clearance in the Brain: The Glymphatic Pathway,” by Iliff and Penn) as having revolutionary content that has potential clinical application. Optogenetics is a laboratory tool that involves the expression of light with cellular activation and allows real-time insights into the basic physiologic mechanisms of neural networks in the brain.

The glymphatic system is a network of perivascular pathways throughout the brain along which CSF recirculates through the brain parenchyma and interstitial fluid (ISF) solutes are cleared to CSF. This novel concept may help explain physiologic activities such as memory acquisition and has profound implications about several clinical entities such as Alzheimer’s disease, brain edema, and hydrocephalus.

Accordingly, we think it is important to draw neurosurgeons’ attention to the glymphatic system.

Because the brain and spinal cord lack a conventional lymphatic vasculature, classical lymphatic functions such as interstitial protein homeostasis and immune surveillance are thought to occur through the interactions between the CNS extracellular fluid compartment and the CSF compartments. According to the “CSF sink hypothesis,” articulated by Oldendorf and Davson in the middle of the 20th century, interstitial wastes from CNS were eliminated through the exchange of ISF with CSF and subsequent reabsorption of CSF into the bloodstream. However, more recent data by Iliff (who began his investigatory career in a neurosurgery laboratory right after high school) and his collaborators have mandated revision of the basic elements of this classical model of CSF-ISF exchange. The characterization of classical lymphatic vessels associated with dural sinuses and vasculature on the margins of the CNS suggests that waste clearance and immune surveillance may be taking place in a much more complex manner than previously believed. These data have demonstrated that the process of CSF-ISF exchange is both more organized and more functionally consequential than previously realized.

Using dynamic imaging approaches in rodents, researchers have demonstrated that, contrary to the conventional view of CSF circulation and reabsorption, a substantial proportion of CSF from the subarachnoid compartment recirculates back into and through the brain parenchyma along perivascular spaces surrounding penetrating cerebral arteries, rapidly exchanging with surrounding ISF. Interstitial solutes, in turn, are cleared from the brain along a distinct set of perivascular pathways surrounding large-caliber draining veins, including the internal cerebral vein. The exchange of CSF and ISF along these perivascular pathways, driven in part by arterial pulsation, supports the clearance of
interstitial solutes, including metabolic wastes and pathologic substrates such as amyloid β peptide and tau protein.

Perivascular spaces therefore function as a roadbed in the CNS, in which, in proximity to the blood-brain barrier, the extracellular compartment of the CNS interacts with the peripherally communicating CSF. Fluid exchange along these perivascular pathways is supported by astrocytic water transport. Astrocytes express large amounts of the water channel aquaporin-4 in perivascular end-feet that ensheath the cerebral vasculature, which helps organize water movement within the CNS along the axis of the cerebral vasculature, in a manner similar to the way that water diffusion organizes along axons in the white matter. Disruption of aquaporin-4, or its perivascular localization, slows perivascular CSF-ISF exchange and impedes the clearance of interstitial solutes from brain tissue.

Researchers have also shown that glymphatic function is a feature primarily of the sleeping brain, inasmuch as perivascular CSF-ISF exchange and the clearance of interstitial solutes, including amyloid β peptide, are dramatically slower in the awake brain than in the sleeping brain. In an intriguing finding, electrophysiologic measurements suggested that during slow-wave sleep, the brain extracellular space increases in volume, facilitating more rapid solute diffusion and perivascular exchange. These findings suggest that the clearance of extracellular wastes may be one of the physiologic bases of the restorative functions of sleep.

From a physiologic perspective, the clearance of extracellular wastes and the reabsorption of interstitial proteins are basic and essential elements of organ function. Within the CNS, with its high rate of metabolic activity and neural cells’ sensitivity to changes in extracellular environment, the glymphatic pathway is probably a key contributor to basic brain function. In addition to facilitating the efflux of solutes that cannot be locally degraded or cross the blood-brain barrier, the glymphatic system probably provides a route along which signaling molecules, such as trophic factors, neuropeptides, and neuromodulators, are distributed through different brain regions. The association of the choroid plexus and dural vasculature—known nodes of peripheral immune cell trafficking—with the CSF and perivascular spaces of the glymphatic system suggests that these anatomic features constitute an integrated system that facilitates peripheral immune surveillance of the brain without breaching the relative “immune privilege” of the CNS.

Because glymphatic function underlies basic elements of brain function, it is likely that its dysfunction contributes to the development or progression of many different pathologic states. Glymphatic function, including the clearance of interstitial amyloid β peptide, slows in the aging brain, which suggests that age-related decline in its function may underlie the vulnerability of the aging brain to neurodegenerative disease characterized by misaggregation of different protein species, including amyloid β peptide and tau protein in Alzheimer’s disease or α-synuclein in Parkinson’s disease and Lewy body dementia. Similarly, glymphatic function is impaired in the young brain after traumatic brain injury, which may promote the development of neurodegeneration, including Alzheimer’s disease or chronic traumatic encephalopathy, in the decades after traumatic injury.

In addition to its impairment after traumatic brain injury, glymphatic function is compromised after cerebral ischemia and subarachnoid hemorrhage, according to the results of several experimental studies. The failure of interstitial solute and fluid efflux in the setting of blood-brain barrier disruption may support the formation and persistence of cerebral edema after neurovascular injury. Conversely, the creation of an oncotic sink within edematous brain tissue may disrupt wider glymphatic pathway function, exacerbating the local effects of brain injury.

The emerging understanding of the glymphatic system and interactions between the CSF and ISF compartments along perivascular pathways has important implications in neurosurgery. Many different kinds of brain disease can interfere with fluid movement. For example, cerebral edema probably affects the dimensions of extracellular pathways, whereby the dimensions of the extracellular compartment are increased by vasogenic extracellular edema and decreased by neurotoxic edema with cellular swelling. In hydrocephalus, tissue edema around the ventricles and tissue compression of the cortex also change these flow patterns. Likewise, brain tumors change the pattern of flow because of tissue compression and breakdown of the blood-brain barrier. Successful therapeutic interventions, such as delivering medicines to gliomas, are highly dependent on flow patterns.

Convection within the extracellular compartment must be considered for effective delivery of therapeutic molecules to CNS targets through the CSF via intracerebroventricular or intrathecal infusion, directly within CNS tissue by convection-enhanced delivery, or across the blood-brain barrier. Perivascular solute flux is a key determinant of therapeutic distribution through CSF compartments. Thus a greater understanding of the mechanics and determinants of perivascular fluid movement will help surgeons optimize therapeutic delivery. A better understanding of the effects that aging, brain injury, or other pathologic processes have on these dynamics will enable more accurate drug delivery. In principle, drug delivery methods could be adapted to the individual patients once the dynamics of CSF and ISF flow are known.

Question 7: What Should Be the Neurosurgical Involvement in the Critical Care Management of Neurosurgical Patients?

Critical care medicine has developed as a specialty to diagnose, treat, and prevent life-threatening illnesses that necessitate invasive monitoring, as well as pharmacologic and mechanical organ support. Since the era of Harvey Cushing, neurosurgeons have been integrally involved in the delivery of critical care to their patients. Since 2000, interest in the management of neurosurgical patients in the ICU has intensified in several specialties. These units are now referred to as “neurocritical care units” but were previously referred to as “neurosurgical ICUs,” which represented the predominance of the patients that occupied the beds. In North America, several professional associations in neurology established a certification council as a mechanism to codify subspecialties, accredit training programs, and certify physicians—all laudable goals. They defined neurocritical care as such a subspecialty.

This career path represents a significant opportunity for neurosurgical trainees. With the accreditation from the Committee on Advanced Subspecialty Training (CAST) of the Society of Neurological Surgeons, neurosurgery has a comparable mechanism for accreditation of programs and certification of trainees. About one critical care position is created by the business generated by four practicing neurosurgeons: a considerable opportunity for neurosurgery as a specialty.

Within neurosurgical residency in the United States, critical care training is now formally included within the curriculum, and competency is monitored by the residency program director and tested in certification examinations (both written and oral) by the American Board of Neurological Surgery. This has been a concerted effort on behalf of neurosurgery organizations to emphasize the importance of critical care management in the training of a contemporary neurosurgeon. With the parallel effort of other specialties, such as neurology and anesthesia, it is yet unclear whether these units will be staffed by multidisciplinary groups or primarily by neurosurgeons. What is also unresolved is whether such an interest in critical care training for neurosurgery residents will be embraced in other countries. The neurosurgeon has a unique responsibility and necessary role in managing and coordinating care for patients in the neurocritical care unit, which should not be abrogated.
Question 8: Neurosurgical Education and Training: Have Duty Hour Restrictions Accomplished the Goals Envisioned by Those Who Advocated for Changes in Neurosurgery Training?

One of the most important goals of the 7th edition of *Youmans and Winn Neurological Surgery* and of this section is educational: to provide comprehensive, up-to-date, neurosurgically relevant information to neurosurgeons in practice and in training. Time alone will not convert those in training to those in practice. This transformation requires what constitutes “training”: the acquisition of knowledge, judgment, and technical skill.

Historically, training in neurosurgery grew out of general surgery, as did the discipline as a whole. In the Cushing and post-Cushing era, full training in general surgery preceded a 1- to 2-year experience in neurosurgery with the educational mode akin to an apprenticeship. Before and after World War II, specialty-specific residency training evolved into a more organized educational experience with a specified number of years in duration. Daily work hours were not constrained except by the duration of a day.

As residencies evolved, so did organizations designed to provide oversight and regulation of postgraduate training. As a result of a tragic case in the mid-1980s, the state of New York investigated working conditions and supervision of house officers and, through subsequent legislation, limited work hours of house officers to 80 hours per week. Adding to the general public concern was a study issued in 2000 by the U.S. Institute of Medicine titled *To Err Is Human: Building a Safer Health System.* This study suggested that 50,000 to 100,000 hospital-based deaths occurred in the United States each year in relation to errors. In a later study, in 1995 on surgical residents, a failure to demonstrate that fatigue affected patient errors or outcome, and these results were further supported by a later study of neurosurgery residents and manual skills. After 2003, when the ACGME instituted DHRs, the preponderance of studies across many disciplines have failed to demonstrate the hoped-for improvement in patient care, even with modification of the DHRs.

In summary, DHRs have failed to achieve the intended goals of improving patient care or the well-being of house staff. After all, neurosurgery training is not an abstract concept; in essence, the goal is to prepare the individual for the practice of neurosurgery, an environment in which hour restrictions currently do not apply. Furthermore, many advocates predicated the need for DHRs on the assumption that fatigue, caused by sleep deprivation, compromised patient care; they assumed that DHRs would improve patient safety. These advocates ignored the existing data derived from two decades of DHRs in the state of New York and the lack of improvement in hospital errors. Furthermore, a study from 1995 on surgical residents failed to demonstrate that fatigue affected patient errors or outcome, and these results were further supported by a later study of neurosurgery residents and manual skills. After 2003, when the ACGME instituted DHRs, the preponderance of studies across many disciplines have failed to demonstrate the hoped-for improvement in patient care, even with modification of the DHRs. In contrast, in several neurosurgical studies, DHRs have had a negative effect on patient care. For example, in a novel study, Dumont and associates evaluated meningioma resection before and after implementation of DHRs and demonstrated an increase in complication rates in academic units, but not in nonteaching institutions in which DHRs were not in effect.

Another promised benefit of DHRs was that residents would have more time for education and research. The opposite has occurred because limitation on hours applies to time spent both in teaching and in patient care. In neurosurgery, surveys of faculty members yielded uniformly negative responses about the influence of DHRs on teaching both inside and outside the operating room. An objective measurement of the effect of DHRs is the decrease in residents’ performance on in-service examinations for self-assessment, administered by the American Board of Neurological Surgery. In addition, many neurosurgery residencies restricted their research exposure for residents, with the resultant decrease in the number of resident-presentations at national neurosurgery meetings. House officers have high rates of depression, suicides, and job burnout. Consequently, another motivation for the introduction of DHRs was the concern for the well-being of residents. However, studies have uniformly failed to demonstrate an improvement in psychological difficulties or job burnout in house staff after institution of DHRs.

In summary, DHRs have failed to achieve the intended goals of improving patient care or the well-being of house staff. Over the long term, in neurosurgery and perhaps other specialties, compromised inpatient care will potentially continue, and society will come late to recognize that organized medicine failed to anticipate the unintended adverse effect of DHRs. Specifically for neurosurgery education, the implementation of DHRs has had three negative effects: diminution in the overall educational emphasis, constraint on flexibility of individual training, and a deemphasis on research. These three negative effects echo the concerns that Bergland raised in his 1973 article.

See a full reference list on ExpertConsult.com
REFERENCES

Neurosurgery, as a subspecialty in general surgery, is a very recent development, having occurred only in the latter half of the 19th century. Three critical developments and concepts had to occur for neurosurgery to become a specialized subspecialty: anesthesia, antisepsis, and cerebral localization. All three of these developments occurred over less than 40 years (the 1840s to the 1870s). In this chapter, the underlying theme is that neurosurgery advanced as surgeons obtained a better understanding of the anatomy and pathophysiology of the nervous system, a goal that continues to be followed today.

This concept was clearly provided in 1602 by William Clowes, a leading surgeon of the Elizabethan age. Clowes invoked a challenge that neurosurgeons must still overcome, even in the age of computerized imaging, microsurgery, and functional neurosurgery:

Those which are Masters and Professors chosen to perform the like operation, ought indeed to have a Lyons heart, a Ladies hand, and a Haukes eye, for that it is a worke of no small importance.

Hippocrates, the father of medicine, had even further detailed this concept when he stated, “Nullum capitis vulnus contemnedum est”: no head injury should be considered trivial.

NEUROSURGERY IN THE PREHISTORIC PERIOD

Neurosurgery is, in many ways, one of the most ancient of professions. Early humans clearly recognized that to bring down an enemy, a blow to the head was the quickest means. To accomplish this goal, a number of weapons and, in particular, clubs were fashioned to inflict these injuries. Numerous anthropologic collections around the world include examples of skulls with head injuries; more remarkable are a number of skulls with successful trephinations. Early humans clearly recognized that to bring down an enemy, a blow to the head was the quickest means. Numerous anthropologic collections around the world include examples of skulls with head injuries; more remarkable are a number of skulls with successful trephinations. Numerous anthropologic collections around the world include examples of skulls with head injuries; more remarkable are a number of skulls with successful trephinations: that is, the patient clearly survived the surgical opening of the skull. From some cultures, such as early Peruvian communities, there exist many skulls that show evidence of trephinations, in most cases for reasons that remain unknown. Paul Broca (1824–1880) in the mid-19th century was one of the first to speculate that this procedure was performed for religious or medical reasons, but there is no documentation for why these procedures were done. It has become apparent that the surgical skill for performing a trephination was worldwide; there are examples from virtually every major civilization, some dating back approximately 12,000 years. There are three common methods for performing a trephination: (1) scraping away the bone, (2) drilling a series of small holes and connecting them, and (3) making cross-hatch cuts in the bone and connecting them to remove a rectangular piece of bone. A trephine skull on which the scraping technique was used, from the early Chimú culture in Peru, and two examples of the typical tool used to perform the scraping (called a tumi) are illustrated in Figure 1-1.

ANCIENT EGYPTIAN NEUROSURGERY

The earliest known written documents that relate to early neurosurgery date from the ancient Egyptian period. During this period, which covered approximately 30 successive dynasties, the earliest known practicing physician and Egyptian polymath lived: Imhotep, or li-em-Hotep (c. 2650–2600 BC). So powerful was Imhotep’s influence that he was given divine status after his death. This period of history has provided the earliest known existing medical and surgical writings. Three Egyptian papyri that have relevance to medicine still exist: the Ebers, Hearst, and Edwin Smith papyri.

According to these Egyptian papyri, the practice of medicine was based largely on magic and superstition. Medical and surgical treatment relied on simple principles, whereby nature provided restoration of health with little intervention and mostly observation with simple mendicants. Of interest to modern neurosurgeons is the concept that the Egyptians realized that immobilization in a neck or back injury was important in reducing further injury. These early physicians commonly prescribed and applied splints for treatments.

The oldest medical text dates from this early civilization and was written in the 16th century BC, approximately 300 years after Hammurabi. This text, now called the Ebers papyrus, includes more than 100 pages of hieratic writing and is of interest for its extensive discussions of contemporary surgical practice. Included are discussions of the removal of tumors, along with recommendations for the surgical drainage of abscesses.

The oldest work that deals extensively with medical and surgical techniques to deal with traumatic injuries is the Edwin Smith papyrus. Edwin Smith was from New York but had moved to Luxor, Egypt, to become an antiquities dealer; he acquired this papyrus in 1862. Smith spent considerable time translating the document into English. This didactic work appears to have been intended to be a surgical textbook. It was originally written during the time of the New Kingdom. This papyrus scroll is 15 feet in length and 1 foot in width and is written in a cursive hieratic script. The surviving text consists solely of a list of 48 cases, including 22 cases of injuries to the spine and cranium. There is even a case of a cranioplasty (Case 9), discussed along with what might be the earliest reported case of neurofibromatosis (Case 43). Each case is discussed with a diagnosis, followed by a formulated prognosis. As a result of scholarly research by Professor James Henry Breasted, this papyrus was translated again in 1930 from the original hieratic script. More recently (2012), a neurosurgeon (Gonzalo M. Sanchez) and a hieratic script expert (Edmund S. Meltzer) collaborated on reinterpreting the document and provided a more detailed medical/surgical explanation of the various cases. The papyrus is now in possession of the New York Academy of Medicine.

Case Two

Title: Instructions concerning a gaping wound in his head, penetrating to the bone.

Examination: If thou examinest a man having a gaping wound in his head, penetrating to the bone, thou shouldst lay thy hand upon it and thou shouldst palpate his wound. If thou findest his skull uninjured, not having a perforation in it.

Diagnosis: Thou shouldst say regarding him: “One having a gaping wound in his head. An ailment which I will treat.”

Treatment: Thou shouldst bind fresh meat upon it the first day; thou shouldst apply for him two strips of linen, and treat
ABSTRACT

The field of neurosurgery is a very recent one, having developed only as a subspecialty at the end of the 19th century. The profession dates back to origin of Homo sapiens. Conflicts, falls, battles, and other events all have led to various forms of head injuries and trauma; people quickly realized that a blow to the head was the quickest way to bring down an enemy or an animal for food. Trephinations of the skull have been found in human skulls more than 10,000 years of age. This chapter is a review of neurosurgery dating to antiquity. In accordance with various schools of surgery and medicine, the development of neurosurgery is detailed from the writings of surgical experts and various schools of teaching around the world. Formal medical education begins with the Greek schools of the Asclepiads and Hippocrates. Greco-Roman surgeons such as Galen of Pergamon used the spoils of war and gladiators to learn human and animal anatomy and then the surgical skills to treat the surgical injuries. During the Byzantine era, the Islamic schools and Arab teachers codified much of the medical and surgical knowledge of antiquity. Although the medieval period in Europe led to the development of some strong and interesting surgical theories, few advances were made in dealing with head injuries. With the Renaissance came a better and more accurate understanding of human anatomy and, in particular, a better understanding of the brain and its underlying function. Modern experimental medicine and science began with the learned societies of Europe and some leading scientists and physicians. However, advancements in a field of surgery depended on three critical developments and concepts: anesthesia, antisepsis, and cerebral localization. No surgeon could operate on the brain without sufficient knowledge of the anatomic location of the lesion. The operation could be safely performed only with an anesthetized patient and good antisepsis. Before antiseptic techniques were developed, more than 85% of treated patients died of some type of sepsis. The 20th century led to the development of modern neurosurgery. With better instrumentation, diagnostic equipment, and superbly trained surgeons such as Harvey Cushing, the specialty of neurosurgery came into being. This chapter details the schools of teaching that led to the development of neurosurgery as a profession and the prominent individuals involved.
Hippocratic School

The intellectual evolution of neurological surgery originated in the golden age of Greece with the founding of the Alexandrian School in 300 BC. For the first time, open anatomic dissection was incorporated into formal lectures. The concept of a surgeon performing surgery on the head and spine also became formalized for the first time. Because of sporting injuries, particularly gladiator injuries, and wars, head injuries were clearly plentiful and provided ample opportunities to develop the early skills of neurosurgery.

The earliest medical writings from this period are those of Hippocrates (c. 460–370 BC), the most celebrated of the Asclepiadace. Classical philologists consider that many of the writings attributed to Hippocrates were in reality composed by members of the Hippocratic School. The Hippocratic collection includes clinical cases based mainly on observation, and in most cases, only the simplest of theories are offered. The many neurological cases within the Hippocratic corpus reveal that the understanding of head injury was rather sophisticated. Hippocrates was the first to describe a number of neurological injuries, most resulting from battlefield injuries. The vulnerability of the brain to injury was categorized by location in the brain, from lesser to greater, with injury to the bregma being represented as a higher risk than one to the temporal region, which, in turn, was more dangerous than an injury to the occipital region. Hippocrates devoted a full chapter to injuries of the head, *De capitis vulneribus*, which deals with the diagnosis and management of head injuries and is the first systematic work devoted to head injuries. He divided head injuries into five categories that were based on the details of the skull fracture. Five types of fractures are described: linear fracture, contusion, depressed fracture, hemid (or dent) occurring with and without fracture, and contrecoup fracture. The neurological condition of the patient was not thought to have any bearing on the surgical indications. Surgery was advised according to the type of fracture. The greater the injury to the skull, the less was the need for trephination. The technical aspects of the process of trephination are presented in a curious mixture of sound advice and incomprehensible admonitions (Fig. 1-2).

The Hippocratic writings contain numerous anatomic descriptions, even though human dissection appears not to have been routinely practiced. The Greeks also were without an anatomic vocabulary, not to be introduced until Galen standardized the use of the Latin language in medicine. These deficiencies combined to limit any standardized anatomic procedures or the practice of surgery. Despite these drawbacks, the Hippocratic writings contain a number of interesting neurological case studies that reflect a view of the early practice of neurosurgery (Fig. 1-3).

One of the earliest descriptions of subarachnoid hemorrhage appears in the *Aphorisms*:

> When persons in good health are suddenly seized with pains in the head, and straightway are laid down speechless, and breathe with stertor, they die in seven days, unless fever comes on.

Hippocrates and his followers also warned against incising the brain, as convulsions can occur on the opposite side and render the prognosis especially serious. Hippocrates advised against making an incision over the temporal artery, because this could also lead to contralateral convulsions. The writings of Hippocratic schools demonstrate the simple concepts of cerebral localization. Also well understood was the concept of a potential critical prognosis in head injury and that sometimes it was best not to operate. In this early era of medicine, the risk of infection, lack of antiseptic technique, and minimal anesthesia all precluded any serious or aggressive surgical intervention in head injury.

Herophilus of Chalcedon

From the region of the Bosporus, among the crowded schools of Alexandria, came *Herophilus* (*Herophilos*) (335–280 BC), a student of Praxagoras and Chrysippus and a member of the
educated dynasty of Ptolemies. According to his writing, Herophilus performed dissection on humans and not on animals as was the common practice then.²⁰ The work of Herophilus, along with that of Galen later, was key in the task of developing an anatomic nomenclature and in forming a much-needed language of anatomy. In examinations of the nervous system, Herophilus's neurological contributions included following the origin of nerves to the spinal cord anatomically. He was the first to recognize the difference in the motor and sensory tracts. Furthermore, he differentiated between nerves and tendons, thereby correcting a common earlier error. Herophilus was first to detail the anatomy of the brain ventricles and venous sinuses. The description of the “confluence of the sinuses,” or torcular herophili (Λανόζ = wine press), comes from his early investigations. Herophilus provided the first description and naming of the choroid plexus (plexus choroideus), so named because of its resemblance to the vascular membrane (chorion) of the fetus. Herophilus also provided the first detailed account of the fourth ventricle and that peculiar arrangement at its base that he called the calamus scriptorius (Ἀναγλυφη τχ χαλαµχ), which he described as “resembles a pen in writing.” Among his many other contributions was his recognition of the brain as the central organ of the nervous system and the seat of intelligence.²⁰

Herophilus’s writings were not free of errors. An anatomic error that remained in vogue for nearly 1800 years was his introduction into the anatomic literature of the rete mirabile, a structure present in ungulates but notably lacking in higher primates. In ungulates this structure acts as an anastomotic network at the base of the brain, a structure that the Greeks incorporated into the early physiologic theories of brain function.²² In the 2nd century AD, the rete mirabile was later further detailed and elaborated on by Galen of Pergamon. The concept of this structure became entrenched in the anatomic literature, having been codified by the Byzantine Islamic and later European medieval writers, until the 16th century, when it was finally challenged in the anatomic accounts of Andreas Vesalius (1514-1564) and Jacopo Berengario da Carpi (1460-1530).²³⁻²⁵ Both of these anatomists, who performed their own human dissections, clearly recognized that the rete mirabile did not exist in humans. It is possible that the human cavernous sinus confused the early writers and they in turn thought that this represented the rete mirabile.

Aulus Aurelius Cornelius Celsus

Celsus (25 BC-50 AD) was neither a physician nor a surgeon, nor was he a bedside practitioner; rather, he was an intellectual patrician and a medical encyclopedist who attempted to compile all of the important writings of his time. His writings had an important early influence on medicine and surgery. His medical writings were mostly a compilation of the writings from the schools
of Hippocrates and the Asclepiadae and from the Alexandrian schools. Celsus lived during the height of the Roman Empire. As counselor to the emperors Tiberius Caesar and Caligula, Celsus was held in great esteem. His book on medicine, titled De Re Medicina, is now considered one of the most important early medical documents after the Hippocratic writings. Because this work was originally lost, Celsus was one of the few major authors whose works were not transcribed by the Islamic/Arabic writers. In 1443, an early Celsus manuscript was uncovered by Thomas of Sarzanne (later Pope Nicolas V) and reintroduced to the medical community. With the introduction of printing and moveable type, Celsus’s manuscript became the first medical writing to be printed (1478), before even the writings of Hippocrates and Galen. In the De Re Medicina, Book IV, Chapter 10, his classic description of inflammation appears: “Notae vero inflammationes sunt quattuor, rubor, et tumor, cum calore et dolore [There are four signs of an inflammation: redness, swelling, heat, and pain].”

Celsus made a number of interesting early observations in the field of neurosurgery. Celsus believed that all surgeons should be ambidextrous. Book VIII, Chapter 4, contains one of the earliest descriptions of an epidural hematoma resulting from a ruptured middle meningeal artery. For head-injured patients, Celsus recommended that the surgeon always operate on the side of greater pain. Celsus was a strong advocate for use of the trephine in head injuries. He noted that the trephine should always be placed at the point where the pain is best localized. Celsus described a technique for a craniectomy that involved drilling a number of holes and then connecting them with a hammer and chisel. The chisel had a protective blade, which separated the dura from the bone and prevented injury to it during the surgical dissection. However, he regarded the operation of trephination as the ultimum refugium, to be used only when all conservative measures had been exhausted (Fig. 1-4).

Several interesting neurological conditions are described in the De Re Medicina, including accurate descriptions of hydrocephalus and facial neuralgia. In accordance with earlier writings, Celsus clearly recognized that a high cervical spine fracture could lead to vomiting and difficulty in breathing. Injury to the lower lumbar spine could cause weakness or paralysis of the legs, as well as urinary retention or incontinence.

Galen of Pergamon

Galen of Pergamon (129-200 AD), whose name comes from galeno, meaning “calm” or “serene,” is remembered as a powerful personality and an original investigator, as well as a leading proponent of the doctrines of Hippocrates and the Alexandrian school. Galen began his writing career at the age of 13 and continued to add to the literature of medicine, philosophy, mathematics, and grammar until his death at the age of 70. His writings remained the most extensive in early antiquity in size, scope, and influence. Galen’s prodigious output still accounts for more than 80% of all the surviving medical writings of antiquity. Many of his writings and manuscripts, however, were lost in a fire at the Temple of Peace in Rome (Figs. 1-5 and 1-6).

Galen’s life and activity occurred during the reigns of two of the greatest Roman emperors: Antoninus Pius (86-161 AD; reigned 138-161 AD) and Marcus Aurelius (121-180 AD; reigned 161-180 AD). Galen became the physician to the gladiators of Pergamon and, as a result, saw and treated many traumatic injuries. Drawing from both his surgical experiences and anatomic studies, he made a number of contributions to the fields of neurology, neurosurgery, and neuroanatomy. In his writings, Galen differentiated between the pia mater and the dura mater and gave one of the earliest accurate descriptions of the corpus callosum, the ventricular system, the pineal and pituitary glands, the infundibulum, and what is now called the aqueduct of Sylvius. Nearly 1600 years before the Scottish anatomist Alexander Monro secundus (1733-1817), Galen also described the structure now called the foramen of Monro. He performed a number of anatomic experiments, including early studies on the effects of transection of the spinal cord. From these studies, Galen was able to describe the specific loss of function below the level of transection. In a now classic experiment, he sectioned the recurrent laryngeal nerve in dogs and described the hoarseness

Figure 1-4. A, Portrait of Celsus. B, Title page from a 1542 edition of Celsus’s writings. (Courtesy James Tait Goodrich, MD, PhD.)
that occurred (discussed further in Chapter 7; see also De usu partium corporis humani, Book VII, Chapters 11-18).\footnote{29} Galen was the first to provide an early classification of the cranial nerves. In his original classification, he described 11 of the 12 cranial nerves, but because he combined several, he thought the total was only 7. In his descriptions, Galen regarded the olfactory nerve as merely a prolongation of the brain and hence did not consider it as a cranial nerve.\footnote{29} Galen published a number of interesting views on higher cortical functions, embracing views that the brain was responsible for intelligence, fantasy, memory, and judgment. In studying muscle contractions, Galen made the observation that the stimulus originated in the brain and the impulse was carried to the muscle by nerves. These views were original and represented an important departure from the cardiocentric teachings of the earlier medical and philosophical schools such as Aristotle’s. Galen challenged the Hippocratic view that the brain was only a gland and instead attributed to the brain the powers of voluntary action and sensation (encephalocentric), this last being a remarkable advance in thinking for the period.

From a series of anatomic studies, Galen provided some of the earliest observations on cervical spine injury and the resulting disturbance in arm function. Further study of spinal cord injury led to his elegant description of what is now called the Brown-Séquard syndrome, a hemiplegia with contralateral sensory loss that results from a hemisection of the cord. Galen provided one of the earliest clinical descriptions of hydrocephalus and clearly recognized the poor prognosis in affected individuals. Using his extensive experience in head injuries, he provided some innovative arguments for elevation of depressed skull fractures, fractures with hematomas, and comminuted fractures. Galen was more aggressive in his treatment by recommending the removal of bone fragments, particularly those pressing into the brain. In describing surgical techniques, Galen detailed a safer and more reliable use of the trephine and argued particularly for continuous irrigation to a trephine to avoid delivering excessive heat and causing injury to the underlying brain. Galen, following or adapting earlier Hippocratic views, reiterated the concept that the dura should never be violated by the trephine.

Galen was clearly a brilliant physician, surgeon, and early innovator in medicine. Unfortunately, Galen’s writings contained a number of errors, but the historical world, particularly the Byzantine world, later accepted Galen’s writings as the only true authority. As a result, Galen’s writings obtained the status of unchallengeable medical dogma. Galen’s work on neurology and neuroanatomy also remained essentially unchallenged for the next 1500 years. For all practical purposes, any relevant new investigations ceased altogether from Galen’s death until the Renaissance. Some writers have pointed out that Galen was literally idolized by Arabic/Islamic writers and, later, the physicians of the Middle Ages. As a result, Galen’s errors (e.g., writings about the reti mirabile) also remained part of the anatomic literature. Each of these errors or incorrect beliefs were carefully repeated and scribed by subsequent Arabic/Islamic and medieval
Chapter 1: Historical Overview of Neurosurgery

Historical Overview of Neurosurgery

Paulus Aegineta (Paul of Aegina)

Paulus Aegineta (625–c. 6) was a brilliant Byzantine Greek physician and surgeon who also trained in the Alexandrian school. He was an influential compiler of works in both the Latin and Greek schools; his writings, especially The Seven Books of Paul of Aegineta, were being consulted until well into the 17th century; the Compendium was translated into English in the 19th century. His skill as a surgeon, described in the sixth book of the Compendium, clearly reflected an unusual understanding of surgical principles. His skills became legendary, causing patients from far away to consult him. Although Paulus venerated the teachings of the ancients as tradition required, he also introduced his own techniques with good results. His classic work, The Seven Books of Paul of Aegineta, contains an excellent section on head injury and the use of the trephine. Paulus classified skull fractures in several categories: fissure, incision, expression, depression, arched fracture, and, in infants, dent (what is now called a ping pong fracture). In dealing with fractures, he used an interesting skin incision: two incisions intersecting one another at right angles, forming the Greek letter X, one leg of the X incorporating the scalp wound. For the comfort of the patient undergoing a trephination, he would stuff the patient’s ear with wool so that the noise of the trephine would not cause undue distress (see The Seven Books of Paul of Aegineta, Book VI, Section XC) (Fig. 1-7).

In a contemporary discussion on hydrocephalus, Paul of Aegina introduced the intriguing concept that traumatic birth delivery and intraventricular hemorrhage were related; he appears to have been the first to suggest the possibility that an intraventricular hemorrhage and its “inert fluid” might actually cause hydrocephalus:

The hydrocephalic affection...occurs in infants, owing to their heads being improperly squeezed by midwives during parturition, or from some other obscure cause; or from the rupture of a vessel or vessels, and the extravasated blood being converted into an inert fluid....

(Book VI, Section 3, page 250)

One of the reasons for Paulus’s longstanding influence was that several of his manuscripts survived and were continuously recopied by amanuenses over the centuries. These manuscripts depict a number of surgical instruments that he designed specifically for neurosurgical procedures; these include elevators, raspatories, and bone biters. He also introduced trephine bits with conical styles to reduce the risk of plunging, along with different biting edges. Because of his sophisticated wound management, he probably had better-than-average surgical outcomes. He made use of wine-soaked dressings (helpful in antisepsis, although a concept then unknown), and he stressed that dressings should be applied with no compression to the brain itself.

The Greek and Byzantine periods were eras of intense scholarship and original investigation in medicine and surgery and produced physicians and surgeons who were intensely interested in the better management of their patients. As discussed, individuals such as Galen of Pergamon, Paulus Aegineta, Herophilus of Chalcedon, and members of the Hippocratic school all attempted to improve management in head injuries and at the same time uncover some of the principles of brain function. Unfortunately, as discussed in the next section, further neurological investigation and the development of new surgical techniques were seriously impaired because of scholarly reverence of these earlier writers. Although there were some exceptions to this trend, they were distinctly uncommon.
Here is the text representation of the document as if you were reading it naturally:

ISLAMIC/ARABIC MEDICINE: PRESchOLASTIC PERIOD

After the great Greek and Roman periods of medicine, the intellectual centers of this discipline shifted to the Islamic/Arabic and Byzantine cultures. This era, “The Golden Age of Islamic Medicine,” had an influence that lasted from approximately AD 750 until 1200, when the medievalist era began and the influential schools of medicine shifted to Europe. Interestingly, this period in Europe was intellectually quiescent and unimaginative because this area of the world had been overrun and ruled by barbarians (Huns, Goths, and Norsemen), individuals not concerned with high scholarship. Unfortunately for neurosurgery, this was a dormant period; the dormancy prevailed in all facets of surgery. The Islamic/Arabic schools were satisfied to codify the surviving manuscripts from the Greek and Roman period. Remarkable insights were offered, but this was a rather rare phenomenon. However, thanks to the zeal of the Arabic amanuenses, the best of Greek medicine was made available to Arabic readers by the end of the ninth century and remained available into the Middle Ages.

Unfortunately, a rigid scholastic dogmatism became characteristic of these learning centers. Rather than offering innovation, the “writers” became copyists of the great works of antiquities. As a result of their efforts, an amazing number of manuscripts were translated from Latin, Greek, and Hebrew into Arabic, and knowledge that could have been easily lost into antiquity was systematized. Unfortunately, as copyists, these writers frequently added their own “favorite” or contemporary view of the manuscript, and some of the originality was consequently lost in translation. In fairness to these early copyists, they rendered the service of preserving knowledge; in Europe at this time, having been overrun by barbarians, scholarly pursuit remained at a standstill.

A number of modern writers have offered the view that it was the religious influence of the Koran that caused the absence of originality and progress in Islamic/Arabic medicine. It has often been commented on that the Koran forbade dissection; this is only partially correct. Some dissection was allowed and reported on by writers of this time. However, as a practical consideration, the climate in this part of the world was hot, which caused rapid putrefaction of cadavers and made anatomic dissection undesirable. The opinion of these schools was that the Greeks had already accomplished most of the anatomic studies of interest, and so Islamic students of medicine felt no need to duplicate these earlier and more superior efforts. There were some rare exceptions that are discussed as follows.

In Islamic/Arabic medicine, the concept of a physician doubling as a surgeon was rarely acceptable. The more typical practice for a physician was to confine himself to writing learnedly and assign the “menial” tasks of surgery to an individual of a lower class, most typically an apprentice surgeon. As a result of this “demotion” of the surgeon to a mere plebian, the advances in surgery and anatomy developed by the great Alexandrians, among others, were essentially ignored or lost. Fortunately, the writings of physicians such as Galen of Pergamon and Paulus Aegineta were saved and translated into Arabic, but few new techniques or concepts were added.

The dominant period for Islamic scholarship in medicine was the 10th through 12th centuries. Several medical scholars rose to prominence during this period; among the most illustrious were Avicenna (980-1037), Rhazes (865-925), Avenzoar (d. 1162), Albucasis (1013-1106), and Averroës (1126-1198). The writings of these great physicians reveal an extraordinary effort to canonize the writings of their Greek and Roman predecessors. Rather than innovation, these Islamic/Arab scholars and physicians became the guardians and academies of Hippocratic, Greek, and Galenic writings, which now became dogma.

One of the most beneficial teaching methods, and quite modern, did arise during the Islamic/Arabic period: the concept of bedside medical care and teaching. The relative paucity or lack of regular anatomic dissection, along with the prevalent view that surgery was performed only by individuals of inferior status, inevitably reduced any preoccupation with surgical art. Another unfortunate surgical practice that occurred during this period was the reintroduction of the Egyptian technique of using the hot cautery for control of bleeding. In addition, hot cautery was also employed in lieu of the scalpel to create a surgical incision, the results of which often proved unfortunate for surgical patients (Fig. 1-8).

One of the significant scholars of this period was Rhazes (Abu Bakr Muhammad Ibn Zakariya) (865-925). Rhazes was a scholar physician, learned in diagnosis, and a review of his writings reveals him to be loyal exclusively to Hippocratic teachings. Rhazes developed a considerable reputation that led him to become a court physician. Rhazes was not a surgeon, although he did write on surgical topics. Rhazes introduced the use of animal gut as a suture material. Rhazes was an early believer in the concept of “concussion” and would advocate surgery for penetrating injuries of the skull—this in a period when these types of surgical outcomes were almost always fatal. Rhazes believed that head injuries were among the most devastating of all injuries. Because skull fractures could be permanently damaging to the patient as a result of the compression of the brain, his surgical advice would be to elevate these depressed areas of the fractured skull.

Among the most influential physicians of this period was Avicenna (980-1037), physician and philosopher of Baghdad, also known as the chief or “second doctor,” the first being Aristotle. Avicenna’s writings and translations clearly extended the original Greek influence with a force so persuasive and durable that it remained the dominant scholarship until well into the 18th century. His greatest contribution must be judged to have been the detailed translation of Galen’s collected works, the *Open Omnia.* Avicenna’s major work, *Canon Medicinae,* was an encyclopedic effort clearly based on the writings of Galen and Hippocrates. The Greek word *canon* refers to a straight rod, a carpenter rule, or standard of measurement. Accordingly, Avicenna’s *Canon* became the “rule,” the codification of Galen’s and Greek medicine. The *Canon* contains a number of interesting neurological discussions. Avicenna provided an early and accurate clinical understanding of epilepsy, for which his treatment consisted of administering various medicaments and herbs with described good results. Avicenna apparently conducted anatomic studies, although he did not discuss this directly. He gave a correct anatomic commentary on the vermis of the cerebellum.
Historical Overview of Neurosurgery

Albucasis attributed this lack of progress to a lack of anatomic study and inadequate knowledge of the classics. Albucasis clearly believed that anatomic studies were the key to learning and certainly key in performing any surgical interventions. Although his thoughts on anatomic studies were excellent, Albucasis unfortunately popularized the frequent use of emetics as prophylaxis against disease, a form of medical treatment that survived in the form of “purging” and a medical practice that continued until well into the 19th century. So influential were Albucasis’s surgical writings that they remained in use in the schools of Salerno and Montpellier for approximately 500 years and had an enormous influence on medicine in the Middle Ages (Fig. 1-11).

The final section of the Compendium contains a lengthy summary of contemporary surgical practice.38-40 Also included in this part of Albucasis’s work is a unique collection of illustrations of surgical instruments. These illustrations became a long-lasting influence, inasmuch as his style of instrument was used extensively in the schools of Salerno and Montpellier and later became an important influence in the medieval period. Many of the instruments illustrated were probably designed by Albucasis. In the text, he clearly described their design, along with technical aspects of their use. Following up on the earlier writings of the Greeks, he provided a novel design for a “nonsinking” trephine. The design for this instrument and others became classic and formed the template for many later such instruments. Albucasis made so little progress in surgery. Albucasis attributed this lack of progress to a lack of anatomic study and inadequate knowledge of the classics. Albucasis clearly believed that anatomic studies were the key to learning and certainly key in performing any surgical interventions. Although his thoughts on anatomic studies were excellent, Albucasis unfortunately popularized the frequent use of emetics as prophylaxis against disease, a form of medical treatment that survived in the form of “purging” and a medical practice that continued until well into the 19th century. So influential were Albucasis’s surgical writings that they remained in use in the schools of Salerno and Montpellier for approximately 500 years and had an enormous influence on medicine in the Middle Ages (Fig. 1-11).

The final section of the Compendium contains a lengthy summary of contemporary surgical practice.38-40 Also included in this part of Albucasis’s work is a unique collection of illustrations of surgical instruments. These illustrations became a long-lasting influence, inasmuch as his style of instrument was used extensively in the schools of Salerno and Montpellier and later became an important influence in the medieval period. Many of the instruments illustrated were probably designed by Albucasis. In the text, he clearly described their design, along with technical aspects of their use. Following up on the earlier writings of the Greeks, he provided a novel design for a “nonsinking” trephine. The design for this instrument and others became classic and formed the template for many later such instruments. An early and apparently unique technical innovation involved placing a collar on the trephine in a circular manner, a further and rather ingenious design to prevent the trephine from plunging into the brain. Some of the instruments were clearly copied from those described earlier by Paulus Aegineta, but their practical use was further enhanced by their inclusion in the Compendium.

and the “tailed nucleus,” now known as the caudate nucleus. Avicenna’s writings on the treatment of spine injuries and stabilization reveal remarkably modern views for this area33-35 (Figs. 1-9 and 1-10; see also Fig. 1-8).

Whereas Avicenna was clearly the “second doctor,” Albucasis (Abu Al-Qasim or Al-Zahrawi) (936-1013), a learned Islamic Moorish Spaniard, was clearly the best surgeon of the times. In the Islamic tradition, Albucasis was both a great compiler and a serious scholar whose writings (~30 volumes) were focused mainly on surgery, dietetics, and materia medica. Albucasis’s insights into the importance of surgery are clearly revealed in his introduction to the collected works.36-39 In his introduction, Albucasis provides an interesting discussion about why Arabs had
Albucasis’s treatise on surgery is an extraordinary work in so many ways. The text is rational, comprehensive, well illustrated, and designed with the intent to educate the surgeon on details of each treatment, neglecting not even the types of wound dressings to be used. Albucasis’s techniques of brain surgery, however, were extremely crude. In fact, modern readers can only wonder how patients would allow themselves to undergo some of his surgical practices. For chronic headache, he applied a hot cautery to the occiput, burning through the skin but not the bone. Another headache treatment he described required hooking the temporal artery, twisting it, placing ligatures, and then, in essence, ripping it out.

For neurosurgeons, Albucasis identified and described various types of spinal injury. Albucasis recognized the seriousness of spinal injury, particularly dislocation of the vertebrae. In cases of total subluxation, he appreciated that the prognosis was essentially terminal because affected patients demonstrated involuntary activity (passing urine and stool), along with flaccid limbs. He was quite innovative in dealing with the lesser spinal injuries. In his surgical writings, Albucasis described and illustrated some of the methods and splints he used for reduction of such injuries. To modern readers, some of these techniques might seem to be dangerous in design, especially stabilizations that required an aggressive combination of spars and winches, as well as a “stretching” of the spinal column. Following earlier Greek and Byzantine views, Albucasis believed that bone fragments in the spinal canal should be removed. In reviewing skull fractures, Albucasis has an elegant discussion of the pediatric “ping-pong” fracture of the skull:

This is a fracture due to a fall or a blow from a stone and the like, making a dent in the surface of the bone and a hollow at the site as occurs in a bronze bowl when a blow falls on it and a portion of it is pushed in. This mostly occurs in heads whose bones are soft, as those of children.

The treatment of hydrocephalus was a vexing problem for surgeons and physicians because its outcome was almost always fatal. Albucasis recommended drainage of cerebrospinal fluid in hydrocephalus via a series of drains and wicks. He designed a lenticular shaped surgical tool to make the puncture, which was performed over the anterior fontanelle. Having detailed the technique well, he then noted the outcome is almost always fatal. Of interest is that the surgery was not the issue; rather, he attributed the poor outcomes to “paralysis” of the brain from relaxation. Albucasis cleverly pointed out that the physician must pick the site for drainage carefully and must never cut over an artery because the potential hemorrhage can rapidly lead to death. Some 20th century authors have advocated the treatment of hydrocephalus by binding the head with tight wraps. Albucasis was advocating this form of treatment more than 1000 years ago. For a child with hydrocephalus, he would bind the head with a wrap and then put the child on a “dry diet” with limited fluid intake to help dehydrate the child. In retrospect, this was a rather progressive and reasonable treatment plan for this disorder.

MIDDLE AGES: THE AGE OF MEDIEVAL MEDICAL SCHOLASTICISM

In the early Middle Ages, the influence of the Islamic/Arabic schools on medicine was beginning to lessen, along with a geographic switch in which intellectual centers for medicine were forming in Europe. With the advent of medieval scholasticism, a new school of thought developed in which philosophical and metaphysical explanations and dialectic interpretations became prominent in medical schools. One of the preeminent schools proposing this view was the School of Salerno.

Figure 1-12. An illustration of Constantine the African lecturing at the School of Salerno. (Courtesy James Talt Goodrich, MD, PhD.)
education and surgical practice continued to be an avocation limited to uneducated barber-surgeons and apprentices. Nonetheless, there were a few exceptionally talented surgeons who developed some original surgical works and practices.

Roger of Salerno (Ruggiero Frugardi) (fl. 1170) is considered the first learned medieval European writer on surgery (Figs. 1-13 and 1-14). Roger was educated in the Salerno tradition and followed many of its teachings. His book on surgical practice, Practica Chirurgiae, offers several interesting surgical techniques of interest to neurosurgeons. An example was his technique for checking for a tear of the dura and leakage of cerebrospinal fluid in a patient with a skull fracture. To detect a leak, Roger would have the patient hold his or her breath and strain (i.e., the Valsalva maneuver) and then look for air bubbles around the fracture site, this being a clear sign of a leak. Roger was a pioneer in the techniques of managing peripheral nerve injury. For a severed nerve, he argued for reanastomosis of the nerve ends with close attention paid to their alignment. In dealing with the large bleeding veins of the neck, he urged direct ligation with a suture rather than cautery. For neurosurgeons, several chapters of his text are devoted to the treatment of skull fractures. Much of the described technique mirrors views of earlier classical writers, but the style is clearer and more succinct. This style is exemplified in this short description of management of various skull fractures:

When a fracture occurs it is accompanied by various wounds and contusions. If the contusion of the flesh is small but that of the bone great, the flesh should be divided by a cruciate incision down to the bone and everywhere elevated from the bone. Then a piece of light, old cloth is inserted for a day, and if there are fragments of the bone present, they are to be thoroughly removed. If the bone is unbroken on one side, it is left in place, and if necessary elevated with a flat sound (spatumile) and the bone is perforated by chipping with the spatumile so that clotted blood may be
soaked up with a wad of wool and feathers. When it has consolidated, we apply lint and then, if it is necessary (but not until after the whole wound has become level with the skin), the patient may be bathed. After he leaves the bath, we apply a thin cooling plaster made of wormwood with rose water and egg.

A 12th-century manuscript owned by Harvey Cushing and attributed to Roger of Salerno contains an early description of a soporific for pain relief, for use in surgery. The soporific consisted of bark of mandragora (mandrake), hyoscyamus (henbane), and levisticum (lovage) seed, all of which were mixed together and ground and then applied wet to the forehead of the patient. In view of the ingredients, it was unlikely that this soporific was able to achieve any real pain relief. In Roger’s writings on surgical anatomy, many of the old errors persisted because of his recapitulating earlier anatomic treatises. Roger was particularly fond of citing the writings of Albucasis and Paulus Aegineta. He strongly favored therapeutic plasters and salves but was not a strong advocate of the popular treatment of application of grease to injuries of the dura. Interestingly, Roger advocated the use of trephination in the surgical treatment of epilepsy, although he did not indicate why this technique would work. Chapters (capita) 1 to 13 are of particular interest to neurosurgeons because they detail contemporary surgical treatment of scalp wounds and fractures of the skull. One of Roger’s most significant errors in surgical practice was the concept that provoking pus suppuration in a wound encouraged healing. The concept of “laudable pus” in wound healing was introduced here and seriously hampered wound care until the time of Sir Joseph Lister and 19th-century antisepsis.

An unusually talented and inventive medieval surgeon from Bologna was Theodoric of Cervia (Borgognoni) (1205–1298). In comparison with Roger of Salerno, Theodoric was a pioneer in the use of aseptic technique; not the “clean” aseptic technique of today, but rather a method based on avoidance of “laudable pus.” Theodoric believed that he had found the ideal conditions for good wound healing, which included control of bleeding, removal of contaminated or necrotic material, avoidance of dead space, and careful application of a wound dressing bathed in wine, the last providing a degree of antisepsis. He also argued for primary closure of all wounds when possible and avoiding “laudable pus.”

For it is not necessary, as Roger and Roland have written, as many of their disciples teach, and as all modern surgeons profess, that pus should be generated in wounds. No error can be greater than this. Such a practice is indeed to hinder nature, to prolong the disease, and to prevent the conglutination and consolidation of the wound.

Theodoric’s surgical work was first written in 1267, and it is one of the best reviews of contemporary medieval surgery. He is also remembered as one of the earliest writers to include illustrations of his techniques in his book. Theodoric surgical technique called for meticulous (almost Halstedian) techniques, with gentle handling of surgical tissues being key. Theodoric believed that aspiring surgeons should train only under competent masters. In the field of head injury, Theodoric argued that parts of the brain could be removed through a wound with little effect on the patient. In the treatment of skull fractures, he strongly argued for elevating depressed fractures. Theodoric advocated avoiding any punctures of the dura because these could lead to abscess and convulsions, thereby resulting in adverse outcomes. For pain relief during surgery, he developed his own “soporific sponge,” containing opium, mandragora, hemlock, and other less important ingredients, which he applied to the patient’s nostrils; once the patient fell asleep, Theodoric began surgery. Opium was probably the key ingredient in this recipe.

William of Saliceto (Guglielo da Saliceto) (1210–1277) was a uniquely skilled Italian surgeon and a professor at the University of Bologna. William’s book on surgery, Chirurgia (or Cypurgia), completed in 1275, contained some highly original concepts that were not totally based on previous classical writings but in which the influence of Galen and Avicenna is clear. This book was written by William for his son Bernardino. The text is mostly original and based on his own observations. Rarely did William quote other writers. Book IV contains the earliest known treatise on surgical and regional anatomy. His most significant contribution during this era was his decision to discard the surgical technique of burning with cautery and use instead the surgical knife: De anathomia in communi et de formis membrorum et figures que sunt considerande in incision et cauterizatone.

[The anatomy of the members and the figures concerning the forms of which are to be considered in general and in the incision and cauteration.]

William’s writings contain some interesting and unique techniques for a primary peripheral nerve suture repair. In this pre-Harveian era, he was able to distinguish arterial bleeding from venous bleeding by the “spurtting” of blood. William’s views on the brain were also unique by contemporary standards, inasmuch as he put forth some interesting neurological concepts that the cerebrum governs voluntary motion and the cerebellum involuntary function.

Leonardo of Bertapaglia (ca. 1380–1460) was a prominent 15th-century Italian surgeon and writer. Leonardo established an extensive and lucrative practice in the area of Padua and in neighboring Venice. At a time when anatomical dissection was rarely practiced in Europe, Leonardo became one of the earliest proponents of the study of anatomy. In 1429 he offered a course of surgery that included the dissection of an executed criminal. Leonardo devoted one third of his book to surgery of the nervous system and head injuries. He considered the brain the most precious of organs, regarding it as the source of voluntary and involuntary functions. In his treatment of skull fractures, he always avoided materials that might generate pus. Leonardo argued for never placing a compressive dressing that might drive bone into the brain; if a piece of bone pierced the brain, the surgeon was to remove it.

Leonardo put together a set of rules to guide the practice of a 15th-century surgeon that are still applicable five centuries later:

To be the perfect surgeon, you must always bear in mind these eight notations, and remembering them you will be prefered to others.

The first task…to become a good surgeon should be to have his eyes….

Second, you must accompany and observe the qualified physician, seeing him work before you yourself practice….

Third, you must command the most gentle touch in operating and treating lest you cause pain to the patient….

Fourth, you must insure that your instruments be sharp and unrusted whenever you cut anywhere….

Fifth, you must be courageous in operating and cutting but timid to cut in the vicinity of nerves, sinews and arteries, and, so as not to commit error, you should study anatomy, which is the mother of this art…perform your surgery cleverly and never operate on human flesh as if you were working on wood or leather….

Sixth, you must be kind and sympathetic to the poor, for piety and humility greatly augment your reputation and the sick will more freely commit themselves to your care.

Seventh, you must never refuse anything brought you as a fee, for the sick will respect you more.

Eighth, you must never argue about fees with the sick, or indeed demand anything unless it be previously agreed upon, for avarice is the most ignoble of vices and should you be so inflicted, you will never achieve the reputation of a good doctor.
Lanfranchi (Lanfranc) of Milan (c. 1250-1306) was a pupil of William of Saliceto and was often referred to as the father of French surgery. Lanfranchi also advocated his teacher’s use of the knife in place of the burning cautery. Although born and educated in Italy, he had to leave Italy for France to avoid political strife. His *Cyrurgia Parva* details a number of interesting surgical techniques. Lanfranchi perfected the use of the suture for primary wound repairs. He was among the first to associate the direct effect of head injury on brain function. Hippocrates had been the first to articulate the concept of *commotio cerebri*, but Lanfranchi provided the first modern characterization of what is now known as a cerebral concussion. For surgeons, he developed a series of guidelines for trephination in skull fractures and “release of irritation” of dura. Because of the dangers of skull surgery, Lanfranchi argued for employing the trephine only when absolutely necessary; for other cases, he invoked the skills of the “Holy Ghost” to provide the cure. Among his innovative surgical techniques was the development of esophageal intubation during surgery, a technique not commonly practiced until the 19th century. As an educated surgeon and a “surgeon of the long robe” (i.e., academic), he attempted to elevate the art and science of surgery above the mediocre level of the menial barber-surgeon (“surgeon of the short robe”). Lanfranchi also argued against the separation of surgery and medicine, advocated since the time of Avicenna, believing that a good surgeon should also be a good physician (Fig. 1-16).

Another important person in the history of French medicine and surgery was Henri de Mondeville (c. 1260-1317). Educated in Paris and Montpellier, Henri later went on to become a professor at Montpellier. Henri was strongly motivated to elevate the profession of surgeon, and he clearly detested the barber-surgeons, stating, “Most of them were illiterates, debauchees, cheats, forgers, alchemists, courtesans, procuresses, etc.”

In 1306 Henri undertook the task of developing a new treatise on surgery for the education of his students at Montpellier. Unfortunately, because of tuberculosis and general ill health, he never completed the manuscript; the edited portions were not published until 1892, when Professor Julius Pagel of Berlin completed the task. Henri adopted and followed a number of the views of Lanfranchi. He was a believer in clean wounds and avoiding “laudable pus.” Unfortunately, Henri would be the last surgeon in this era to argue for avoiding “laudable pus.” Subsequent surgeons returned to the older belief that the development of pus in a wound was a good sign of healing. Henri offered some originality in wound management by advocating for healing by primary intention: *modus novus noster*. In surgical treatment of wounds, he encouraged the removal of foreign bodies and the use of wine dressings in wound care, the wine acting as an antiseptic and providing better healing. Henri’s designs of a number of surgical instruments were clever. He is remembered for the design of a needle holder and also a forceps-type instrument for extraction of arrowheads. Henri was a bit more conservative than his predecessors in dealing with head injuries. He argued against elevating skull fractures if there was no injury to the overlying soft tissues, believing that nature would do a better job of healing the fracture by natural union. It was his opinion that unnecessary exploration and probing of the wound would only cause more injury than natural healing; in retrospect, such an insight into wound care was brilliant.

No history of surgery can be complete without a discussion of the contributions of Guy de Chauliac (1300-1368). He was clearly the most influential European surgeon of the 14th and 15th centuries. He was so highly respected that he became physician to three popes at Avignon (Clement VI, Innocent VI, and Urban V) and leading surgeon and educator at the school of Montpellier. Guy was educated in Toulouse, Paris, Montpellier, and Bologna. He was an early proponent of anatomic dissection of a human cadaver. He stated, “In these two ways we must teach anatomy on the bodies of men, apes, swine, and divers other animals, and not from pictures, as did Henri de Mondeville who had thirteen pictures for demonstration of anatomy.” His writings were popular and continued to exert an influence on surgery until well into the 17th century. His principal didactic surgical text, scribed in 1363, was titled the *Collectorium Chirurgicale*. There are 34 known manuscripts of this work; the first printed edition appeared in 1478, and more than seventy editions have been published since (Fig. 1-17).

In promoting surgeons as individuals more skilled than “mechanics” (i.e., barber-surgeons), he stated four conditions that must be satisfied for a practitioner to be a good surgeon: (1) the surgeon should be learned; (2) he should be expert; (3) he must be ingenious; and (4) he should be able to adapt himself (from the introduction of *Ars Chirurgica*). Guy devised interesting techniques for the treatment of head injuries. For example, before the beginning of surgery, he recommended shaving the patient’s head so as to prevent hair from getting into the wound and interfering with primary healing. For depressed skull fractures, Guy preferred to put wine-soaked cloths into the injured site to assist healing. He categorized head injuries into seven types and discussed the management of each in detail. He believed that scalp wounds required only cleaning and débridement but that a compound depressed skull fracture must be treated by means of trephination and elevation. Skin closure was done by primary repair, for which he claimed good results. To help control excessive bleeding and provide hemostasis, he used egg albumin. For reasons that are not at all clear, Guy set back good surgical healing by readopting the views of “laudable pus” as being good for wound healing. “Laudable pus” remained part of surgical

Figure 1-16. Surgical instruments designed by Lanfranchi of Milan. This illustration appeared in this early 1519 book. (From *Lanfranchi of Milan. Chirurgia. In: Cyrurgia Guidonis de Cauliaco et Cyrurgia Brunii, Teodorici, Rolandi, Lanfranci, Rogeri, Bertapale. Venice: Bernardinus Venetus de Vitalibus; 1519. Courtesy James Tait Goodrich, MD, PhD.)
practice and was not to be corrected until the works of Sir Joseph Lister nearly 500 years later.

As England was moving away from the period of barbarian invasions and into the Middle Ages, university education in England began to become comparable with the European model. The leading surgeon of this period in England was John Arderne (Arden) (1307-1380), who trained as a military surgeon and had much war experience. In 1370 he came to London and joined the Guild of Military Surgeons. He characterized himself as chirurgus inter medici (a surgeon among physicians). His manuscript on surgery was written circa 1412. This manuscript, De Arte Phisicali et de Cirurgia, translated into English by D’Arcy Power in 1922, was a valuable addition to the English literature on early surgery. John Arderne was evidently a very skilled surgeon with a number of practical insights into what could or could not be done surgically. He believed firmly in clean hands and well-shaped nails for surgery, although some writers have thought that this was more for social reasons than surgery. In addition, he would bathe his open wounds with an irrigation that contained turpentine, a useful surgical antiseptic for keeping wounds clean. Of most importance, John Arderne was a firm believer in education and learning. In addition, he wrote that the surgeon must “always be sober during any surgery as drunkenness destroys all virtue and brings it to naught.”

The late Byzantine/Islamic and medieval periods were an era of great misguided intellectual activity and of unoriginality of thought. Clearly the educators had more faith in the teachings of antiquity. From the fall of the Roman Empire to the beginning of the 16th century, anatomy and the practice of surgery, with only rare exceptions, remained stagnant, guided by a staunch Galenic and Hippocratic orthodoxy. The translation of medical manuscripts from Latin, Greek, and Hebrew into Arabic and back into Latin resulted in many errors of translation and interpretation. The combination of a lack of anatomic knowledge and poor surgical outcomes naturally led physicians to recommend against operating on the brain, except in simple cases. A review of the work done by the surgical physicians just described reveals that despite a period of intellectual paralysis, a number of prominent physicians did make some advances. It is clear that monastic recluses in often-inaccessible mountain retreats carefully guarded medical knowledge, but despite this state of affairs, some surgeons clearly succeeded in mastering their art in the midst of intellectual darkness.

The history of medicine consists of a successive series of intellectual movements proceeding from different centers and each engulfing its predecessor.

ORIGINS OF NEUROSURGICAL PRACTICE IN THE RENAISSANCE

With the Renaissance came interesting innovations in surgical concepts and techniques. Beginning in the mid-15th century, physicians and surgeons introduced basic investigative techniques to learn human anatomy and physiology. Of enormous significance was the introduction of routine anatomic dissection in medical schools. Moving away from subservience to the medievalists, great physicians such as Leonardo da Vinci, Jacopo Berengario da Carpi, Nicholas Massa, and Andreas Vesalius explored the human body without being encumbered by the erroneous writings of earlier authors. Codified anatomic errors, many ensconced since the Greco-Roman era, were being corrected. A better understanding of human anatomy led to a change of epistemologic presuppositions, which led to a great surge of interest in surgery. Putting the teachings of antiquity aside, surgeons began, with great vigor and enthusiasm, to investigate medical mysteries. As a result of this shift from the somber and somnolent medieval period to the enlightened, radically inventive Renaissance, the early foundations of modern neurosurgery were laid.

Any discussion of Renaissance surgery and anatomy has to begin with Leonardo da Vinci (1452-1519), the quintessential Renaissance man. Multitalented, recognized as an artist, an anatomist, and a scientist, da Vinci used the dissection table to better understand surface anatomy and its relationship to art and sculpture. From his studies, da Vinci is now recognized as the founder of iconographic and physiologic anatomy. He provided the earliest, albeit crude, diagrams of the cranial nerves, the optic chiasm, and the brachial and lumbar plexi. He developed a wax casting technique that allowed him to work out and understand the anatomy of the ventricular system. To do this, he took a fresh brain and poured a liquid wax into the ventricles and placed a hollow tube to allow egress of the air. His experimental studies included sectioning a digital nerve in a living person and noting that the affected finger no longer had sensation, even when placed in a fire. Da Vinci was not a surgeon, but he gave an important impetus to the study of anatomy and the defining of correct anatomic relationships—vital concepts for any surgeon. Unfortunately, he died before he could finish his great opus on anatomy, which was to be published in approximately 120 volumes. His anatomic manuscripts did circulate among the artist community in Italy throughout the 16th century, only to be lost; then they were rediscovered in the 18th century by William Hunter (1718-1783). These anatomic works had a profound influence on artists and physicians and subsequently on the development of modern anatomic studies. Da Vinci, as a founder of modern anatomy, provided a creative spark to reexplore the human body by hands-on dissection (Figs. 1-18 to 1-20).
introduced in weapons of war. This work was considered to be valuable enough to be plagiarized and published in a pirated edition the same year and appeared in many other editions throughout the 16th century. In the 1513 edition, the first illustration of a patient with a head injury undergoing treatment was added to the work (Fig. 1-21).

One of the early Renaissance surgeons who incorporated some of the recently revealed anatomic concepts was Hans von Gersdorff (1455-1529). In his surgical book Feldtbüch der Wundartzney, published in 1517, are some of the earliest illustrations on surgical technique. Gersdorff was a military surgeon and,
with more than 40 years of war experience, became quite adept at handling battlefield injuries. This handbook for surgeons was divided into four parts: anatomy, surgery, leprosy, and a glossary of anatomic terms, diseases, and medications. The section on anatomy was based on his own extensive experience, and he used the earlier writings of the Islamic physicians and the works of Guy de Chauliac. The surgical portion deals with military surgery, mostly on how to extract foreign objects, tourniquet techniques to control bleeding, and amputation techniques. Several woodcuts dealing with surgical technique and surgical instrumentation are of interest to modern neurosurgeons; one woodcut clearly illustrated a third nerve palsy on the side of the depressed skull fracture and a facial paralysis on the opposite side. Included in this work is also the first plate showing a dissection of the human brain. This surgical work became very popular and was published in several editions; this was because of both its practical presentation of surgery and the illustrations in the text (Fig. 1-22).

One of the greatest physicians in the history of surgery remains Ambroise Paré (1510-1590), a poorly educated, humble Huguenot, an individual whom many historians have considered the father of modern surgery. After extensive military surgical experience, Paré was able to organize and publish a great deal of practical knowledge, along with innovative instrument designs. At this time, most physicians and surgeons published their writings in Latin; Paré preferred to publish in French instead. His books therefore were more widely disseminated and appreciated. As his reputation grew, Paré became a valued surgeon to the European royal courts. One of Paré’s most famous cases was a head injury sustained by Henri II of France. Paré (and also Andreas Vesalius) attended the king and was also present at the autopsy. Henri II had suffered penetrating right orbital injury and a subdural hematoma after a joust during the celebration of the marriage of his daughter, Elizabeth of France, to Philip, King of Spain. When Paré described the clinical findings in Henri II, he noted that the patient complained of a headache and blurred vision. Henri II went on to develop vomiting, lethargy, and ominous signs of decreased respiration, and he died 11 days after the injury. Paré postulated that the injury was caused by a tear in one of the bridging cortical veins, and he was clearly describing signs of increased intracranial pressure. Paré’s remarkable clinical observations and clinical history were confirmed at autopsy. Thus, despite humble beginnings, Paré became one of the most celebrated physicians in this formative period of surgery (Figs. 1-23 and 1-24).

Paré commented on the “surgeon’s duties”:

Five things are proper to the duty of a Chirurgeon: To take away that which is superfluous; to restore to those places such things as are displaced; to separate those things which are joined together; to join those which are separated and to supply the defects of nature. Thou shalt far more easily and happily attain to the knowledge of these things by long use and much exercise, than by much reading of Books, or daily hearing of Teachers. For speech, how perspicuous and elegant soever it be, cannot so vively express anything, as that which is subjected to the faithfull eyes and hands.

Among Paré’s surgical works, his writings on the brain remain the most remarkable. Book X is devoted to the diagnosis and management of skull fractures. Although it was not an original idea, Paré popularized the interesting technique of elevating a depressed skull fracture through the use of the Valsalva maneuver:

…for a breath driven forth of the chest and prohibited passage forth, swells and lifts the substance of the brain and meninges where upon the frothing humidity and sanies sweat forth.
Berengario dreamed that he was visited by a man wearing a cap adorned with a rooster feather and golden-winged sandals (i.e., Hermes Trismegistus, or the Third Mercury), who encouraged Berengario to write a treatise on skull fractures and head injuries. The result was a marvelous tractatus, the first printed work devoted solely to injuries of the head. In the text, original surgical techniques are discussed, along with the earliest illustrations of cranial instruments designed for surgical treatment of head injury. As an anatomist, Berengario, like Leonardo da Vinci, provided one of the earliest and most complete discussions of the ventricular system. Berengario presented some of the earliest descriptions of the pineal gland, choroid plexus, and lateral ventricles. His anatomic illustrations are among the first published from actual anatomic dissections. He was a firm believer in anatomic dissection because that was the only way to learn the anatomy; he believed that the written word alone was useless, and he observed that the earlier writings were full of anatomic errors. His anatomic writings were among the first to challenge the medieval dogmatic writings of Galen and others.

A less known writer and anatomist of the Renaissance was a Marburg professor by the name of Johannes Dryander (Johann Eichmann) (1500-1560). In 1536, Dryander published an illustrated work (expanded in 1537) on the brain and skull. Through this method, both blood and pus can be expelled from the fracture site.

Paré’s surgical techniques demonstrated some unusual and unique advances over those of previous writers. Paré provides extensive discussion on the use of trephines, shavers, and scrapers. He was skilled at removal of osteomyelitic bone, incising the dura and evacuating blood clots and pus, procedures that surgeons had previously performed only with a great deal of trepidation. He advocated débridement of wounds for good healing, emphasizing that foreign bodies must be removed from injury sites. Paré’s most significant change in contemporary surgical practice was the serendipitous discovery that boiling oil should not be used in gunshot wounds, contrary to common surgical practice; instead, a dressing of egg yolk, rose oil, and turpentine provided for much improved wound healing and in turn led to a dramatic reduction in morbidity and mortality. Paré also discarded the older Islamic technique of hot cautery for control of bleeding, substituting instead the use of ligatures, which enhanced healing and reduced blood loss. The improvement in his results was a source of wonder to Paré and gave rise to his famous aphorism:

Je le pansay, Dieu le guarit.
[I took care of him, but God cured him.]

Among the Renaissance “giants” of anatomy and surgery was the great Italian surgeon and anatomist Jacopo Berengario da Carpi (1470-1550). In 1518, Berengario wrote the second monograph devoted solely to treating injuries of the head (the first being that of Hippocrates). This book was motivated by Berengario’s successful treatment of a serious head injury in Lorenzo de Medici, Duke of Urbino. Shortly after he had treated the duke, Berengario dreamed that he was visited by a man wearing a cap adorned with a rooster feather and golden-winged sandals (i.e., Hermes Trismegistus, or the Third Mercury), who encouraged Berengario to write a treatise on skull fractures and head injuries. The result was a marvelous tractatus, the first printed work devoted solely to injuries of the head. In the text, original surgical techniques are discussed, along with the earliest illustrations of cranial instruments designed for surgical treatment of head injury. As an anatomicist, Berengario, like Leonardo da Vinci, provided one of the earliest and most complete discussions of the ventricular system. Berengario presented some of the earliest descriptions of the pineal gland, choroid plexus, and lateral ventricles. His anatomic illustrations are among the first published from actual anatomic dissections. He was a firm believer in anatomic dissection because that was the only way to learn the anatomy; he believed that the written word alone was useless, and he observed that the earlier writings were full of anatomic errors. His anatomic writings were among the first to challenge the medieval dogmatic writings of Galen and others.
dissections, the results of which included these remarkable neuroanatomic drawings (Figs. 1-28 and 1-29).

Military surgery has always been a great educator of surgeons, and one of those particularly influenced by his military service was Volcher Coiter (1534-1576). Coiter was an army surgeon and city physician in Nuremberg who had the good fortune to study under several contemporary experts, including Gabriele Fallopius, Bartolomeo Eustachius, and Ulisse Aldrovandi. As a result of their teachings and education, Coiter was able to undertake unique and original anatomic and physiologic investigations. Among his anatomic descriptions are the first anatomically correct details of the anterior and posterior spinal roots. He was the first to distinguish gray from white matter in the spinal cord. Coiter had a particularly strong interest in the spine, which led him to conduct a number of anatomic and pathologic studies of the spinal cord, including an early model of decerebrate posturing. Coiter also provided a number of details on how to trephine skulls of birds, lambs, goats, and dogs. He was the first to associate the pulsation of the brain with the arterial pulse. As an early neurosurgeon and investigator, he reported on opening the brain and removing parts of it with no ill effects noted: an early, surprising precursor attempt at cerebral localization.

One of the most skilled of Renaissance surgeons was a Venetian, Giovanni Andrea della Croce (c. 1509-1580). Della Croce was a follower of Paré and adopted many of his techniques and beliefs. A combination of surgical skill and a Renaissance flair for design led della Croce to produce a remarkable book on surgery in 1573. Within this monograph are some of the most beautifully engraved scenes of neurosurgical operations. As was typical for the period, surgical operations were performed in family homes, typically in the bedroom (with the occasional dog lying at the foot of the bed). Della Croce verbally, and in drawings, described the techniques for performing trephinations. Several illustrations show the various types of arrows, spears, and bullets used in warfare, and the techniques for their removal are detailed. An additional series of plates shows his instrument designs for performing neurosurgical procedures. One illustration is of a bloody trephination being performed with minimal anesthesia—a concept considered horrific by modern readers—in a beautifully appointed nobleman’s bedroom (Figs. 1-30 and 1-31).

Della Croce illustrated a number of trephination instruments in this monograph, some of which were an improvement on their predecessors. Della Croce’s trephination drill was rotated by means of an attached bow, in the manner of a carpenter’s drill. Various trephine bits are proposed and illustrated, many surprisingly modern, with conical designs to avoid plunging. The illustrations of surgical instruments include Penfield-style elevators for lifting depressed skull bone.

An expert in surgery and anatomy whose work typifies the great strides of learning in the Renaissance was Andreas Vesalius (1514-1564). Vesalius was educated at Louvain, Montpellier, and Paris, all staunch schools of Galenic orthodox teaching. Rejecting the views of his Galen-enthralled professors, Vesalius provided an innovative and dramatic approach to anatomic dissection (Figs. 1-32 and 1-33). Following up on the theme of the earlier 16th century anatomists such as Leonardo da Vinci and Jacopo Berengario da Carpi, Vesalius argued that anatomic dissections had to be performed by the teacher, not by an ignorant prosector being guided by a professor who sat at the lectern reading from a Galenic monograph on anatomy.

Figure 1-26. A, Neurosurgical trephine (hand brace) designed by Jacopo Berengario da Carpi, very similar to what we call a Hudson brace today. B, Berengario designed a series of very imaginative trephine bits for making bur holes and craniectomies. To prevent plunging, the bits are designed with a conical shape. (From Berengario da Carpi J. Tractatus de Fractura Calvae Sive Cranei. Bologna, Italy: Hieronymus de Benedictus; 1518. Courtesy James Tait Goodrich, MD, PhD.)
CHAPTER 1 Historical Overview of Neurosurgery

Figure 1-27. Title page with an allegorical anatomic dissection scene from Jacopo Berengario da Carpi’s 1522 work on anatomy. (From Berengario da Carpi J. Isagoge Breves: Perlucide ac Ubertine in Anatomia Humani Corporis: A Co[m]uni Medicorum Academia Usitatam…. Bononiae, Italy: B. Hectoris; 1522. Courtesy James Tait Goodrich, MD, PhD.)

Figure 1-28. Title page from Johannes Dryander’s work on the anatomy of the human brain. This work included the earliest realistic illustrations of brain anatomy. (From Dryander J. Anatomiae. Marburg, Germany: Eucharius Cervicornus; 1537. Courtesy James Tait Goodrich, MD, PhD.)

Figure 1-29. A, Johannes Dryander’s illustrations of scalp and skull dissection, revealing the dura and brain in layers. B, “Cell doctrine” theory within the ventricular system, as illustrated by Dryander. (From Dryander J. Anatomiae. Marburg, Germany: Eucharius Cervicornus; 1537. Courtesy James Tait Goodrich, MD, PhD.)
Vesalius was appointed professor of anatomy at Padua at the young age of 23. At the age of 28, in 1543, Vesalius produced his great work, *De Humani Corporis Fabrica*.[75] Book VII is an extensive discussion on the anatomy of the brain.[76] Included in the chapter are detailed anatomic discussions with excellent illustrations. Following up on his anatomic caveats, Vesalius noted the “heads of beheaded men are the most suitable [for study] since they can be obtained immediately after execution with the friendly help of judges and prefects.”[76]

Vesalius was also trained as a surgeon. The *Fabrica* contains a section of text on the brain and the dural coverings in which Vesalius discussed mechanisms of brain injury and how the various membranes and bone have been designed to protect the brain. In his second edition of *Fabrica* (1555), Vesalius provided an early and interesting case of a child with hydrocephalus and remarked on the condition as originating from cerebrospinal fluid; however, Vesalius was unable to offer any surgical treatment: “…in ipsius cerebri cavitate, adeoque in dextro sinistroque illius ventriculis: quorum cavitas ampludoque ita increverat, ipsumque cerebrum its extensus fuerat, ut novem fere aquae libras…continuerint”[“In the same brain cavity, the right and left ventricles’ cavity space thus increased, and the brain was so spread out; nearly nine pounds of water…was contained”).[77] Of interest is that several of the initial letters in the text are illustrated with little cherubs performing trephinations!

A contemporary of Vesalius and another leader in Renaissance anatomic studies was a Parisian anatomist, Charles Estienne (1504-1564). His book on anatomy, *De Dissectione Partium Corporis Humani Libri Tres*,[78] was actually completed in 1539, thereby predating Vesalius’s work by 4 years, but legal problems delayed its publication until 1546. This book is most notable for a wealth of beautiful anatomic plates dealing with neuroanatomy. It contains representations of a series of anatomic figures with the subjects posed against sumptuous and imaginative Renaissance backgrounds. In the text, the anatomic details are not as original as Vesalius’s anatomic treatise. In addition, many of the errors introduced by Galen and his followers are repeated in Estienne’s text descriptions. However, the plates on the nervous system are quite graphic and among the most illustrative of this period. An important work, albeit with errors, it does detail the anatomy of the skull and brain more accurately than did previous works (Figs. 1-34 and 1-35).

In view of the contributions of the aforementioned physicians and their works, advances made in the Renaissance were clearly remarkable. Back in vogue was originality in anatomic research, replacing the ex cathedra writings of Galen and the classicists. No surgeon could explore the human body without an accurate understanding of the underlying anatomy. In addition, during the Renaissance, important events included the introduction of the printed book and the production of accurate anatomic illustrations.

The Hippocratic emphasis on the skull fracture continued to dominate the management of head injuries, as it had for the preceding 2000 years. With developments in anatomic knowledge now well under way, the next era was an understanding of
The 17th century, the so-called insurgent century, carried these themes even further with significant achievements in science and medicine. Some historical “giants” produced their scientific contributions during this century: Isaac Newton (1642-1727), Francis Bacon (1561-1625), William Harvey (1578-1657), and Robert Boyle (1627-1691) contributed their ideas and innovation in the introduction of physics, experimental design, discovery of the circulation of blood, and physiologic chemistry. Another critical advance was the formation of scientific societies, with the first

SURGEONS OF THE INSURGENCY: SEVENTEENTH CENTURY

Sixteenth-century medicine and the influence of the Renaissance clearly changed the direction of education and surgical practice for those interested in operating on the brain and spinal cord.
open public presentations of scientific ideas. Among the most important societies were the Royal Society of London, the Académie Des Sciences in Paris, and the Gesellschaft Naturforschender Aerzte in Germany. Thus scientific education and exchange of information were advanced. For the first time, scientific ideas and information could be distributed publicly, and their merits discussed, in open dialogue.

A distinctive scholar of this period in the early understanding of the brain was **Thomas Willis** (1621-1675), an early describer of the eponymous circle of Willis, familiar to every physician. Willis was educated at Oxford and became a fashionable London physician (Fig. 1-36). Willis published a number of important monographs, but the one that stands out is his *Cerebri Anatomie,* published in London in 1664.79,80 With methodic attention to detail, this book became the most accurate anatomic study of the brain to date. Willis was assisted in this work by **Richard Lower** (1631-1691) in demonstrating that when parts of the “circle” were tied off, the anastomotic network still provided blood to the brain. The superb and anatomically accurate engravings of the brain (Fig. 1-37) were produced by Sir Christopher Wren (1632-1723).

Willis introduced the concept of neurology, or the doctrine of neurons. Willis used the term in a purely anatomic sense, inasmuch as the concept of “neurological” disease had not yet been
Historical Overview of Neurosurgery

Neurology as a noun did not enter general use until Samuel Johnson (1709-1784) defined it in his dictionary of 1765. At this point, neurology came to be understood as the entire field encompassing anatomy, function, and physiology. It is also worth noting that the circle of Willis was not described uniquely by Willis; other anatomic descriptions of this circle were provided in several contemporary anatomic publications (the reader is referred to the writings of Vesling, Casserius, Fallopius, and Ridley).

A prominent anatomist at this time and one often overlooked by contemporary writers was Humphry Ridley (1653-1708). Ridley was educated at Merton College, Oxford, and at the University of Leyden, where he received his doctorate in medicine in 1679. Ridley produced an important anatomic work on the brain, The Anatomy of the Brain, written in English, which became widely circulated and influential (Figs. 1-37 and 1-38).

The Anatomy of the Brain was published in London in 1695. At the time his work on the brain appeared, many of the classic Greek views of the brain were in vogue. Seventeenth-century anatomy and medicine moved away from the earlier “cell doctrine” theory (in which brain function was considered to reside within the ventricles); anatomists had begun to recognize the brain as a distinct anatomic entity. In contrast to the “cell doctrine,” cerebral function came to be viewed as a property of the brain.

Ridley recorded a number of original observations. Ridley’s description of the circle of Willis was even more accurate in details than Willis’s and included a more complete anatomic description of both the posterior cerebral artery and the superior cerebellar artery, defined as separate entities. Ridley provided a better demonstration of the principle of anastomotic flow and better elucidated the anastomotic principle of this network with his anatomic studies. To conduct his studies, Ridley had access to recently executed criminals. The method of execution was typically hanging, which caused vascular engorgement of the brain and thus facilitated identification of the vascular anatomy. Ridley’s understanding of the deep nuclei of the cerebellum, particularly the anatomy of the posterior fossa, was superior to Willis’s.

Ridley also provided one of the earliest descriptions of the arachnoid membrane. Of note, Ridley still believed in the rete mirabile, a tenacious holdover from Galenic times. To Ridley this was a legitimate anatomic structure, and he provided a strong argument for its existence in this monograph. In addition, Ridley provided the first accurate description of the fornix and its pathways in this monograph. This volume and the work by Willis presented the first scientific anatomic studies of the brain and thereby provided an essential anatomic foundation for future neurosurgeons.

A surgical expert often overlooked in neurosurgical history is Wilhelm Fabricius von Hilden (1560-1634). Although Fabricius (also known as Fabry) had received a classical education in his youth, family misfortune did not allow him to go on to a formal medical education. He went on to study in the “lesser field” of surgery, being educated in the apprentice system then prevalent. Fortunately, the teachers who trained him were among the finest wound surgeons of the day. Lacking a formal university education and excelling with a surgical apprentice education, he went on to develop a distinguished career in surgery.

Fabricius produced one of the most important surgical works of the 17th century: Observationum et Curationum, a monograph that included more than 600 surgical cases, along with a number of important and original observations on the brain. Fabricius’s observations on the brain and surgery included descriptions of a number of congenital malformations, skull fractures, and techniques for bullet extraction, along with original designs for field surgical instruments. He described operations for intracranial hemorrhage (with cure of insanity), vertebral displacement, congenital hydrocephalus, and an occipital tumor in the newborn (probably an encephalocele). Fabricius carried out trephinations for treatment of a brain abscess and cure of a longstanding...
aphasia. He even removed a splinter of metal from an eye by using a magnet, a cure that only enhanced his reputation (Figs. 1-40 and 1-41).

Some early and skillfully designed neurosurgical instruments are illustrated in a work by Johann Scultetus (Schultes) (1595-1645) of Ulm, titled Armamentarium Chirurgicarum XLIII. Scultetus provided unique and graphic details of neurosurgical instruments, clearly the finest to appear since those published by Berengario in 1518 and della Croce in 1573. The illustrations graphically reveal surgical techniques for treating fractures and dislocations, along with a variety of bandaging techniques for dealing with wounds. This surgical work was so popular that it was translated into many languages, including English, and it exerted a considerable influence on surgery throughout Europe for more than two centuries. The surgical plates and descriptions of various operations contain exacting details, including concepts from antiquity to the present. Of interest is that many of the instruments illustrated by Scultetus remain in use today. Scultetus’s details of surgical operations for injury of the skull and brain are remarkable plebiscite (Figs. 1-42 and 1-43).

Neurosurgical practice continued to evolve in the 17th century. A surgeon who offered some interesting technical advice on developing neurosurgical operating skills was John Woodall (c. 1536-1643). Woodall was a military surgeon by training and surgeon-general to the East India Company. For surgeons of the East India Company, he compiled a surgical monograph titled The Surgeon’s Mate (1617). In his collected works, published in 1639, Woodall provided a list of surgical instruments and sound...
advice for a surgical practice. Woodall fabricated a trephine with a then-unique design of a crown that included a center pin; this innovation prevented the crown from slipping on a bloody skull. A brace was added to this trephine, which could be placed against the surgeon’s chest for additional support and driving force. This innovative design allowed the surgeon to drive the trephine with one hand while the other held the head, all of which could be accomplished on a rolling ship’s deck. Woodall, recognizing the ignorance of his contemporary German surgeons, believed that a surgeon should practice trephining on sheep or calf skulls first before performing one on a human head (Figs. 1-44 and 1-45):

“The Germane Surgeons use no Trapan, that ever I could see my eight years living among them, though they both speak and write of it. But for as much as it is apparent, the work of a Trapan is very good, I therefore would advise a young Artist to make some experience first upon a calves head, or a sheep’s head, till he can well and easily take out a piece of the bone; so shall he the more safely do it to a man without error when occasion is.”

(J. Woodall, The Surgeon’s Mate, p 4)

An Englishman and Plymouth naval surgeon, James Yonge (1646-1721), was among the first to argue emphatically that “wounds of the brain are curable”; Galen had earlier announced, “I have seen the wounded brain heal.” Yonge’s first surgical text was a small monograph titled Wounds of the Brain Proved Curable. Yonge provided a surgical account of a brain operation on a child of 4 with extensive compound fractures of the skull from which brain tissue issued forth. The surgery was successful, with the child surviving, and this inspired Yonge to publish the account. Yonge also reported on more than 60 cases in which brain wounds were cured that he was able to locate in the older literature,