Retinal and Vitreoretinal Diseases and Surgery

Samuel Boyd, MD • Rafael Cortez, MD • Nelson Sabates, MD

JAYpee-HIGHLIGHTS MEDICAL PUBLISHERS, INC.
EDITORS

SAMUEL BOYD, MD
Director, Laser Section, and Associate Director, Retina and Vitreous
Department, Clinica Boyd-Ophthalmology Center
Panama

RAFAEL CORTEZ, MD
Medical Director and Founder
Centro de Cirugía Oftalmológica (CECOF),
Caracas, Venezuela

NELSON SABATES, MD
Professor and Chairman,
Department of Ophthalmology,
University of Missouri
Eye Foundation of Kansas City
Kansas City, Missouri, USA
ACKNOWLEDGEMENTS

After having devoted great efforts and hard work to this major project, we wish to express our profound recognition and gratitude to the people that have had a positive impact in our personal and professional life.

We are, of course, very much indebted with our dear Prof. Benjamin F. Boyd, MD, for his strong support and valuable advice, who encouraged us to overcome problems with courage and to seek major goals with excellent results.

To our wives, Maruchi, Dinorah and Rachel, for their unconditional patience, love and understanding.

We are very much indebted to the Contributing Authors. Without their combined efforts and valuable collaboration, this publication would have been impossible.

We also wish to thank our very special staff at JAYPEE HIGHLIGHTS, especially Kayra Mejia, Eduardo Chandeck, Laura Duran and Joyce Ortega for their dedication and enthusiasm in the creation of all our publications. To Javier Montero, MD from Spain, whose participation as Editor and Translator of the Spanish version of this Volume has also been vital to the success of this project.

To all the readers of JAYPEE HIGHLIGHTS MEDICAL PUBLISHERS, whose support and interest for what we write is the main stimulus for the major commitment we have made to continuously serve ophthalmologist all over the world.

To Mr. Jitendar P. Vij for his perseverance and support.
PREFACE

It is a pleasure to introduce Retinal and Vitreoretinal Diseases and Surgery by Samuel Boyd, MD, Rafael Cortez, MD and Nelson Sabates, MD. This volume contains chapters written by global leaders in the field, and has both breadth and depth in covering clinically relevant and important topics. In forty-one chapters the editors have selected authors with particular areas of expertise, and areas of interest not only to vitreoretinal surgeons, but also to medical retina specialists, comprehensivists and trainees.

With 718 pages of content and 1000 color images and illustrations this book provides not only the fundamentals but the focus needed for the clinician to care for patients with both straightforward and complex retinal disease.

Joel S. Schuman, MD.
Professor and Chairman,
Department of Ophthalmology
University of Pittsburgh School of Medicine.
Director, UPMC Eye Center Professor of Bioengineering
Pittsburgh, PA
CONTRIBUTING AUTHORS

Carlos A. Abdala, MD
Retina Specialist,
Ophthalmology Center
Unidad Laser del Atlantico
Barranquilla, Colombia

Samuel Boyd, MD
Director, Laser Section, and Associate
Director, Retina and Vitreous
Department, Clinica Boyd-Ophthalmology Center
Panama

Pedro Amat-Peral, MD
Alicante Institute of Ophthalmology, VISSUM, Retina Unit,
Alicante, Spain

Rosario Brancato, MD
Professor and Chairman
Department of Ophthalmology and Visual Sciences
University Hospital San Raffaele
Milano, Italy

J. Fernando Arevalo, MD, FACS
Director,
Clinica Oftalmologica Centro Caracas
The Arevalo-Coutinho Foundation for Research in Ophthalmology
Caracas, Venezuela

Dhiren Bujarborua, MD
Director, Pragjyoti Eye Care and Research Centre,
Guwahati, India

Enrique Ariza Camacho, MD
Unidad Oftalmológica del Valle
Mexico D.F., Mexico

Jorge I. Calzada, MD
Vitreo-Retinal Surgery,
Chief of Retinopathy of Prematurity Service, Charles Retina Institute.
Assistant Clinical Professor
Hamilton Eye Institute
University of Tennessee
Memphis, TN, USA

George K. Asdourian, MD
Professor of Ophthalmology
University of Massachusetts,
School of Medicine
Worcester, Massachusetts

Stanley Chang, MD
Columbia University of Physicians and Surgeons
Department Ophthalmology
New York, NY, USA

Maria H. Berrocal, MD
Berrocal and Associates
Assistant Professor
University of Puerto Rico
San Juan, Puerto Rico
Steve Charles, MD
Director,
Charles Retina Institute
Memphis, Tennessee, USA

Borja Corcóstegui, MD.
Professor of Ophthalmology.
Instituto de Microcirugía Ocular (IMO).
Barcelona, Spain

Rafael T. Cortez, MD
Medical Director and Founder
Centro de Cirugía Oftalmológica (CECOF),
Caracas, Venezuela

Emanuele Di Bartolo, MD
Ospedale Santa Chiara di Pisa
Italy

Francesco Faraldi, MD
Ospedale Oftalmico di Torino
Italy

Marta Fernández-Muñoz, MD, PhD
Pío del Río Hortega University Hospital, Ophthalmology Unit,
Valladolid, Spain

Aníbal Martín Folgar, MD
Laboratory of Investigations in Ophthalmology and Visual Sciences
LIOCiV
Department of Pathology
University of Buenos Aires
Buenos Aires, Argentina

Gerardo García-Aguirre, MD
Retina Service
Hospital "Dr. Luis Sánchez Bulnes"
Asociación para Evitar la Ceguera
Mexico, DF, Mexico.
Clinical Professor of Ophthalmology
School of Medicine - Tecnológico de Monterrey
Mexico, DF, Mexico

Justus G. Garweg, MD
Berner Augenklinik am Lindenhofspital
Swiss Eye Institute,
University of Bern,
Bern, Switzerland

Gian Paolo Giuliani, MD.
Princess Margaret Hospital
Ocular Oncology Department
Toronto, Ontario
Canada

Federico A. Graue-Wiechers, MD
Chief, Vitreoretinal Department
Instituto de Oftalmología Conde de Valenciana
Mexico, D.F.

Prof. Patrick C.P. Ho, MD
Clinical Professor of Ophthalmology,
Chinese Academy of Traditional Medicine and Eye Hospital
Beijing, China
Hong Kong’s former Secretary for Home Affairs,
Regional Chair Person for the International Association for the Prevention of Blindness
Beijing, China
Shalesh Kaushal, MD., Ph.D.
Associate Professor and Chairman
Department of Ophthalmology
University of Massachusetts Memorial
Medical Center
Worcester, Massachusetts, USA

Hilel Lewis, MD
Department of Ophthalmology,
Edward S. Harkness Eye Institute,
Columbia University College of
Physicians and Surgeons,
New York, New York, USA

Ferenc Kuhn, MD., PhD
President, American Society of
Ocular Trauma
Executive Vice President, International
Society of Ocular Trauma
Associate Professor of Clinical
Ophthalmology,
University of Alabama at Birmingham.
Associate Director of Clinical Research,
Helen Keller Foundation for Research
and Education
Birmingham, Alabama, USA

Jeffrey K. Luttrull, MD
Director
Retina Diagnostic Laboratory
Ventura County Retina Vitreous
Medical Group
Ventura, California

Madhavi Kurli, MD
The New York Eye and Ear Infirmary,
New York, USA

Sachin Mehta, MD
Department of Ophthalmology and
Visual Sciences,
Vanderbilt Eye Institute,
Vanderbilt University School of
Medicine,
Nashville, Tennessee, USA

Ketan Laud, MD
New York University School of
Medicine
New York, New York, USA

Janice C. Law, MD
Assistant Professor
Vitreoretinal Surgery and Diseases
Department of Ophthalmology
and Visual Sciences
Vanderbilt Eye Institute
Nashville, Tennessee, USA

Javier A. Montero, MD, PhD
Pío del Río Hortega University
Hospital, Ophthalmology Unit,
Valladolid, Spain.
Alicante Institute of Ophthalmology,
VISSUM, Retina Unit,
Alicante, Spain

Janice C. Law, MD
Assistant Professor
Vitreoretinal Surgery and Diseases
Department of Ophthalmology
and Visual Sciences
Vanderbilt Eye Institute
Nashville, Tennessee, USA

Virgilio Morales-Cantón, MD
Chief, Retina Service
Asociación para Evitar la Ceguera en Mexico
Mexico DF, Mexico

Konstantinidis Lazaros, MD
Hôpital Ophtalmique Jules Gonin,
University of Lausanne,
Switzerland
Contributing Authors

Robert Morris, MD
President, International Society of Ocular Trauma
Founder, United States Eye Injury Registry
President, Helen Keller Foundation
Associate Professor of Clinical Ophthalmology,
University of Alabama at Birmingham
Birmingham, Alabama, USA

Darius Moshfeghi, MD
Associate Professor of Ophthalmology
Stanford University
Palo Alto, California, USA

Manish Nagpal, MD
Retina Foundation
Gujarat, India

P. N. Nagpal, MD
Director,
RETINA FOUNDATION
Aso-Palov Eye Hospital
Ahmedabad, India

Yoshihide Nakai, MD
Tokai Eye Clinic
Tokai University School of Medicine
Hadokoro-cho Tsu Mie, Japan

Shunsuke Osawa, MD
Okanami General Hospital,
Iga, Japan

Anil Patil, MD
Vitreo Retinal Consultant,
Retina Foundation
Ahmedabad, India

David E. Pelayes, MD., PhD.
Professor of Ophthalmology,
University of Buenos Aires.
Coordinator,
Laboratory of Investigations in Ophthalmology and Visual Sciences
LIOCiV
University of Buenos Aires
Buenos Aires, Argentina

Ana T. Peralta, MD
Ophthalmologist,
Ophthalmology Center
Unidad Laser del Atlantico
Barranquilla, Colombia

George B. Peters III, MD., M.B.A.
Assistant Professor of Ophthalmology
University of Massachusetts, School of Medicine
Worcester, Massachusetts, USA

Gholam Peyman, MD
Professor of Ophthalmology
Co-Director of Vitreo-Retinal Surgery
Tulane University Health Sciences Center, School of Medicine
Department of Ophthalmology
New Orleans, Louisiana, USA

L. Pierro, MD
Department of Ophthalmology and Visual Sciences
University Hospital San Raffaele
Milano, Italy
Contributing Authors

Natalia Saldaña-Verduzco, MD
Autonomous University of Mexico
Vitreo Retinal Department,
Institute of Ophthalmology
Fundación Conde de Valenciana
Mexico, D.F.

Jason S. Slakter, MD
Clinical Professor of Ophthalmology
New York University School of Medicine;
Surgeon Director,
Manhattan Eye, Ear & Throat Hospital
New York, New York, USA

Marc Spirn, MD
Instructor of Ophthalmology
Wills Eye Institute
Thomas Jefferson University
Philadelphia, PA, USA

Linda Stein, MS
Science Writer
Department of Ophthalmology
University of Massachusetts,
School of Medicine
Worcester, Massachusetts, USA

Paul Sternberg, Jr., MD
Professor and Chairman
Department of Ophthalmology
and Visual Sciences,
Vanderbilt Eye Institute, Vanderbilt
University School of Medicine,
Nashville, Tennessee, USA

Savak Teymoorian, MD., MBA
Resident Physician,
Department of Ophthalmology,
University of Missouri
Eye Foundation of Kansas City
Kansas City, Missouri, USA

Juan Verdaguer T., MD
Professor of Ophthalmology,
University of Chile and
University of Los Andes.
Academic Director,
Fundación Oftalmológica Los Andes
Santiago, Chile

Juan Ignacio Verdaguer D., MD
Associate Professor of Ophthalmology,
University of Los Andes
Santiago, Chile

C. Douglas Witherspoon, MD., FACS.
Professor of Ophthalmology,
University of Alabama
Birmingham, Alabama, USA

Lihteh Wu, MD
Instituto de Cirugía Ocular
San José, Costa Rica

Jiong Yan, MD
Assistant Professor
Vitreo-Retina Division
Emory Eye Center
Atlanta, Georgia, USA

Jorge O. Zarate, MD., PhD.
Professor of Pathology
University of Buenos Aires
Director of the Laboratory of
Investigations in Ophthalmology
and Visual Sciences LIoGiV
Department of Pathology
University of Buenos Aires
Buenos Aires, Argentina

Leonidas Zografos, MD
Hôpital Ophtalmique Jules Gonin,
University of Lausanne,
Switzerland
CONTENTS

SECTION 1: DIAGNOSTIC SYSTEMS IN RETINA

Chapter 1: The Normal Retina... 3
Samuel Boyd, MD

Chapter 2: Fluorescein Angiography... 11
Samuel Boyd, MD

Chapter 3: Introduction to Optical Coherence Tomography............... 27
Rosario Brancato, MD
L. Pierro, MD

Chapter 4: Optical Systems for Ocular Diagnosis and Vitreoretinal Surgery... 39
Samuel Boyd, MD

Chapter 5: Wide Angle Viewing Systems for Vitreoretinal Surgery...... 53
Shunsuke Osawa, MD
Yoshihide Nakai, MD

SECTION 2: LASER PHOTOCOAGULATION

Chapter 6: Practical Aspects of Laser Photocoagulation.................... 69
Nelson Sabates, MD
Savak Teymoorian, MD, MBA,
Felix Sabates, MD

Chapter 7: Subthreshold Retinal Photocoagulation for Diabetic Retinopathy.. 85
Jeffrey K. Luttrull, MD
Chapter 8: Laser Treatment for Retinal Holes, Tears and Peripheral Degenerations

Federico A. Graue-Wiechers, MD
Natalia Saldaña-Verduzco, MD

SECTION 3: ESSENTIAL ELEMENTS IN VITREORETINAL SURGERY

Chapter 9: Indications of Intraocular Gases in Retinal Surgery

Gholam Peyman, MD
Darius Moshfeghi, MD

Chapter 10: Application of Perfluorocarbon Liquids in Vitreoretinal Surgery

Stanley Chang, MD

SECTION 4: RETINAL VASCULAR DISEASES

Chapter 11: Classification and Management of Diabetic Retinopathy

Juan Verdaguer T., MD
Juan Ignacio Verdaguer D., MD

Chapter 12: Vitrectomy for Diabetic Retinopathy

Jorge I. Calzada, MD

Chapter 13: Pars Plana Vitrectomy in the Management of Diabetic Macular Edema

Maria H. Berrocal, MD

Chapter 14: The Vitreous in Diabetes

Prof. Patrick C. P. Ho, MD

Chapter 15: Branch Retinal Vein Occlusion

Lihteh Wu, MD
Chapter 16: Central Retinal Vein Occlusion ... 241
Lihteh Wu, MD

Chapter 17: Management of Active Retinopathy of Prematurity 255
Carlos A. Abdala, MD
Ana T. Peralta, MD

SECTION 5: MACULAR DISEASES

Chapter 18: Evaluation of Age-Related Macular Degeneration 267
Ketan Laud, MD
Jason S. Slakter, MD

Chapter 19: Highlights in the Management of Age-Related Macular Degeneration ... 287
Stanislao Rizzo, MD
Francesco Faraldi, MD
Emanuele Di Bartolo, MD
Maria Maddalena Rabbione, MD

Chapter 20: Central Serous Chorioretinopathy 309
Pran N. Nagpal, MD
Dhiren Bujarborua, MD
Anil Patil, MD

Chapter 21: Cystoid Macular Edema .. 329
Federico Graue Wiechers, MD
Enrique Ariza Camacho, MD

Chapter 22: Traction Maculopathies: Vitreomacular Traction Syndrome, Cellophane Maculopathy, Macular Pucker, Macular Hole ... 345
Ferenc Kuhn, MD, Ph.D.
Robert Morris, MD
C. Douglas Witherspoon, MD, FACS
SECTION 6: RETINAL DETACHMENT SURGERY

Chapter 23: Evaluation and Management of Retinal Detachment 369
Rafael T. Cortez, MD
Gian Paolo Giuliani, MD

Chapter 24: Management of Giant Retinal Tears ... 399
Sachin Mehta, MD
Franco M. Recchia, MD
Paul Sternberg, Jr., MD

Chapter 25: Proliferative Vitreoretinopathy
Clinical, Pathophysiological and Therapeutic Considerations 413
Justus G. Garweg, MD

SECTION 7: VITRECTOMY TECHNIQUES AND TECHNOLOGY

Chapter 26: Anterior Vitrectomy ... 443
Samuel Boyd, MD

Chapter 27: Pars Plana Lensectomy .. 451
Samuel Boyd, MD

Chapter 28: Retinectomies and Retinotomies .. 459
Janice C. Law, MD
Jiong Yan, MD
Paul Sternberg Jr., MD
SECTION 8:
MANAGEMENT OF COMPLEX CASES

Chapter 29: Dislocated IOLs and Crystalline Lens.................................475
Samuel Boyd, MD

Chapter 30: Retinal Complications After Refractive Surgery..................491
J. Fernando Arevalo, MD, FACS

Chapter 31: Management of Intraocular Hemorrhage
and Other Complications...507
George B. Peters III, MD., M.B.A.
George K. Asdourian, MD.
Linda Stein, MS.
Shalesh Kaushal, MD., Ph.D.

Chapter 32: Suprachoroidal Hemorrhage..521
Madhavi Kurli, MD
Richard Rosen, MD

Chapter 33: Management of Traumatic Subretinal and/or
Suprachoroidal Hemorrhage..529
Gerardo García-Aguirre, MD
Virgilio Morales-Cantón, MD
Hugo Quiroz-Mercado, MD

Chapter 34: Surgical Management of Proliferative
Vitreoretinopathy..559
Marc J. Spirn, MD
Carl Regillo, MD
Hilel Lewis, MD

Chapter 35: Vitreoretinal Surgery for Epiretinal Membranes..............571
Javier A. Montero, MD, PhD.,
Jose M. Ruiz-Moreno, MD, PhD.,
Marta Fernández-Muñoz, MD, PhD.,
Pedro Amat-Peral, MD
Chapter 36: Fine Needle Aspiration Biopsy in Intraocular Tumors...589
David E. Pelayes, MD, PhD
Anibal Martin Folgar, MD
Jorge O. Zarate, MD, PhD

Chapter 37: Management of Intraocular Foreign Bodies..599
Elena Rodríguez-Neila, MD
Borja Corcóstegui, MD

Chapter 38: Endophthalmitis...609
Manish Nagpal, MD
Anil Patil, MD

SECTION 9:
LEADING ACHIEVEMENTS IN RETINA

Chapter 39: Nutrition in Retinal Diseases...629
Konstantinidis Lazaros, MD,
Leonidas Zografos, MD

Chapter 40: Advances in Vitreoretinal Surgery...655
Steve Charles, MD

Chapter 41: Ocular Gene Therapy: An Evaluation of rAAV-mediated Gene Therapy Interventions for the Treatment of Ocular Disease...663
Kamolika Roy, MD
Linda Stein, MD
Shalesh Kaushal, MD

Index...691
Section 1
Diagnostic Systems in Retina
In vertebrate embryonic development, the retina and the optic nerve originate as outgrowths of the developing brain, so the retina is considered part of the central nervous system (CNS). It is the only part of the CNS that can be imaged directly.

The retina ranges in thickness from about 100-500 μm. It is a composite of numerous cellular and synaptic layers which can be grossly split into an outer epithelial layer (referred to as the retinal epithelium or retinal pigment epithelium) and an inner sensory layer (referred to as the sensory retina or neuroretina). The retina is one of the most metabolically active tissues in the body. Its major function is to convert light energy into chemical and electrical energy so that vision can occur (if a functional brain is present).

The retina is a complex, layered structure with several layers of neurons interconnected by synapses. The only neurons that are directly sensitive to light are the photoreceptor cells. These are mainly of two types: the rods and cones. Rods function mainly in dim light, while cones support daytime vision. A third, much rarer type of photoreceptor, the photosensitive ganglion cell, is important for reflexive responses to bright daylight.

Neural signals from the rods and cones undergo complex processing by other neurons of the retina. The output takes the form of action potentials in retinal ganglion cells whose axons form the optic nerve. Several important features of visual perception can be traced to the retinal encoding and processing of light.

Functional Anatomy

The vital structures of the retina are conveniently arranged for us in distinct
layers. These are clearly shown in Figure 1. The order of retinal layers starting from outer to inner layers (that is, from choroid to vitreous) is as follows: Retinal pigment epithelium, Photoreceptor outer segments, Photoreceptor inner segments, Outer or external limiting membrane, Outer or external nuclear layer, Outer or external plexiform layer, Inner nuclear layer, Inner plexiform layer, Ganglion cell layer, Nerve fiber layer, Internal limiting membrane.

The outermost layers next to the choriocapillaris are Bruch’s membrane and the retinal pigment epithelium (RPE). Bruch’s membrane allows passage of nutrients from the choriocapillaris to the retina, while acting as a barrier to invasion of the retina by its vessels. The RPE are supporting cells for the neural portion of the retina and are important for photopigment regeneration. The RPE is dark with melanin, which decreases light scatter within the eye. The rod and cone layer contains the outer and inner segments of the rods and cones photoreceptors. The outer limiting membrane orders these from the outer nuclear layer (ONL) - the cell bodies of rods and cones. Next, we see the outer plexiform layer (OPL), with the rods and cones axons horizontal cell dendrites, and bipolar dendrites. The inner nuclear layer (INL) contains the nuclei of the horizontal and bipolar cells. The inner plexiform layer (IPL) neatly contains the axons of the bipolar cells (the amacines), and the dendrites of the ganglion cells. The layer of ganglion cells (GCL), is covered by the layer of the optic nerve fibers - fibers from ganglion cells traversing the retina to leave the eyeball at the optic disk. Finally, the internal limiting membrane forms the border between the retina and the vitreous.

There are two distinct vascular systems in the ocular fundus: retinal and choroidal. The retinal vasculature is identified in Figure 1C as (U) and (V). The choroidal vasculature is identified in Figure 1C as W. Between them lies the retinal pigment epithelium (RPE). Fig. 1-C-X, an opaque monolayer of cells anterior to the choroid that normally largely obscures its vasculature from ophthalmoscopic view. Pathologic alteration of the structure and pigmentation of the RPE affects the pattern of choroidal fluorescence perceptible during angiographic studies. Familiarity with the anatomy and interaction of these anatomic layers is the key to accurate interpretation of fluorescein angiograms, an examination which is vital to the diagnosis of retinal diseases.

The photoreceptor cells (rods and cones), Figure 1C-K and T, are supplied with nutrients from the choroid (Figure 1C-W) through the retinal pigment epithelium (Figure 1C-X).

Choroid

The choroid is composed of connective tissue and vessels that nourish the RPE (Figure 1C-X) and outer retina (Figure 1C-H). The inner layer is the choriocapillaris (Figure 1C-Y). The choroidal circulation is completely independent of the retinal circulation. It is supplied by the long and short posterior and recurrent anterior ciliary arteries and is
Figure 1: Anatomy of the Normal Retina and Choroid. Anatomy of the normal retina and choroid is displayed. (A) The posterior fundus view shows optic nerve (D), retinal arteries and veins of the parafoveal arcade (E), fovea (F), and visible choroidal vasculature (G) beneath the normal retina. From the oblique cross section (B), an area of the retina and choroid is magnified in (C) to show the direct relationship between clinical ophthalmoscopic fundus view above and its corresponding cellular pathology. Overall layers of the retina (H) include ganglion cell layer (I), layer of intermediary neurons (J), and photoreceptor layer (K). Detailed elements of the retina include inner limiting membrane (L), nerve fiber layer (M), ganglion cells (N), inner plexiform layer (O), inner nuclear layer (P), outer plexiform layer (Q), receptor nuclear layer (R), outer limiting membrane (S), and rods and cones (T)(photoreceptor cells). Retinal arteries (U) and retinal veins (V) run through the nerve fiber layer (M) beneath the inner limiting membrane (L), supplying all cells of the neural retina, except the photoreceptor cells. The photoreceptor cells are supplied by active transport from the choroid (W) through the retinal pigment epithelium (X). The choroid consists of the choriocapillaris (Y) supplied by the larger choroidal vessels (Z). Bruch’s membrane (BR) lies between the pigment epithelial cell layer (X) and the choriocapillaris (Y). (Art from Jaypee-Highlights Medical Publishers).
drained by the four mid-peripheral vortex veins (Figure 1C-W). The choroidal capillary system, the choriocapillaris, is located innermost (Figure 1C-Y), its basement membrane forming the outer layer of Bruch’s membrane. It has a lobular pattern, with central arterioles feeding capillary beds drained by peripheral venules.

The walls of the choroidal capillaries are extremely thin, with multiple fenestrations permitting passive fluid transport from the capillary lumen to the surrounding extracellular space. During fluorescein angiography studies, the fluorescein molecule is sufficiently small to pass readily and rapidly out of the choriocapillaris, but it does not pass through the overlying retinal pigment epithelium (Figure 1C-X).

Retinal Pigment Epithelium

The retinal pigment epithelium (RPE) (Figure 1C-X), is a single layer of pigmented cuboidal cells which are attached to the photoreceptors (Figure 1C-K-T) and whose basal portions lie on Bruch’s membrane (Figure 1C-BR). It serves important metabolic functions for the overlying photoreceptors (Figure 1C-K-T) and forms a structural barrier between the sensory retina and choroid that, under normal circumstances, fluorescein dye will not cross. Because of the presence of pigmented cells, the RPE serves as an optical barrier. Pigment density is not uniform across the whole retina. It is more intense in the macular region, where pigment epithelial cells are tall, columnar, and densely packed, and least in regions anterior to the equator, where these cells are flatter and have a sparsity of pigment granules.

Retina

The most important characteristics of the retina are its functional architecture and its light transmission and absorption properties. The retina is a thin transparent tissue perfused by vessels from the central retinal artery and, in about 30% of eyes, by an additional cilioretinal artery. The cilioretinal artery, when present, fills at the same time as the choroid. Unlike the choroid, the retinal capillaries are not fenestrated, and there is virtually no extracellular space between the densely packed retinal cells. As a result, the retinal vasculature constitutes a “closed system” that stands out in stark optical contrast to the surrounding tissue, especially in fluorescein angiography.

The outer nuclear and plexiform retinal layers of the retina (Figure 1C-Q) have a high concentration of yellow xanthophyll pigment, particularly in the macula, which is
about two disc diameters in size surrounding (but not including) the fovea (Figure 2). The fovea centralis, which lies at 3.5 mm lateral to the optic disc, is specialized for fine visual perception. In the fovea, the cells are all cones. The axons of the receptor cells pass directly to the inner side of the outer plexiform layer, where they connect with dendrites of horizontal and bipolar cells, extending from the inner nuclear layer. Selective absorption of blue light by this pigment produces a relatively darker macular background in fluorescein angiography.

The retina receives its blood supply from two sources: the choriocapillaris and the central retinal artery. The choriocapillaris is a layer of capillaries intimately attached to the outer surface of Bruch's membrane. The choriocapillaris supplies the outer third of the retina, including the outer plexiform and outer nuclear layers, the photoreceptors, the pigment epithelium and all of the fovea. The remaining inner two thirds of the retina is supplied by branches of the central retinal artery.

Figure 2: Schematic Representation of the Retina and Related Structures. The retina terminates anteriorly at the ora serrata approximately 7-8 mm posterior to the corneoscleral limbus (A). The macula is clinically an area of altered light reflex which lies 3.5 mm lateral and 1 mm inferior to the edge of the optic nerve (B). The vitreous is a gel of approximately 4.3 ml and is attached anteriorly to the posterior lens capsule, posteriorly to the peripapillary zone and extends centrally to the attachment with the pars plana and anterior retina (C). (Art from Jaypee-Highlights Medical Publishers).