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Preface

Reproduction is a basic biologic process permitting the 
existence of living organisms. Sexual reproduction has cata-
lyzed the diversity of eukaryotic life. Sexual reproduction 
increases genetic diversity through two mechanisms: 
homologous recombination and the combination of the haploid 
genetic material of two distinct parents to produce diploid 
offspring. By greatly increasing genetic diversity, sexual 
reproduction results in diverse phenotypes in offspring and 
accelerates the evolution of all higher organisms, including 
humans. Recognizing the potential for growth in both the 
science of reproduction and its application to enhancing 
human health, Drs. Samuel S.C. Yen and Robert B. Jaffe 
completed the first edition of this book in 1977, one year 
before the first successful live birth using in vitro 
fertilization.

In the eighth edition of Yen and Jaffe’s Reproductive 
Endocrinology our distinguished contributors present an 
authoritative distillation of the key advances in the field. 
Progress in endocrinology, gamete and embryo biology, and 
genetics has permitted the development and expansion of 
new human reproductive treatments, including aromatase 
inhibitors for ovulation induction, selective progesterone 
receptor modulators for the treatment of uterine leiomyomata, 
new GnRH receptor antagonists for the treatment of 
endometriosis, new selective estrogen receptor modulators 
for the treatment of menopausal symptoms, cryopreservation 
of oocytes to enhance fertility preservation, and genomic 
interrogation of embryos to improve reproductive outcomes. 
Evolving medical and societal concepts of sex and gender 

have prompted the editors to include a new chapter on 
transgender hormonal treatment.

Advances in the surgical treatment of reproductive dis-
orders are accelerating. This rapid progress is best demon-
strated by the successful development of human uterus 
transplantation to treat uterine factor infertility and of novel 
minimally invasive surgical techniques that improve reproduc-
tive performance. In this edition we have added a new video 
section, which is dedicated to current surgical and technologi-
cal aspects of our field and edited by an internationally 
recognized expert in reproductive surgery, Dr. Antonio R. 
Gargiulo. This section uses the video format to provide a 
more direct access for the reader to surgical and laboratory 
procedures and techniques that cover fundamental topics 
in modern reproductive medicine, including the diagnosis 
and treatment of müllerian anomalies, endometriosis, uterine 
leiomyomata, other uterine pathologies, and ovarian tissue 
cryopreservation and transplantation. An embryologist’s 
point-of-view on current techniques of assisted human 
reproduction is also featured.

We appreciate the collaboration of past and new authors 
for their scholarly and practical updates in their respective 
areas of specialty expertise. The contributions of the authors 
have always been the key to the success of Yen and Jaffe’s 
Reproductive Endocrinology. The editors are deeply grateful 
to our authors. Our team of editors and authors hope to 
carry forward the tradition of excellence that Drs. Jaffe and 
Yen started when they completed the first edition of this 
text.
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Neuroendocrinology 
of Reproduction

Christopher R. McCartney
John C. Marshall

C H A P T E R  1 

ENDOCRINOLOGY OF 
REPRODUCTION

PART 1

Central Control of Reproduction

Successful reproduction is essential to the survival of a species. 
The reproductive system represents a highly complex 
functional organization of diverse tissues and signaling 
pathways that, when properly functioning, ensures a number 
of key endpoints, the most important of which are the 
adequate production of gametes (ova and sperm); successful 
delivery of gametes for fertilization; and, in women, physi-
ologic preparation for possible pregnancy. Neuroendocrine 
systems are the principal drivers of reproductive function 
in both men and women. In particular, hypothalamic 
gonadotropin-releasing hormone (GnRH) is the primary, if 
not exclusive, feedforward signal to gonadotrope cells of the 
anterior pituitary, stimulating the synthesis and secretion of 
both luteinizing hormone (LH) and follicle-stimulating 
hormone (FSH). Together, these two gonadotropins direct 
the primary functions of the reproductive axis: gametogenesis 
and gonadal sex steroid synthesis.

Given its critical importance to a species, the reproductive 
system must be robust, continuing to function properly in 
the face of various physiologic perturbations. In contrast, in 
settings of marked physiologic stress (e.g., significantly 
reduced energy availability), mechanisms that temporarily 
limit fertility—the usual outcome of which is metabolically 
expensive in women—are biologically advantageous for the 
individual and, ultimately, the species. Appropriate function 
(or quiescence) of the reproductive system is governed by 
a number of intricate relationships. For example, feedback 
signals from the gonads (e.g., sex steroid concentrations) 
communicate the status of gonadal function to the 
hypothalamic-pituitary axis; these signals in turn influence 
GnRH and gonadotropin output, rendering a coordinated 
and tightly regulated feedback system that maintains gonadal 
function within narrow limits. The reproductive system also 
has extensive interactions with other neuroendocrine systems, 
such as those involved with energy balance and adaptations 

to stress. The reproductive neuroendocrine system integrates 
these myriad feedback signals, and the GnRH-secreting 
neuronal network represents the final common pathway for 
the central control of reproduction. Thus the regulation of 
GnRH secretion represents a major focus of reproductive 
neuroendocrinology.

Much of our understanding of reproductive neuroendo-
crinology has emerged from the study of rodents, sheep, 
and nonhuman primates, which largely reflects the ethical 
boundaries inherent to human research. Because many 
neurobiologic principles are similar among all mammals, these 
animal studies have been (and continue to be) indispensable. 
Nonetheless, certain aspects of reproductive neuroendocrinol-
ogy may differ markedly among species. Thus, when available, 
human data will be prioritized throughout this chapter, but 
animal studies will also be discussed when appropriate, 
recognizing that specific findings may or may not be generaliz-
able to humans. The reader is referred to Chapters 3, 7, 12, 
17, and 20 for additional treatment of neuroendocrine 
physiology and pathophysiology related to reproduction.

Neuroendocrinology: The Interface 
Between Neurobiology and 
Endocrinology

Endocrinology is the study of cell-to-cell signaling that occurs 
via specific chemicals (hormones) that travel through the 
bloodstream to influence remote targets. The term “neuro-
endocrinology” refers to the involvement of the central nervous 
system (CNS)—the hypothalamus in particular—in this 
process. This field of study has traditionally focused on 
hypothalamic neuron-derived factors that influence various 
target tissues, either directly, as with the hormones of the 
neurohypophysis, or indirectly, as with hypothalamic releasing 
factors that control anterior pituitary hormone secretion. 
Neuroendocrine systems direct a wide variety of critical biologic 
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Keywords

Gonadotropin-releasing hormone, 
luteinizing hormone, 
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KNDy neurons

Abstract

Pulsatile gonadotropin-releasing hormone (GnRH) release 
from the hypothalamus governs pituitary secretion of luteinizing 
hormone and follicle-stimulating hormone, which in turn 
regulate the production of gonadal sex steroids and gametes 
(ova and sperm). GnRH secretion is markedly influenced 
by a complex array of higher-level afferent inputs, such as 
neurons releasing kisspeptin, neurokinin B, and dynorphin. 
Feedback signals communicate the status of gonadal function 
and other facets of whole-body homeostasis to the neural 
systems regulating GnRH release and to pituitary gonadotropes, 
rendering a coordinated and tightly regulated feedback system 
that maintains appropriate gonadal function.
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acetylcholine, glutamate, γ-aminobutyric acid [GABA]), 
biogenic amines (e.g., norepinephrine, epinephrine, dopamine, 
serotonin), and neuropeptides (e.g., kisspeptin, neurokinin 
B [NKB], dynorphin, β-endorphin, somatostatin, proopio-
melanocortin [POMC], neuropeptide Y [NPY]).

Bursts of neuronal firing can also elicit release of neuronal 
products into the bloodstream to influence remote targets 
(i.e., neurosecretion of neurohormones). Hypophysiotropic 
neurons are specialized hypothalamic neurons that secrete 
peptide-releasing factors—GnRH, corticotropin-releasing 
hormone (CRH), thyrotropin-releasing hormone (TRH), and 
growth hormone–releasing hormone (GHRH)—into the 
hypophyseal portal circulation. These releasing factors in 
turn stimulate specific anterior pituitary cell populations. In 
contrast, hypothalamic release of dopamine into the portal 
circulation provides tonic inhibition of pituitary prolactin 
secretion. Hypothalamic neurosecretion of vasopressin and 
oxytocin, which are released directly into the systemic circula-
tion, alter the function of distant targets, such as the renal 
tubules and uterus, respectively.

Neuroglial cells (e.g., astrocytes, ependymal cells, oligo-
dendrocytes, and microglia) represent approximately 90% of 
cells in the CNS. Neuroglia do not conduct action potentials, 
but they perform critical supportive functions. For example, 
astrocytes form the supportive framework of the CNS; help 
isolate synaptic junctions (to prevent nonspecific spread of 
neuronal impulses); facilitate nutrient delivery to neurons; 
and contribute to the blood-brain barrier. In addition, astrocytes 
have been implicated in the control of GnRH secretion and 
the mechanisms underlying pubertal onset.2 For example, 
astrocytes may impact neuronal activity via secretion of 
numerous growth factors, and astrocytes abundantly appose 
GnRH neurons; these contacts can influence synaptic input, 
and they may be influenced by estrogen in both rodents and 
nonhuman primates. Similarly, specialized ependymal cells 
(tanycytes) in the median eminence appear to modify access 
of GnRH neuron terminals to the hypophyseal portal blood.

Anatomy of the Reproductive 
Hypothalamic-Pituitary Axis

◆ GnRH neuronal cell bodies are located in the infundibular 
(arcuate) nucleus and the medial preoptic area of the 
hypothalamus.

◆ GnRH neurons extend processes (dendrons) to the median 
eminence, where GnRH gains access to the hypophyseal portal 
system.

◆ The hypophyseal portal circulation represents the functional 
connection between hypothalamic GnRH neurons and the 
gonadotropes of the anterior pituitary.

Portions of the hypothalamus and the anterior pituitary gland 
constitute the primary effector arm of the central reproductive 
axis. In particular, hypothalamic neural systems regulate 
GnRH release into the hypophyseal portal veins, with GnRH 
being the signal to gonadotropes (anterior pituitary) to secrete 
LH and FSH. In turn, these gonadotropins direct gonadal 
(ovarian and testicular) function.

Hypothalamus
The hypothalamus is located at the base of the brain (Fig. 1.2). 
Although small (approximately 10 g, less than 1% of total 

processes, such as growth and development, energy and fluid 
homeostasis, responses to stress, and reproduction.

Neurons are highly specialized and morphologically diverse 
cells that transmit information via electrical impulses called 
action potentials. Neurons have a cell body containing the 
cell nucleus, mitochondria, and synthetic organelles. Neurons 
also have cell processes that participate in the reception and 
delivery of electrical impulses (Fig. 1.1). Dendrites are short 
processes—often extensively branched to increase surface 
area—that typically receive information (afferent electrical 
impulses). The axon is a single neuronal extension that 
generally transmits efferent electrical impulses away from 
the cell body in a process called neuronal firing. However, 
as described later, GnRH neuron fibers extending from the 
cell body to the median eminence (the location of GnRH 
release) in mice demonstrate characteristics of both axons 
and dendrites and, thus, have been called dendrons.1

In unstimulated neurons, the inner portion of the neuronal 
membrane is negatively charged compared with the outer 
membrane surface; this resting membrane potential is typically 
between −50 and −75 mV in GnRH neurons. Such electrical 
polarization reflects transmembrane ionic differences, which 
are maintained by protein channels that govern transmem-
brane passage of specific ions (e.g., sodium, potassium, 
chloride). Regulated changes of transmembrane ion differences 
may cause the membrane potential to become more or less 
negative (hyperpolarization and depolarization, respectively). 
Depolarization to a certain threshold results in a rapid and 
temporary reversal of membrane potential (an action poten-
tial), which is propagated along the neuronal membrane. 
Notably, the amplitude of the action potential does not vary 
with the strength of stimulation; instead, once a threshold 
is reached, a full action potential occurs—the so-called all-
or-none phenomenon. However, the degree of neuronal 
stimulation can alter the frequency of action potentials 
generated. In this way, neurons transmit information to other 
neurons and effector tissue cells.

Neuronal signals are transferred across neuron-to-neuron 
connections (synapses) via chemical neurotransmitters. This 
process begins with bursts of neuronal firing, which result 
in the opening of voltage-gated calcium channels at the axonal 
terminal. The influx of calcium promotes exocytosis of 
neurotransmitter-containing synaptic vesicles, releasing 
neurotransmitters into the synaptic cleft. Neurotransmitters 
then bind to specific ligand-dependent ion channels in the 
postsynaptic membrane, which can stimulate an action 
potential in the postsynaptic neuron. A wide variety of factors 
serve as neurotransmitters, including amino acids (e.g., 
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FIGURE 1.1 Morphologic components of a neuron. 
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1.5). The external zone contains hypophysiotropic neuron 
terminals, which release hypophysiotropic hormones into an 
extensive capillary plexus—the proximal end of the hypophy-
seal portal system. Some nerve terminals in this zone act on 
other nerve terminals to influence hormone release (e.g., 
kisspeptin neurosecretion at GnRH neuron terminals influ-
ences GnRH release).

The ependymal layer lining the third ventricle includes 
a population of specialized ependymal cells called tanycytes, 
which have a short process extending toward the ventricular 
surface and a long process extending into the median eminence 
toward areas around portal capillaries. The latter tanycyte 
projections envelop or retract from GnRH nerve terminals 
during episodes of low and high GnRH neuronal activity, 
respectively. Thus tanycytes may influence GnRH secretion 
by physically isolating GnRH neuron terminals from portal 
capillaries—a regulated process.3 Tanycytes may also represent 
a link between cerebrospinal fluid and the external zone of 
the median eminence (e.g., by transporting substances from 
the third ventricle to portal blood).

The median eminence is among the so-called circumven-
tricular organs, which lie adjacent to the ventricular system 
and represent openings in the blood-brain barrier. Although 
lipid-soluble molecules can diffuse in and out of the CNS 
relatively easily, and cellular transport mechanisms allow 
selective entry of ions, the blood-brain barrier functions to 
protect certain regions of the brain and hypothalamus from 
larger charged molecules, with physical protection provided 
by (1) tight junctions between endothelial cells and (2) 
neuron-capillary separation by both astrocyte foot processes 
and microglia. However, the CNS requires feedback signals—
including hormonal, metabolic, and toxic cues—via macro-
molecules of peripheral origin that would otherwise be 
excluded by the blood-brain barrier; accordingly, capillaries 
of the circumventricular organs are fenestrated and permit 
transcapillary exchange of larger charged molecules (e.g., 
proteins, peptide hormones). Thus the median eminence 
represents a key access point for central sensing of peripheral 
cues. Similarly, fenestrated vessels readily allow entry of 
hypothalamic releasing factors into portal blood.

brain weight), it performs critical functions for maintenance 
of whole-organism homeostasis, including regulation of hunger 
and body weight, growth, various aspects of metabolism, 
thirst and renal water handling, body temperature, autonomic 
function, sleep, circadian rhythms, and emotion. Importantly, 
the hypothalamus is also a primary control center for 
reproduction and influences sexual behavior.

As an anatomic structure, the hypothalamus does not 
have discrete borders, but in general it forms the floor and 
inferior-lateral walls of the third ventricle (Fig. 1.3). The 
medial portions of the hypothalamus are primarily made 
up of cell bodies, whereas the lateral portions are mostly 
composed of neuron fibers (axons), such as those connecting 
the medial hypothalamus to other areas of the brain. (The 
hypothalamus is extensively interconnected with other brain 
areas.) By convention, closely associated collections of neuron 
cell bodies are called nuclei; and the paraventricular, dorsome-
dial, ventromedial, and infundibular nuclei contain a majority  
of the neurons that secrete hypophysiotropic hormones into 
the portal circulation. (The human infundibular nucleus is 
the analogue to the arcuate nucleus in lower mammalian 
species.) GnRH cell bodies do not form discrete nuclei but 
are instead diffusely located throughout the preoptic area 
and the mediobasal hypothalamus (Fig. 1.4); the latter is 
situated caudal to the preoptic area, extending from the 
retrochiasmatic area (i.e., the area situated behind the optic 
chiasm) to the mammillary bodies, and including both the 
infundibular (arcuate) nucleus and the median eminence.

Median Eminence
Positioned at the base of the third ventricle, the median 
eminence is part of the anatomic link between the hypo-
thalamus and anterior pituitary. The internal zone of the 
median eminence is located along the ventral floor of the 
third ventricle and is largely composed of axonal fibers from 
both magnocellular neurons (larger neurons that secrete 
vasopressin and oxytocin) and hypophysiotropic neurons as 
they travel from hypothalamic nuclei/areas to their final 
destinations—the neurohypophysis (posterior pituitary) and 
the external zone of the median eminence, respectively (Fig. 
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FIGURE 1.2 Cross-sectional representation of the human brain (sagittal plane), including hypothalamus, median eminence, 
and pituitary gland. (Modified from Johnson MH, Everitt BJ: Essential Reproduction, ed 5, Blackwell, MA, 2000, Blackwell Science, Fig. 6.1.)
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FIGURE 1.3 Nuclei and areas of the hypothalamus. (A) By custom, the nuclei and areas of the hypothalamus are often divided into 
three groups according to their location along the anteroposterior plane: the anterior group, tuberal group, and posterior (or mammillary) 
group. The anterior group is formed by the paraventricular, supraoptic, and suprachiasmatic nuclei along with the anterior hypothalamic 
and preoptic areas. The tuberal group—so-called because of its position above the tuber cinereum (from which the infundibulum or pituitary 
stalk extends)—contains the dorsomedial, ventromedial, and infundibular (arcuate) nuclei along with the median eminence. Along with the 
paraventricular nucleus, the nuclei of the tuberal group contain a majority of the neurons that secrete hypophysiotropic hormones (i.e., 
hypothalamic hormones regulating hormone synthesis and release from cells in the anterior pituitary). Finally, the posterior group includes 
the posterior hypothalamic nucleus and mammillary nuclei. (B) Cross-sectional representations (coronal planes) of the rostral (1), mid (2), 
and caudal (3) portions of the human hypothalamus. ([B] Modified from Johnson MH, Everitt BJ: Essential Reproduction, ed 5, Blackwell, MA, 
2000, Blackwell Science, Fig. 6.3.)

Hypophyseal Portal Circulation

No direct neuronal connections exist between the hypo-
thalamus and the anterior pituitary. However, the hypophyseal 
portal circulation (hypothalamic-hypophyseal portal system, 
pituitary portal system) represents the functional connection 
between the median eminence and anterior pituitary (see 
Fig. 1.4). The superior hypophyseal artery—a branch of the 
internal carotid artery—subdivides to form an extensive 
capillary network in the external zone of the median emi-
nence, with loops that reach into the inner zone. Capillary 
blood then drains into sinusoids that converge into the 
hypophyseal portal veins. Traversing the pituitary stalk, the 

hypophyseal portal system forms the primary blood supply 
of the anterior pituitary. The direction of blood flow is primar-
ily, but not exclusively, from the hypothalamus to the anterior 
pituitary; some retrograde flow allows for short-loop hypo-
thalamic feedback.

Pituitary Gland (Hypophysis)
The pituitary gland appears as an extension at the base of 
the hypothalamus and resides cradled within the sella turcica, 
a saddlelike structure of the sphenoid bone (see Fig. 1.2). 
The adenohypophysis (anterior pituitary) is of ectodermal 
origin, derived from an upward invagination of pharyngeal 
epithelium (Rathke pouch) during embryologic development. 
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as a downward extension of neuroectodermal tissue from the 
infundibulum during embryologic development. It is thus a 
direct extension of the hypothalamus. The neurohypophysis 
includes the infundibular stalk and the pars nervosa (posterior 
lobe of the pituitary). The supraoptic and paraventricular nuclei 
include magnocellular neurons that produce oxytocin and 
arginine vasopressin (AVP; also known as antidiuretic hormone 
[ADH]), respectively; these axons project to the posterior 
lobe of the pituitary, where oxytocin and AVP are secreted 
into a capillary network that drains into the hypophyseal veins 
(i.e., directly into the systemic circulation). The posterior lobe 
also includes specialized glial cells called pituicytes, which 
envelop or retract from magnocellular nerve terminals during 
episodes of low and high neuronal activity, respectively.

Gonadotropin-Releasing Hormone:  
The Final Common Pathway for the Central 
Control of Reproduction

◆ Pulsatile GnRH secretion is the proximate stimulus for LH and 
FSH synthesis and secretion by pituitary gonadotropes.

◆ Although numerous internal and external factors influence 
gonadotropin secretion via numerous neuronal pathways, 
GnRH is the final common pathway for the stimulation of 
LH and FSH release.

GnRH, previously called luteinizing hormone–releasing 
hormone (LHRH), is synthesized and released from a relatively 
small population of specialized hypothalamic neurons. GnRH 
was initially isolated from porcine hypothalami and shown 
to stimulate pituitary gonadotropin release.4 Although the 
primary function of GnRH is to regulate pituitary gonadotropin 
secretion, GnRH also appears to have autocrine and paracrine 
functions in diverse tissues (e.g., ovary, placenta).5

The regulation of GnRH secretion is complex and involves 
overlapping pathways, which likely increases the robustness 
of central reproductive function. However, there are no 
known parallel or backup pathways for the stimulation of 
gonadotropin secretion. Thus natural fertility is absolutely 
dependent on appropriate GnRH secretion. For example, 
mice with mutations of the GnRH-1 gene are hypogonadal, 
but reproduction can be restored via GnRH-1 gene therapy6 
or transplantation of fetal GnRH neurons.7 Similarly, a variety 
of human conditions associated with absent (or near-absent) 
GnRH secretion lead to pubertal failure, hypogonadotropic 
hypogonadism, and infertility, all of which can be fully 
reversed with exogenous GnRH therapy.8

GnRH secretion is influenced by numerous factors, 
including sex steroids, energy availability, and stress. In some 
mammalian species, GnRH secretion is also affected by 
circadian rhythms, photoperiod (e.g., seasonal breeders such 
as sheep), social cues, and pheromones.

Gonadotropin-Releasing Hormone Structure
GnRH (GnRH-1 in particular) is a decapeptide, with the 
amino acid structure (pyro)Glu-His-Trp-Ser-Tyr-Gly-Leu-
Arg-Pro-Gly-NH2. The amino acid structure of GnRH is 
identical in essentially all mammalian species; with the 
exception of the central Tyr-Gly-Leu-Arg segment, the amino 
acids of GnRH are highly conserved among vertebrate 
species.9 The GnRH-1 gene (GNRH1) is located on human 
chromosome 8 (8p11.2-p21) and produces a 92–amino acid 

The adenohypophysis is composed of primarily the anterior 
lobe (pars distalis), which contains specialized cell populations 
that produce specific hormones: gonadotropes (the gonado-
tropins LH and FSH), mammotropes (prolactin), corticotropes 
(adrenocorticotropic hormone [ACTH]), thyrotropes 
(thyroid-stimulating hormone [TSH]), and somatotropes 
(growth hormone). The intermediate lobe is vestigial in adult 
humans but includes a small population of cells (e.g., POMC 
cells) in contact with the posterior lobe; the pars tuberalis 
is a slender layer of tissue (e.g., LH-producing cells and 
TSH-producing cells) surrounding the infundibulum (the 
funnel-shaped connection between the hypothalamus and 
the posterior pituitary) and pituitary stalk.

In contrast to the adenohypophysis, the neurohypophysis 
(posterior pituitary) is composed of neural tissue and forms 
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FIGURE 1.4 Anatomic relationship between hypothalamic 
gonadotropin-releasing hormone (GnRH) neurons and their 
target cell populations in the adenohypophysis (anterior 
pituitary). GnRH neuron cell bodies are located in the preoptic 
area and the mediobasal hypothalamus. GnRH neuron projections 
(dendrons) terminate at the median eminence, where GnRH is secreted 
into the hypophyseal portal system. (Modified from Johnson MH, Everitt 
BJ: Essential Reproduction, ed 5. Blackwell, MA, 2000, Blackwell Science, 
Fig. 6.4.)
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do not exhibit many of the molecular markers classically 
associated with axons or dendrites, they demonstrate mor-
phologic and functional characteristics of both axons and 
dendrites, including functional synaptic inputs throughout 
the length of the fiber.1 The term dendron has been proposed 
for such projections.

The GnRH neurons in the mediobasal hypothalamus—the 
infundibular (arcuate) nucleus in particular—appear to be 
requisite for gonadotropin secretion. For example, selective 
radiofrequency ablation of the arcuate nucleus in adult female 
monkeys obliterates gonadotropin secretion.12 GnRH neurons 
extend projections through the tuberoinfundibular tract to 
the median eminence, where neuron terminals gain access 
to the hypophyseal portal system.

The physiologic function of other GnRH neurons, which 
arise from the anterior and posterior hypothalamus and project 
to the limbic system and posterior pituitary, respectively, 
remains unclear, although some of these circuits may possibly 
be involved with various behavioral responses.

Embryologic Development of the 
Gonadotropin-Releasing Hormone  
Neuronal Network
The ontogeny of GnRH neurons in vertebrate species is 
unique among neuronal systems of the CNS: nascent GnRH 
neurons are initially identified outside of the CNS in the 
nasal placode (sometimes called the olfactory placode). 
However, GnRH cells migrate during embryologic develop-
ment, as directly observed in embryonic nasal explant cul-
tures13 and in embryonic head slices (mouse model).14 The 
specific migratory pathway of GnRH neurons was first 
demonstrated in mice by documenting the presence of 
GnRH-immunoreactive cells in different areas at different 
stages of embryonic development (Fig. 1.7).15-17 Specifically, 
GnRH expression is first observed within the nasal placode 
circa embryonic day 10 or 11. By embryonic day 13, GnRH-
expressing cells are primarily located around the cribriform 
plate, and GnRH-expressing cells begin to reach the 

precursor peptide called prepro-GnRH, which includes a 
signal sequence (23 amino acids), GnRH (10 amino acids), 
a proteolytic processing site (3 amino acids), and GnRH-
associated peptide (56 amino acids) (Fig. 1.6). The latter 
peptide can stimulate gonadotropin secretion and inhibit 
prolactin secretion, although its precise physiologic role, if 
any, remains unclear. The actions of GnRH are mediated 
through the GnRH type I receptor.

Another form of GnRH (GnRH-2) and its receptor have 
been identified in a variety of animal species, including 
humans.10 GnRH-2 is a decapeptide with similar structure 
to GnRH-1: (pyro)Glu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-
Gly-NH2 (italicized amino acids denote differences compared 
with GnRH-1). However, the gene for GnRH-2 is located 
on human chromosome 20 (20p13). GnRH-2 is widely 
expressed in the CNS and extra-CNS tissues, and it may 
contribute to reproductive behavior regulation in some species. 
In lower animals, GnRH-2 can act via its own receptor, 
which is structurally and functionally distinct from the GnRH 
type I receptor. Although a homologue of the GnRH-2 
receptor gene has been detected in humans, it includes a 
frameshift and premature stop codon. Thus the physiologic 
role of GnRH-2 in humans remains unclear.

Anatomy of Gonadotropin-Releasing 
Hormone-Secreting Neurons
GnRH neurons are a heterogeneous population of hypo-
thalamic neurons. They are relatively few, numbering 
approximately 1500, and the majority of GnRH neuronal 
cell bodies are located in the infundibular (arcuate) nucleus—
part of the mediobasal hypothalamus—and the medial 
preoptic area.11 Although GnRH neurons are rather loosely 
affiliated anatomically, they are functionally integrated and 
form a complex network with numerous interconnections, 
in addition to connections to other neuronal populations. 
Of interest in this regard, work in mice suggests that the 
GnRH neuron fibers extending from the cell body to the 
median eminence are morphologically atypical: although they 
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FIGURE 1.6 Schematic of gonadotropin-releasing hormone (GnRH) synthesis. (A) Representation of prepro-GnRH, including a 
23–amino acid signal sequence, GnRH, a proteolytic processing site (Gly-Lys-Arg), and GnRH-associated peptide. The arrow indicates the site 
of proteolytic cleavage and C-amidation. (B) Schematic of neuronal GnRH synthesis and secretion. 
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system renders an inadequate guidance infrastructure for 
migrating GnRH neurons, leading to failure of GnRH 
neurons to reach the hypothalamus. The first identified 
cause of Kallmann syndrome was deletion of the Kallmann 
syndrome 1 sequence (KAL1) gene, which is located on 
the X chromosome (Xp22.3) and encodes anosmin-1, a 
secreted matrix glycoprotein expressed in the presumptive 
olfactory bulb. Although precise mechanisms are unclear, 
anosmin-1 is believed to be important for the formation of 
olfactory elements that provide migratory guidance to GnRH 
neurons as they move out of the nasal placode. Evaluation of 
a 19-week-old human fetus with X-linked Kallmann syndrome 
demonstrated GnRH-immunoreactive cells within a tangle 
of olfactory and vomeronasal nerves at the dorsal surface 
of the cribriform plate, along with the absence of olfactory 
tracts and bulbs.22 In a second human fetus (16 weeks) with 
X-linked Kallmann syndrome, GnRH was detected along 
terminal nerve fascicles in the nasal mucosa only.23 This 
syndrome illustrates that, without the guidance framework 
provided by the olfactory neuronal system, GnRH neurons 
fail to migrate into the hypothalamus and thus cannot release 
GnRH into the hypophyseal portal system.

A number of additional single-gene defects have been 
associated with Kallmann syndrome, including mutations in 
the genes for prokineticin 2 (PROK2) and its receptor 
(PROKR2),24 fibroblast growth factor-8 (FGF8) and its 

hypothalamus by embryonic day 14, approaching their final 
positions around embryonic day 16. This migratory pathway 
has been confirmed in both nonhuman primates18 and 
humans.19

Successful migration of GnRH neurons is inextricably 
intertwined with olfactory system development, perhaps 
reflecting the close functional relationship between reproduc-
tion and the olfactory system (e.g., pheromones) in mam-
malian phylogeny. The nasal placode gives rise to nasal 
epithelium and olfactory sensory neurons, the latter of which 
extend axonal projections to the olfactory bulb. Vomeronasal 
neurons are a subset of olfactory neurons believed to be 
involved with pheromone detection; these axons originate 
in the vomeronasal organ and largely extend to the accessory 
olfactory bulb. At the level of the cribriform plate, some 
olfactory (vomeronasal) axons separate and form a branch 
that extends caudally into the forebrain. Of great importance, 
migrating GnRH neurons maintain adhesion to these axons; 
thus these olfactory neurons form a critical guidance track 
for GnRH neuronal migration across the nasal epithelium 
and through the forebrain toward the hypothalamus.20,21

The dependence of GnRH neuronal migration on normal 
olfactory system development is exemplified by Kallmann 
syndrome, a form of congenital hypogonadotropic hypogo-
nadism accompanied by absent sense of smell (anosmia). 
In this syndrome, faulty development of the olfactory 
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FIGURE 1.7 Gonadotropin-releasing hormone (GnRH) neuron migration during embryogenesis. (A) Location of GnRH-immunoreactive 
cells (red circles) as a function of embryologic age (mouse). On embryologic day 11 (11E), GnRH cells are located in the nasal (olfactory) 
placode and presumptive vomeronasal organ (vno). GnRH cells migrate across the cribriform plate toward the olfactory bulb (ob). GnRH 
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largely reside in the preoptic area (poa) of the hypothalamus. (B) Sagittal brain slice (mouse, embryonic day 15) demonstrating the migratory 
route of GnRH-immunoreactive cells. Staining is for GnRH and peripherin (a neuronal intermediate filament). BF, Basal forebrain; CP, cribriform 
plate; gt, ganglion terminale; OB, olfactory bulb; OP/VNO, olfactory placode-vomeronasal organ. ([A] Modified from Schwanzel-Fukuda M, 
Pfaff DW: Origin of luteinizing hormone-releasing hormone neurons, Nature 338:161–164, 1989; and [B] Modified from Wierman ME, Pawlowski 
JE, Allen MP, et al: Molecular mechanisms of gonadotropin-releasing hormone neuronal migration, Trends Endocrinol Metab 15:96–102, 2004.)
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receptor fibroblast growth factor receptor 1 (FGFR1),25 
NMDA receptor synaptonuclear signaling and neuronal 
migration factor (NSMF; formerly called nasal embryonic 
LH-releasing hormone factor [NELF]),26 and chromodomain 
helicase DNA binding protein 7 (CHD7).27 The importance 
of these genes in GnRH neuronal development is corroborated 
by mouse studies. For example, in fetal mice lacking either 
Prok2 or Prokr2, GnRH neurons are trapped in a tangled 
web of olfactory/vomeronasal axons, with few, if any, reaching 
the forebrain.28 Although these gene products are clearly 
important for GnRH neuron ontogeny, their precise roles 
remain uncertain.

Mouse studies suggest other important factors underlying 
GnRH neuron migration during prenatal development. For 
example, the chemokine (C-X-C motif) receptor 4 (CXCR4) 
is expressed on murine GnRH neurons and interacts with 
a secreted chemokine called stromal cell–derived factor-1 
(SDF-1), which is present as a gradient in the nasal mesen-
chyme. This gradient, with highest concentrations at the 
cribriform plate, provides directional information as GnRH 
neurons migrate toward the cribriform plate; GnRH cell 
migration across the nasal compartment is markedly impaired 
in CXCR4 knockout mice.29 As another example, extension 
of the caudal branch of the vomeronasal nerve toward the 
ventral forebrain involves chemoattraction via interactions 
between netrin-1—a chemokine expressed as a gradient in 
the forebrain—and its receptor, deleted in colorectal cancer 
(DCC). In mice without either netrin-1 or DCC, the caudal 
branch of the vomeronasal nerve extends toward the cerebral 
cortex rather than the ventral forebrain; and GnRH neurons 
follow this path, ultimately residing in the cerebral cortex.30,31 
Animal studies have suggested a number of such interactions 
in (1) guidance of olfactory neurons toward the forebrain 
and (2) the association between migrating GnRH neurons 
and axons of olfactory/vomeronasal nerves; but specific 
relevance to humans remains unclear.

After reaching the hypothalamus, GnRH neurons detach 
from olfactory nerve axons and may disperse further before 
resting. A critical next step is extension of GnRH neuronal 
projections (dendrons) to the median eminence, where GnRH 
gains access to the hypophyseal portal system.

Gonadotropin-Releasing Hormone Neuronal Firing 
and Gonadotropin-Releasing Hormone Secretion
GnRH neuronal activity is marked by bursts of action 
potentials (burst firing), the patterns and rates of which 
change across time; changes in GnRH neuron firing rates 
presumably relate to changes in GnRH secretion. Variable 
firing rate patterns (e.g., times of high and low firing rates) 
appear to be intrinsic to GnRH neurons, but they can also 
be altered by neurotransmitters and neuromodulators (e.g., 
glutamate, GABA, kisspeptin). Although sex steroids can 
markedly influence GnRH neuronal firing rates, GnRH 
neurons lack the primary receptors mediating sex steroid 
feedback (i.e., estrogen receptor alpha, progesterone receptor, 
androgen receptor); however, many studies suggest that sex 
steroid actions on GnRH neuronal activity are mediated 
primarily by afferent neurons (e.g., those secreting glutamate, 
GABA, kisspeptin).

GnRH neuron cell bodies are relatively scattered across 
the mediobasal hypothalamus and preoptic area, yet GnRH 
is secreted into the hypophyseal portal system in a 
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FIGURE 1.8 The influence of pulsatile versus continuous 
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coordinated, pulsatile fashion. Specifically, GnRH secretion 
is marked by episodic bursts of hormone release into the 
portal system, as demonstrated in rats,32 sheep,33 and 
monkeys.34 After being released into the portal vascular 
compartment, GnRH is rapidly degraded via enzymatic 
proteolysis, and the half-life of GnRH in the blood is very 
short—approximately 2 to 4 minutes. Thus GnRH presenta-
tion to gonadotrope cells is intermittent.

Pulsatile GnRH secretion is an absolute requirement for 
long-term stimulation of gonadotropin synthesis and secretion, 
and there is a relatively narrow window of GnRH pulse 
frequency and amplitude that will optimally stimulate 
gonadotropin secretion. Intermittent GnRH stimulation of 
gonadotrope cells can increase (or maintain) GnRH receptors 
on gonadotropes—the self-priming or autopriming effect. 
Thus intermittent GnRH stimulation facilitates or maintains 
gonadotrope responsiveness to GnRH. However, more 
frequent exposure to GnRH pulses can reduce gonadotropin 
responses to GnRH35; at one extreme, continuous GnRH 
receptor stimulation leads to marked desensitization of 
gonadotropin synthesis and secretion. In a classic experiment 
involving rhesus monkeys with hypothalamic lesions that 
abolished GnRH secretion, intermittent (once an hour) 
exogenous GnRH administration restored pituitary gonado-
tropin secretion. However, changing from intermittent to 
continuous GnRH administration resulted in marked 
desensitization of gonadotropin release (Fig. 1.8).36 Although 
reduced GnRH receptor expression on gonadotropes (i.e., 
receptor downregulation) plays a role in desensitization, 
additional mechanisms contribute to the uncoupling of GnRH 
receptor agonism and gonadotropin synthesis.37

The foregoing phenomenon can be exploited therapeuti-
cally with the use of long-acting GnRH receptor agonists. 
Such agonists are peptides with structures very similar to 
that of GnRH but with amino acid substitutions that enhance 
receptor binding affinity, increase resistance to proteolytic 
degradation, or both (Fig. 1.9), thus providing continuous 
GnRH receptor stimulation. Although initial GnRH receptor 
agonism temporarily (e.g., for 1 to 2 weeks) increases 
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guanosine triphosphate (GTP)-binding protein Gq/11, leading 
to an increase in second messengers inositol 1,4,5-triphosphate 
(IP3) and 1,2-diacylglycerol (DAG). Further intracellular 
signaling involves increased intracellular calcium and activation 
of various protein kinase C (PKC) isoforms, mitogen-activated 
protein kinases (e.g., extracellular signal–regulated kinase 
[ERK], c-Jun NH2-terminal kinase [JNK], and p38), calcium/
calmodulin-dependent kinase II (Ca/CaMK II), and adenylate 
cyclase.

Each gonadotropin consists of two protein subunits, α 
and β. The 92–amino acid α-subunit is common to both LH 
and FSH—in addition to human chorionic gonadotropin 
(hCG) and TSH. β-Subunits for LH (LHβ) and FSH (FSHβ) 
are 121 and 117 amino acids in length, respectively, and 
account for the biologic specificity of these two hormones. 
GnRH stimulates gene expression of LHβ, FSHβ, and 
α-subunit, and the latter noncovalently dimerizes with either 
LHβ or FSHβ to form LH or FSH, respectively. Gonado-
tropins also undergo variable posttranslational modification, 
primarily glycosylation (addition of oligosaccharide moieties 
to specific amino acids), which influences bioactivity and 
elimination half-life.39 The gonadotropins are then packaged 
into secretory granules for eventual secretion.

Although GnRH is the primary stimulus for LH and FSH 
synthesis and release from a common cell type, concentrations 
of these two gonadotropins vary differentially throughout ovu-
latory cycles, with FSH predominance in the early follicular 
phase and LH predominance in the late follicular phase. This 
sequential pattern of FSH and LH predominance is important 
for normal follicular maturation, ovarian steroid production, 
and subsequent ovulation. At least two mechanisms govern dif-
ferential gonadotropin secretion throughout ovulatory cycles. 
First, both estradiol and inhibins selectively inhibit FSH 
release from gonadotropes during the mid- and late follicular 
phase and the luteal phase.40,41 Second, different patterns 
of pulsatile GnRH release differentially affect gonadotropin 
synthesis and secretion. Specifically, rapid (high frequency) 
GnRH pulses favor LH, whereas slower (low frequency) 
GnRH pulses favor FSH synthesis and secretion. For example, 

gonadotropin release (gonadotropin “flare”), continued 
agonism leads to desensitization of gonadotropin secretion 
with accompanying reductions of gonadal sex steroid con-
centrations to castrate levels (“medical oophorectomy,” 
“medical castration,” “pseudomenopause”), typically over 
several weeks. These agents are useful in the therapy of 
gonadotropin-dependent disorders such as central precocious 
puberty, endometriosis, and prostate cancer.

Peptide GnRH receptor antagonists are also available for 
clinical use. These antagonists reversibly bind to, but do not 
stimulate, the GnRH receptor (i.e., competitive antagonism). 
Thus these agents do not initially stimulate gonadotropin 
release, and they reduce gonadotropins more rapidly than 
GnRH agonists—usually within 24 to 72 hours.

Gonadotropin-Releasing Hormone Stimulation of 
Gonadotrope Cells
The specialized cells that synthesize and secrete gonadotropins 
(i.e., gonadotropes) are located mainly in the lateral portions 
of the anterior pituitary gland and constitute 7% to 10% of 
the adenohypophysis cell population. GnRH action at the 
pituitary gonadotrope begins with GnRH binding to the 
GnRH type I receptor on the plasma membrane.9 The GnRH 
type I receptor is a member of the seven-transmembrane 
receptor family, a G protein–coupled receptor, and encoded 
on chromosome 4. GnRH receptor density varies in different 
physiologic conditions and exhibits a positive correlation 
with gonadotrope responsiveness to GnRH (e.g., with both 
being high in rodents during preovulatory gonadotropin 
surges38). GnRH receptor density appears to be modulated 
primarily by GnRH, with intermittent GnRH stimulation 
leading to increased GnRH receptor expression; this is a 
central facet of the self-priming effect of GnRH and an 
important mechanism by which GnRH action is modulated 
in different physiologic states.

A majority of gonadotropes synthesize and secrete both 
LH and FSH. A detailed description of intracellular mecha-
nisms of GnRH action on the gonadotrope is provided in 
Chapter 2. Briefly, GnRH receptor binding activates the 

A B

Receptor binding
and activation

Receptor
binding only

Cetorelix

Antagonists

Agonists

NH2D Nal

pGlu His Trp Ser Tyr Gly Leu Arg Pro Gly

D Cpa D Pal D Cit D Ala

Ganirelix NH2D Nal D Cpa D Pal D hArg
(Et)2

D hArg
(Et)2

D Ala

Buserelin NEtD Ser
(tBu)

Triptorelin NH2D Trp

Nafarelin NH2D Nal

Histrelin NH2
D His

(ImBzl)

Goserelin NH2
D Ser
(tBu)

GnRH NH2

Leuprolide NEtD Leu

D-amino acid substitution
enhances activity

Gly
LeuTyr

Ser Arg

ProTrp

His

pGlu

Gly
NH2

D-amino acid
substitution

in antagonists

FIGURE 1.9 Structure of gonadotropin-releasing hormone (GnRH) and GnRH receptor agonists and antagonists. (A) Schematic 
of GnRH-1 in its folded conformation. Folding around the glycine in position 6 enhances GnRH receptor binding. Substitution of the glycine 
in position 6 with D-amino acids stabilizes the molecule in the folded conformation, which increases affinity for the GnRH receptor and 
reduces metabolic clearance. The amino-terminal (red) is involved with receptor binding and activation, and GnRH antagonists involve 
modifications of these residues that prevent receptor activation. The carboxyl-terminal (green) participates in receptor binding, but not activation. 
Substitution at position 10 (e.g., replacement of glycinamide by ethylamide) can increase binding affinity. (B) Amino acid structure of GnRH 
along with selected GnRH receptor agonists and antagonists. Solid blue circles represent amino acids that are unchanged compared with 
native GnRH. (From Millar RP, et al: Gonadotropin-releasing hormone receptors, Endocr Rev 25:235–275, 2004.)



10 PART 1 Endocrinology of Reproduction

◆ According to current models, kisspeptin stimulates GnRH 
release, whereas neurokinin B and dynorphin modulate GnRH 
release primarily by stimulation and suppression, respectively, 
of kisspeptin release.

The governance of GnRH neurons is highly complex and 
involves numerous interacting neural systems using various 
neurotransmitters and neuromodulators. The neuronal 
populations upstream of the GnRH neuron play key roles 
in puberty and are important mediators of sex steroid 
feedback and the influence of nutritional cues and stress on 
GnRH secretion. Numerous neurotransmitters appear to be 
involved in the regulation of GnRH secretion, including 
dopamine, norepinephrine, glutamate, GABA, and nitric 
oxide. The control of GnRH secretion has been the subject 
of intense investigation, and the recent discovery of several 
neuronal populations upstream of the GnRH neuron (e.g., 
kisspeptin neurons) has markedly enhanced our understanding 
of reproductive neuroendocrinology.

Kisspeptin
The kisspeptin system is believed to be requisite for normal 
GnRH secretion, serving as a “gatekeeper” of puberty and 
helping to mediate the effects of sex steroids and metabolic 
cues on GnRH secretion. Kisspeptin was originally called 
metastin because of its ability to suppress metastatic spread 
of human melanomas and breast carcinomas. However, in 
recognition of its discovery at Pennsylvania State University 
in Hershey, Pennsylvania, it was later named kisspeptin after 
Hershey’s chocolate KISSES. Herein we will use the following 
abbreviations55: KISS1 and Kiss1, the human and nonhuman 
kisspeptin genes, respectively; KISS1R (Kiss1R) and KISS1R 
(Kiss1R), the human (nonhuman) kisspeptin receptor genes 
and gene products, respectively.

The KISS1 gene product is a 154–amino acid precursor 
protein (kisspeptin 1-145). Variable proteolytic modification 
yields kisspeptins of different lengths: kisspeptin-54, -14, 
-13, and -10, with the numbers referring to the amino acid 

studies in ovariectomized, GnRH-deficient monkeys reveal 
that a decrease in the frequency of exogenously administered 
GnRH pulses from one pulse per hour to one pulse every 
3 hours results in a 65% increase in plasma FSH, despite a 
50% decrease in LH (Fig. 1.10).35 Similar findings have been 
described in sheep42 and humans.43,44 Detailed studies in 
rats demonstrate that rapid GnRH pulse stimulation favors 
α-subunit and LHβ mRNA expression, whereas slow GnRH 
pulses favor FSHβ mRNA expression.45 The mechanisms 
effecting differential LH and FSH expression in response to 
changes in GnRH pulse frequency are complex46 but include 
variations of GnRH receptor number on the gonadotrope 
cell surface47 and alterations of gonadotrope activin βB and 
follistatin expression (discussed later in the chapter).48

A pulse of GnRH release stimulates a pulse of LH release 
on a one-to-one basis, and LH (or α-subunit) pulse patterns, 
as assessed by frequent sampling of peripheral blood,  
accurately mirror GnRH pulse patterns in animal studies 
(Fig. 1.11).33,49 Similarly, exogenous GnRH pulses elicit LH 
pulses in GnRH-deficient patients. Because measurable GnRH 
is effectively confined to the hypophyseal portal system, 
which is inaccessible in humans, GnRH pulse frequency is 
inferred from LH pulse frequency (or α-subunit pulse fre-
quency50,51) in human studies. Although pulses of GnRH 
stimulate pulsatile release of FSH, the longer serum half-life 
of FSH renders FSH pulses more difficult to identify via 
frequent sampling of peripheral blood. In addition, although 
short-term LH secretion is very closely tied to continued 
GnRH stimulation, FSH secretion is less acutely dependent 
on GnRH stimulation.52,53 For example, with GnRH antago-
nism, the percentage reduction in LH exceeds that of FSH.54

Neuronal Inputs Into Gonadotropin-Releasing 
Hormone Neurons

◆ Normal pulsatile GnRH secretion is dependent on complex 
interactions among numerous afferent neuronal inputs, including 
those expressing kisspeptin, neurokinin B, and/or dynorphin.

50
45
40
35
30
25
20
15
10

5
0

500
450
400
350
300
250
200

F
S

H
 (

ng
/m

L)

LH
 (

ng
/m

L)

150
100
50
0

20 15 10

1 Pulse/
hour

1 Pulse/
hour

1 Pulse/
3 hours

5 0 5 10
Days

15 20 25 30 35 40

FIGURE 1.10 Luteinizing hormone (LH) and follicle-stimulating 
hormone (FSH) concentrations in gonadectomized (but sex 
steroid–replaced) monkeys after arcuate nucleus ablation—a 
model of isolated GnRH deficiency. Exogenous GnRH administered 
in a pulsatile fashion every hour reconstituted LH and FSH secretion. 
Changing GnRH pulse administration from a relatively high frequency 
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stimulation and gonadotropin secretion in the rhesus monkey, Endocrinol-
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FIGURE 1.11 Close temporal relationship between pulses of 
luteinizing hormone (LH) (jugular vein) and gonadotropin-
releasing hormone (GnRH) (pituitary portal system) in the 
sheep model. (Modified from Moenter SM, et al: Dynamics of 
gonadotropin-releasing hormone release during a pulse, Endocrinology 
130:503–510, 1992.)
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length of bioactive kisspeptin fragments (Fig. 1.12). Impor-
tantly, functional native kisspeptins maintain the 10 amino 
acids of the carboxy-terminal (kisspeptin amino acids 112 
to 121), which are important for receptor binding and func-
tion. Kisspeptin is the natural ligand of KISS1R—also known 
as the G protein–coupled receptor 54 (GPR54)—a seven 
transmembrane domain, G protein–coupled receptor.

The importance of the kisspeptin system in reproduction 
was initially revealed by members of two consanguineous 
families with KISS1R mutations leading to pubertal failure 
and normosmic hypogonadotropic hypogonadism.56,57 Inac-
tivating KISS1 mutations leading to pubertal failure and 
normosmic hypogonadotropic hypogonadism have also been 
described in four sisters.58 Murine Kiss1 and Kiss1R knockout 
models exhibit hypogonadotropic hypogonadism with 
impaired sexual maturation, reduced gonadal size, failure of 
estrous cyclicity (females), impaired spermatogenesis (males), 
and infertility.57,59,60 However, the notion that kisspeptin is 
an absolute requirement for puberty and reproductive function 
in mice is somewhat controversial.61,62 KISS1R and KISS1 
mutations neither interrupt GnRH neuron migration to the 
hypothalamus nor impair GnRH synthesis.

Single boluses of kisspeptin markedly stimulate LH release 
in rodents, sheep, monkeys, and humans. This effect of 
kisspeptin is mediated by stimulation of GnRH neurons,  
as supported by the following: kisspeptin fibers appear 
to project to and form synaptic contacts with GnRH 
neurons63,64—connections that appear to be established in 
utero65,66; the kisspeptin receptor is expressed by a majority 
of GnRH neurons67; kisspeptin can directly depolarize GnRH 
neurons68,69; a kisspeptin antagonist inhibits murine GnRH 
neuron firing rates and reduces pulsatile GnRH release in 
female pubertal monkeys70; and kisspeptin stimulation of 
gonadotropin secretion is completely blocked by GnRH 
antagonists.55,67,71 However, kisspeptin may also work 
indirectly because kisspeptin can increase GABAergic and 
glutamatergic postsynaptic currents onto GnRH neurons.72 
Kisspeptin does not stimulate LH secretion in Kiss1R 
knockout mice,60,73 suggesting that kisspeptin acts exclusively 
through its cognate receptor. Moreover, mice with GnRH 
neuron-specific Kiss1R knockout exhibit hypogonadotropic 
hypogonadism and infertility, suggesting that kisspeptin action 
at GnRH neurons is critical for reproductive function.74

In addition to acting upon GnRH neuron cell bodies, 
kisspeptin neurons form synapses with GnRH neuron 
terminals in the external zone of the median eminence,75 

where kisspeptin can stimulate GnRH release (exocytosis).76,77 
Although kisspeptin may possibly have direct effects on 
gonadotropes, available data suggest that this does not play 
a major role in kisspeptin’s ability to stimulate gonadotropin 
secretion. For example, pulsatile GnRH can restore normal 
reproductive function in patients with KISS1R mutations.78

The numbers of kisspeptin neurons are high in the 
infundibular (arcuate) nucleus, similar to findings in 
monkeys.71,79,80 Extensive study in the rodent model discloses 
two primary populations of kisspeptin-expressing neurons 
in the hypothalamus: one in the arcuate nucleus (mediobasal 
hypothalamus) and the other in the anteroventral periven-
tricular nucleus (AVPV) of the preoptic area.81 Of interest, 
kisspeptin expression in the AVPV is much higher in female 
compared with male rodents, which appears to reflect 
organizational effects of sex steroids during early develop-
ment82,83; and kisspeptin neurons in the AVPV appear to be 
specifically important for LH surge generation in rodents. 
Sexual dimorphism of kisspeptin expression has also been 
described in sheep84 and humans.80 However, in primates, 
including humans, the majority of the kisspeptin cell bodies 
reside in the infundibular (arcuate) nucleus.79,80 Although a 
study of adult women revealed rare kisspeptin neurons in 
the preoptic area, a population homologous to the rodent 
AVPV has not been identified.79

Kisspeptin’s ability to stimulate LH release in women may 
vary according to cycle phase or hormonal milieu. For example, 
although bolus kisspeptin administration consistently increases 
LH release in women studied in the luteal and preovulatory 
phases, its effects are less consistent when administered in 
the early to mid-follicular phase.85-87 Compared with findings 
in cycling women studied during the follicular phase, acute 
LH responses to kisspeptin administration appear to be more 
pronounced in postmenopausal women88 and in those with 
functional hypothalamic amenorrhea.89

Kisspeptin and its analogues may hold therapeutic utility 
in the future. Kisspeptin has been investigated as a potential 
treatment for several disorders marked by impaired GnRH 
secretion and low gonadotropins: functional hypothalamic 
amenorrhea,89-91 hypogonadism associated with obesity and 
diabetes,92 and hyperprolactinemia.93 Rapid proteolytic 
degradation of kisspeptin may limit its therapeutic utility; 
although long-acting KISS1R agonists are actively being 
developed,94 the precise effects of long-term KISS1R agonism 
on gonadotropin release remain unclear: tachyphylaxis to 
kisspeptin may represent a practical challenge in this regard. 
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processes such as motor activity, cognitive functions, water 
and food intake, and regulation of neuroendocrine function.116 
Most active EOPs share a common sequence (Tyr-Gly-Gly-
Phe-[Met or Leu]) at the amino-terminal, although endor-
phins, enkephalins, and dynorphins are derived from different 
precursor proteins that undergo regulated posttranslational 
processing (Fig. 1.13).117 Endorphins such as β-endorphin 
are products of the precursor protein POMC. POMC can be 
preferentially processed to produce ACTH and β-lipotropin, as 
occurs in corticotropes (adenohypophysis) under the control 
of CRH. However, in the hypothalamus, POMC processing 
primarily yields β-endorphin and α-melanocyte-stimulating 
hormone. Hypothalamic β-endorphin participates in the 
regulation of reproduction, temperature, and cardiovascular 
and respiratory functions, and it acts primarily via µ-opioid 
receptors. Enkephalins are derived from proenkephalin, 
and their primary functions appear to relate to autonomic 
nervous system modulation, mainly via δ-receptor activation. 
Dynorphins are products of the precursor prodynorphin and 
act chiefly at κ-opioid receptors (KORs). Importantly, although 
β-endorphin, enkephalins, and dynorphins act primarily via 
µ-, δ-, and κ-opioid receptors, respectively, each can act as 
agonists at more than one receptor subtype.

Numerous studies provide evidence that hypothalamic 
opiates partly mediate sex steroid negative feedback on 
GnRH release. For example, GnRH neurons express few 
if any progesterone receptors, but β-endorphin concen-
trations increase in hypophyseal blood during the luteal 
phase—when sex steroids suppress GnRH secretion—in 
monkeys.118,119 Moreover, naloxone and naltrexone (opiate 
receptor antagonists acting primarily at µ- and κ-opioid 
receptors) increase LH pulse frequency when administered 
to luteal phase women120 or progestin-treated postmenopausal 
women.121 Similarly, morphine suppresses GnRH secretion 
from mediobasal hypothalami isolated from fetal and adult 
humans—an effect that is reversed by naloxone122; and 
chronic high-dose opiate administration can cause hypogo-
nadotropic hypogonadism by suppressing GnRH and LH  
secretion.116

Several animal studies implicate dynorphin as a principal 
mediator of progesterone negative feedback on GnRH pulse 
frequency in females.123 For example, dynorphin neurons in 
the arcuate nucleus colocalize with progesterone receptors 
in ewes,124 and dynorphin-containing varicosities are closely 
associated with GnRH neuron cell bodies in the mediobasal 
hypothalamus.125,126 Progesterone treatment in ewes increases 
dynorphin A concentrations in third ventricle cerebrospinal 
fluid,127 and central infusion of dynorphin in goats reduces 
volleys of multiple-unit activity in the mediobasal hypothala-
mus and reduces LH pulses.128 In luteal phase ewes, specific 
κ-opioid receptor antagonists—but not antagonists to δ- or 
µ-opioid receptors—reversed progesterone inhibition of LH 
secretion and LH pulse frequency when locally administered 
into the mediobasal hypothalamus.125 However, other EOPs 
(e.g., β-endorphin) in other hypothalamic areas may also be 
involved; for example, in the aforementioned study,125 κ- and 
µ-receptor antagonists locally administered into the preoptic 
area increased LH and LH pulse frequency.

Kisspeptin, Neurokinin B, Dynorphin Neurons
In the arcuate nucleus, kisspeptin, NKB, and dynorphin are 
frequently coexpressed in the same neuron. For example, 
kisspeptin neurons in the arcuate nucleus have been found 

Kisspeptin has been evaluated as a trigger for final oocyte 
maturation and ovulation in women at risk for ovarian 
hyperstimulation syndrome95; in this case, rapid proteolytic 
degradation (compared with hGC) may be central to its 
therapeutic utility. Finally, when complete gonadal steroid 
suppression is not required (e.g., endometriosis), KISS1R 
antagonists may permit partial inhibition of gonadotropin 
production.94

Neurokinin B
NKB—a decapeptide (Asp-Met-His-Asp-Phe-Phe-Val-Gly-
Leu-Met-NH2) encoded by the tachykinin 3 gene (TAC3)—is 
a member of the tachykinin family, which also includes 
substance P and neurokinin A (products of the TAC1 gene). 
There are several neurokinin receptors (NK1R, NK2R, 
NK3R), and although NKB can produce some agonism at 
NK1R and NK2R, NKB binds preferentially to and acts 
primarily via its cognate receptor NK3R (encoded by the 
TACR3 gene).96 Studies of patients with idiopathic hypo-
gonadotropic hypogonadism from consanguineous families 
revealed that homozygous loss-of-function mutations of either 
TAC3 or TACR3 can cause pubertal failure and severe 
hypogonadotropic hypogonadism, highlighting the importance 
of NKB in human reproduction.97,98 In contrast to Kiss1 and 
Kiss1R knockout mice, Tacr3 knockout mice remain fertile, 
although they can demonstrate reproductive defects.99,100

The role of NKB in central reproductive function is 
complex and appears to vary according to species, sex, and 
sex steroid milieu.101,102 The selective NK3R agonist senktide 
can stimulate LH secretion—albeit not as potently as 
kisspeptin—in rats,103 sheep,104 and monkeys.105 Such stimula-
tion of LH secretion by NKB is mediated by GnRH secretion, 
and GnRH receptor antagonism abolishes LH responses to 
senktide in the monkey.105

Although it remains unclear to what degree NKB may have 
direct actions on GnRH neurons,106,107 a number of observations 
suggest that NKB primarily influences pulsatile GnRH secretion 
indirectly by stimulating kisspeptin release. For example, 
kisspeptin neurons express NK3R, and senktide increases 
kisspeptin neuronal activity.103 LH responses to senktide are 
either absent or markedly reduced in Kiss1R knockout mice,108 
in the presence of Kiss1R antagonism,109 or after Kiss1R 
desensitization.110 Moreover, continuous kisspeptin infusion 
can restore pulsatile LH secretion in patients with loss-of-
function mutations of TAC3 or TACR3.111 Studies in mice 
suggest that other members of the tachykinin family—substance 
P and neurokinin A in particular—may also influence GnRH 
secretion via actions on kisspeptin neurons.112,113

Regarding the therapeutic potential of NKB analogues, a 
phase II clinical trial in women with polycystic ovary syndrome 
(PCOS)—a disorder marked by persistently high GnRH pulse 
frequency, LH excess, and hyperandrogenemia—suggested 
that NK3R antagonism for 7 days reduced LH (GnRH) pulse 
frequency, LH area under the curve, and total testosterone 
concentrations, with essentially no change in FSH or estradiol 
concentrations.114 NKB antagonists could also be useful in 
disorders requiring only partial reductions in gonadotropins 
and gonadal steroids (e.g., endometriosis),94,115 although this 
notion has not been directly assessed in humans.

Endogenous Opioid Peptides
Endogenous opioid peptides (EOPs), which include endor-
phins, enkephalins, and dynorphins, participate in myriad 
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to coexpress NKB and dynorphin in rodents,129,130 goats,128 
and sheep.131 For convenience, and as a playful nod to kiss-
peptin (namesake of Hershey’s chocolate KISSES), such 
neurons are often called KNDy neurons (Kisspeptin, Neu-
rokinin B, Dynorphin; pronounced candy).84 KNDy neurons 
in the arcuate nucleus form an extensively interconnected 
network.129,132,133 KNDy axons also appear to project to the 
internal zone of the median eminence where they are in 
close proximity to GnRH fibers.106,134 As with kisspeptin 
neurons, KNDy neuron neuroanatomy exhibits sexual 
dimorphism, possibly related to perinatal sex steroid expo-
sure.84 As discussed further later, robust experimental  
data suggest that KNDy neurons are intimately involved 
with sex steroid feedback on GnRH secretion; a number of 
groups have suggested that the KNDy neuronal network 
represents a fundamental component of the GnRH pulse 
generator.123,130,135,136

Corresponding data are limited in humans. In one 
autopsy study, 77% of kisspeptin cell bodies (and 56% of 
kisspeptin axon fibers) in the infundibular nucleus coex-
pressed preproNKB, and 95% of preproNKB-expressing 
cell bodies coexpressed kisspeptin.80 However, the degree 
of colocalization in humans appears to differ according to 
sex and age. For example, one autopsy study suggested 
that only 10% and 26% of kisspeptin-containing afferent 
contacts onto GnRH neurons coexpressed preproNKB in 
older men and women, respectively137; another autopsy 
study in young men suggested that 75% of infundibular 
kisspeptin-containing cell bodies also contained NKB, 33% 
of NKB-containing cell bodies also contained kisspeptin, and 
colocalization with dynorphin was uncommon.138 Although 
these small studies suggested limited colocalization in humans, 
it is unclear to what degree postmortem degradation may 
have influenced these findings. Regardless, it remains well 
accepted that kisspeptin, NKB, and dynorphin—released 

from neurons that do or do not colocalize with the other 
peptides—substantially influence GnRH neuronal function  
in humans.

Gonadotropin-Inhibitory Hormone and 
RFamide-Related Peptides
The role of gonadotropin-inhibitory hormone (GnIH) and 
its mammalian orthologues, RFamide-related peptides 
(RFRPs), in the central control of reproduction has been 
recently reviewed.139 Briefly, RFRP-immunoreactive cells have 
been identified in hypothalami of a number of species—
including RFRP-1 and RFRP-3 in humans140—and RFRP-
immunoreactive fibers can be found in close proximity to 
GnRH neurons and in the median eminence. RFRP-3 can 
reduce GnRH neuronal firing rates in mice141; RFRP-3 inhibits 
pituitary gonadotropin release from cultured ovine pituitary 
cells142; and intravenous RFRP-3 administration suppresses 
LH pulse amplitude in ovariectomized ewes.143 Another study 
revealed reduced RFRP expression in the preovulatory period 
in ewes, suggesting a reciprocal relationship with GnRH 
release, and infusion of GnIH blocked the estrogen-induced 
LH surge.144 GnIH and RFRPs have also been implicated in 
the regulation of food intake (increase), sexual motivation 
(decrease), and the inhibitory influence of stress on reproduc-
tion. Although a growing body of data suggests that RFRPs 
are important factors controlling GnRH and gonadotropin 
secretion in a number of mammalian species, an understanding 
of their role in humans awaits further investigation.

Gonadotropin-Releasing  
Hormone Pulse Generator

◆ Discrete, intermittent bursts of coordinated GnRH neuron 
activity lead to pulsatile release of GnRH into the hypophyseal 
portal system.
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coordination of GnRH release could be facilitated by cell-
to-cell interconnections among GnRH neurons.154,155

It is well accepted that afferent inputs (e.g., kisspeptin 
neurons) are important for normal GnRH secretion, and a 
number of investigators have suggested that kisspeptin 
(KNDy) neurons may represent a key component of the 
GnRH pulse generator—in essence orchestrating coordinated 
GnRH neuronal activity and, accordingly, GnRH secre-
tion.123,130,135,136 As described previously, LH pulses are 
temporally associated with volleys of multiunit activity in 
the arcuate nucleus, which contains both GnRH and kiss-
peptin (KNDy) neurons.156 In addition, kisspeptin release 
at the median eminence appears to be pulsatile: although 
kisspeptin pulses were not clearly coincident with peripheral 
LH pulses in ovariectomized ewes,157 kisspeptin pulses cor-
responded to GnRH pulses 75% of the time in midpubertal 
rhesus monkeys.158 Moreover, a GnRH neuron cell culture 
study suggests that pulsatile kisspeptin administration entrains 
synchronous cycles of GnRH gene transcription and pulsatile 
GnRH secretion.159 Work in sheep suggests that, although 
kisspeptin is an important mediator of GnRH pulse genera-
tion, additional elements (e.g., upstream glutamate-secreting 
neurons) are likely also important.160

Human studies also imply that kisspeptin may play a role 
in the GnRH pulse generator. For example, in men, continuous 
intravenous infusion of a relatively low dose of kisspeptin 
can increase LH pulse frequency161; and a single injection 
of kisspeptin may reset the GnRH pacemaker.162 (In the 
latter study, the interval between the kisspeptin-induced 
LH pulse and the immediately preceding endogenous LH 
pulse was variable but on average shorter than the normal 
LH interpulse interval; in contrast, the interval between the 
kisspeptin-induced LH pulse and the subsequent endogenous 
LH pulse was similar to normal interpulse intervals [approxi-
mately 2 hours], suggesting that kisspeptin administration 
reset the hypothalamic GnRH clock.) Parallel results in 
women are mixed: although bolus kisspeptin administration 
did not appear to reset the GnRH pacemaker in women,87 
single-dose subcutaneous kisspeptin administration during 
the follicular phase has been reported to increase LH pulse 
frequency.163

NKB and dynorphin may also play important roles in the 
coordination of pulsatile GnRH release. This notion is 
consistent with a number of experimental observations. For 
example, KNDy neurons exhibit both NK3R and κ-opioid 
receptors123; murine kisspeptin neuron firing rates are 
increased by NK3R agonists and reduced by κ-opioid receptor 
agonists112,164—effects that appear to be modulated by  
gonadal steroids.164,165 In addition, central administration of 
dynorphin in goats inhibits both multiple unit activity  
(MUA) volleys in the mediobasal hypothalamus and pulsatile 
LH release, whereas NKB provokes MUA volleys.128  
Studies using microimplants in the arcuate nucleus of ewes 
revealed consistent findings: LH pulse frequency was 
decreased by an NK3R antagonist, whereas LH pulse fre-
quency was increased by either NKB or a κ-opioid receptor 
antagonist.166

Fig. 1.15 depicts a working model proposed by Goodman 
et al., primarily based on experiments performed in 
sheep.101,123 According to this model, KNDy neurons signal 
to other KNDy neurons—and perhaps to other neurons within 
the arcuate nucleus—with NKB release stimulating kisspeptin 

◆ Although pulsatility is an intrinsic property of GnRH neurons, 
afferent inputs (e.g., neurons expressing kisspeptin, NKB, and/
or dynorphin) are required for normal GnRH pulse generation 
and appear to represent integral components of the GnRH 
pulse generator.

As described previously, intermittent GnRH receptor stimula-
tion is an absolute requirement for physiologic maintenance 
of gonadotropin secretion. Although the precise basis of 
pulsatile GnRH release remains unclear, a number of observa-
tions strongly support the concept that neuronal systems 
within the mediobasal hypothalamus effect pulsatile release 
of GnRH into the hypophyseal portal system. In animal 
models, volleys of multiple unit electrical activity (i.e., 
detection of activity in multiple neurons near an electrode) 
in the area of the mediobasal hypothalamus coincide with 
the initiation of LH pulses (Fig. 1.14).145,146 Similarly, electrical 
stimulation via electrodes placed in the mediobasal hypo-
thalamus stimulates GnRH release into the hypophyseal 
portal system in monkeys.147 Mediobasal hypothalami isolated 
from both fetal (20 to 23 weeks gestation) and adult humans 
release GnRH in discrete pulses, with a frequency approximat-
ing one pulse per 60 to 100 minutes122; and mediobasal 
hypothalami separated from the remainder of the brain can 
maintain pulsatile LH secretion in monkeys.148 These data 
suggest that the mediobasal hypothalamus houses all requisite 
components for GnRH pulse generation (i.e., the GnRH 
pulse generator) and that pulsatile GnRH release does not 
require innervation from outside of the mediobasal hypo-
thalamus. Nonetheless, mechanisms underlying episodic 
GnRH pulse generation, and what neuroanatomic components 
constitute the GnRH pulse generator, are uncertain.

Several studies suggest that pulsatility is an intrinsic 
property of GnRH neurons. For example, pulsatile GnRH 
release is exhibited by immortalized GnRH-secreting 
neurons149,150 and by cultured GnRH neurons obtained from 
fetal rats, sheep, and monkeys.151-153 If GnRH pulse generation 
reflects an intrinsic property of GnRH neurons, then 
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FIGURE 1.15 Working model regarding how KNDy neurons may participate in the generation of gonadotropin-releasing 
hormone (GnRH) pulses proposed by Goodman et al. (A) and Wakabayashi et al. (B). (A) By this model, neurokinin B (NKB; 
magenta) stimulates and dynorphin (DYN; red) suppresses kisspeptin release, with kisspeptin (green) stimulating GnRH neuronal firing. The 
onset of a GnRH pulse is triggered by an initial increase in NKB, which increases kisspeptin output. NKB also stimulates non-KNDy, kisspeptin-
responsive interneurons that support or strengthen NKB stimulation of KNDy neurons. NKB stimulation of KNDy neurons also stimulates 
DYN release; after a short period of time, the increase in DYN suppresses kisspeptin (and NKB) release. This withdrawal of kisspeptin stimulation 
terminates the GnRH pulse. (B) By this model, KNDy neurons in the arcuate nucleus form a neural circuit, within which NKB (magenta) 
accelerates and Dyn (red) reduces KNDy neuron activation. These reciprocal effects of NKB and Dyn produce episodic activation of KNDy 
neurons, with KNDy neuronal activation increasing kisspeptin release at the median eminence. Kisspeptin in turn stimulates GnRH release 
into the hypophyseal portal system. KOR, κ-opioid receptor. (Modified from Goodman RL, et al: A role for neurokinin B in pulsatile GnRH secretion 
in the ewe, Neuroendocrinology 99:18–32, 2014; and Wakabayashi Y, et al: Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate 
nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat.  
J Neurosci 30:3124–3132, 2010.)

secretion, which in turn initiates GnRH pulse secretion; 
subsequent dynorphin release then inhibits kisspeptin secre-
tion, effecting GnRH pulse termination. Fig. 1.15 also depicts 
a similar working model based on experiments performed 
in goats.128

However, some data suggest that kisspeptin may not be 
required for GnRH pulse generation. In particular, frequent 
sampling studies reveal that humans with KISSR mutations 
demonstrate pulsatile LH release, albeit at low amplitude.57,167 
Similarly, a study suggested that puberty occurs and fertility 
is preserved in female mice with either (1) congenital absence 
of kisspeptin neurons or (2) congenital absence of neurons 
expressing Kiss1R.61 When taken as a whole, available data 
imply that kisspeptin action may not be an absolute require-
ment for pulsatile GnRH secretion but that kisspeptin is 
required for normal GnRH pulse secretion and normally 
exerts an important influence on GnRH pulse generation.

Gonadotropin-Releasing Hormone Secretion 
During Development and in Adulthood

◆ Gonadotropin secretion is robust during fetal development 
and early infancy but quiescent during childhood; puberty 
represents the reemergence and amplification of gonadotropin 
secretion, which stimulates gametogenesis, gonadal sex steroid 
secretion, and the physical manifestations of puberty.

◆ GnRH pulse frequency changes across the normal menstrual 
cycle, being highest in the late follicular phase and lowest in 
the luteal phase; these day-to-day changes primarily reflect 
the imposition or removal of progesterone negative feedback, 
and they contribute to the normal cyclic patterns of LH and 
FSH secretion.

◆ Men demonstrate consistent day-to-day GnRH pulse patterns, 
with GnRH pulse frequency approximating one pulse every 
2 hours.

Physiologic Development of Reproductive 
Neuroendocrine Function

Patterns of GnRH secretion change markedly across human 
development. Reproductive neuroendocrine events throughout 
early maturation, including both before and during the 
establishment of reproductive competence, are discussed in 
detail in Chapter 17. Briefly, GnRH and gonadotropin secre-
tion is robust in utero, peaking in midgestation. In males, 
gonadotropin secretion markedly stimulates testicular 
androgen secretion, which is important for normal genital 
differentiation. The gestational increase in sex steroid (e.g., 
estradiol) production from the fetoplacental unit provides 
negative feedback to limit fetal GnRH and gonadotropin 
secretion. Birth is followed by a marked but transient (3 to 
9 month) increase in GnRH and gonadotropin secretion (the 
“minipuberty of infancy”), perhaps related to the withdrawal 
of fetoplacental sex steroids. A marked sex difference of 
gonadotropin release is evident at this time, with LH con-
centrations being higher in males and FSH levels higher in 
females. The possibility that kisspeptin is important for the 
minipuberty of infancy is suggested by a patient with a 
compound heterozygote mutation of KISSR, who had 
micropenis, undescended testes, and undetectable serum 
gonadotropins at 2 months of age—a time usually marked 
by robust gonadotropin secretion.168

By late infancy or early childhood (earlier in boys than 
in girls), GnRH and gonadotropin secretion markedly 
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minutes,122 and LH pulses do not appear to exceed a once 
hourly frequency during any phase of the cycle.184,186 These 
findings have contributed to the concept that a pulse fre-
quency of approximately one per hour (a circhoral frequency) 
may be an inherent characteristic of the adult GnRH pulse 
generator and that day-to-day changes of GnRH pulse fre-
quency in women reflect the imposition or removal of sex 
steroid (primarily progesterone) negative feedback.

LH pulse amplitude also changes across the menstrual 
cycle. LH pulse amplitude decreases slightly across the follicular 
phase, but it is greatly amplified at mid-cycle (i.e., during the 
LH surge). During the luteal phase, LH pulse amplitude is 
variable, but in general it is approximately twofold higher 
than that of the follicular phase. It is important to note that 
the amplitude of LH pulses can be modulated centrally via 
changes of GnRH released per pulse, at the pituitary gonado-
trope via changes of gonadotrope responsiveness to GnRH, 
or both. Also of interest, LH pulse amplitude varies inversely 
with the preceding LH interpulse interval.187

In women, dynamic changes of gonadotropin secretion 
are required to achieve follicular development, ovulation, 
and preparation for possible pregnancy. In contrast, young 
men demonstrate consistent daily patterns of GnRH and 
gonadotropin secretion, with GnRH pulse frequency approxi-
mating one pulse every 2 hours. This achieves continuous 
spermatogenesis, and healthy men are prepared for fertiliza-
tion at all times. In addition, day-to-day testosterone secretion 
remains relatively constant, although testosterone concentra-
tions exhibit diurnal changes with peaks in the morning.

Feedback Regulation of 
Gonadotropin-Releasing Hormone and 
Gonadotropin Secretion

◆ Throughout most of the cycle in women, estradiol restrains 
GnRH pulse amplitude and gonadotropin secretion, whereas 
progesterone restrains GnRH pulse frequency, but high estradiol 
concentrations at mid-cycle exert positive feedback on pituitary 
gonadotropes, provoking marked gonadotropin release—the 
gonadotropin surge.

◆ In men, GnRH secretion is restrained by testosterone and 
dihydrotestosterone (DHT) in addition to estradiol, a product of 
testosterone aromatization, but estradiol is the primary mediator 
of testosterone negative feedback at pituitary gonadotropes.

◆ Afferent neuronal pathways (e.g., kisspeptin and dynorphin 
neurons) are key mediators of sex steroid negative feedback 
on GnRH secretion.

After puberty, gonadal hormones continually relay information 
about the state of gonadal function to the hypothalamic-
pituitary axis. Hypothalamic areas involved with the regulation 
of GnRH secretion (and pituitary gonadotropes) express 
receptors for estrogen, progesterone, and androgen; and sex 
steroid feedback plays a predominant role in the physiologic 
modification of GnRH and gonadotropin secretion. These 
steroid feedback signals can thus alter gonadotropin feed-
forward signals to the gonads by influencing GnRH secretion, 
modulating pituitary (gonadotrope) responses to GnRH, or 
both. Under normal circumstances, these regulatory feedback 
loops maintain appropriate gonadal function. The negative 
feedback actions of pharmacological doses of sex steroids 
(e.g., combined oral contraceptives) suppress gonadotropins 

decreases, leading to a hypogonadotropic phase of childhood 
marked by low sex steroid concentrations—the juvenile pause. 
Studies of gonadotropin secretion in children reveal low LH 
and FSH concentrations, a high FSH-to-LH ratio, and low 
LH pulse amplitude and frequency.169 Mechanisms accounting 
for low GnRH secretion during this time appear to include 
inhibition of the GnRH pulse generator (neurobiologic brake) 
by higher-order neuronal systems (e.g., involving GABA- and 
NPY-secreting neurons) and a developmental removal of 
stimulation (e.g., involving neurons secreting glutamate and 
norepinephrine).

Near the close of the first decade, a marked nocturnal 
amplification of pulsatile LH secretion indicates the neuro-
endocrine initiation of puberty. A majority of studies suggest 
that early pubertal subjects demonstrate sleep-entrained 
increases in LH (GnRH) pulse frequency and amplitude.170 
Gonadotropin concentrations rise across puberty,171,172 
stimulating gametogenesis, gonadal sex steroid secretion, and 
the development of secondary sexual characteristics. Mecha-
nisms underlying puberty are poorly understood, but they 
likely reflect developmental remodeling of inhibitory and 
stimulatory neural circuits in the hypothalamus. For example, 
puberty has been associated with reductions of GABAergic 
inhibitory neurotransmission and an increase in excitatory 
neurotransmitters such as glutamate. Kisspeptin and NKB 
also appear to play important roles in human puberty because 
inactivating mutations of KISS1, KISS1R, TAC3, or TACR3 
result in pubertal failure. Conversely, central precocious 
puberty has been associated with gain-of-function KISS1R 
mutations173 and KISS1 mutations that may impair kisspeptin 
degradation.174 In addition, loss-of-function mutations in the 
maternally imprinted gene MKRN3 (encoding makorin ring 
finger protein 3) have been discovered as a common cause 
of central precocious puberty,175-177 suggesting that MKRN3 
contributes to the neurobiologic brake. In addition to these 
transsynaptic mechanisms, neuroglial cells may contribute 
to the pubertal reactivation of GnRH secretion (e.g., by 
secretion of growth factors).2

Patterns of Pulsatile Gonadotropin-Releasing 
Hormone Secretion in Adults

Human studies using frequent blood sampling and pulse 
detection analysis have documented significant changes of 
LH (and by inference GnRH) pulse frequency throughout 
ovulatory cycles. Briefly, average LH (GnRH) pulse frequency 
is around one pulse every 90 minutes in the early follicular 
phase, and this gradually increases to approximately one 
pulse per hour by the late follicular phase. Although monkey 
studies suggest that GnRH pulse frequency slows during 
the mid-cycle surge,178 human studies suggest no change in 
either LH or α-subunit pulse frequency at mid-cycle.179,180 
LH pulse frequency decreases markedly during the luteal 
phase, approximating one pulse every 3 to 8 hours. These 
day-to-day changes of GnRH pulse frequency appear to be 
important for normal hormonal changes across ovulatory 
cycles.181,182

In adult humans and nonhuman primates, GnRH pulses 
occur approximately once per hour in the (near) absence of 
sex steroid negative feedback (e.g., after surgical or natural 
menopause).183-185 Similarly, the isolated human mediobasal 
hypothalamus secretes GnRH pulses every 60 to 100 
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sion.205,206 In contrast, progesterone inhibition of GnRH  
pulse frequency appears to be antagonized by androgens. 
For example, androgens increase GnRH neuronal firing  
rates in the mouse model207; and in hyperandrogenic women 
with PCOS, high GnRH pulse frequencies are relatively 
resistant to negative feedback suppression by progesterone 
and estradiol208—a defect that can be reversed by androgen 
receptor blockade.209 These findings may be a consequence 
of androgen-mediated reductions of hypothalamic proges-
terone receptor expression.210

Positive Feedback and the Mid-Cycle 
Gonadotropin Surge
Most examples of endocrine feedback regulation involve 
negative feedback loops. However, the ovulatory menstrual 
cycle is unique in that it also depends on the positive feedback 
effects of sex steroids on the hypothalamic-pituitary axis. 
Specifically, high estradiol concentrations from the dominant 
ovarian follicle can produce a marked increase in gonadotropin 
release—a mid-cycle (or preovulatory) gonadotropin surge. 
In effect, estradiol from the preovulatory follicle signals to 
the hypothalamic-pituitary axis that follicular development 
is adequate for ovulation. Estradiol positive feedback appears 
to be related to both achieved estradiol concentrations and 
the duration of estradiol elevation, as demonstrated in both 
monkeys211 and women.212 Although the mid-cycle surge is 
characterized by a marked discharge of both gonadotropins, 
the increase in LH release exceeds that of FSH, with blood 
concentrations increasing approximately tenfold versus 
fourfold, respectively; thus it is often called the LH surge.

The mid-cycle gonadotropin surge uniformly involves 
positive feedback at the pituitary, markedly increasing 
gonadotrope responsiveness to GnRH stimulation.213,214 
However, whether the gonadotropin surge involves positive 
feedback at the hypothalamus is likely species dependent. 
GnRH secretion is augmented during the LH surge in rats215 
and sheep216; such GnRH surges appear to be physiologically 
important in these species. Similarly, GnRH release appears 
to increase in response to estradiol positive feedback in female 
monkeys.217,218 However, LH surges can be induced by high 
estradiol concentrations in GnRH-deficient monkeys receiving 
constant dose (exogenous) GnRH delivered as once hourly 
pulses,219 implying that a GnRH surge is not essential for 
LH surge generation in these animals.

One study using incomplete GnRH receptor antagonism 
to estimate GnRH secretion in women suggested that GnRH 
secretion may actually be reduced at mid-cycle compared 
with the late follicular and early luteal phases.220 Similarly, 
pulsatile administration of constant-dose exogenous GnRH 
produces LH surges in GnRH-deficient women214; indeed, 
LH surges can occur in such women even when pulsatile 
GnRH doses are reduced at mid-cycle.221 In addition, although 
pituitary metabolic activity (by positron emission tomography) 
increases in women at mid-cycle, hypothalamic metabolic 
activity does not.222 Thus, although continued GnRH stimula-
tion plays a critically important permissive role in LH surge 
generation in women (e.g., the surge can be prevented with 
GnRH receptor antagonists223,224), available data do not suggest 
that the gonadotropin surge is accompanied by increased 
GnRH release in women.

Progesterone increases pituitary gonadotropin responses 
to GnRH225,226; and when given in the luteal phase, the 

and can be used for temporary contraception in women. 
Similar strategies are being developed for men.188

Negative Feedback Regulation of 
Gonadotropin-Releasing Hormone and 
Gonadotropin Secretion in Women
In women, estradiol concentrations correspond to follicular 
development during the follicular phase and corpus luteum 
function in the luteal phase. When concentrations are rela-
tively low (i.e., excluding preovulatory concentrations), 
estrogens restrain gonadotropin secretion. This effect is most 
dramatically illustrated by markedly increased gonadotropin 
secretion in states of estrogen deficiency (i.e., the open loop 
condition) such as menopause189 and aromatase deficiency.190 
The negative feedback effects of estradiol appear to be 
mediated primarily at the hypothalamus.191 GnRH release 
(by direct measurement) is increased in ovariectomized sheep 
and monkeys, and this is reversed with estrogen replace-
ment.192,193 In human studies, GnRH release can be estimated 
using GnRH antagonists, with the premise that the degree 
of LH suppression after incomplete GnRH antagonism is 
inversely related to endogenous GnRH secretion. In post-
menopausal women, the percent reduction in LH concentra-
tions after incomplete GnRH receptor blockade is increased 
by estradiol replacement.194

Overall, studies indicate that estradiol reduces GnRH 
pulse amplitude but not GnRH pulse frequency.193,195 
Although one study in ovariectomized monkeys suggested 
that estradiol reduces the frequency of both hypothalamic 
multiple unit electrical activity and LH pulses,196 available 
studies in postmenopausal women imply that estrogen 
replacement primarily reduces LH pulse amplitude rather 
than LH pulse frequency.185,197 In addition, LH pulse  
frequency is maximal at one pulse per hour during the late 
follicular phase in women, when estradiol concentrations 
are relatively high.

Estrogens may also decrease pituitary LH responses to 
GnRH, although available data are mixed. For example, 
although estradiol acutely reduces LH release in GnRH-
deficient monkeys and sheep receiving fixed-dose exogenous 
pulsatile GnRH,198,199 relatively low (i.e., not preovulatory) 
doses of estradiol do not markedly influence LH release in 
GnRH-deficient women receiving fixed-dose exogenous pul-
satile GnRH.40 Interestingly, initial reductions of LH release 
with higher-dose estradiol may be followed by increased LH 
release200; this biphasic pattern presumably reflects initial 
negative feedback and later positive feedback.

Progesterone is the primary negative feedback regulator 
of day-to-day GnRH pulse frequency in women. LH pulse 
frequency slows in tandem with increases of progesterone 
(from the corpus luteum) in the early luteal phase,186 and 
LH pulse frequency is inversely correlated with progesterone 
(but not estradiol) concentrations during the luteal-follicular 
transition.201 Moreover, administration of progesterone to 
women during the follicular phase, when progesterone 
concentrations are usually low, slows LH pulse frequency.202 
Similarly, progesterone plus low-dose estradiol, but not 
estradiol alone, slows LH pulse frequency in postmenopausal 
women.185,197 Importantly, the ability of progesterone to slow 
GnRH pulses appears to require the permissive presence  
of estradiol,203,204 which likely reflects the ability of estrogen 
to increase hypothalamic progesterone receptor expres-
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Many studies suggest that sex steroid negative feedback on 
the GnRH pulse generator is partly mediated by the androgen 
receptor. For example, DHT can reduce LH pulse frequency 
in men,247 and some243,244 but not all250 studies suggest that 
androgen receptor blockade increases LH pulse frequency in 
men. Similarly, the marked increase in LH pulse frequency 
with high-dose ketoconazole (which inhibits both testicular/
adrenal steroidogenesis and aromatase activity) is completely 
reversed by testosterone replacement despite low estradiol 
concentrations, whereas LH pulse frequency is only partly 
normalized with estradiol add-back alone (with persistently 
low testosterone concentrations).241 On the other hand, 
aromatase inhibitors251 and antiestrogens248,252-254 increase LH 
pulse frequency in normal men, and estrogen treatment in 
men with aromatase deficiency reduces LH pulse frequency.255 
Overall, these data suggest that both androgens and estrogens 
mediate negative feedback of hypothalamic GnRH secretion.

In contrast to dual (androgen, estrogen) steroid feedback 
on GnRH pulse secretion, a number of studies suggest that 
estradiol is a primary mediator of negative feedback at the 
pituitary in men.241,245,249,256 For example, androgen receptor 
blockade does not alter LH responses to exogenous GnRH 
in some studies,244,250 and aromatase inhibition appears to 
prevent testosterone’s ability to reduce GnRH-stimulated 
LH and FSH secretion.240 Perhaps the most compelling studies 
were performed in GnRH-deficient men receiving pulsatile 
exogenous GnRH in constant doses. Under this GnRH clamp 
paradigm, testosterone alone and estradiol alone reduced 
LH and FSH concentrations, but DHT alone did not.256 In 
another GnRH clamp study, LH amplitude and mean LH 
increased after high-dose ketoconazole, and LH parameters 
were normalized with estradiol, but not testosterone, add-
back.241 Overall, these study results imply that estradiol is 
the primary mediator of testosterone negative feedback at 
the pituitary gonadotrope.

Kisspeptin and KNDy Neurons as Mediators of 
Sex Steroid Feedback on Gonadotropin-Releasing 
Hormone Secretion
Evidence in rodents, sheep, and monkeys suggests that sex 
steroid feedback on GnRH secretion is mediated by kiss-
peptin (KNDy) neurons, at least in part. Although GnRH 
neurons express few sex steroid receptors, kisspeptin and 
KNDy neurons show a high degree of colocalization with 
estrogen receptors,81 progesterone receptors,124 and androgen 
receptors.257 In the female monkey, kisspeptin expression is 
markedly reduced by estrogen or estrogen plus progesterone.79 
In addition, sex steroid deficiency is associated with increased 
kisspeptin expression in the infundibular (arcuate) nucleus— 
in parallel with circulating gonadotropins—and this is 
reversed by estradiol replacement in females79,81 and either 
testosterone or estradiol replacement in males.257 Compared 
with premenopausal women, the numbers of infundibular 
prodynorphin-expressing neurons are decreased in postmeno-
pausal women.258 A autopsy study in men suggests that the 
numbers of infundibular kisspeptin-containing cell bodies, 
fibers, and contacts onto GnRH neurons increase with age, 
hypothesized to reflect reduced steroid negative feedback.259 
In addition to influencing kisspeptin expression, estrogen 
modulates GnRH neuron responsiveness to kisspeptin in 
mice.69 A model regarding the influence of KNDy neurons 
in negative feedback is shown in Fig. 1.16.

progesterone receptor antagonist mifepristone decreases mean 
LH and LH amplitude227,228 and reduces LH responses to 
exogenous GnRH.228 Nonetheless, in ovariectomized but 
estradiol-replaced women, progesterone by itself (i.e., without 
high-dose estradiol) is unable to induce gonadotropin surges; 
indeed, progesterone can block LH surge generation  
when administered before high-dose estradiol.229 However, 
progesterone augments gonadotropin secretion in the setting 
of preovulatory estradiol concentrations.212,230 Although 
estradiol alone can provoke an LH surge, the late follicular 
rise in progesterone, which begins approximately 12 hours 
before the LH surge,212,231 may be important for the full 
expression of the mid-cycle gonadotropin surge. For example, 
progesterone may increase the duration of the surge,212 and 
the progesterone-receptor antagonist mifepristone can delay 
the surge.232 Some studies suggest that progesterone may 
be important for the increase in FSH at mid-cycle,229,230 
whereas others suggest that estradiol alone is sufficient to 
produce a normal FSH surge.212,233

Of interest, although humans demonstrate sexual dimor-
phism of hypothalamic neuronal populations (e.g., kisspeptin), 
the circuitry required for LH surgelike activity appears to 
be present in male primates. For example, in male monkeys 
orchiectomized after puberty, estradiol administration can 
induce LH surges,234 and ovarian transplants can induce LH 
surges and other neuroendocrine changes that maintain cyclic 
function of the transplanted ovary.235 Estradiol and proges-
terone positive feedback can be experimentally induced in 
adult men,236,237 but this is not a normal occurrence in male 
physiology.

Negative Feedback Regulation of 
Gonadotropin-Releasing Hormone and 
Gonadotropin Secretion in Men
In contrast to cyclic changes in women, normal postpubertal 
males demonstrate a relatively constant average LH  
pulse frequency of approximately one pulse every 120 
minutes, related to relatively stable day-to-day sex steroid 
concentrations and corresponding negative feedback effects 
(tonic inhibition). In male monkeys, bilateral orchiectomy 
increases mean LH, LH pulse frequency, and LH pulse 
amplitude—effects that are prevented by physiologic tes-
tosterone replacement.238 Similarly, testosterone-deficient 
men (e.g., related to either primary testicular failure or 
inhibition of steroidogenesis with ketoconazole) exhibit 
elevated mean LH, LH pulse frequency, and LH pulse 
amplitude—changes that are at least partially reversed by 
testosterone replacement.239-241

The importance of the androgen receptor in mediating 
testosterone negative feedback of LH secretion is suggested 
by elevated LH concentrations in the setting of androgen 
insensitivity242 and androgen receptor blockade.243,244 More-
over, mean LH is reduced in men by administration of DHT, 
a potent androgen that cannot be aromatized to estradiol.245-247 
However, a portion of synthesized testosterone is aromatized 
to estradiol, either in testicular Leydig cells or in nongonadal 
tissues, and estrogens can exert negative feedback actions 
at the hypothalamic-pituitary axis. For example, estradiol 
administration reduces LH secretion in normal and agonadal 
men.243,245,248,249 Taken together, these findings suggest that 
both androgens and estrogens exert negative feedback actions 
at the hypothalamic-pituitary axis.
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suggest that kisspeptin neurons in the AVPV are stimulated 
by estradiol, whereas those in the arcuate nucleus are inhibited 
by estradiol.81 In addition, estradiol administration directly 
into the medial preoptic area (location of the AVPV) induces 
LH surges, whereas estradiol administration directly into 
the mediobasal hypothalamus—which also raises estradiol 
levels in the pituitary—does not.263 These and other findings 
in rodents have led to a model in which kisspeptin neurons 
in the arcuate nucleus regulate tonic GnRH release by 
mediating estrogen negative feedback, whereas kisspeptin 
neurons in the AVPV mediate the positive feedback effects 
of estrogen (Fig. 1.17).

It remains unclear whether a population of kisspeptin 
neurons homologous to those in the AVPV of rodents plays 
a similar role in primates. Although LH surge generation 
requires an intact preoptic area in rodents,264 monkeys 
retain the ability to produce LH surges after isolation of 
the mediobasal hypothalamus from the remainder of the 
brain.148 In addition, LH surges persisted after destruc-
tion of the preoptic area, which included the AVPV and 
suprachiasmatic nuclei, in one monkey study265 but not in 
another.266 Although human and monkey studies suggest the 
presence of kisspeptin neurons in the preoptic area,79,80,267 it 
is unclear whether these are analogous to those of the AVPV 
in rodents. Of interest, kisspeptin expression increases in a 
caudal portion of the arcuate nucleus during the preovulatory 
period in both monkeys and sheep,267-269 and some have 
suggested that kisspeptin neurons in this region could possibly 
represent a special population important for surge genera-
tion. Regardless, it is not certain that a unique population of 
kisspeptin neurons need be invoked in women, as increased 
GnRH secretion at mid-cycle (i.e., a GnRH surge) does not 
clearly occur in women (described earlier in the chapter). 
Thus how these intriguing observations in animal models 
relate to human neurophysiology during mid-cycle remains  
unclear.
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FIGURE 1.16 Model of KNDy signaling to gonadotropin-
releasing hormone (GnRH) neurons, largely based on data 
obtained in sheep. KNDy peptides are kisspeptin (green), which 
stimulates GnRH neurons, neurokinin B (NKB; magenta), and dynorphin 
(DYN; red). The major influences on GnRH secretion are shown, with 
putative effects on KNDy peptides denoted by the color of the arrow. 
For example, estradiol (E2) inhibition may involve reductions of kiss-
peptin (green arrow), whereas progesterone (Prog) inhibition likely 
involves an increase in DYN. Arrows with two colors signify that more 
than one KNDy peptide may mediate a given effect (e.g., in the 
ewe, stimulation of GnRH secretion by high E2 may involve an increase 
in both kisspeptin and NKB). The possibility that kisspeptin stimulation 
of GnRH neurons is mediated by interneurons is shown by the gray 
cell. MB, Mammillary bodies; MBH, mediobasal hypothalamus; ME, 
median eminence; OC, optic chiasm; POA, preoptic area. (Modified 
from Lehman MN, Coolen LM, Goodman RL: Mini review: kisspeptin/
neurokinin B/dynorphin [KNDy] cells of the arcuate nucleus: a central 
node in the control of gonadotropin-releasing hormone secretion, 
Endocrinology 151:3479–3489, 2010.)
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FIGURE 1.17 Model of kisspeptin-mediated feedback regulation of gonadotropin-releasing hormone (GnRH) and gonadotropin 
secretion in rodents. By this model, kisspeptin (Kiss1) neurons in the arcuate nucleus of males and females project to and stimulate GnRH 
neurons. This population of kisspeptin neurons is inhibited by sex-appropriate gonadal steroids (i.e., estradiol [E], progesterone [P], and 
testosterone [T]). Thus tonic GnRH secretion is primarily regulated by relatively low concentrations of estradiol via kisspeptin neurons in the 
arcuate nucleus. Females have another population of kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) that also projects 
to and stimulates GnRH secretion. However, estradiol stimulates kisspeptin neurons in the AVPV—in contrast to estradiol inhibition of kisspeptin 
neurons in the arcuate nucleus. Thus, although high estradiol concentrations inhibit arcuate kisspeptin neurons in females, they stimulate 
AVPV kisspeptin neurons, resulting in a GnRH surge. FSH, Follicle-stimulating hormone; LH, luteinizing hormone. (From Oakley AE, Clifton DK, 
Steiner RA: Kisspeptin signaling in the brain, Endocr Rev 30:713–743, 2009.)

Kisspeptin also appears to play a key role in the mid-cycle 
LH surge in the female rodent. Kiss1 and Kiss1R null mice 
do not exhibit LH surges,260 and the LH surge can be pre-
vented by a kisspeptin antagonist261 or a monoclonal antibody 
to kisspeptin.262 Of particular interest, available data in rodents 
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available for another. Thus energy-requiring processes are 
prioritized to favor those that are life sustaining.

Reproduction in women, pregnancy and lactation in 
particular, is metabolically demanding. For example, pregnancy 
requires an estimated additional 80,000 kilocalories.272 
Because reproduction is not imperative for individual survival, 
it is metabolically gated: reductions in energy availability 
can suppress reproductive function (nutritional infertility). 
This is biologically advantageous for the individual and, 
ultimately, the species. As such, it can be seen as an appropri-
ate adaptive response. This process is believed to be at the 
center of functional hypothalamic amenorrhea, a reversible 
condition of suppressed hypothalamic-pituitary function 
occurring in the absence of anatomic abnormalities and often 
accompanied by reduced body weight, disordered eating 
(e.g., restrictive eating patterns), excessive exercise, and/or 
psychological stress.

The functional relationships between metabolic status 
and reproductive function are mediated by neural systems 
located in the hypothalamus, and functional hypothalamic 
amenorrhea is characterized by impaired GnRH and gonado-
tropin secretion. Although a majority of women with 
functional hypothalamic amenorrhea demonstrate low LH 
pulse frequency,273,274 such patients may demonstrate variable 
LH pulse patterns as a group—including absent pulses, low 
frequency and amplitude, low frequency only, low amplitude 
only, and (apparently) normal frequency and amplitude; and 
patterns can change across time in the same woman.8,273,274 
In these patients, GnRH and gonadotropin secretion is 
inadequate for normal follicular development, estrogen 
production, and mid-cycle gonadotropin surges, but cyclic 
ovulation and fertility can be restored with pulsatile admin-
istration of exogenous GnRH.8

Some investigators have proposed that reduced reproduc-
tive function in functional hypothalamic amenorrhea primarily 
reflects insufficient body fat stores—the critical fatness 
hypothesis.275 However, a substantial body of data suggests 
that reduced energy availability is the primary cause of 
reduced reproductive function in these settings. For example, 
body fat does not reliably distinguish amenorrheic from 
eumenorrheic athletes.276 In addition, calorie restriction can 
result in amenorrhea before weight loss; in those with a 
history of eating disorders, amenorrhea can persist after 
weight restoration.277 Likewise, findings consistent with 
functional hypothalamic amenorrhea can be observed shortly 
after bariatric surgery for severe obesity—in the setting of 
negative energy balance but while still obese (e.g., body mass 
index approximately 35 kg/m2).278 Moreover, altered LH 
pulsatility is observed very quickly (within 5 days) of con-
trolled reductions of energy availability.279 Experiments in 
women and monkeys suggest that reproductive function may 
not be impaired until energy availability is reduced by more 
than 30% (Fig. 1.18).279,280 Overall, these findings suggest 
that altered reproductive function in this setting reflects 
altered energy availability rather than body composition per 
se. It is important to note that energy balance (and thus 
body weight) can be maintained in the face of calorie restric-
tion by reducing metabolic rate281 and by suspending “noncriti-
cal” but energy-requiring functions such as reproduction.

Although some have posited a specific influence of exer-
cise, calorie supplementation to maintain adequate energy 
availability appears to prevent alterations of LH secretion 
despite significant daily exercise loads.282 Similarly, whereas 

Selective Regulation of Pituitary 
Follicle-Stimulating Hormone Secretion

Inhibins, activins, and follistatin preferentially influence FSH 
secretion and contribute to divergent release of LH and FSH 
throughout the menstrual cycle.41 During the mid- to late 
follicular phase and the luteal phase, both estradiol and 
inhibins selectively inhibit FSH release from gonadotropes. 
Inhibins are heterodimer peptide members of the transforming 
growth factor (TGF)-β superfamily with two isoforms, inhibin 
A and inhibin B, which contain identical α-subunits but 
different β-subunits (βA for inhibin A, βB for inhibin B). 
Most inhibin is derived from the ovaries: inhibin B is secreted 
by ovarian granulosa cells, mainly during the early follicular 
phase in response to FSH stimulation; and inhibin A is primar-
ily produced by the corpus luteum during the luteal phase 
in response to LH stimulation. The chief function of both 
inhibins is to inhibit FSH release from pituitary gonadotropes. 
In men, inhibin B is produced from Sertoli cells and is a key 
negative feedback regulator of pituitary FSH release, although 
estradiol also inhibits pituitary FSH release.270

Activin is a dimer peptide with three isoforms: activin A 
(βAβA), activin B (βBβB), and activin AB (βAβB). The activin 
β-subunits and the inhibin β-subunits are identical. Activin 
produced in pituitary gonadotropes stimulates production 
of FSH in a paracrine fashion. Follistatin is a monomer peptide 
synthesized by the anterior pituitary (including folliculostellate 
cells); it inhibits pituitary FSH secretion by binding activin, 
thus rendering it inactive. Of interest, gonadotrope follistatin 
production varies in parallel with GnRH pulse frequency—one 
of the mechanisms contributing to the differential effects 
of GnRH pulse frequency on LH and FSH release.48,271 In 
contrast to inhibins, which act primarily via endocrine signal-
ing, activin and follistatin produced in the pituitary influence 
FSH secretion via autocrine-paracrine signaling.

Reproductive Neuroendocrine Adaptations in 
Settings of Reduced Energy Availability, 
Stress, and Lactation

◆ Reproductive function is impaired in the setting of decreased 
energy availability and/or stress; this primarily reflects central 
inhibition of GnRH pulse frequency and reduced gonadotropin 
secretion.

◆ Lactation is associated with suppressed pulsatile GnRH secretion 
and low gonadotropin concentrations; this relates to the high 
energy demands of lactation (reduced energy availability), 
hyperprolactinemia, and other (e.g., neural) mechanisms.

Interface Between Reproductive 
Neuroendocrine Function and  
Energy Availability

Organisms require metabolic energy to support a number 
of processes, including maintenance of cellular function, 
muscle contraction (e.g., cardiac function, locomotion), 
thermogenesis, and growth. Low energy availability may result 
from short- or long-term reductions in calorie intake (e.g., 
famine, anorexia nervosa), insufficient calorie intake for 
metabolic demands (e.g., in the setting of significant exercise 
loads), or reduced ability to use energy sources (e.g., as may 
occur in severe diabetes). In such situations, energy use has 
opportunity costs: energy used for one process is no longer 
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central systems, influencing feeding, energy expenditure, and 
reproduction. Humans and mice lacking leptin or the leptin 
receptor (LepR) (e.g., ob/ob and db/db mice, respectively) 
have pubertal failure and infertility; in the setting of leptin 
deficiency, these manifestations can be reversed with leptin 
administration.286,287 Low leptin levels have also been observed 
in women with functional hypothalamic amenorrhea,288 and 
a specific role for leptin was suggested by a small study in 
which recombinant human leptin administration improved 
LH pulse secretion and estradiol concentrations in women 
with functional hypothalamic amenorrhea.289 Although serum 
leptin concentrations generally correlate with fat mass, leptin 
levels can change rapidly and are suppressed with maneuvers 
known to suppress LH secretion, such as marked short-term 
energy restriction.290

A number of neuropeptides have been implicated in the 
influence of energy availability on reproductive function, 
including kisspeptin, NPY, galanin-like peptide (GALP), 

amenorrhea can be induced in monkeys by gradually increas-
ing daily exercise in the setting of constant food intake,283 
providing supplemental calories reverses amenorrhea despite 
continued exercise.284

The neurobiologic mechanisms underlying functional 
hypothalamic amenorrhea, and mechanisms underlying the 
influence of nutritional status on the reproductive system in 
general, remain poorly understood. Chronic energy deprivation 
is associated with myriad neuroendocrine adaptations and 
hormonal changes, including reductions of leptin, insulin, 
insulin-like growth hormone-1 (IGF-1), and thyroid hormone 
concentrations; increases of growth hormone and ghrelin levels; 
and activation of the hypothalamic-pituitary-adrenal (HPA) 
axis.285 A number of these alterations can influence GnRH and 
gonadotropin secretion and may mediate the influence of low 
energy availability on reproductive function. Much interest has 
centered on the permissive role of leptin, a hormone derived 
from adipose tissue that functions to signal metabolic status to 
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FIGURE 1.18 Influence of energy availability on luteinizing hormone (LH) pulsatility in healthy women. (A) Representative 
24-hour LH time series in three women under different conditions of energy availability. These studies were designed to assess the effects of 
exercise and reduced energy availability in habitually sedentary women with regular menstrual cycles. In this study, exercise energy expenditure 
was substantial for all participants at approximately 840 kcal/day, and energy availability was altered via variable calorie intake. When energy 
availability is defined as dietary energy intake minus exercise energy expenditure—an estimate of the energy available for non-exercise-related 
functions—and normalized to fat-free mass (thus expressed as kcal/kg lean body mass [LBM] per day), 45 kcal/kg LBM per day approximates 
balanced energy availability, and LH profiles under this condition are shown on top. Conditions of restricted energy availability (i.e., 10, 20, 
and 30 kcal/kg LBM per day) are shown along the bottom. Significant LH pulses are denoted by asterisks; arrows denote the timing of meals; 
and black bars denote lights out periods. (B) Association of energy availability and LH pulse characteristics. Energy availability is shown on 
the x-axis; on the y-axis, LH pulse amplitude (solid circles) and LH pulse frequency (open circles) are expressed as changes relative to values 
observed at 45 kcal/kg LBM per day. (Note that changes of LH pulse amplitude are divided by three.) Although energy availability reductions 
to 30 kcal/kg LBM per day did not alter LH pulse characteristics, reductions below 30 kcal/kg LBM per day were associated with progressive 
reductions of LH pulse frequency and corresponding increases of LH pulse amplitude. (Modified from Loucks AB, Thuma JR: Luteinizing hormone 
pulsatility is disrupted at a threshold of energy availability in regularly menstruating women, J Clin Endocrinol Metab 88:297–311, 2003.)
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and cognitive responses to stress. Thus stressors trigger 
integrated neural, endocrine, and behavioral responses that 
promote short-term maintenance of homeostasis and survival. 
For example, activation of the sympathoadrenal axis leads 
to increased epinephrine secretion—an important component 
of the fight-or-flight response—whereas activation of the 
HPA axis with increased cortisol secretion enhances energy 
mobilization.

Chronic stress and marked acute stress can inhibit 
reproductive function—an appropriate adaptive response 
when homeostasis is threatened. For example, critical illness 
is associated with a reversible hypogonadotropic hypogonad-
ism.302,303 Mechanisms underlying the suppression of reproduc-
tive function during stress are highly complex; although 
suppression of GnRH secretion is a major component, direct 
pituitary and gonadal effects may also occur. Notably, the 
specific effects of stress on various aspects of reproductive 
function appear to depend on a number of factors including 
species, sex, hormonal milieu (e.g., gonad intact vs. castrate), 
and the specific type of stress experienced.

A number of mediators have been implicated in stress-
related inhibition of GnRH secretion, including CRH (which 
activates the HPA axis but also appears to have central 
effects), CRH-like peptides called urocortins, AVP, ACTH, 
EOPs (e.g., β-endorphin), and cortisol, in addition to nor-
adrenergic, GABAergic, and serotoninergic neural pathways. 
For example, intracerebroventricular injection of CRH reduces 
multiple unit electrical activity in the mediobasal hypothala-
mus in monkeys304; and CRH antagonists can prevent some 
forms of stress-related LH suppression.305 Naloxone can block 
CRH-related LH suppression in monkeys,306 suggesting the 
involvement of EOPs in this process.

Notably, some data suggest that stress plays a role in 
functional hypothalamic amenorrhea. For example, amenor-
rheic athletes and women with anorexia nervosa demonstrate 
evidence of HPA axis activation (e.g., elevated cortisol 
concentrations).285,307 In addition, functional hypothalamic 
amenorrhea in women may be associated with evidence of 
higher psychological stress, including perfectionism, a history 
of unfavorable childhood experiences, and difficulty coping 
with stressors308,309; reproductive function may be improved 
in some with cognitive behavioral therapy310 or hypnother-
apy.311 Studies in female monkeys provide corroborating 
evidence: in one study, very few monkeys demonstrated 
altered reproductive function when exposed to either (1) 
psychosocial stress (relocation to new housing setting with 
unfamiliar monkeys) or (2) mild dietary restriction plus daily 
exercise, but the combination was associated with altered 
cycle length or anovulation in a majority.312

For unclear reasons, the degree to which stressors (e.g., 
reduced energy availability) interrupt reproductive function 
is variable among individual women (i.e., hypothalamus 
robustus vs. hypothalamus fragilis; stress sensitive vs. stress 
resilient). As suggested previously, it is likely that a number 
of factors (e.g., reduced energy availability, stress) can interact 
to impact GnRH secretion. In addition, a study suggested 
that mutations in genes associated with hypogonadotropic 
hypogonadism, including KAL1, FGFR1, PROKR2, and the 
GnRH receptor (GNRHR) genes, are more likely to be 
identified in women with functional hypothalamic amenorrhea 
compared with normally cycling women.313 Thus it seems 
likely that underlying genetic (and epigenetic) architecture 

β-endorphin, CRH, ghrelin, and polypeptide YY. Although 
metabolic signals could potentially act directly on GnRH 
neurons, many studies suggest that afferent neural circuits 
are involved. For example, studies in mice suggest that 
metabolic signals can be relayed to the GnRH pulse generator 
from different areas in the brain, such as the ventral premam-
millary nucleus (e.g., leptin effects)291 and the area postrema 
(e.g., in the absence of usable glucose).292 A growing  
body of evidence suggests that the influence of energy avail-
ability on reproductive neuroendocrine function is at least 
partly mediated by kisspeptin neurons.293,294 For example, 
leptin-deficient (ob/ob) mice demonstrate reduced hypo-
thalamic Kiss1 expression, which is partially reversed with 
leptin administration.295 Some studies suggest that increased 
opioid tone may contribute to slow GnRH pulses in functional 
hypothalamic amenorrhea.274,296-298

Even though successful reproduction is not metabolically 
costly for males, male reproductive function can also be 
affected by metabolic stress. For example, healthy young 
men participating in US Army Ranger training, which 
involves multiple stressors including intermittent extreme 
calorie restriction and weight loss (10 to 12 kg on average), 
can experience reductions in LH and suppression of testos-
terone concentrations to near castrate levels.299 Increased 
calorie intake allowed prompt recovery of testosterone in 
this study, even without altering other associated stressors 
(e.g., exercise, sleep deprivation). Also of interest, exogenous 
leptin administration prevented the fall of LH release and 
testosterone concentrations associated with short-term fasting 
in men.300 In addition, anorexia nervosa in adolescent boys 
and men can be associated with marked hypogonadotropic 
hypogonadism.301 Energy-sensitive reproductive function in 
males would also be expected to delay reproduction during 
times of reduced energy availability; these regulatory path-
ways may have developed in males because of advantages 
imparted to other members of the species (e.g., mates and  
offspring).

Impact of Stress on Reproductive 
Neuroendocrine Function

Functional hypothalamic amenorrhea in the setting of reduced 
energy availability represents a particular form of stress-related 
reproductive suppression. The term stressor refers to a real 
or potential threat to homeostasis, such as injury, illness, 
temperature extremes, reduced energy availability, predator 
proximity, and situations that provoke psychological distress. 
The nature of the stress response depends on the precise 
nature of the stressor but typically involves both neural and 
neuroendocrine responses. A group of neurons in the hypo-
thalamic paraventricular nucleus project to the median 
eminence, where they secrete CRH into the hypophyseal 
portal system. CRH (and, to some degree, cosecreted AVP) 
stimulates corticotrope cells in the anterior pituitary to release 
ACTH, which in turn stimulates adrenal glucocorticoid 
(cortisol) production. A subset of paraventricular neurons 
is also involved with the regulation of the autonomic sym-
pathetic nervous system, which includes neural pathways 
linked to the brain stem, spinal cord, and adrenal medulla 
(e.g., the sympathoadrenal axis). Other components of the 
stress response include central arousal systems and the locus 
ceruleus, a nucleus in the brainstem involved with emotional 
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to express prolactin receptors324; hyperprolactinemia has been 
associated with reduced hypothalamic Kiss1 expression93,325; 
and kisspeptin administration reversed hyperprolactinemia-
mediated hypogonadotropic anovulation.93 However, prolactin 
levels gradually decrease to normal despite continued 
breastfeeding; thus the activity of the hypothalamic-pituitary-
ovarian axis may not correlate well with circulating prolactin 
concentrations.

Importantly, the intensity (e.g., frequency, duration) of 
suckling appears to be an important determinant of contracep-
tive effectiveness in women, and the suckling stimulus may 
inhibit the hypothalamic-pituitary-ovarian axis through 
additional (e.g., neural) mechanisms.

Miscellaneous Physiologic Influences on 
Gonadotropin-Releasing Hormone Secretion

Circadian Changes
Diurnal rhythms (i.e., those that cycle once a day) are 
frequently observed in endocrinology, and this includes the 
reproductive system. Diurnal rhythms are called circadian 
rhythms if they are internally (endogenously) driven rhythms, 
although such rhythms are usually entrained (synchronized) 
to environmental cues (e.g., light-dark cycle). Circadian 
rhythms are dictated by a “master clock” located in the 
suprachiasmatic nucleus of the hypothalamus and are derived 
from complex intracellular interactions involving the so-called 
clock genes, which participate in feedback interactions that 
generate recurring cyclic activity.326 Such clocks in the 
suprachiasmatic nucleus can be synchronized by light-dark 
signals received from the retina and transferred to the 
suprachiasmatic nucleus via the optic nerve (retinohypotha-
lamic tract).

Depending on such factors as species and sex, both basal 
gonadotropin secretion and LH surges may exhibit diurnal 
rhythms. As a prominent example, LH surges in female rats 
are specifically confined to the late afternoon, which is shortly 
before rats become active (i.e., when copulation is most 
likely).327 It is believed that this reflects a daily stimulus 
generated by the suprachiasmatic nucleus but relayed to the 
GnRH neuronal network only in the presence of preovulatory 
estradiol concentrations. Thus ovulation in rats is optimally 
timed to coincide with sexual opportunity and receptivity.

In contrast to rodents, LH surges do not appear to be 
constrained to a specific time of day in monkeys; for example, 
LH surges can be advanced by 12 to 18 hours with supraphysi-
ologic estradiol administration.211 Some studies in women 
suggest that LH surges tend to be initiated in the morning.328,329 
For example, in one study of 19 ovulatory women, LH surges 
were initiated in the early morning hours (approximately 
4:00 to 8:00 a.m.)328; in one study of 155 spontaneous cycles, 
the estimated time of LH surge initiation was between 
midnight and 8:00 a.m. in 85% of cycles.329 (These studies 
do not confirm a true circadian signal, and putative confine-
ment of ovulation to the morning hours could reflect 
environmental cues.) In contrast to these findings, a detailed 
study of mid-cycle gonadotropin surges in women suggested 
that surge initiation is not constrained to a certain time of 
day.231 In addition, the potential relevance of a specific daily 
timing of ovulation in women is uncertain since ovulation 
typically occurs some 36 hours after the LH surge; the 
likelihood of conception when sexual intercourse occurs on 

plays an important role in reproductive susceptibility to 
reduced energy availability and stress.

Lactation and Reproductive  
Neuroendocrine Function

High prolactin concentrations during pregnancy and suckling 
in the postpartum period stimulate milk production, which, 
for much of human history, was effectively the only source 
of nutrition for infants. Suckling also leads to posterior 
pituitary release of oxytocin, which stimulates contraction 
of myoepithelial cells within mammary gland acini, causing 
milk ejection. Lactation is also associated with amenorrhea 
and subfertility. The likelihood of pregnancy during the first 
6 months postpartum is low (less than 2%) in fully breastfeed-
ing, amenorrheic women,314 and some lactating women may 
remain amenorrheic for years. Because a short interval between 
births can place infant well-being at risk, lactational amenorrhea 
has ostensibly been an important adaptation enhancing infant 
survival in many cultures both past and present.315

During pregnancy, high placental sex steroid (estradiol, 
progesterone) and prolactin concentrations markedly suppress 
GnRH and gonadotropin secretion and prevent follicular 
development. In the absence of lactation, cyclic hypothalamic-
pituitary-ovarian activity typically resumes in the 8 weeks 
after parturition. However, in the setting of lactation, pulsatile 
GnRH remains suppressed (e.g., low frequency pulses), with 
consequent impairment of LH secretion and estradiol produc-
tion.316 The reduction in GnRH secretion during lactation 
is suggested by a marked reduction in multiple unit electrical 
activity in the mediobasal hypothalamus in nursing monkeys317 
and by the ability of pulsatile exogenous GnRH to restore 
ovarian function in amenorrheic lactating women.318

Mechanisms underlying lactational amenorrhea are 
incompletely understood. Lactation is associated with a very 
high metabolic cost: daily production of 750 to 1000 mL of 
human milk requires approximately 500 to 600 kilocalories 
a day,319 some of which is obtained from fat stores and 
increased food intake. Nonetheless, the high energy require-
ments of lactation—which are approximately twice that of 
pregnancy—may induce some or all of the aforementioned 
mechanisms that inhibit pulsatile GnRH secretion in the 
setting of reduced energy availability. Animal (chiefly rodent) 
studies reveal that lactation is associated with activation of 
orexigenic neural systems (e.g., NPY) and inhibition of 
anorexigenic neural systems within the hypothalamus—
changes that may partly relate to alterations of peripheral 
metabolic cues (e.g., leptin, insulin).320 Such alterations 
increase food intake and may suppress GnRH neuronal 
activity, either by direct effects on the GnRH neuronal 
network or by modification of key afferent systems such as 
kisspeptin. As an example of the former, NPY neuronal 
activation during lactation may directly inhibit GnRH neuronal 
activity.321 As an example of the latter, expression of both 
kisspeptin and NKB in the arcuate nucleus is reduced in 
lactating rodents.134,322

Hyperprolactinemia suppresses GnRH pulsatility, at least 
in part via increased hypothalamic opioids,323 and suppression 
of GnRH secretion during periods of lactation may partly 
reflect high prolactin concentrations. Data in rodent models 
suggest that prolactin suppression of GnRH secretion is at 
least partly mediated by kisspeptin: kisspeptin neurons appear 
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other individuals within many mammalian species. For 
example, the presence of a novel and sexually mature male 
mouse can synchronize estrous cycles among female mice; 
this so-called Whitten effect is presumably mediated by 
pheromones.343 Similarly, pheromones produced by male 
sheep and goats can induce out-of-season ovulation in 
females—the male effect.344

The role of pheromones in humans remains unclear. 
Menstrual synchrony (sometimes called the McClintock 
effect) is a putative phenomenon in which menstrual cycles 
of women living in close proximity become synchronized345; 
this has been cited as physiologic evidence of pheromone 
functionality in humans. Axillary (armpit) compounds 
obtained from women during the late follicular phase have 
been reported to advance ovulatory timing in recipient 
women.346 However, supportive research has been criticized 
on methodologic grounds, and the existence of this phe-
nomenon remains controversial.347 In addition, although the 
vomeronasal organ—believed to be responsible for pheromone 
detection in animals—develops in utero in humans, it sub-
sequently regresses and is largely believed to be nonfunctional 
in adults.348
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the day before ovulation (approximately 40%) is similar to 
conception rates when intercourse occurs on the day of 
ovulation.330

Although humans demonstrate clear diurnal changes of 
gonadotropins, studies in women who were carefully assessed 
during the early follicular phase331 or after menopause332 
suggest that LH and FSH secretory parameters (including 
LH pulse frequency and amplitude) do not exhibit circadian 
changes after controlling for sleep status, body position, light 
exposure, activity level, and nutritional cues.

Sleep
Although precise mechanisms are unclear, sleep can have a 
major influence on pulsatile LH (and by inference GnRH) 
secretion. For example, the nocturnal amplification of LH 
pulsatility during puberty is specifically related to sleep: it 
generally begins within an hour of sleep onset, and it follows 
sleep reversal.333,334 Although the data relating LH pulses  
to sleep stage are incomplete, early studies suggested that 
sleep-related pulses during puberty occur primarily during 
non–rapid eye movement (REM) sleep.333,334 Further refining 
this concept, more recent studies suggest a strong relationship 
between slow wave sleep and LH pulse initiation during 
puberty.335,336

Sleep also influences LH pulse secretion in adult women, 
primarily in the form of sleep-related slowing of LH pulse 
frequency, which is most prominent during the early follicular 
phase,184,186,337,338 but also occurs in the late follicular 
phase.279,339 Nocturnal slowing of LH pulse frequency in 
women during the early follicular phase is specifically related 
to sleep because it follows sleep reversal.340 During this time, 
LH pulses are uncommon during REM and slow wave sleep 
and more common following brief awakenings.340 Such slowing 
may be mediated by hypothalamic opioids because naloxone 
appeared to prevent the sleep-associated decrease in LH 
pulse frequency.341

Interestingly, sleep appears to interact with other deter-
minants of pulsatile GnRH secretion. For example, a study 
in early pubertal girls suggested that progesterone rapidly 
and profoundly suppresses LH pulse frequency during waking 
hours but not during nighttime (sleeping) hours.342 Similarly, 
studies performed during the late follicular phase in normal 
women suggested that dietary calorie restriction preferentially 
reduces daytime LH pulse frequency.282,339 These findings 
suggest differential control of GnRH pulse frequency depend-
ing on sleep status in human females.

Taken together, the aforementioned data imply that sleep 
influences LH pulse frequency and that the effect of sleep 
can be modulated by such factors as developmental stage 
and sex steroid milieu. The physiologic relevance of sleep-
associated changes of GnRH secretion remains unclear, but 
such changes have been postulated to contribute to normal 
gonadotropin production across puberty170 and to the 
prominence of FSH secretion during the early follicular phase 
in postpubertal women.340

Pheromones
Pheromones are chemicals transmitted through the air that 
can influence reproductive function and sexual behavior in 
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