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I am honored to be able to write a foreword for this new and timely book 
Pitfalls in Musculoskeletal Radiology, edited by my good friend, Wilfred 
Peh, with a contributing cast that includes many of the distinguished mem-
bers of the International Skeletal Society. I am very familiar with the time 
commitment and hard work that the preparation of such books involves, 
having myself been involved with the publication of books in the past. 
Although Wilfred suggests that his task was simple, merely “conceptualiz-
ing the contents of this book and then approaching these friends to contrib-
ute their considerable expertise,” I know for fact that it takes a motivated 
and knowledgeable editor to determine what subjects need to be addressed 
and who specifically would be the correct person or persons to complete the 
work. Clearly, it helps if that editor has a worldwide reputation as an educa-
tor with the ability to identify the right people and obtain their approval as 
contributors. The result is a book that is desperately needed and will become 
an instant success.

There are countless texts currently available that cover the spectrum of 
musculoskeletal imaging in a variety of disorders, but there is none that 
emphasizes those pitfalls that cause confusion in image interpretation and 
misdiagnosis. Such pitfalls include many anatomic variants and technique- 
specific artifacts, and they are encountered every day in clinical practice. I 
myself have struggled with these throughout my career and, until now, had no 
single place to go to figure out with what I was dealing. Now I do. Indeed, in 
the pages of this book can be found reference to pitfalls in conventional radi-
ography, ultrasonography, computed tomography, magnetic resonance, 
nuclear medicine, arthrography, and interventional procedures, with informa-
tion collected and detailed by experts in each one of these modalities and 
techniques. General, disease-specific, and regional-specific artifacts and vari-
ants are covered, with succinct and clear writing, vivid illustrations, and per-
tinent references for further reading. Each chapter is well organized and a 
pleasure to read, providing useful information that will allow the reader to 
avoid mistakes in interpretation that otherwise would occur daily.

Wilfred Peh is not new to book-writing. His impressive resume confirms a 
lifelong commitment to education. His previous texts have all been well 
received. But Pitfalls in Musculoskeletal Radiology will likely turn out to be 
the most successful of the lot, because this book addresses a subject that has 
been largely ignored and one that has a great clinical impact. Purchase this 
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book, place it at an easily accessible spot on your desk or shelf, and refer to it 
often and I can guarantee that you will become better in the interpretation of 
imaging studies related to the musculoskeletal system. Congratulations 
Wilfred and contributors (many of whom are friends of mine), this is a job 
well done! I am privileged to be able to write this foreword.

San Diego, USA Donald Resnick, MD
30 July 2016
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The growing applications of advanced imaging modalities such as high- 
resolution ultrasound (US) imaging, dual-energy computed tomography, and 
magnetic resonance imaging (MRI) have made the daily clinical practice of 
musculoskeletal radiology progressively complex. While these modalities 
can show a larger number of musculoskeletal structures in greater detail, with 
more sensitivity and higher resolution, they may also result in the production 
of technique-specific artifacts and the detection of unsuspected anatomical 
variants. Failure to recognize these imaging artifacts and variants may lead to 
diagnostic error and misinterpretation, with resultant medicolegal 
implications.

Potentially correctable pitfalls may also result from inadequate imaging 
technique, lack of training/inexperience, and failure to correlate with other 
imaging findings, in particular radiographs. Pitfalls in imaging interpretation 
also occur during imaging of trauma to structures such as bones, joints, ten-
dons, ligaments, and muscles, in different regions of the musculoskeletal sys-
tem at different ages, as well as various diseases affecting these structures, 
such as inflammatory arthritides, infections, metabolic bone lesions, congeni-
tal skeletal dysplasias, tumors, and tumorlike conditions. Recognition of 
these pitfalls is crucial in helping the practicing radiologist achieve a more 
accurate diagnosis. However, it is increasingly difficult for musculoskeletal 
radiologists, let alone general radiologists and residents, to know all of these 
pitfalls. This textbook aims at highlighting the spectrum of pitfalls that may 
occur in musculoskeletal radiology and, where possible, provides sugges-
tions for overcoming or avoiding these pitfalls.

This book came about as I was nearing the tail end of completing the well- 
received Pitfalls in Diagnostic Radiology, published by Springer-Verlag 
(Berlin/Heidelberg) in 2015. As with the previous book project, I sounded out 
the idea for Pitfalls in Musculoskeletal Radiology to my good friend, Dr. Ute 
Heilmann, editorial director of clinical medicine at Springer-Verlag, who 
replied within days saying “Again a very promising project from you!....I am 
confident that under your leadership, a sound project, worthwhile to be pub-
lished and of value to the community.” I once again thank Ute, for her deci-
sive and complete support, and her staff, for competently managing this 
project.

This book addresses a topic very close to my heart and also to the hearts of 
many of my musculoskeletal radiologist friends, the majority of whom are 
distinguished members of the International Skeletal Society. Hence, I was left 

Preface



viii

with the relatively simple task of conceptualizing the contents of this book 
and then approaching these friends to contribute their considerable expertise. 
The resultant Pitfalls in Musculoskeletal Radiology highlights musculoskel-
etal imaging pitfalls in a comprehensive and systematic manner and draws on 
the vast collective experiences of an international group of 97 radiologists 
from 51 reputable centers in 18 countries located in different parts of the 
world – as far as I know, the only such book available. To my willing author 
friends, I give my sincere thanks.

The resultant book consists of 43 chapters, well illustrated with 892 figures 
and 1,585 individual images. As with Pitfalls in Diagnostic Radiology, I have 
tried to edit the contributions of these experts with a light touch so as to retain, 
as much as possible, the original flow of each chapter according to the diverse 
experiences and perspectives of each author. Some overlap among chapters 
will be inevitable but not necessarily a bad thing. For example, the magic 
angle phenomenon is first explained in Chap. 4 on MRI artifacts but is also 
highlighted in chapters on MRI pitfalls of shoulder injury (Chap. 15), elbow 
injury (Chap. 17), wrist and hand injuries (Chap. 19), and cartilage imaging 
(Chap. 40), among others. In a similar vein, the anisotropy artifact appears in 
Chap. 2 on US imaging artifacts, as well as in chapters dealing with US pitfalls 
of injuries to the shoulder (Chap. 16), elbow (Chap. 18), and hip (Chap. 22). 
Discussion of diagnostic pitfalls in these individual chapters would not have 
been complete without a mention of these two artifacts. Similarly, marrow 
reconversion is relevant in topics as diverse as elbow injury (Chap. 17), knee 
injury (Chap. 23), treated musculoskeletal tumors (Chap. 32), multifocal and 
multisystemic bone lesions (Chap. 36), hematological and circulatory bone 
conditions (Chap. 37), and pediatric lesions (Chap. 38).

My grateful thanks go to my good friend and role model Professor Donald 
Resnick, who graciously wrote the foreword for this book.

Pitfalls in Musculoskeletal Radiology is dedicated to my dearest mother, 
Libby Tin Peh. She is the best mother that any son can wish for and is the 
most wonderful human being.

Singapore Wilfred C.G. Peh
31 December 2016
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Abbreviations

ALARA As low as reasonably achievable
CT Computed tomography
MRI  Magnetic resonance imaging
US Ultrasound

1.1  Introduction

It is widely acknowledged that radiography should 
be the initial imaging modality in the evaluation of 
most suspected musculoskeletal lesions. They are 
often adequate for diagnosis, although advanced 
imaging modalities such as computed tomography 
(CT) and magnetic resonance imaging (MRI) are 
still often required for more detailed assessment of 
structures such as bone marrow and various soft tis-
sues. Nevertheless, radiographs play an important 
complementary role to these newer cross-sectional 
imaging techniques. For example, they can provide a 
big picture view of bony or joint abnormalities, 
which allows better assessment of conditions such as 
the inflammatory arthritides (e.g., by showing distri-
bution and pattern of joint involvement). Radiographs 
can also demonstrate calcifications and ossifications, 
which might not be convincingly seen on MRI. In 
fact, radiography still remains the most specific 
imaging modality for the diagnosis of bone tumors.

Radiographs are commonly obtained for acute 
musculoskeletal trauma, infection, chronic arthropa-
thies, and bone or soft tissue tumors. They are also 
performed for follow-up imaging after treatment 

K.T.A. Low, MBBS, MMed, FRCR  
W.C.G. Peh, MD, FRCPE, FRCPG, FRCR (*) 
Department of Diagnostic Radiology,  
Khoo Teck Puat Hospital, 90 Yishun Central, 
Singapore 768828,  
Republic of Singapore
e-mail: low.keynes.ta@alexandrahealth.com.sg; 
wilfred.peh@alexandrahealth.com.sg
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such as fracture fixation and joint replacement. 
Radiographs are widely available, inexpensive, and 
well tolerated and can be rapidly and easily obtained. 
As with any imaging modality, radiography has 
advantages and disadvantages. Radiographs are of 
limited value in the evaluation of soft tissue injuries, 
for example, musculotendinous, cartilaginous, or 
ligamentous injuries. These soft tissue structures are 
not clearly seen on the radiograph and are better 
assessed on MRI or ultrasound (US) imaging, both 
of which have superior soft tissue resolution. 
Radiography is also limited in the assessment of 
conditions such as osteomyelitis and non-displaced 
acute fractures, both of which can be radiographi-
cally occult. Certain scenarios make it challenging 
or impossible to accurately interpret radiographs, for 
example, when an external cast obscures bone or 
when a background of osteopenia results in a paucity 
of osseous detail. Apart from the aforementioned 
intrinsic limitations of the radiographic modality, 
other potential pitfalls in relation to radiographic 
technique can be encountered. Proper positioning of 
the patient is crucial in obtaining a radiograph of 
diagnostic quality. An adequate coverage of the area 
of interest and an adequate number of views are also 
necessary for proper evaluation.

1.2  Pitfalls Related 
to Radiographic Image 
Acquisition

Radiography is often the initial modality used in 
the imaging workup of patients with musculoskel-
etal complaints. It is the workhorse in the emer-
gency department, where it is able to support the 
high patient throughput. Despite the time pressure, 
the radiographer has to be meticulous during the 
acquisition of radiographs as a multitude of poten-
tial pitfalls may occur, limiting the accuracy of the 
evaluation and ultimately negatively impacting 
upon the clinical management of patients.

1.2.1  Adequacy of Coverage 
and Views

When radiographic imaging is requested, one of 
the fundamental responsibilities of the radiolo-

gist is to ensure adequate coverage and suffi-
cient views of the anatomical region of interest. 
For example, a full radiographic series of the 
cervical spine should include an anteroposterior 
view, a lateral view, and an open-mouth odon-
toid view. On the lateral view, the entire cervical 
spine should be visualized with the base of the 
skull seen superiorly and the cervicothoracic 
junction (C7-T1 level) seen inferiorly. If the 
routine lateral view is insufficient, attempts 
should be made to better visualize the cervico-
thoracic junction (e.g., performing a swimmer’s 
view) (Fig. 1.1). Missing a significant injury as 
a result of inadequate coverage on imaging eval-
uation is virtually indefensible in the court of 
law. The example of the cervical spine radio-
graph is particularly pertinent due to the medi-
colegal implications of a missed unstable 
cervical spine injury, which can result in devas-
tating neurological sequelae. CT has been 
shown to have superior sensitivity and has 
largely superseded radiography in the detection 
of cervical spine injuries in patients who have 
high risk of injury (Holmes and Akkinepalli 
2005). Obtaining high-quality radiographs with 
adequate coverage tends to be challenging in 
these patients due to difficulties in positioning. 
However, radiography is still used for screening 
low-risk patients with an indication for imaging, 
and adequate coverage of anatomy remains 
crucial.

Another potential pitfall is the failure to cover 
separate associated anatomical regions which may 
be involved while imaging the primary area of 
interest. For example, in a patient with injury to the 
medial ankle structures, a Maisonneuve injury may 
be missed if imaging does not include the proximal 
fibula (Pankovich 1976) (Fig. 1.2). Associated inju-
ries should be suspected based on the injury mech-
anism and the imaging of the relevant area obtained, 
if indicated. In another example, a calcaneal frac-
ture is usually due to an axial loading force and 
should raise the suspicion of spinal injury, espe-
cially at the thoracolumbar junction.

In general, orthogonal views are sufficient in 
the radiographic imaging of the axial and appen-
dicular skeleton (Fig. 1.3). However, additional 
views may be required based on the complexity 
of the anatomy, especially if the structure of 

K.T.A. Low and W.C.G. Peh
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interest has a complex shape. Recognition that 
there are insufficient views can help to identify 
this pitfall and prevent potential missed diagno-
ses. In the knee, for example, a skyline view may 
demonstrate an avulsion fracture of the medial 
aspect of the patella in relation to transient patel-
lar dislocation (Fig. 1.4). This finding would have 
been missed on routine anteroposterior and lat-
eral views of the knee. In the case of the scaphoid 
bone, the standard posteroanterior and lateral 
radiographs of the wrist are usually insufficient 
for this complex-shaped bone, with additional 
views needed for adequate evaluation. Although 
previous studies show varying recommendations 
on the number and specific views required in the 
scaphoid series, a posteroanterior view of the 

wrist with ulnar deviation and slight tube angula-
tion is usually part of the imaging series (Malik 
et al. 2004; Shenoy et al. 2007; Toth et al. 2007) 
(Fig. 1.5).

Sometimes, stress views are warranted for 
evaluation of ligamentous injuries. Examples 
include the clenched-fist view for assessment of 
scapholunate ligament integrity and the weight- 
bearing view for assessment of the coracoclavic-
ular ligament. These views may demonstrate 
widening of the scapholunate interval and 
 coracoclavicular distance, respectively, which 
indicate significant injury (Lee et al. 2011; 
Eschler et al. 2014). Without stress views, these 
injuries would likely be radiographically occult 
and hence be difficult to detect.

a b

Fig. 1.1 A 47-year-old man who presented with neck 
pain following a motor vehicle accident. (a) Lateral radio-
graph of the cervical spine shows inadequate coverage of 
anatomy. The cervical spine inferior to the C5 level, as 

well as the cervicothoracic junction, is obscured by the 
shoulder girdle. (b) A swimmer’s view was performed as 
a complementary study and ensured complete coverage of 
the region of interest

1 Radiography Limitations and Pitfalls
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1.2.2  Radiographic Technique 
and Positioning

Radiographic technique refers to the selection of 
exposure factors, the kilovolt peak (kVp), and the 
milliampere-second (mAs), which determine the 
properties of the X-ray beam. The kVp influences 
the penetrative ability of the X-ray beam, while 
the mAs influences the quantity of radiation 
delivered. Good radiographic technique requires 
the proper selection of exposure factors such that 
there is optimal beam penetration of the anatomy, 
as well as optimal quantity of radiation reaching 
the detector at a radiation dose which is as low as 
reasonably achievable (ALARA).

In recent years, the field of diagnostic radiol-
ogy has seen the transition from film/screen 
radiographic systems to digital imaging. For 
the film/screen systems, whether a film was 
under- or overexposed was easily appreciated, 
since the image would either be too white or too 
dark, respectively. In digital systems, however, 
the wide dynamic range of the detector and the 
ability to automatically post-process images to 
achieve optimal brightness allow images of 
acceptable quality to be produced over a larger 
range of exposures as compared to the film/
screen systems (Murphey et al. 1992). Digital 
radiography is thus more forgiving with subop-
timal exposures and has significantly reduced 

a b
Fig. 1.2 An 87-year-old 
woman who presented 
with right ankle pain 
after a fall. (a) Frontal 
radiograph of the right 
ankle shows a spiral 
fracture of the distal 
tibia. (b) Frontal 
radiograph of the right 
leg shows a proximal 
fibular fracture (arrow). 
This Maisonneuve 
injury would have been 
missed if imaging 
coverage of the proximal 
leg was not performed
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Fig. 1.3 A 31-year-old 
woman who presented 
with left lateral ankle 
pain. Frontal and lateral 
radiographs of the left 
ankle were obtained. A 
minimally displaced 
distal fibular fracture is 
seen as a lucent line 
only on the lateral 
radiograph (arrow). It is 
occult on the frontal 
radiograph. This 
common injury 
illustrates the 
importance of having 
sufficient radiographic 
views for proper 
evaluation

a b

Fig. 1.4 An 18-year-old man who presented with left knee 
pain after a collision with another player during a football 
match. (a) Frontal and (b) lateral radiographs of the left knee 
show no fracture or dislocation. (c) Skyline view of the knee, 
however, shows a bony fragment at the medial aspect of the 
patella (arrow), suggestive of an avulsion fracture. (d) Axial 

fat-suppressed T2-W MR image of the left knee shows mar-
row edema at the site of the avulsion fracture (arrow) and 
disruption of the medial patellofemoral ligamentous struc-
tures (arrowheads), which are typical features of a transient 
patellar dislocation. Associated kissing bone contusion was 
present at the lateral femoral condyle (not shown)
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the number of rejected films. Even with the 
advantages of digital radiography, radiographic 
technique still affects the image quality and the 
radiation dose to the patient. Underexposure 
results in a reduction of the signal-to-noise 
ratio and manifests as increased quantum mot-
tle, which might render the image unsuitable 
for diagnostic interpretation (Fig. 1.6). 
Conversely, overexposure in the digital system 
does not affect image quality but delivers a 
larger quantity of radiation than is necessary, 
resulting in excessive radiation dose to the 
patient. An optimum exposure should be given 
with each radiographic study, in line with the 
ALARA principle and producing an image of 
sufficient quality.

Each digital radiographic system is unique, 
due to differences in design and detector type. The 
optimal exposure settings are thus unique to each 
system. A technique chart should be available for 
each radiographic system, containing specific 
optimal exposure settings for each radiographic 
position in every region of the body. Exposure 

adjustment systems should then be applied to 
fine-tune the exposure settings based on the 
patient’s weight and thickness of the body part to 
be imaged, the methods of which are beyond the 
scope of this chapter (Ching et al. 2014).

Standardized positioning of the patient results 
in radiographic views which are reproducible 
and optimal for interpretation. If proper posi-
tioning is not achieved during image acquisition, 
alignment of bones might not be accurately eval-
uated. For example, the posteroanterior view of 
the wrist should be obtained with the wrist in a 
neutral position, as only with proper positioning 
can the ulnar variance be accurately demon-
strated. Supination of the forearm decreases 
ulnar variance, while pronation increases ulnar 
variance (Epner et al. 1982) (Fig. 1.7). Another 
example is in the radiographic evaluation of the 
ankle  mortise. Accurate assessment of the align-
ment of the ankle mortise requires internal rota-
tion of the leg and is not accurately assessed on 
standard anteroposterior views of the ankle 
(Takao et al. 2001).

c d

Fig. 1.4 (continued)
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1.2.3  Radiographic Artifacts

Various technical artifacts can be produced 
 during the acquisition and processing of radio-

graphs (Shetty et al. 2011; Walz-Flannigan et al. 
2012). Detailed discussion of this subject is 
beyond the scope of this chapter, but these arti-
facts are generally obvious and do not pose  
clinical diagnostic problems. Occasionally 

a b

c

Fig. 1.5 A 40-year-old 
man who presented with 
left wrist pain after 
falling onto his 
outstretched left hand. 
(a) Frontal and (b) 
lateral radiographs of 
the left wrist show no 
fracture or dislocation. 
(c) Posteroanterior view 
of the left wrist taken in 
ulnar deviation and 
slight tube angulation, 
usually part of the 
scaphoid imaging series, 
shows an undisplaced 
fracture of the waist of 
the scaphoid (arrow)
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though, with relevance to musculoskeletal imag-
ing, technical artifacts secondary to dirt or dust 
may mimic foreign bodies. Encountering any 
of these technical artifacts would usually trig-
ger a repeat of the radiographic examination. 
Nevertheless, a properly trained radiographer 
will be able to prevent many of these technical 
artifacts. Artifacts which are external to the 
patient may cause the underlying anatomical 

structures to be obscured. An external cast on a 
postreduction radiograph is a frequently encoun-
tered example. X-rays have difficulty penetrat-
ing the cast, resulting in reduced radiographic 
detail of the underlying bones (Fig. 1.8). 
Alignment of fractures and assessment of frac-
ture healing can therefore be difficult to assess 
on these limited postreduction radiographs.

a b
Fig. 1.6 A 29-year-old 
man who presented with 
low back pain following 
a motor vehicle accident. 
(a) Frontal and (b) 
lateral radiographs of 
the lumbar spine were 
obtained. Underexposure 
is evident, as a result of 
suboptimal radiographic 
technique. There is 
increase in quantum 
mottle especially on the 
lateral view, causing loss 
of radiographic detail 
and affecting the 
diagnostic quality of the 
study. This case 
illustrates how 
inappropriate selection 
of exposure factors can 
result in a poor-quality 
radiograph
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a b c

d e f

Fig. 1.7 Poor positioning affects the radiographic orthogo-
nal views of the wrist in a 24-year-old man. (a) 
Posteroanterior and (b) lateral radiographs of the right wrist 
show inappropriate positioning of the wrist on the lateral 
view. After acquisition of the standard posteroanterior view, 
the wrist was left on the imaging plate with forearm supina-
tion performed for acquisition of the lateral view. Note the 
resultant identical appearances of the ulna on both images, 
making this a suboptimal radiographic study due to the lack 
of proper orthogonal views. (c) Posteroanterior and (d) lat-
eral radiographs of the right wrist in another patient show 

appropriate positioning of the wrist, which remains in neu-
tral position on both views. The ulnar variance is also influ-
enced by the position of the wrist, increasing on pronation 
and decreasing on supination. Ulnar variance is therefore 
only accurately assessed on the standardized posteroante-
rior view of the wrist in the neutral position. It is notewor-
thy that dynamic stress maneuvers can also alter bony 
alignment. For example, the (e) frontal and (f) clenched-fist 
stress radiographs of the left wrist of a 40-year-old woman 
show an increase in ulnar variance on the stress view, which 
is a normal finding

1 Radiography Limitations and Pitfalls
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1.3  Limitations of Radiographic 
Imaging of Non-osseous 
Structures

One of the intrinsic limitations of radiography is 
its poor soft tissue contrast. Delineation of soft 
tissue structures on the radiograph may be diffi-
cult or impossible, making radiography a gener-
ally unreliable imaging modality for the 
assessment of soft tissue lesions. Unless there is 
gross morphological alteration (e.g., tendon rup-
ture) (Fig. 1.9) or typical pattern of calcification 
or ossification (e.g., myositis ossificans) 
(Fig. 1.10), soft tissue abnormalities invariably 
go unnoticed on the radiograph. Radiography is 
generally an insensitive imaging modality com-
pared to other cross-sectional imaging modali-
ties, such as MRI and US imaging, in the early 

stages of disease processes involving the soft tis-
sues. Early radiographic signs tend to be subtle 
and easily overlooked, whereas in advanced dis-
ease, osseous changes are usually readily 
observed. However, at the stage when such typi-
cally irreversible advanced osseous changes take 
place, the optimal time for therapeutic interven-
tion might have been missed.

1.3.1  Intra- and Periarticular 
Structures

1.3.1.1  Articular Cartilage
The articular cartilage is essentially radiolucent 
and invisible on the radiograph. This makes its 
radiographic assessment particularly challenging. 
Radiographs are insensitive in the direct detection 

a b

Fig. 1.8 A 66-year-old woman who presented after fall-
ing onto her outstretched left hand. (a) Frontal radiograph 
of the left wrist shows fractures of the distal radius and 

ulnar styloid process. (b) Postreduction frontal radiograph 
shows the presence of a backslab, which obscures the 
bony details
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of chondral lesions, whether degenerative or trau-
matic in etiology. A purely chondral lesion caused 
by acute trauma, without  involvement of the sub-
chondral bone, cannot be appreciated on the 
radiograph (Fig. 1.11). The radiographic diagno-
sis of osteoarthritis is based on the observation of 
indirect features, such as the presence of marginal 
osteophytes, narrowing of joint space, as well as 
subchondral sclerosis and cyst formation. 
Radiographs have high specificity in the detection 
of advanced osteoarthritis, with the combination 
of indirect features allowing an easy diagnosis to 
be made. However, in early osteoarthritis, radio-
graphs have low sensitivity and tend to underesti-
mate the extent of cartilage degeneration 
(Blackburn et al. 1994). Despite the absence of 
radiographic signs of osteoarthritis, many symp-
tomatic patients have been shown on arthroscopic 
evaluation to have significant degeneration of 
articular cartilage (Kijowski et al. 2006). In addi-
tion, the degree of joint space narrowing in 
patients with known osteoarthritis is a poor pre-
dictor of the actual state of the articular cartilage 
(Fife et al. 1991) (Fig. 1.12).

Currently, radiography is still widely used in 
the imaging follow-up of patients with established 
osteoarthritis. Nevertheless, with advances in 
pharmacological and surgical therapies, a more 
precise imaging modality is required for articular 
cartilage evaluation. MRI is currently the gold 
standard in the imaging evaluation of articular car-
tilage. It has the ability to assess both the morphol-
ogy and the biochemical integrity of the articular 
cartilage and will play an increasingly important 
role in the noninvasive evaluation of articular car-
tilage both before and after therapeutic interven-
tion (Gold et al. 2009; Crema et al. 2011).

1.3.1.2  Synovium and Joint Fluid
The synovium is normally not visible on the 
radiograph. When synovitis occurs, whether 
inflammatory such as in the inflammatory arthri-
tides or infective in the case of septic arthritis, the 
radiographic appearance is usually normal early 
in the course of the disease. However, at this 
early stage, some changes may already be appre-
ciated on MRI or US imaging. Synovial hyper-
trophy, hypervascularity and enhancement, and 

a b c

Fig. 1.9 A 41-year-old woman who presented after a 
fall with left ankle pain and had significant limited range 
of motion. (a) Lateral radiograph of the ankle shows 
background calcaneal enthesopathy, with an avulsed 
fragment off the dorsal aspect of the calcaneus (arrow). 
This finding, together with concordant clinical examina-
tion findings, allowed the diagnosis of a high-grade 

Achilles tendon tear to be made. (b) Sagittal T1-W MR 
image of the left ankle shows disruption of the fibers of 
the Achilles tendon in keeping with a complete tear. The 
associated avulsion fracture of the dorsal aspect of the 
calcaneus is seen, and on the (c) sagittal fat-suppressed 
T2-W MR image, there is corresponding marrow edema 
(arrowheads)
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possible adjacent soft tissue and bone marrow 
signal changes are features which are usually 
radiographically occult (Fig. 1.13).

Small joint effusions may not be appreciated 
on radiography. Even if seen radiographically, 
without information on the state of the synovium, 
periarticular soft tissues, and bone marrow, this 
finding may not be useful in narrowing the dif-
ferential diagnoses (Fig. 1.14). On the other 
hand, MRI, with or without intravenous contrast 
administration, is able to show the state of the 
surrounding structures, allowing better assess-
ment of the underlying pathology. US imaging is 
highly sensitive in the detection of joint effusions 
and is able to provide real-time imaging guidance 
for diagnostic joint aspiration.

Radiographs have been used for more than a 
century in the imaging evaluation of the inflamma-
tory arthritides, and they are able to demonstrate 
the osseous changes which indicate advanced dis-
ease. Currently, however, when modern therapy 
allows prevention or delay of irreversible joint 
destruction, imaging modalities with higher sensi-
tivity for inflammatory changes (i.e., MRI and US 
imaging) are superior to radiographs in guiding 
treatment decisions (Szkudlarek et al. 2006; Weiner 
et al. 2008; Sankowski et al. 2013) (Fig. 1.15). 
Similarly, in the case of septic arthritis, irreversible 
joint destruction would have occurred by the time 
osseous changes are seen on the radiograph. 
Clinical judgment is of paramount importance in 
the management of patients with septic arthritis. 

a b c

Fig. 1.11 A 42-year-old man who presented with left 
knee pain. (a) Frontal radiograph of the left knee shows 
minimal degenerative changes with preservation of the 
joint spaces. Coronal (b) PD-W and (c) fat- suppressed 

T2-W MR images of the left knee show a focal chondral 
defect (arrows) at the articular surface of the lateral femo-
ral condyle. This finding cannot be appreciated radio-
graphically since cartilage is essentially radiolucent

a b

Fig. 1.10 A 17-year-old man who had a history of trauma 
to the left thigh 2 weeks before presentation. (a) Frontal 
and (b) lateral radiographs of the left femur show faint cur-
vilinear sheet-like calcifications (arrows) adjacent to the 
mid-shaft of the femur. In the context of recent trauma, this 
appearance is highly suggestive of myositis ossificans. 
Note the external artifacts due to the patient’s clothing
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a b

c d

Fig. 1.12 A 44-year-old man who presented with chronic 
left knee pain. (a) Frontal and (b) lateral radiographs of 
the left knee show mild osteoarthritis with small marginal 
osteophytes and relative preservation of the joint spaces. 
A joint effusion is also noted. (c) Coronal and (d) axial 
fat-suppressed PD-W MR images of the left knee show 

partial- to full-thickness articular cartilage loss (arrows) 
involving the lateral tibiofemoral and patellofemoral joint 
compartments and confirm the presence of a joint effu-
sion. As illustrated, the degree of joint space narrowing is 
not a sensitive method for predicting the actual state of the 
articular cartilage
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Joint aspiration has to be performed for the diagno-
sis to be established, and treatment has to be insti-
tuted without delay, as rapid progression to 
permanent joint destruction may otherwise ensue.

1.3.1.3  Ligaments, Tendons, and Other 
Fibrocartilaginous Structures

Radiographic assessment of ligaments, ten-
dons, and fibrocartilaginous structures relies 
upon the observation of indirect features which 

indicate possible underlying pathology involv-
ing these structures. These indirect features 
include joint malalignment, hemarthrosis, cal-
cific deposits, and secondary osseous changes. 
The latter two are seen in relation to chronic 
degenerative  processes. In acute trauma, inju-
ries to these  structures tend to be occult on the 
radiograph, especially when sprains, strains, or 
partial tears occur. Extensive ligamentous dis-
ruption with joint dislocation is usually visible 

a b

Fig. 1.13 A 36-year-old man who presented with left 
elbow pain after a traumatic injury. Initial radiographic 
evaluation of the left elbow was negative for fracture or 
dislocation. (a) Lateral radiograph shows that the poste-
rior fat pad is just visible (arrow), raising suspicion of a 
joint effusion. (b) Sagittal contrast-enhanced fat- 
suppressed T1-W MR image of the left elbow confirms 

the presence of a joint effusion and shows enhancement of 
the synovium (arrowheads), consistent with synovitis. No 
fracture was identified. In the absence of other clinical 
features of infection, transient inflammatory synovitis of 
traumatic etiology was the primary diagnosis. The patient 
made a full recovery with conservative management
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a b

Fig. 1.14 A 38-year-old man who presented with left 
groin pain after a period of intense physical activity. (a) 
Frontal radiograph of the pelvis is essentially normal. (b) 
Coronal turbo inversion recovery magnitude (TIRM) MR 
image of the pelvis shows a left hip joint effusion (arrow), 

which was radiographically occult. This represented a 
reactive effusion secondary to a left groin muscular strain 
(not shown), and the patient subsequently made a full 
recovery with conservative management

a b

Fig. 1.15 A 35-year-old man who presented with wors-
ening back pain, on a background of chronic back and 
polyarticular pain. (a) Frontal radiograph of the pelvis 
shows no significant abnormality. (b) Coronal TIRM MR 
image of the sacrum shows periarticular marrow edema 
involving the inferior aspect of both sacroiliac joints 

(worse on the left), seen as conspicuous hyperintense fluid 
signal which has high contrast compared with the sur-
rounding fat-suppressed normal marrow. This case high-
lights the high sensitivity of MRI to the early changes of 
sacroiliitis, when it is radiographically occult
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on the radiograph. Complete tendon rupture 
with tendon retraction may also be visible 
radiographically. However, these injuries tend 
to be obvious on clinical examination.

Gross disruption of the supporting ligaments of a 
joint, with the presence of dislocation, represents 
one end of the spectrum of ligamentous injuries and 
manifests in radiographs as a disruption of the bony 
alignment. Less severe ligamentous injuries range 
from sprains to high-grade partial tears and even 
complete tears of individual ligaments. These inju-
ries are largely not appreciated on radiographs, 
especially in the acute setting when joint instability 
might not be accurately assessed on clinical exami-
nation, and the bony alignment often remains nor-
mal on imaging (Figs. 1.16 and 1.17). Sometimes, 
the same traumatic mechanism causing ligamen-
tous injury may result in bone abnormalities, which 

again are indirect features on the radiograph. These 
bone abnormalities can often be seen on the radio-
graph but are usually subtle and easily missed, if not 
suspected. In the example of an injury involving the 
anterior cruciate ligament of the knee, possible 
bony abnormalities include avulsion fractures at the 
femoral or tibial attachment sites, the Segond frac-
ture, and an  osteochondral impaction fracture of the 
lateral femoral condyle (Ng et al. 2011). Detection 
of any of these bony abnormalities without appreci-
ating the underlying soft tissue injuries is a potential 
pitfall in the interpretation of the radiograph.

A complete tendon rupture with tendon 
retraction, involving a superficial large tendon 
such as the Achilles tendon, does not usually 
pose a diagnostic problem. However, in other 
locations, for example, the rotator cuff tendons 
in the shoulder, accurate assessment of tendon 

a b

Fig. 1.16 A 25-year-old man who presented with right 
knee pain after sustaining an injury from a tackle during a 
football match. (a) Frontal radiograph of the right knee 
shows no fracture or dislocation. (b) Coronal fat- 
suppressed PD-W MR image of the right knee shows a 

grade 2 injury of the medial collateral ligament, evident as 
a partial disruption of the ligament with surrounding 
edema (arrowheads). This injury is usually not apprecia-
ble on radiography, but may be suggested if bony avulsion 
occurs at the attachment sites of the ligament
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tears is impossible on radiographs. The rotator 
cuff is the archetype of a tendon which is highly 
susceptible to chronic degeneration. Significant 
chronic tendinosis and tendon tears of the rota-
tor cuff are typically not visualized on radio-
graphs (Fig. 1.18), though indirect findings 
such as osseous changes (signifying advanced 
disease), calcific tendinous deposits, and fea-
tures of subacromial impingement may be seen. 
Nevertheless, other imaging modalities such as 
MRI and US imaging would be necessary for 
proper evaluation, as radiographic findings 
alone will not be sufficient to guide clinical 
management (Seibold et al. 1999). Other exam-
ples of fibrocartilaginous structures which are 
usually not directly visualized on radiography 
include intervertebral disks, menisci of the 
knee, glenoid labrum, and triangular fibrocarti-
lage complex of the wrist (Figs. 1.19, 1.20, 
1.21, and 1.22). Radiography plays a limited 
but usually complementary role in the evalua-
tion of these structures.

1.3.2  Other Soft Tissues 
and Foreign Bodies

Various soft tissues, such as muscle and subcutane-
ous soft tissue, are usually included in the views 
obtained on radiography of the musculoskeletal 
system. Radiographs are largely limited in the 
assessment of muscle abnormalities, with rare 
exceptions such as myositis ossificans which shows 
typical radiographic appearances but may be diag-
nostically confusing on MRI early in its course 
(McCarthy and Sundaram 2005). Otherwise, mus-
cle lesions are best assessed on MRI, which can 
demonstrate alterations in muscle signal intensity 
characteristics (Theodorou et al. 2012).

However, much information can still be 
gleaned from the radiographic appearance of the 
subcutaneous soft tissue. Diffuse processes such 
as edema and cellulitis may be appreciated by 
the presence of increased reticular markings and 
thickening of the overlying skin. However, this 
appearance is nonspecific, based on radiography 

a b

Fig. 1.17 A 35-year-old man who presented with right 
knee pain after a twisting injury sustained during a game 
of basketball. (a) Lateral radiograph of the right knee 
shows no significant bony injury or joint malalignment. A 
small suprapatellar joint effusion is noted. (b) Sagittal fat- 
suppressed PD-W MR image of the right knee shows a 

high- grade injury of the anterior cruciate ligament, evi-
dent as a disruption of the fibers at the femoral attachment 
(arrowheads). This injury is not usually discernable on 
radiography, although indirect osseous findings (such as 
Segond fracture) may suggest this injury
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alone. Likewise, for focal pathologies such as 
superficial hematoma, abscess, and a myriad of 
other soft tissue masses (including intramuscu-
lar masses), the radiographic appearance alone 
is usually nonspecific. Certain radiographic 

characteristics such as lesion density, the pres-
ence of calcification or ossification, and effect 
on adjacent osseous structures may shed some 
light on the nature of the soft tissue mass. Thus, 
although limited on its own, radiography plays a 

a

b

c

d

Fig. 1.18 A 46-year-old man who presented with left 
shoulder pain and decreased range of motion after a 
motor vehicle accident. (a) Frontal radiograph of the left 
shoulder shows no significant abnormality. The humerus 
is in an internally rotated position. (b) Longitudinal US 
image of the supraspinatus shows a complete tear of the 
supraspinatus tendon, with a tendon gap at its attach-
ment to the greater tuberosity (as indicated by the cross-
hairs). This finding was not apparent on the radiographs. 

(c) Longitudinal US image of another patient shows a 
normal fibrillar pattern of the distal supraspinatus tendon 
(shown for comparison). (d) Frontal radiograph of the 
left shoulder of a 70-year-old woman with advanced rota-
tor cuff disease shows an obliterated acromiohumeral 
interval and secondary degenerative osseous changes, 
features which are radiographically discernible. At this 
late stage of disease, surgical intervention will not be 
useful
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complementary role in the imaging evaluation 
of soft tissue masses (Gartner et al. 2009).

Radiographs are useful for the detection of 
suspected radiopaque foreign bodies, as well as 
soft tissue gas pockets. On the radiograph, gas 
pockets are visible on a background of soft tissue 
densities as their hyperlucency provides imaging 
contrast. Similarly, radiopaque foreign bodies 
can be seen, as the differences in densities pro-
vide good contrast. The higher the radiodensity 
of a foreign body, the greater its visibility. A limi-

tation of radiography is in the detection of for-
eign bodies which are weakly radiopaque, 
especially if the material of the foreign body has 
a density close to that of the surrounding soft 
 tissue (e.g., wood). These weakly radiopaque for-
eign bodies will not be appreciated on the radio-
graph. This potential pitfall should be recognized 
by the clinician requesting the radiograph, and if 
necessary, an alternative imaging modality such 
as US imaging should be considered (Aras et al. 
2010) (Fig. 1.23).

a b

Fig. 1.19 A 25-year-old woman who presented with low 
back pain and bilateral lower limb numbness after lifting 
some heavy loads. (a) Lateral radiograph of the lumbar 
spine is essentially normal. (b) Sagittal fat-suppressed 
T2-W MR image of the lumbar spine shows posterior 
intervertebral disk extrusions at L4–L5 and L5-S1 levels 
(arrows), worse at the L4–L5 level where there is signifi-
cant spinal canal stenosis with likely impingement of the 

cauda equina nerve roots. Note the reduced signal of the 
desiccated disks at the affected levels, as well as increased 
marrow signal at the endplates of L4–L5 level consistent 
with Modic type 1 degenerative signal changes. The other 
intervertebral disks have a normal appearance. Example 
of fibrocartilaginous structure (disk) not directly visual-
ized on radiography
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a b

Fig. 1.20 A 37-year-old man who presented with left 
knee pain. (a) Frontal radiograph of the left knee shows no 
significant abnormality. (b) Coronal fat-suppressed PD-W 
MR image of the left knee shows a horizontal tear of the 
medial meniscus involving its inferior surface, evident as 

a linear area of hyperintensity (arrow). The lateral menis-
cus has a normal appearance. Example of fibrocartilagi-
nous structure (meniscus) not directly visualized on 
radiography

a b

Fig. 1.21 A 22-year-old man who had recurrent episodes 
of anterior shoulder dislocation. (a) Axillary radiographic 
view of the left shoulder shows normal joint alignment 
and no significant osseous abnormality. (b) Axial fat- 
suppressed T1-W MR arthrographic image of the left 
shoulder shows a Perthes lesion (a variant of the Bankart 

lesion), manifesting as detachment of the anteroinferior 
glenoid labrum which remains attached to an intact but 
lifted periosteum of the anterior glenoid (arrow). The pos-
terior glenoid labrum shows a normal appearance. 
Example of fibrocartilaginous structure (glenoid labrum) 
not directly visualized on radiography
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a b

Fig. 1.22 A 28-year-old motorcyclist who had persistent 
ulnar-sided left wrist pain 4 months after being involved 
in a minor motor vehicle accident. (a) Frontal radiograph 
of his left wrist is essentially normal, with no fracture or 
dislocation seen. Negative ulnar variance is noted. (b) 
Coronal fat-suppressed T1-W MR arthrographic image of 

the left wrist shows a tear of the radial attachment site of 
the triangular fibrocartilage complex (TFCC), seen as lin-
ear high signal (arrow). Hyperintense contrast agent is 
seen extending into the distal radioulnar joint, a result of 
the TFCC tear. Example of fibrocartilaginous structure 
(TFCC) not directly visualized on radiography

a b

Fig. 1.23 A 34-year-old construction worker who pre-
sented with pain in the right foot after stepping barefoot 
onto unknown material at his work site. (a) Lateral radio-
graph of the right foot does not show any radiopaque for-
eign body. (b) US image shows a few small foreign bodies 

within the plantar subcutaneous layer of the right foot, 
seen as linear echogenic structures (as indicated by the 
crosshairs). The patient underwent removal of the foreign 
bodies, which turned out to be wooden splinters. Wood is 
weakly radiopaque and may be invisible on radiography
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1.4  Radiographically Occult 
Osseous Abnormalities

One of the strengths of the radiograph is its 
ability to demonstrate the osseous structures. 
This gives it relatively good specificity in the 
evaluation of osseous abnormalities. In most 
cases of discrete osseous lesions, the radio-
graphic appearance allows categorization into 
aggressive and nonaggressive entities and so 

helps narrow the differential diagnoses. In 
many cases, the radiographic appearance is so 
characteristic as to allow a diagnosis to be 
made.

1.4.1  Destructive Osseous Lesions

Although radiographs display osseous anatomy 
well, before a destructive osseous lesion is even 

Fig. 1.24 A 53-year-old woman who was recently diag-
nosed with adenocarcinoma of the right lung and pre-
sented with diffuse back pain. (a) Frontal and (b) lateral 
radiographs of the lumbar spine show spondylotic 
changes. Bone density is preserved and there is no evi-
dence of osseous destruction. (c) Whole-body Tc-99 m 

MDP bone scintiscan shows extensive osseous metasta-
ses, evident as increased tracer uptake at multiple sites, 
especially in the axial skeleton including the lumbar 
spine. This case demonstrates the superior sensitivity of 
bone scintigraphy compared to radiographs in the detec-
tion of metastatic bone disease

a b
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visible radiographically, there has to be loss of 
about 50% of the cortical bone mass (Osmond 
et al. 1975; Taoka et al. 2001). Radiography is 
thus significantly limited in the detection of 
lesions early in the course of osseous metastatic 
disease, since the pathology is predominantly 
confined to the medullary cavity of the bone at 
this early stage (Gold et al. 1990). In contrast to 
radiography, bone scintigraphy is sensitive 
enough to demonstrate metastatic involvement of 
cortical bone with a threshold of about 5–10% 
lesion-to-normal bone ratio (Algra et al. 1991) 
(Fig. 1.24).

Similarly, in osteomyelitis, before thresholds 
of about 50% of bone mineral content involve-
ment and 1 cm of lesion size are reached, the 
lesion remains radiographically occult (Pineda 
et al. 2009). Thus, the radiographic features of 
osteomyelitis are typically delayed by about 
10–14 days from the onset of infection. In the 

early stages of osteomyelitis, the radiograph can 
be normal in appearance and so is significantly 
limited as a diagnostic modality. However, 
radiographs can still be useful for demonstrat-
ing associated findings such as foreign bodies 
and soft tissue gas in this setting. MRI is exqui-
sitely sensitive to bone marrow changes, mak-
ing it the imaging modality of choice in the 
evaluation of vertebral metastases as well as 
osteomyelitis, both of which mainly involve the 
bone marrow (Algra et al. 1991; Pineda et al. 
2009) (Figs. 1.25 and 1.26).

1.4.2  Trauma-Related Osseous 
Injuries

1.4.2.1  Undisplaced Fractures
An important limitation of radiographs is in the 
evaluation of acute undisplaced fractures, espe-
cially hairline ones. For an acute fracture to be 
visualized on the radiograph, at least a small 
amount of displacement or separation is usually 
necessary for the fracture to manifest as a radio-
lucent line, sclerotic line, or cortical step. Hence, 
even with adequate views and proper technique, 
an acute undisplaced fracture can be radiographi-
cally occult. It is important to be aware of this 
potential pitfall when interpreting radiographs of 
the acute trauma patient, especially if there are 
associated soft tissue findings in a seemingly 
negative radiograph. For example, elevated fat 
pads in the elbow joint indicate the presence of a 
hemarthrosis, which could be secondary to an 
occult undisplaced fracture. If the clinical suspi-
cion for a fracture is high despite a negative ini-
tial radiograph, follow-up radiographs can be 
obtained 10–14 days later. If present, these frac-
tures typically become increasingly visible with 
time as bone resorption and callus formation 
occur at the fracture site (Fig. 1.27).

In certain clinical scenarios, confirmation of 
the presence of a fracture may need to be done 
rapidly, as an unnecessary delay in the diagnosis 
would result in significant morbidity. In such 
cases, follow-up radiographs should not be advo-
cated and advanced imaging evaluation should 
instead be performed. For example, in the elderly 

c
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Fig. 1.24 (continued)
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adult with hip pain after a fall, where there is 
inability to weight-bear and no fracture is seen on 
radiographs, further advanced imaging such as 
MRI and CT should be arranged early to estab-
lish the presence of an undisplaced femoral neck 
fracture, which usually requires to be treated sur-
gically (Oka and Monu 2004; Gill et al. 2013; 
Ward et al. 2013) (Fig. 1.28).

1.4.2.2  Stress Injuries
Stress injuries range in a continuum from stress 
reactions to established stress fractures. They 
develop as a result of chronic repetitive micro-
trauma causing fatigue of normal bone and essen-
tially comprise microtrabecular fractures which 
are not visible on the radiograph. If the inciting 
activity causing repetitive stress is not stopped to 
allow bone to heal, these microtrabecular frac-
tures accumulate and eventually result in a full 

cortical fracture. Formation of periosteal new 
bone is the earliest radiographic feature of stress 
fractures, and its appearance may be delayed up 
to 3 months from the initial injurious stimulus 
(Jarraya et al. 2013) (Fig. 1.29).

The earliest stage of stress injuries, termed 
stress reaction, is radiographically occult but may 
manifest on MRI as bone marrow edema without 
a fracture line. Due to nonspecificity of isolated 
bone marrow edema, CT may also be useful in 
distinguishing stress reaction from other entities 
such as osteoid osteoma (Liong and Whitehouse 
2012). Since only timely management can inter-
rupt the cycle of repetitive stress, early detection 
of stress injuries is crucial. An understanding of 
the limitation of radiography in this respect and 
the use of more appropriate imaging modalities is 
vital in establishing the diagnosis of stress injury 
in the early stages.

a b

c

Fig. 1.25 A 62-year-old man with type 2 diabetes melli-
tus who presented with an infected ulcer at the left hind-
foot. (a) Lateral radiograph of the left ankle shows a 
radiolucent area posterior to the calcaneum (arrow), cor-
responding to the known ulcer. No obvious radiographic 
sign of osteomyelitis (e.g., periosteal reaction and bone 
destruction) is discerned. (b) Sagittal TIRM MR image of 

the left foot shows subcutaneous inflammatory signal 
alteration deep to the ulcer (arrowheads), extending down 
to the calcaneum which shows abnormal marrow edema 
(asterisk). (c) Sagittal T1-W MR image shows the charac-
teristic T1-hypointense marrow signal of osteomyelitis 
involving the calcaneum (asterisk)
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a b c

Fig. 1.26 A 51-year-old man who presented with back 
pain of insidious onset. (a) Frontal and (b) lateral radio-
graphs of the thoracic spine appear essentially normal. 
There is no radiographic evidence of osseous metastasis. 
(c) Sagittal T1-W MR image of the thoracic spine shows 

abnormal hypointense marrow signal involving multiple 
vertebral levels. The patient had extensive osseous metas-
tases secondary to a primary malignancy in the right lung 
apex, which was incidentally imaged on the frontal radio-
graph (a) and seen as right lung apical opacities

a b

Fig. 1.27 A 6-year-old boy who presented with pain in the 
left elbow after a fall onto his outstretched left hand. (a) 
Lateral radiograph of the left elbow shows no displaced 
fracture. The joint alignment is maintained. There is how-
ever a joint effusion, as indicated by elevated anterior and 
posterior fat pads (arrowheads). This finding should raise 

the suspicion of an occult undisplaced fracture in the setting 
of trauma. (b) Follow-up lateral radiograph of the left elbow 
was performed 10 days after the initial presentation. Despite 
the presence of an overlying cast, periosteal reaction can be 
seen along the posterior aspect of the distal shaft of the 
humerus (arrow), indicating a healing undisplaced fracture

1 Radiography Limitations and Pitfalls
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1.4.3  Osteoporosis

Osteoporosis is defined as a reduction in bone 
mass, with a bone density of less than 2.5 stan-
dard deviations below that of a healthy young 
adult (World Health Organization 2003). It has 
many different causes, but its appearance on 
radiography is the same regardless of etiology. 
The diagnosis is most confidently made on a 
 quantitative technique such as dual-energy 
X-ray absorptiometry (DXA). However, most 
cases of osteoporosis are still diagnosed on 
radiography (Guglielmi et al. 2011). 
Radiographs are inherently limited in the detec-
tion of reduced bone mass, which is only appre-
ciable when about 30% of bone loss has occurred 

(Harris and Heaney 1969). Radiographic tech-
nique may also be a confounding factor, for 
example, causing bones to appear more radiolu-
cent than usual and giving a false impression of 
osteoporosis. This is a potential pitfall when 
radiographs are used in the diagnosis of osteo-
porosis. A combination of features such as cor-
tical thinning, trabecular changes, and 
insufficiency fractures is usually needed to pro-
vide a higher degree of confidence in the diag-
nosis of osteoporosis on radiography (Fan and 
Peh 2016). Another radiographic pitfall in rela-
tion to osteoporosis is the limitation in the 
detection of destructive lesions and fractures. 
On a background of reduced bone mass, these 
conditions can be difficult or impossible to 

a b

c d

Fig. 1.28 An 83-year-old woman who presented with left 
hip pain after a fall. (a) Frontal radiograph of the pelvis 
and (b) lateral radiograph of the left hip show no appre-
ciable fracture or dislocation. There is diffuse reduction in 
bone density, which limits radiographic sensitivity for 
minimally displaced fractures. (c) Axial T1-W MR image 

of the pelvis shows an undisplaced fracture of the neck of 
the left femur, seen as a hypointense fracture line (arrow). 
This fracture was radiographically occult. (d) Axial fat- 
suppressed T2-W MR image of the pelvis at the corre-
sponding level shows associated marrow edema around 
the fracture site
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appreciate. This is especially so early in the 
course of destructive processes (e.g., osteomy-
elitis or osseous metastasis) or when fractures 
are undisplaced (e.g., hip fracture in the elderly 
adult) (Figs. 1.28 and 1.30).

 Conclusion

Radiography as an imaging modality has inher-
ent limitations in the demonstration of lesions 
involving soft tissues, as well as early in the 
course of abnormalities involving bone. Pitfalls 

a b

c d

e

Fig. 1.29 A 24-year-old avid runner who presented with 
right foot pain. (a) Frontal and (b) oblique radiographs of 
the right foot show no significant abnormality. Incidental 
note is made of a type 2 os navicularis. (c) Sagittal T1-W 
MR image of the right foot shows curvilinear hypointense 
trabecular fracture lines in the base of the fourth metatar-
sal (arrow). (d) Sagittal fat-suppressed T2-W MR image 
of the right foot shows associated marrow edema (aster-

isk). With the presence of a concordant history, the find-
ings were consistent with a stress injury. (e) Frontal 
radiograph of the right foot in another patient at a later 
stage in the natural progression of a stress injury shows 
typical periosteal reaction adjacent to the neck of the sec-
ond metatarsal (arrowhead), indicating a healing stress 
fracture. This is the earliest radiographic feature of stress 
injury
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a b

c d

Fig. 1.30 A 74-year-old woman who presented with low 
back pain and tenderness in the upper gluteal region after 
a fall. (a) Frontal and (b) lateral radiographs of the lumbar 
spine show diffuse reduction in bone density consistent 
with osteoporosis. Known chronic osteoporotic compres-
sion fractures are seen at the thoracolumbar junction lev-
els. Background spinal degenerative changes are evident, 

especially at the lower lumbar spine. (c) Coronal T1-W 
and (d) coronal fat-suppressed T2-W MR images of the 
sacrum show sacral insufficiency fractures, evident as a 
typical “H” pattern of T1-hypointense and T2-hyperintense 
marrow edema involving the bilateral sacral ala and the 
body of the second sacral segment. This finding is radio-
graphically occult
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are also encountered in radiographic acquisi-
tion, and if the clinician or radiologist is not 
cognizant of them, suboptimal diagnosis and 
patient management can ensue. Nevertheless, 
the humble radiograph remains a mainstay of 
diagnostic imaging in the modern day, fre-
quently being the first-line imaging modality or 
assuming a complementary role to other more 
advanced imaging modalities.

References

Algra PR, Bloem JL, Tissing H et al (1991) Detection of 
vertebral metastases: comparison between MR imag-
ing and bone scintigraphy. Radiographics 11:219–232

Aras MH, Miloglu O, Barutcugil C et al (2010) Comparison 
of the sensitivity for detecting foreign bodies among 
conventional plain radiography, computed tomography 
and ultrasonography. Dentomaxillofac Radiol 3:72–78

Blackburn WD, Bernreuter WK, Rominger M et al (1994) 
Arthroscopic evaluation of knee articular cartilage: a 
comparison with plain radiographs and magnetic reso-
nance imaging. J Rheumatol 21:675–679

Ching W, Robinson J, McEntee M (2014) Patient-based 
radiographic exposure factor selection: a systematic 
review. J Med Radiat Sci 61:176–190

Crema MD, Roemer FW, Marra MD et al (2011) Articular 
cartilage in the knee: current MR imaging techniques 
and applications in clinical practice and research. 
Radiographics 31:37–61

Epner RA, Bowers WH, Guilford WB (1982) Ulnar vari-
ance – the effect of wrist positioning and roentgen 
filming technique. J Hand Surg Am 7:298–305

Eschler A, Rosler K, Rotter R et al (2014) 
Acromioclavicular joint dislocations: radiological cor-
relation between Rockwood classification system and 
injury patterns in human cadaver species. Arch Orthop 
Trauma Surg 134:1193–1198

Fan YL, Peh WCG (2016) Radiology of osteoporosis: old and 
new findings. Semin Musculoskelet Radiol 20:235–245

Fife RS, Brandt KD, Braunstein EM et al (1991) 
Relationship between arthroscopic evidence of carti-
lage damage and radiographic evidence of joint space 
narrowing in early osteoarthritis of the knee. Arthritis 
Rheum 34:377–382

Gartner L, Pearce CJ, Saifuddin A (2009) The role of the 
plain radiograph in the characterisation of soft tissue 
tumours. Skelet Radiol 38:549–558

Gill SK, Smith J, Fox R, Chesser TJS et al (2013) 
Investigation of occult hip fractures: the use of CT and 
MRI. Sci World J 2013:830319

Gold RI, Seeger LL, Bassett LW, Steckel RJ et al (1990) 
An integrated approach to the evaluation of metastatic 
bone disease. Radiol Clin N Am 28:471–483

Gold GE, Chen CA, Koo S et al (2009) Recent advances 
in MRI of articular cartilage. AJR Am J Roentgenol 
193:628–638

Guglielmi G, Muscarella S, Bazzocchi A (2011) Integrated 
imaging approach to osteoporosis: state-of-the-art 
review and update. Radiographics 31:1343–1364

Harris WH, Heaney RP (1969) Skeletal renewal and meta-
bolic bone disease. N Engl J Med 280:193–202

Holmes JF, Akkinepalli R (2005) Computed tomography 
versus plain radiography to screen for cervical spine 
injury: a meta-analysis. J Trauma 58:902–905

Jarraya M, Hayashi D, Roemer FW et al (2013) 
Radiographically occult and subtle fractures: a picto-
rial review. Radiol Res Pract 2013:370169

Kijowski R, Blankenbaker D, Stanton P et al (2006) 
Arthroscopic validation of radiographic grading scales 
of osteoarthritis of the tibiofemoral joint. AJR Am 
J Roentgenol 187:794–799

Lee SK, Desai H, Silver B et al (2011) Comparison of radio-
graphic stress views for scapholunate dynamic instabil-
ity in a cadaver model. J Hand Surg Am 36:1149–1157

Liong SY, Whitehouse RW (2012) Lower extremity and 
pelvic stress fractures in athletes. Br J Radiol 
85:1148–1156

Malik AK, Shetty AA, Targett C, Compson JP (2004) 
Scaphoid views: a need for standardisation. Ann R 
Coll Surg Engl 86:165–170

McCarthy EF, Sundaram M (2005) Heterotopic ossifica-
tion: a review. Skelet Radiol 34:609–619

Murphey MD, Quale JL, Martin NL et al (1992) Computed 
radiography in musculoskeletal imaging: state of the 
art. AJR Am J Roentgenol 158:19–27

Ng WHA, Griffith JF, Hung EHY et al (2011) Imaging of 
the anterior cruciate ligament. World J Orthop 2:75–84

Oka M, Monu JUV (2004) Prevalence and patterns of 
occult hip fractures and mimics revealed by MRI. AJR 
Am J Roentgenol 182:283–288

Osmond JD, Pendergrass HP, Potsaid MS (1975) 
Accuracy of 99mTC-diphosphonate bone scans and 
roentgenograms in the detection of prostate, breast and 
lung carcinoma metastases. Am J Roentgenol Radium 
Therapy, Nucl Med 125:972–977

Pankovich AM (1976) Maisonneuve fracture of the fibula. 
J Bone Joint Surg Am 58:337–342

Pineda C, Espinosa R, Pena A (2009) Radiographic imag-
ing in osteomyelitis: the role of plain radiography, 
computed tomography, ultrasonography, magnetic 
resonance imaging, and scintigraphy. Semin Plast 
Surg 23:80–89

Sankowski AJ, Lebkowska UM, Cwikla J et al (2013) The 
comparison of efficacy of different imaging tech-
niques (conventional radiography, ultrasonography, 
magnetic resonance) in assessment of wrist joints and 
metacarpophalangeal joints in patients with psoriatic 
arthritis. Pol J Radiol 78:18–29

Seibold CJ, Mallisee TA, Erickson SJ et al (1999) Rotator 
cuff: evaluation with US and MR imaging. 
Radiographics 19:685–705

Shenoy R, Pillai A, Hadidi M (2007) Scaphoid fractures: 
variation in radiographic views - a survey of current 

1 Radiography Limitations and Pitfalls



32

practice in the west of Scotland region. Eur J Emerg 
Med 14:2–5

Shetty CM, Barthur A, Kambadakone A et al (2011) 
Computed radiography image artifacts revisited. AJR 
Am J Roentgenol 196:37–48

Szkudlarek M, Klarlund M, Narvestad E et al (2006) 
Ultrasonography of the metacarpophalangeal and 
proximal interphalangeal joints in rheumatoid arthri-
tis: a comparison with magnetic resonance imaging, 
conventional radiography and clinical examination. 
Arthritis Res Ther 8:R52

Takao M, Ochi M, Naito K et al (2001) Computed tomo-
graphic evaluation of the position of the leg for mor-
tise radiographs. Foot Ankle Int 22:828–831

Taoka T, Mayr NA, Lee HJ et al (2001) Factors influenc-
ing visualization of vertebral metastases on MR imag-
ing versus bone scintigraphy. AJR Am J Roentgenol 
176:1525–1530

Theodorou DJ, Theodorou SJ, Kakitsubata Y (2012) 
Skeletal muscle disease: patterns of MRI appearances. 
Br J Radiol 85:e1298–e1308

Toth F, Sebestyen A, Balint L et al (2007) Positioning of 
the wrist for scaphoid radiography. Eur J Radiol 
64:126–132

Walz-Flannigan A, Magnuson D, Erickson D, Schueler B 
(2012) Artifacts in digital radiography. AJR Am 
J Roentgenol 198:156–161

Ward RJ, Weissman BN, Kransdorf MJ et al (2013) ACR 
appropriateness criteria acute hip pain – suspected 
fracture. J Am Coll Radiol 11:114–120

Weiner SM, Jurenz S, Uhl M et al (2008) Ultrasonography 
in the assessment of peripheral joint involvement in 
psoriatic arthritis. Clin Rheumatol 27:983–989

World Health Organization (2003) Prevention and man-
agement of osteoporosis. World Health Organ Tech 
Rep Ser 921:1–164

K.T.A. Low and W.C.G. Peh



33© Springer International Publishing AG 2017 
W.C.G. Peh (ed.), Pitfalls in Musculoskeletal Radiology, DOI 10.1007/978-3-319-53496-1_2

Ultrasound Imaging Artifacts

Lana Hiraj Gimber and Mihra S. Taljanovic

Contents

2.1   Introduction   33

2.2   Ultrasound Imaging   33
2.2.1  Equipment   33
2.2.2  Physics   34
2.2.3  Doppler US   34
2.2.4  Normal Structures   34

2.3   Gray-Scale Artifacts   35
2.3.1  Beam Characteristics   35
2.3.2  Velocity Errors   36
2.3.3  Attenuation Errors   37
2.3.4  Multiple Echoes   38

2.4   Color and Power Doppler Artifacts   40

 Conclusion   44

 References   44

Abbreviation

US  Ultrasound

2.1  Introduction

Ultrasound (US) imaging is an accessible imag-
ing modality that does not employ ionizing radi-
ation. However, while US imaging is easily 
employed, it is also very operator dependent. In 
clinical practice, the US beam often deviates 
from the ideal physical assumptions, and arti-
facts are created which can be mistaken for 
pathology. Artifacts can be found in both B-mode 
gray-scale and Doppler imaging. It is therefore 
important to be able to identify these artifacts 
and to employ techniques that can help avoid or 
minimize them.

2.2  Ultrasound Imaging

2.2.1  Equipment

US imaging employs the use of a small trans-
ducer, or probe, and US gel which is placed 
directly onto the skin. The probe transmits 
sound waves through the gel, which acts as a 
coupling medium, and into the body. Once in 
the body, the sound waves bounce off structures 
and return back to the probe. The computer then 
uses these collected sound waves to create an 
image. The US transducer contains thin piezo-
electric crystals, which allow electrical signal to 
be converted to ultrasonic waves and the return-
ing ultrasonic waves back into electrical signal 
(Smith and Finnoff 2009). There are different 
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frequency transducers. A transducer that has a 
lower  frequency is often used to assess deeper 
structures but will however have a lower spatial 
resolution (Smith and Finnoff 2009). A trans-
ducer that has a higher frequency will not pen-
etrate into the deeper tissues but will have a 
higher spatial resolution. In musculoskeletal 
US, a small footprint high-frequency linear 
(hockey stick) transducer is often used. This 
transducer accommodates small and curved sur-
faces and enables excellent evaluation of the 
superficial soft tissues.

2.2.2  Physics

Ultrasound is based on ideal physical beam 
assumptions. In the ideal situation, the US beam 
is assumed to travel in a straight line. As the US 
beam travels through tissues, it is assumed that 
the attenuation of sound is uniform. The speed of 
sound is assumed to be the same in all tissues. 
Once the US beam reaches an object, it is 
assumed that each reflector produces only a sin-
gle echo. The echoes that are detected by the 
transducer are assumed to have originated from 
the main US beam. The depth of an object is 
directly related to the amount of time it takes the 
US echo to return to the transducer (Nilsson 
2001; Feldman et al. 2009).

In clinical practice, the US beam deviates 
from these assumptions quite frequently. In 
addition to the main US beam, secondary beams 
outside of the main beam called side lobes and 
grating lobes are also created. Maximum sound 
wave reflection occurs when the sound wave is 
directly proportional to the imaged structure, 
which is not always possible to obtain. In addi-
tion, some sound waves are reflected back at the 
skin surface, while others can be absorbed in the 
examined tissues. When there is deviation from 
the ideal physical assumptions, artifacts are pro-
duced. These artifacts occur due to inherent 
characteristics of the US beam, errors in veloc-
ity, errors in attenuation, and presence of multi-
ple echo paths (Feldman et al. 2009; Taljanovic 
et al. 2014).

2.2.3  Doppler US

Doppler US imaging was named after Christian 
Johann Doppler, an Austrian mathematician and 
physicist who described the “Doppler effect” in 
1842. He stated that the observed frequency of a 
wave depends on the relative speed of the source 
and the observer (Roguin 2002). In US imaging, 
the “Doppler effect” is the change of frequency in 
a wave when a source moves relative to the 
receiver (Pozniak et al. 1992; Rubens et al. 2006; 
Teh 2006). Color, power, and spectral Doppler 
imaging enhance the traditional standard bright-
ness mode (B-mode) gray-scale imaging and 
allow detection of vessels or abnormal blood flow 
in injured or pathologic tissues.

Color Doppler US produces an image that 
shows the presence, direction, and velocity of 
blood flow (Teh 2006). The image is superimposed 
on the gray-scale image. The differences in color 
on the image designates whether the flow is headed 
toward or away from the transducer. In addition, 
the mean velocity of the blood flow is color coded. 
Power Doppler US does not provide flow velocity 
and directional information. However, it has 
increased flow sensitivity and better vascular delin-
eation (Martinoli et al. 1998). Power Doppler US 
displays the strength or power of the signal by mea-
suring the amount of red cells passing by the beam 
(Martinoli et al. 1998; Teh 2006). The intensity of 
the blood flow is indicated by the color on the 
image. Spectral Doppler US interrogates a small 
region of a vessel, called a sample volume, and cre-
ates a spectral Doppler waveform (Rubens et al. 
2006). This gives a quantitative analysis of the 
velocity and direction of blood flow (Teh 2006).

2.2.4  Normal Structures

Knowledge of the appearance of normal struc-
tures on US images is a prerequisite, before being 
able to identify US artifacts. Normal cortical 
bone (Fig. 2.1a) is hyperechoic and demonstrates 
posterior acoustic shadowing secondary to its 
highly reflective surface. Normal muscle 
(Fig. 2.1b) is hypoechoic with fine hyperechoic 
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fibroadipose septa separating the muscle into 
bundles. Normal tendon (Fig. 2.1c) is hyper-
echoic when compared to muscle and has a fibril-
lar echotexture. Normal nerve (Fig. 2.1d) can be 
hyperechoic relative to muscle or hypoechoic 
relative to tendon. The cross-sectional appear-
ance of a normal nerve demonstrates a honey-
combed or speckled architecture (Fig. 2.1e).

2.3  Gray-Scale Artifacts

2.3.1  Beam Characteristics

Artifacts related to intrinsic characteristics of the 
US beam are side-lobe, beamwidth, and anisot-
ropy. Side-lobe artifacts create low-level spurious 

a b

c

e

d

Fig. 2.1 Normal US imaging features of the musculo-
skeletal tissues. (a) Cortical bone at the metacarpophalan-
geal joint – normal hyperechoic cortical bone (arrows) 
with dirty posterior acoustic shadowing. (b) Muscle – nor-
mal pectoralis major muscle with hypoechoic muscle 
bundles separated by fine hyperechoic fibroadipose septa 
(arrows). (c) Tendon – normal posterior tibialis tendon 

(arrows) with echogenic fibrillar echotexture. (d) Normal 
peripheral nerve in the long axis – normal median nerve 
(arrows) with a fascicular architecture and appearing 
hypoechoic compared to adjacent tendon. (e) Normal 
peripheral nerve in short axis – normal median nerve with 
a speckled or honeycomb cross-sectional appearance 
(arrow)

2 Ultrasound Imaging Artifacts
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