Preprosthetic and maxillofacial surgery
Related titles:

Bone repair biomaterials
(ISBN 978-1-84569-385-5)
Bone repair is a fundamental part of the rapidly expanding medical care sector and has benefited from many recent technological developments. This unique book provides a comprehensive review of the materials science, engineering principles and recent advances in this important area. The first part reviews the fundamentals of bone repair and regeneration. Further chapters discuss the science and properties of biomaterials used for bone repair such as metals and biocomposites. The final chapters analyse device considerations such as implant lifetime, failure, applications and ethics of bone repair biomaterials.

Dental biomaterials: Imaging, testing and modelling
(ISBN 978-1-84569-296-4)
Dental biomaterials: Imaging, testing and modelling focuses on the techniques required to undertake research in dental biomaterials. The text forms an instructive and practical review of the scientific methods applied to dental biomaterials, with appropriate case studies. The book includes chapters discussing the practicalities of working on dental biomaterials, such as reviewing the mechanisms of cutting tooth tissue and methods for characterizing dental hand piece performance. Chapters review optical and electron imaging techniques for biomaterial interfaces. Specific materials, applications and experimental techniques are discussed in addition to chapters reviewing the development and application of computer models to this complex area.

Orthopaedic bone cements
Bone cements are widely used in orthopaedic applications to bond an implant to existing bone and remodelling following bone loss. *Orthopaedic bone cements* is an authoritative review of research, which focuses on improving the mechanical and biological performance of bone cements. The first section discusses the use of bone cements in medicine in addition to commercial aspects and delivery systems. Bone cement materials are reviewed in the second section of the book, followed by their mechanical properties in Part III. Techniques to enhance bone cements are discussed in the final section, such as antibiotic loading and bioactive cements.

Details of these and other Woodhead Publishing materials books can be obtained by:

- visiting our web site at www.woodheadpublishing.com
- contacting Customer Services (e-mail: sales@woodheadpublishing.com; fax: +44 (0) 1223 832819; tel.: +44 (0) 1223 499140 ext. 130; address: Woodhead Publishing Limited, 80 High Street, Sawston, Cambridge CB22 3HJ, UK)

If you would like to receive information on forthcoming titles, please send your address details to: Francis Dodds (address, tel. and fax as above; e-mail: francis.dodds@woodheadpublishing.com). Please confirm which subject areas you are interested in.
Preprosthetic and maxillofacial surgery

Biomaterials, bone grafting and tissue engineering

Edited by
Joël Ferri and Ernst B. Hunziker
Contents

Contributor contact details xi
Introduction xvii

1 Bone tissue engineering 1
U. MEYER, Düsseldorf University Hospital, Germany,
H. P. WIESMANN, J. NEUNZEHN and U. JOOS, Münster
University Hospital, Germany

1.1 Introduction 1
1.2 Bone-repair strategies 2
1.3 Biophysical effects 4
1.4 Distraction osteogenesis 5
1.5 Biomolecules 6
1.6 Transplantation of cells 7
1.7 Flap prefabrication 8
1.8 Extracorporeal strategies 9
1.9 Cell systems 9
1.10 Evaluation of engineering success 14
1.11 References 15

Part I Bone reconstruction in implantology and
reconstructive preprosthetic surgery 23

2 Fundamentals of bone grafting in implantology 25
P. J. W. STOELINGA, Radboud University Medical Centre, Nijmegen,
The Netherlands, J. I. CAWOOD, Consultant Oral and Maxillofacial
Surgeon, Chester, UK

2.1 Introduction 25
2.2 Scheme for pre-implant surgery 25
2.3 Fundamentals of bone grafting 28
2.4 Local bone grafts 31
2.5 Distant bone grafts 32

© Woodhead Publishing Limited, 2011
Contents

2.6 Conclusions 34
2.7 References 34

3 Cranial bone grafting in maxillary preprosthetic surgery 36
J. F. TULASNE, Zedental.com, France
3.1 Introduction 36
3.2 Experimental studies 36
3.3 The surgery 37
3.4 Discussion 45
3.5 Conclusions 48
3.6 References 52

4 Maxillary sinus grafting for implant insertion 54
J. ACERO, Complutense University of Madrid, Spain
4.1 Introduction 54
4.2 Anatomic fundamentals: pathophysiology 56
4.3 Treatment planning: indications and contraindications 58
4.4 Types of maxillary sinus augmentation for implant insertion: surgical technique 60
4.5 Grafting materials 63
4.6 Results 71
4.7 Complications of sinus lift 71
4.8 References 73

5 Symphyseal and alveolar reconstruction in preprosthetic surgery 76
D. GOGA, F. SURY and T. TAYEB, Trousseau University Hospital, France
5.1 Introduction 76
5.2 The height improvement 76
5.3 The increase of thickness 83
5.4 Particular aspects 96
5.5 Failure risk factors and complications 97
5.6 Implant placement at the mandibular symphysis 99
5.7 Indications and limits of the implant placement at the symphysis region 100
5.8 Conclusions 102
5.9 References 102

6 Mandible corpus reconstruction for implant insertion: the available techniques 104
J. FERRI and L. LAUWERS, Roger Salengro University Hospital, France
6.1 Introduction 104
6.2 Anatomical considerations 105
Part II Reconstruction in particular situations

10 Applications of biomaterials in alveolar and maxillofacial bone reconstruction

U. Joos, H. P. Wiesmann and J. Neunzehn, Münster University Hospital, Germany, U. Meyer, Düsseldorf University Hospital, Germany

10.1 Introduction
10.2 Substitute materials
10.3 Synthetic inorganic materials
10.4 Synthetic organic materials
10.5 Natural inorganic materials
10.6 Natural organic materials
10.7 References

11 Implants in congenital missing teeth

L. Lauwers, T. Wojcik, G. Raoul and J Ferri, Roger Salengro University Hospital, France

11.1 Introduction
11.2 Diagnosis
11.3 Management
11.4 Rehabilitation cases
11.5 Conclusions
11.6 References

12 Maxillo-mandibular amputations and implants rehabilitation

J. Ferri, G. Raoul and L. Lauwers, Roger Salengro University Hospital, France, B. Desmet, Private practice, France, P. Breton, Central Hospital South Lyon, France

12.1 Introduction
12.2 Strategy for jaw reconstruction
12.3 Basal bone reconstruction
12.4 Preparing endosseous implant-step
12.5 Illustrations of implant-borne prosthesis after jawbone reconstruction
12.6 Conclusions
12.7 References

13 Alveolar reconstruction in cleft for implant rehabilitation

J-B. Seigneuric, Military Instruction Hospital BEGIN, France and M-P. Vazquez, Pierre and Marie Curie University, France

13.1 Introduction
13.2 Management of orofacial clefts
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>Implant placement in cleft lip and palate (CLP)</td>
<td>243</td>
</tr>
<tr>
<td>13.4</td>
<td>Success rates of implant placement</td>
<td>258</td>
</tr>
<tr>
<td>13.5</td>
<td>Conclusions</td>
<td>258</td>
</tr>
<tr>
<td>13.6</td>
<td>References</td>
<td>259</td>
</tr>
<tr>
<td>14</td>
<td>Bone reconstruction in irradiated situations</td>
<td>264</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>264</td>
</tr>
<tr>
<td>14.2</td>
<td>Adjuvent treatment</td>
<td>265</td>
</tr>
<tr>
<td>14.3</td>
<td>Non-vascularised bone graft</td>
<td>266</td>
</tr>
<tr>
<td>14.4</td>
<td>Coverage flaps</td>
<td>266</td>
</tr>
<tr>
<td>14.5</td>
<td>Free flap and bone graft association</td>
<td>271</td>
</tr>
<tr>
<td>14.6</td>
<td>Vascularised bone transfers</td>
<td>271</td>
</tr>
<tr>
<td>14.7</td>
<td>New techniques</td>
<td>277</td>
</tr>
<tr>
<td>14.8</td>
<td>Reconstruction principles in irradiated situations</td>
<td>280</td>
</tr>
<tr>
<td>14.9</td>
<td>References</td>
<td>281</td>
</tr>
<tr>
<td>15</td>
<td>Periodontal surgery related to alveolar bone reconstruction for implant insertion</td>
<td>284</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>284</td>
</tr>
<tr>
<td>15.2</td>
<td>Muco gingival environment around natural teeth</td>
<td>284</td>
</tr>
<tr>
<td>15.3</td>
<td>Role of the keratinized gingiva around the implants</td>
<td>285</td>
</tr>
<tr>
<td>15.4</td>
<td>Developing a favourable environment around the implants</td>
<td>285</td>
</tr>
<tr>
<td>15.5</td>
<td>Surgical technique</td>
<td>290</td>
</tr>
<tr>
<td>15.6</td>
<td>Conclusions</td>
<td>300</td>
</tr>
<tr>
<td>15.7</td>
<td>References</td>
<td>301</td>
</tr>
</tbody>
</table>

Part III Tissue engineering

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Mucosal and gingival tissue engineering</td>
<td>305</td>
</tr>
<tr>
<td>16.1</td>
<td>Overview of oral soft tissue wound healing</td>
<td>305</td>
</tr>
<tr>
<td>16.2</td>
<td>Traditional approaches</td>
<td>307</td>
</tr>
<tr>
<td>16.3</td>
<td>Novel approaches for oral soft tissue repair</td>
<td>309</td>
</tr>
<tr>
<td>16.4</td>
<td>Future trends</td>
<td>319</td>
</tr>
<tr>
<td>16.5</td>
<td>Acknowledgments</td>
<td>319</td>
</tr>
<tr>
<td>16.6</td>
<td>References</td>
<td>319</td>
</tr>
</tbody>
</table>
Contributor contact details

(* = main contact)

Editors
Professor Joël Ferri
Oral and Maxillofacial Department
Roger Salengro University Hospital
CHRU
Lille
F-59000
France
E-mail: jferri@chru-lille.fr

Professor Ernst B. Hunziker
Center of Regenerative Medicine for Skeletal Tissues
Department of Clinical Research
University of Bern
Hochschulstrasse 4 CH-3012 Bern
Switzerland
E-mail: ernst.hunziker@dkf.unibe.ch

Chapter 1
Professor Ulrich Meyer
Clinic for Maxillofacial and Plastic Facial Surgery
Düsseldorf University Hospital
Heinrich-Heine University
Moorenstr. 5
40225 Düsseldorf
Germany
E-mail: praxis@mkg-muenster.de

Dr Hans Peter Wiesmann and Dr Jörg Neunzehn
Biomineralisation and Tissue Engineering Group
Department of Experimental Maxillofacial Surgery
Münster University Hospital
Westphalian Wilhelms University
Waldruferstrasse 30
48149 Münster
Germany
E-mail: wiesmann@life-rds.eu joerg.neunzehn@ukmuenster.de

Professor Ulrich Joos*
Clinic for Cranio-Maxillofacial Surgery
University of Münster
Waldruferstrasse 30
48149 Münster
Germany
E-mail: joos@uni-muenster.de
Chapter 2
Professor Paul J. W. Stoelinga*
Radboud University Medical Centre
Postbus 9101
6500 HB
Nijmegen
The Netherlands
E-mail: p.stoelinga@hetnet.nl

Professor John I. Cawood
Consultant Oral and Maxillofacial Surgeon
Chester
UK
E-mail: jicawood@tiscali.co.uk

Chapter 3
Dr J. F. Tulasne
Director of Space Maxillofacial Surgery
Zedental.com
83 Rue de Silly
92100 Boulogne Billancourt
France
E-mail: jf-tulasne@orange.fr

Chapter 4
Professor Julio Acero
Department of Maxillofacial Surgery
Gregorio Marañón University Hospital
Complutense University of Madrid
C. Doctor Esquerdo 46
28007 Madrid
Spain
E-mail: J-acero@terra.es

Chapter 5
Professor Dominique Goga*,
Dr Florent Sury and
Dr Talel Tayeb
Department of Maxillofacial and Oral Surgery

Chapter 6
Professor Joël Ferri* and
Dr Ludovic Lauwers
Oral and Maxillofacial Department
Roger Salengro University Hospital
CHRU
Lille
F-59000
France
E-mail: jferri@chru-lille.fr

Chapter 7
Dr Tateyuki Iizuka
Professor and Chairman
Department of Cranio-Maxillofacial Surgery
Inselspital
Bern University Hospital
CH-3010 Bern, Switzerland
E-mail: tateyuki.iizuka@insel.ch

Chapter 8
Professor Tetsu Takahashi*
Professor and Chairman
Division of Oral and Maxillofacial Reconstructive Surgery
Kyushu Dental College
2-6-1 Manazuru
Kokurakita-Ku
Kitakyushu-City
803-8580
Fukuoka
Japan
E-mail: tetsu@kyu-dent.ac.jp
Dr Kensuke Yamauchi
Assistant Professor
Division of Oral and Maxillofacial
Reconstructive Surgery
Kyushu Dental College
2-6-1 Manazuru
Kokurakita-Ku
Kitakyushu-City
803-8580
Fukuoka
Japan

Dr Tateyuki Iizuka
Professor and Chairman
Department of Cranio-Maxillofacial
Surgery
Inselspital
Bern University Hospital
CH-3010 Bern
Switzerland
E-mail: tateyuki.iizuka@insel.ch

Chapter 9
Professor Joël Ferri* and
Dr Ludovic Lauwers
Oral and Maxillofacial Department
Roger Salengro University Hospital
CHRU
Lille
F-59000
France
E-mail: jferri@chru-lille.fr
lauwers.ludovic@gmail.com

Dr P. Elia and Dr H. Dubois
Private practice
Lille
France

Chapter 10
Professor Ulrich Meyer
Clinic for Maxillofacial and Plastic
Facial Surgery
University Hospital of Düsseldorf
Heinrich-Heine University
Moorenstr. 5
40225 Düsseldorf
Germany
E-mail: praxis@mkg-muenster.de

Dr Hans Peter Wiesmann and
Dr Jörg Neunzehn
Biomineralisation and Tissue
Engineering Group
Department of Experimental
Maxillofacial Surgery
University Hospital of Münster
Westphalian Wilhelms University
Waldeyerstrasse 30
48149 Münster
Germany
E-mail: wiesmann@life-rds.eu
joerg.neunzehn@ukmuenster.de

Chapter 11
Professor Ulrich Joos*
Clinic for Cranio-Maxillofacial
Surgery
University of Münster
Waldeyerstrasse 30
48149 Münster
Germany
E-mail: joos@uni-muenster.de

Professor J. Ferri*, Dr Ludovic
Lauwers, Dr Thomas Wojcik and
Dr Gwenael Raoul
Oral and Maxillofacial Department
Roger Salengro University Hospital
CHRU
Lille
F-59000
France
E-mail: jferri@chru-lille.fr
lauwers.ludovic@gmail.com
thomaswojcik4@gmail.com
g-raoul@chru-lille.fr
Chapter 12
Professor Joël Ferri*, Dr Gwenael Raoul and Dr Ludovic Lauwers
Oral and Maxillofacial Department
Roger Salengro University Hospital
CHRU
Lille
F-59000
France
E-mail: jferri@chru-lille.fr
lauwers.ludovic@gmail.com
g-raoul@chru-lille.fr

Dr B. Desmet
Private practice
F-59000
Lille
France

Professor P. Breton
Department of Maxillo-facial surgery
Central Hospital South Lyon
CHU Lyon Sud
69310 Pierre Benite
France

Chapter 13
Dr J-B. Seigneuric*
Military Instruction Hospital BEGIN
Department of Maxillofacial Surgery and Stomatology
69 Avenue de Paris
94163 Saint-Mandé Cedex
France
E-mail: drseigneuric@gmail.com

Professor M-P. Vazquez
Pierre and Marie Curie University
UFR of Medicine Pierre and Marie Curie
Paris
France

Chapter 14
Dr Nicolas Froget, Dr Antoine Pierrefeu, Dr Matthieu Koppe and Professor Pierre Breton*
Department of Stomatology, Maxillo-Facial Surgery and Plastic Surgery of the Face
Claude Bernard University Lyon 1 Centre Hospital South Lyon
69310 Pierre Bénite
France
E-mail: pierre.breton@chu-lyon.fr

Chapter 15
Professor Joël Ferri*, Dr M. Leconte and T. Wojcik
Oral and Maxillofacial Department
Roger Salengro University Hospital
CHRU
Lille
F-59000
France
E-mail: jferri@chru-lille.fr

Dr M. Mongeot
Private practice
Lille
France

Chapter 16
Dr Rodrigo Neiva
Department of Periodontology
University of Florida – College of Dentistry, 1395 Center Drive, Rm D10-19C Gainesville
FL 32610-0434
USA
E-mail: rneiva@dental.ufl.edu

Dr William V. Giannobile*
Michigan Centre for Oral Health Research
University of Michigan School of Dentistry
1011 N. University Ave.
Ann Arbor
MI 48109-1078
USA
E-mail: william.giannobile@umich.edu

Chapter 17
Professor E. B. Hunziker
Center of Regenerative Medicine
for Skeletal Tissues
Department of Clinical Research
University of Bern
Switzerland
E-mail: ernst.hunziker@dkf.unibe.ch

Chapter 18
Dr Stéphane Simon*
Cordeliers Research Centre – UMRS 872
Team 5 – Physiopathologie Orale Moléculaire
15 rue de l’Ecole de Médecine
75 270 PARIS cedex 06
France
E-mail: stephane@simendo.com

And

Laboratory of Oral Biology
School of Dentistry
University of Birmingham
Saint Chad’s Queensway
Birmingham
B4 6NN
UK

Dr Paul Cooper
Laboratory of Oral Biology
School of Dentistry
University of Birmingham
Saint Chad’s Queensway
Birmingham
B4 6NN
UK

Dr Julianne Isaac and Ariane Berdal
Cordeliers Research Centre – UMRS 872
Team 5 – Physiopathologie Orale Moléculaire
15 rue de l’Ecole de Médecine
75 270 PARIS cedex 06
France
E-mail: araine.berdal@ccr.jussieu.fr

Chapter 19
Professor Jeremy J. Mao
Columbia University Medical Center
630 W. 168 St. – PH7E
New York
NY 10032
USA
E-mail: jmao@columbia.edu
Introduction

Ever since osteointegration principles were established by Bränemark, the use of implants in oral and maxillo-facial surgery are being more widely developed throughout the world. Use of these techniques has never been abandoned. The innumerable publications on the theme of oral implantology show the interest of the medical community for these rehabilitations.

However, even though implantations are exceptionally successful a minimum of bone is mandatory to guarantee a primary stability and so assure the bone integration. Whenever this bone is not present the implant insertion is more complicated requiring complex or more uncertain techniques. For these cases pre-prosthetic implantation surgery has been developed in order to repair the missing or insufficient bone in order to admit a simple implant insertion.

Classically, the reconstruction is done using the autogenous cancellous bone. Progressively, after development by many surgeons, the use of membranous bone has been suggested in order to assure both a less painful harvesting and a lower resorption rate. However, in complex cases such as amputations or after irradiation, the use of vascularized bone flaps or distraction procedures are the only solutions possible. Today these techniques are used widely throughout the world and permit the reconstruction of just about any deficit in nearly any situation.

Despite all this, and even for very simple surgery, any bone harvesting has a certain morbidity forever present in the surgical procedure. To lessen this morbidity the surgeons have ‘dreamed’ of being able to repair bone by ‘creating’ it from structures which would not be harvested from the patient. In this optic the use of biomaterials has been developed. These techniques have vastly progressed using scaffold, stem cells (to induce bone and blood vessels) and proteins which stimulate the bone growth. However despite the quality of the re-construction techniques using these biomaterials none have replaced the autogenous bone graft, which remains the ‘gold standard’ of bone reconstruction.

Far beyond bone reconstruction today’s biotechnologies are studying how to make absent or lost teeth grow again. This is a major challenge for which we can imagine the consequences in maxillary reconstruction. In the light of their progress this dream could soon become reality. . .
The objective of this work is to take stock of all these techniques permitting the reconstruction of the bone which supports the implants and also to consider the future and bring to light all the possibilities that biomaterials and tissue engineering can offer. To this aim this work has been divided in three parts.

The first part (bone reconstruction in implantology and reconstructive pre-prosthetic surgery) talks of the techniques, which although recent, have been validated by the international medical community. It enlightens the reader on today’s possibilities of reconstruction with recognized procedures even though the choice of techniques is often a subject of discussion.

The second part (reconstruction in particular situations) studies the reconstruction in certain circumstances. It guides the reader on particular cases. The techniques used are often complex for situations which are often complex themselves. For instance implants rehabilitation in irradiated fields or in cleft lip and palate are studied in this section.

The third part covers tissue engineering. It carries out a study on the state of what is known today about bone, gums and dental organs creation. It is an open window on the techniques which could rapidly become revolutionary in dento-maxillo-facial reconstruction.

Professor Joël Ferri
Professor Ernst B. Hunziker
Abstract: In modern regenerative medicine and tissue engineering, the reconstruction and repair of bony defects is one of the most intensively investigated subjects. Standard surgical approaches that are currently implemented to facilitate the repair of osseous tissue include guided bone regeneration, distraction osteogenesis and the autotransplantation of bone. In the field of tissue engineering, extracorporeal strategies, such as flap prefabrication and the seeding of biocompatible scaffolds with either stem cells, committed osteoprogenitor cells or osteoblast-like cells, are favoured options. In this chapter, the limitations and potentials of the various techniques and strategies are addressed.

Key words: bone-tissue engineering, bone repair, autologous bone, guided bone regeneration, distraction osteogenesis.

1.1 Introduction

Bone repair is one of the most intensively investigated subjects in reconstructive surgery (for a review of this topic, see Schultz et al., 2000). Current approaches to skeletal reconstructive surgery make use of biomaterials, autografts or allografts, but each technique has its drawbacks. These include donor-site morbidity and shortage of material for autografts (Damien and Parsons, 1991), immunological problems and the risk of transmitting infectious diseases for allografts. Many artificial materials, such as metals, ceramics and polymers, have been used as substitutes for bone in maintaining skeletal function (Binderman and Fin, 1990), none of which is an ideal replacement for autologous osseous tissue in current clinical practice. The use of biomaterials is a common treatment option. One of the main advantages of tissue grafts over non-living biomaterials is that they contain living cells and tissue-inducing substances which confer biological plasticity. Research is currently in progress to develop cell-containing hybrid materials and to create replacement tissues that remain interactive after implantation, imparting physiological functions as well as structure to the tissue or organ damaged by disease or trauma (Alsberg et al., 2001).

In the field of tissue engineering generally, and not least in that relating to bone, living cells are exploited in various ways to restore, maintain or enhance tissue functions (Langer and Vacanti, 1993; Lysaght and Reyes, 2001). There exist three principal therapeutic strategies for treating diseased or lost tissue in patients: (i) in-situ tissue regeneration, (ii) implantation of freshly isolated or cultured cells,
and (iii) implantation of a bone-like tissue construct that has been assembled in vitro from cells and scaffolds. In the case of in-situ regeneration, the formation of new tissue is induced by the implantation of a specific scaffold or by the application of extrinsic growth factors, which stimulate the body’s own cells and promote local tissue repair. Cellular implantation involves the direct injection of suspensions or small aggregates of autologous or allogenic cells into the damaged or lost region in the absence or presence of a degradable scaffold. In the case of tissue implantation, a complete three-dimensional construct is grown in vitro from a cell-seeded scaffold, which is introduced into the defect once it has reached ‘maturity’ (Loty et al., 2000; Meyer et al., 2004a; Schliephake et al., 2001). In this chapter, each of these strategies will be described. Alternatives to extracorporeal approaches that are important in clinical decision making will also be discussed; so, too, will the possibility of combining clinical techniques with extracorporeal tissue-engineering methodologies.

1.2 Bone-repair strategies

1.2.1 Autologous bone

The ‘gold’ standard for the reconstruction of osseous defects is autologous bone. There exist two classical ways of repairing bony defects using autologous cells: one involves augmenting local host-cell population, and the other the transplantation of grafted bone (Fig. 1.1).

The healing of bony lesions can be promoted by augmenting the host-cell population only if the status of the repair site is conducive to this process. If the soft and hard tissues are still healthy, then the host cells can usually be induced to proliferate. But if the tissue is irritated or necrotic, or if the wound is infected, attempts in this direction will probably fail.

1.1 Bone repair by autologous cells

<table>
<thead>
<tr>
<th>Local host-cells augmentation</th>
<th>Cell transplantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological stimuli</td>
<td>Vascularized</td>
</tr>
<tr>
<td>Membranes</td>
<td>Non-vascularized</td>
</tr>
<tr>
<td>Biophysical stimuli</td>
<td></td>
</tr>
<tr>
<td>Cytokines</td>
<td></td>
</tr>
<tr>
<td>GBR</td>
<td></td>
</tr>
<tr>
<td>Distraction ultrasound</td>
<td></td>
</tr>
<tr>
<td>Electro-magnetical fields</td>
<td></td>
</tr>
<tr>
<td>Pedicled</td>
<td></td>
</tr>
<tr>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>Cells</td>
<td></td>
</tr>
<tr>
<td>Bulk bone</td>
<td></td>
</tr>
<tr>
<td>Cortical bone</td>
<td></td>
</tr>
<tr>
<td>Cancellous bone</td>
<td></td>
</tr>
</tbody>
</table>

© Woodhead Publishing Limited, 2011
1.2.2 Guided bone regeneration

To improve defect healing by the ingrowth of local host cells, membrane techniques can be applied (Fig. 1.2). This approach, known as ‘guided bone regeneration’, is mainly used to repair bony defects in the maxilla and mandible. The principle of this method of bone regeneration is to effectively protect osseous tissue from the ingrowth of soft tissue by introducing a physical barrier (Lang et al., 1994). The success of this technique has been demonstrated in a number of controlled animal studies and clinical trials (Buser et al., 1996; Berglundh and Lindhe, 1997; Fiorellini et al., 1998). The pattern of healing has been shown to involve all steps of de novo bone formation, including blood-clot formation, invasion by osteoprogenitor cells and their terminal differentiation into osteoblasts. The extracellular matrix that is produced by the osteoblasts undergoes mineralization, and the woven bone that is thereby formed is later remodelled into lamellar bone (Hämmerle et al., 1998). The success of guided bone regeneration critically depends upon the size and the geometry of the defect. Osseous defects will be more effectively repaired if they are surrounded by more than two bony