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C H A P T E R

1

Introduction for Sex Differences in Physiology
Virginia M. Miller

Departments of Surgery, Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States

The study of the human body dates back to ancient
times but was not named as the discipline “physiology”
until the 16th century by the French physician Jean
François Fernel, who introduced the term to describe
the study of bodily functions. Since that time, physiolo-
gists have contributed fundamental and critical infor-
mation needed for the evidence-based practice of
modern medicine. However, like all scientific disci-
plines, physiology and physiologists are not immune
from political, societal, and cultural trends. In part,
because science was historically a male-dominated pro-
fession, except for studies related to the physiology of
reproduction, most human and animal physiological
studies enrolled male volunteers and utilized male ani-
mals. Other considerations impacting a male bias in
research included concerns about variability in mea-
sured parameters resulting from cyclic hormonal varia-
tion in females and potential risk for teratogenic effects
of interventions and procedures to the fetus in women
of child-bearing age. Although the human population
can be defined by sex as either male or female, assigned
by chromosomal complement and reproductive organs
(XX for female and XY for male) [1], sex as a biological
variable is rarely considered in the design of basic phys-
iological studies. Thus, physiological principles con-
tained in classical physiological and medical textbooks
and graduate and medical curricula have been based
on the 70 kg healthy male (usually between 18 and 40
years of age) or on male animals [1].

In 2001, the Institute of Medicine report “Exploring
the Biological Contribution of Sex” concluded that sex
matters in all aspects of cellular function and physiol-
ogy from “womb to tomb” [1]. What logically follows,
then, is that physiological principles and regulatory
mechanisms need to be defined in males and females
(animals and humans), so that findings from basic sci-
ence can be translated to clinical research for the

development of evidence-based, individualized medi-
cal strategies or practice guidelines.

In the United States, a legislative approach was
taken to correct the scientific problem of too few
women in clinical trials by the passage of the National
Institutes of Health (NIH) Revitalization Act of 1993.
This law mandated that women be included in human
studies supported by the NIH. Although women have
since been included in clinical studies, results of those
studies in the clinical setting have rarely reported data
separated by sex, thus making it difficult, if not impos-
sible, to understand where the two sexes fell within
the distribution of results. In the NIH Revitalization
Act, there was no mention of basic human physiologi-
cal functions or mechanistic studies utilizing isolated
cells or tissues. Although the Office of Research on
Women’s Health of the NIH was founded in 1991, it
was not until 2002 that the Office developed and
implanted an interdisciplinary targeted funding
mechanism (Specialized Centers of Research on Sex
Differences) specifically to begin to fill the knowledge
gap in information for areas of women’s health and
sex differences research. Since the inception of the pro-
gram, 33 awards have been made to 26 academic
centers (see http://orwh.od.nih.gov/sexinscience/
researchtrainingresources/scor.asp). Advocacy groups
such as the Society of Women’s Health Research and
scientists themselves through original research articles,
editorials, and editorial policies of professional socie-
ties (eg, Organization for the Study of Sex Differences,
that was founded in 2006, the American Physiological
Society, and the Endocrine Society) began to draw
attention to the lack of experiments and reporting of
data on females in basic and translational animal and
human studies [2�7] (see http://genderedinnovations.
stanford.edu for an up-to-date list of editorial policies
for other journals). As a result of these efforts, the
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number of publications addressing biological sex
differences has risen dramatically (Fig. 1.1). In addi-
tion, problems with reproducibility of basic science
experiments, including lack of reporting of the sex of
the experimental animals or human participants
prompted announcements in 2014 by the NIH that
steps would be taken to address these deficiencies
[8,9]. These steps were announced in Jun. 2015 (NOT-
OD-15-102: Consideration of Sex as a Biological
Variable in NIH Funded Research and NOT-OD-15-
103: Enhancing Reproducibility through Rigor and
Transparency) to be implemented in grant applications
funded by the NIH starting in 2016.

So, where do we stand with data upon which to
construct a book on “Sex Differences in Physiology”?
Epidemiological studies have consistently identified
differences in disease incidence, prevalence, morbidity,
and mortality between men and women. These statis-
tics reflect differences in the underlying physiological
processes that arise from the basic genetic difference
between males/females and men/women, coupled
with modulation of these processes by hormonal fluc-
tuations and aging. Chromosomal and hormonal dif-
ferences allow for reproductive competence which
brings us full circle: sex differences in reproduction
(specific to one sex) drive physiological processes that
express as sex differences throughout the lifespan.
What is meant by this? Consider the physiological
processes that allow successful pregnancy: changes in
respiration, metabolism, blood volume, renal function,
cardiac output, musculoskeletal locomotion, neurologi-
cal regulatory processes, and sensory and immune
function. These changes are female-specific and sug-
gest differences in underlying mechanisms of adapt-
ability in female physiological processes that may (or
may not) be present in males. Although males do not

undergo the tremendous physiological changes associ-
ated with pregnancy and birth, this does not definitely
indicate that there are no hormonally mediated shifts
in physiological processes within males. Conversely, if
there is an absence of adaptability of physiology
within males, could this absence of adaptation render
males susceptible to diseases or disorders? Further,
although regulatory processes maintain homeostasis in
both males and females, for example, blood pressure
or glucose or electrolytes, within defined ranges, dif-
fering underlying processes may facilitate these regula-
tory processes and these variations could vary across
the lifespan. These processes need to be understood in
order to inform adequate diagnosis and treatment of
disease and disorders in both males and females.

It is difficult to gather sufficient information about
physiological processes in females, as the data may be
published either as single sex studies, or as compara-
tive studies labeled as “sex-differences” or “gender dif-
ferences.” Studies utilizing cell cultures rarely are
comparative or are based on cell lines of unidentified
or single sex. Although gender is related to sex, gender
defines behavioral, psychological, and cultural charac-
teristics that are influenced by sociocultural expecta-
tions [10]. Curricula in graduate and medical courses
do not specifically address differences in physiology
between males and females because data and
resources are sparse. Both sex and behaviors influ-
enced by gender will affect physiology and pathophys-
iology. Development of resources and consideration of
physiological principles are often segregated into
women’s specific or men’s specific knowledge reposi-
tories. Since the first textbooks on Principles of
Sex-Based Differences in Physiology [11] and Principles
of Gender-Specific Medicine [12] were published in
2004, updates and additional collective resources are
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FIGURE 1.1 The graph depicts the number of publications listed in PubMed (www.pubmed.gov), a NIH resource for biomedical litera-
ture, that included reference to “sex differences” for each year from 1899�2014.
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few [13�15]. Thus, Sex Differences in Physiology
provides an important update and focus on basic
physiological control systems and mechanisms in
females and males that contribute to health and
disease across the lifespan. The approach is
systematic considering the first developmental
aspects of sexual differentiation including neuro-
anatomical and neurophysiological aspects of brain
function. Each physiological system is then
considered separately, including highlighting body
composition and metabolism with influenced risk
factors for pathophysiology. In the final section,
experts in sex-differences research provide guide-
lines for strategies to study sex differences.

In order to improve the health of women and
men, it is essential for scientists and clinicians to con-
sider sex differences as one of the underlying physio-
logical mechanisms of disease. These chapters will
lead the way to new discoveries about basic female
physiology across the lifespan and about differences
in physiology between females and males, thus pro-
viding building blocks for evidence-based, individual-
ized medicine.
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Chromosomal and Endocrinological Origins
of Sex

Craig Kinsley1, Massimo Bardi2, Gretchen N. Neigh3 and Kelly Lambert2
1Department of Psychology, University of Richmond, Richmond, VA, United States 2Department of Psychology,
Randolph-Macon College, Ashland, VA, United States 3Department of Anatomy and Neurobiology, Virginia

Commonwealth University, Richmond, VA, United States

INTRODUCTION

As described in chapter “Introduction,” this book
provides a survey of each of the organ systems of the
body that is influenced by the biological variable of
sex. An obvious omission is the reproductive system,
which we exclude because of the well-developed liter-
ature on sex differences in the male and female repro-
ductive systems. Before we progress through each of
the systems of the body, we first provide a review in
this chapter that covers the process of sexual differenti-
ation and the forces that can influence this process. We
focus on mammals throughout this book, although the
process of sexual differentiation occurs in other classes
and under other strictures, and still involves powerful
and long-lasting/permanent effects of steroid hor-
mones. We will describe the genetic and endocrinolog-
ical origins of sex and sexual differentiation
throughout different stages of male and female devel-
opment. For instance, the amount of steroid hormones
available pre- versus postpubertal, is significant [1],
which, in turn, reshapes the activity of brain circuits
during adolescent development and affects numerous
other physiological functions. Furthermore, the sensi-
tivity of the system, as reflected by the presence of
receptors for the aforementioned hormones, likewise
changes. The net result is a system that is responsive
to the specific endocrine milieu characteristic of the
stage of development, as well as the specific male and
female environments [2].

CHROMOSOMAL SEX

The basics of sex determination and sexual differen-
tiation are well understood [3] (see Fig. 2.1). In the
human, males and females produce gametes, ova in
females and spermatozoa in males, in which the num-
ber of chromosomes, compared to the other cells of the
body, are halved. Thus, instead of the 23 pairs (46
total), the production of gametes involves a process
(meiosis) that results in one member of the 23 pairs of
chromosomes, compared to the diploid parent cells
(which contain 23 pairs), plus a sex chromosome. The
latter in the male’s spermatozoa contains a particular
genetic trait, the presence of a Y-chromosome or an
X-chromosome. When added to the female’s egg-
bearing X-chromosome, the resulting genotype will be
XX and female. If paired with a Y-bearing sperm, the
resulting ovum will be XY or male. Thus, in the mam-
mal, for example, the father determines sex by provid-
ing an X or a Y chromosome, but in what manner does
the XX versus the XY chromosomal pairing initiate its
effects? Nature produces in the XX or XY model the
potential to grow and elaborate a single underlying
substrate into the male or female phenotype. The
Y-chromosome contains the SRY gene, which encodes
the proteins that will facilitate the development of the
male phenotype. Regardless of sex/genotype, the
embryo has an internal undifferentiated gonad that will
develop—or not—depending on the hormonal milieu
to which it is exposed. The version that will be present
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in the average female is the Müllerian system; in the
male, the Wolffian. The tendency then is to produce the
female version, which develops in the absence of any
alternative signal. The Y-chromosome codes for the pro-
duction of Müllerian-inhibiting factor (MIF), which
suppresses the development of the Mullerian system
and expresses the development of the Wolffian system,
and the male-like structures that follow. The bipotential
gonad and its associated structures follow the sex-
typical program and either develop or wither away.

In the human, during the first 6 weeks of embryonic
development, the gonadal ridge, germ cells, internal
ducts, and external genitalia are formed—the basic

anatomy of the reproductive tract. Unlike most other
developing organs in the embryo that have a specific
developmental trajectory, the gonads are bipotential in
both genetic configurations (46-XX and 46-XY). At this
stage, even after the initial genetic sex determination,
the embryonic structures determining the individual’s
sex can develop either into ovaries or testes (in relation
to the tissue of the gonadal ridge), oocytes or sperma-
tocytes (regarding the germ cells), the male’s or
female’s internal organs (the trajectory of the internal
ducts), and average external masculine or feminine
genitalia. The bipotential gonadal ridge is located
medially on the urogenital ridge. Germ cells migrate to
the gonadal ridge at approximately 5 weeks of devel-
opment. Finally, these cells undergo rapid mitotic divi-
sions in both the fetal testis and ovary [4,5].

In mammals, the primordial gonad, for both male
and female duct systems, is expressed in the embryonic
excretory organ known as the mesonephros. The
Wolffian duct system will form male-typical structures
such as the epididymis, vas deferens, and seminal vesi-
cles; the Müllerian duct system will form the fallopian
tubes, uterus, and posterior part of the vagina.
Experimental work in animal models has shown that
differentiation and subsequent gonad development is
dependent on the inductive interaction between the
Wolffian ducts and the intermediate mesoderm [6]. At 5
weeks of embryonic development, tissue destined to
form the external genitalia is detectable at the cranial
region of the cloacal folds, and it is still bipotential,
basically identical in both male and female embryos [7].

GONADAL/HORMONAL SEX

On average, in the human, the bipotential gonads
and germ cells begin to form either testis or the ovary
around 6 weeks of embryonic development—or
around 16% into the embryonic development. In gen-
eral, in mammals, gonadal sex determination is regu-
lated by a DNA-binding protein expressed in the
Y chromosome by the gene known as SRY (sex-deter-
mining region on the Y chromosome), followed by its
downstream mediators, including Sf1 (encoding for
the steroidogenic factor 1) and SOX9 (encoding for the
transcription factor SOX-9), which, interestingly,
induces and maintains neural stem cells—further
strengthening the ties between the brain and the repro-
ductive system [8]. The evidence suggests that at this
early stage the supporting cell precursors can develop
into either Sertoli cells, which promote the develop-
ment of the testis and their powerful chemical pro-
ducts, or ovary follicle cells [9]. Activation of the
encoded proteins cited above can cause cells of
the bipotential tissue to develop in the core regions at

Genetic Sex

XX chromosome XY chromosome

X X X X X Y X Y

SRY not expressed SRY expressed

No AMH or T

Gonadal Sex

Hormonal Sex
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external male 
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Social factors, organization of neural 
system, changed in body and brain, 
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Mullerian ducts 
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Anti-Mullerian 
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Ova Sperms

Females Males

FIGURE 2.1 Process of sexual differentiation in the human.

This figure displays and summarizes the process of sexual differenti-
ation in the human. As can be seen, the process represents the inter-
action among a large number of phenomena and events, any point
along which variation can occur subtly shifting the manner of devel-
opment and its outcomes.
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the expense of the outer layer. This, then, initiates a
process that will lead to the formation of Sertoli cells,
which in turn, organize themselves into the seminifer-
ous tubules. Sertoli cells then secrete Müllerian-inhibit-
ing chemicals, including the anti-Müllerian hormone,
which causes regression of the Müllerian or female-
typical morphological system. The next step is marked
by the appearance of Leydig cells, which are capable
of producing and secreting testosterone, the powerful,
largely male steroid hormone. The final step in male
sex determination is constituted by the development of
male germ cells, which are influenced by retinoid sig-
nals within the mesonephros [10].

In contrast to the continuous proliferation of male
germ cells, female germ cell development occurs only
during embryogenesis, very early in the female’s life.
This process is characterized by the proliferation and
morphogenesis of the granulosa cells into their cuboidal
state, which induces oocytes to increase in size, the pro-
duction of the zona pellucida, an extracellular glycopro-
tein matrix deposit between the oocytes and the
granulosa cells, and following production of thecal cells
[11]. In other words, the embryonic female produces
the eggs she will carry with her for the rest of her life.

After differentiation of the gonads, sex steroid hor-
mones are responsible for the next crucial stage of sex-
ual determination: organizational effects of sex
steroids. It should be noted that sex hormones must
bind to the proper receptors on or within the cell in
order to be physiologically active. Many of these hor-
mone receptors are nuclear receptors that function as
transcription factors enabling them to exert wide-
spread effects on cell function. Thus, any environmen-
tal or cellular phenomenon interfering with the correct
binding can prevent fully developed sexual differentia-
tion. For example, as discussed later in the chapter,
certain environmental agents, fertilizers, for example,
can wreak havoc with the above cellular events. The
hormone�receptor complex activates a specific
response of the promoter of steroid-responsive genes
and interacts with RNA polymerase II to form a large
transcriptional activation complex, which in turn is
responsible for the appropriate protein synthesis. If
any one of the steps involved in the androgen tran-
scription/translation is defective, the result is lack of
masculinization of internal sex ducts and external gen-
italia [11]. It is like disconnecting some links in a chain:
what worked before no longer does.

Müllerian-inhibiting substances (MISs) are impor-
tant for the regression of the Müllerian duct system,
which contributes to the successful proliferation of the
male, or Wolffian duct system, and its associated tes-
ticular development. MISs are also detected in females,
but only later on, after the Müllerian ducts have
already begun their development.

At this stage of development (8�13 weeks, approx.
22�36% through prenatal development), testosterone
is produced by fetal Leydig cells. This hormone is cru-
cial for the development of both the Wolffian duct sys-
tem and the masculinization of the external genitalia.
The biochemical precursor of testosterone is choles-
terol, which is produced using a biochemical pathway
involving four recognized enzymes. Moreover, cells of
the external masculine genitalia contain a 5α-steroid
reductase which potentiates masculinization by trans-
forming testosterone to dihydrotestosterone, the most
biologically active androgen [12].

In females, the path to feminization is led by a spe-
cific cytochrome P450, aromatase, which converts
androgens to estrogens [13] and is detectable in fetal
tissue. Once again, feminization constitutes the
default state, and masculinization can only be started
as an active process involving the pathway detailed
above.

Hormonal effects on phenotypical sex include dis-
crete anatomical features, internal ducts, and external
genitalia. External genitalia in males typically begins
forming early in gestation. If androgens are not present
until week 12 or later, full masculinization cannot take
place. Whereas testosterone is of critical importance
for the development of internal ducts, dihydrotestos-
terone is crucial in the development of external genita-
lia [13]. Masculinization in this stage includes
increasing anogenital distance, fusion of urethral folds,
and growth of scrotal swelling. The penis forms from
the genital tubercle and continues to grow throughout
gestation. In the absence of androgens, the labia majora
and labia minora form from the genital swelling and
urethral folds. The clitoris, therefore, forms from the
genital tubercle.

Other phenotypical sex differences include qualita-
tive differences (males are generally larger and
heavier), different trajectory for puberty (females gen-
erally reach puberty sooner than males), and the devel-
opment of secondary sex characteristics (body and
facial hair, change in voice, and so forth) [14]. These
differences also affect behavioral characteristics and
qualitative as well as quantitative differences in behav-
ior between the sexes. The classic dogma concerning
phenotypical activation of sex differences links
gonadal hormones as the basic factor controlling
the sex differentiation of nongonadal tissue, including
the brain. Classic studies showed the importance of
the influence of sex steroids on brain sexual differenti-
ation [15]. In these studies the removal of the testes
early in neonatal life resulted in feminization of brain-
regulated functions and behavior in adulthood;
whereas, administration of exogenous testosterone to
the neonatal female induced masculinization. Several
more recent reports, however, have indicated that
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sexual differentiation of the embryonic neural tissue
occurs before the activation of the gonadal hormones.
These studies suggest that early events in sex differen-
tiation, such as cell migration and the activation of sex
germ cells, are also dependent on the activation of sev-
eral genes linked to the Y chromosome [16].
Furthermore, appreciation has grown for direct effects
of chromosomal sex on both physiology and behavior,
in some cases, separate from the contribution of hor-
mones (see Box 2.1).

Many aspects of the mechanisms of actions of
the hormonal sex differentiation of the brain have
been demonstrated in the last two decades [14]. In
the brain, the involvement of a large variety of
intracellular pathways mediated by steroid actions
can explain sex behavioral differences. The involve-
ment of neurotransmitters in sexual differentiation
of the brain and behavior is now well understood.
In most cases, the neurotransmitters act as mediators
of steroid action, initiating biological negative feed-
back loops and acting as modulators of steroid activ-
ity, like a volume or gain switch on one’s stereo.
These are, needless to say, complex, subtle, and
multilayered. The influence of sex on brain develop-
ment is discussed in detail in the chapter “Sex
Differences in Neuroanatomy and Neurophysiology:

Implications for Brain Function, Behavior, and
Neuropsychiatric Disease.”

PUBERTY

The influence of sex steroids on development,
physiology, and behavior is relatively quiescent from
approximately 6 months after birth until the onset
of puberty. Puberty specifically consists of the hor-
monal changes that lead to the sexual maturation of
an organism. The increases in sex steroids during
puberty also exert activational effects on other organ
systems and many of these are discussed in the
subsequent chapters of this book. Before we proceed
with a discussion of puberty and the governing
biological signals, let us first distinguish between
puberty and adolescence. Puberty refers specifically
to sexual maturation and the related hormonally
driven events. Adolescence is a longer period of time
and consists of both biological changes and sociocul-
tural influences. We focus here on puberty, but for a
discussion of adolescence and related neuronal and
behavioral changes, see the work of Blakemore and
Robbins [17]. Regarding puberty, this is not a single
event but rather a process that occurs over a normal

BOX 2.1

S E PARAT ING CHROMOSOMAL AND ENDOCR INOLOG ICAL SEX :
FOUR -CORE GENOTYPE S MODEL

Researchers have long sought to understand the

physiological effects of sex chromosomes independently

from sex hormones and have traditionally manipulated

these two systems through gonad removal. This tech-

nique results in an immediate cessation of gonadally

derived sex hormone production and a precipitous drop

in circulating sex steroids. It also allows for the addition

of exogenous hormones to determine the impact of sex

chromosomes (without hormone replacement) and of

varying concentrations of sex hormones (with hormone

replacement) in both males and females. Depending

on the timing of gonadectomy, partial isolation of

organizational and activational effects of hormones is

possible. Sex steroids have dramatic organizational

influences on the developing fetus, including masculin-

ization or feminization of the genitalia and brain.

Recent studies also indicate that sex steroids exert

some permanent organizational effects across a broad

developmental window from perinatal to the end of

puberty. These organizational influences are perma-

nent, remaining into adulthood, and are not affected

by gonad removal.

A relatively new animal model, called the Four-Core

Genotypes Model, addresses these drawbacks by remov-

ing the Sry gene from the Y chromosome (Y2) in mice.

Given that the Sry gene is necessary for the development

of the male phenotype, XY2 are characteristically female.

Additionally, the model incorporates mice expressing

the Sry transgene on an autosome to produce genetically

female mice (XX) that express Sry and are thus pheno-

typically male, as well as to produce XY2 mice expres-

sing Sry independently of the Y chromosome. This

model and others that are targeted at isolation of the ori-

gin of observed sex differences are described in greater

detail in the chapter “Strategies and Approaches for

Studying Sex Differences in Physiology.”
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range of ages in the human. For girls, puberty is
generally initiated between 8 and 12 years of age. For
boys, the changes, on average, occur later with a win-
dow of 10�14 years of age. When considering com-
mon animal models such as rodents, puberty is
initiated in the range of 32�38 days postnatally [18].

Major Hormonal Events of Puberty

Gonadotropin-releasing hormone (GnRH) or lutei-
nizing hormone�releasing hormone is well-established
as the essential trigger of puberty. GnRH is present
during fetal and early postnatal development but then
becomes quiescent from about 6 months of age until
puberty approaches. As puberty approaches, pulses of
GnRH increase in frequency and eventually surges in
the hormone trigger puberty. The release of GnRH
leads to the release of luteinizing hormone (LH) and
follicle-stimulating hormone (FSH). These events are
similar in both males and females but the subsequent
events diverge between the sexes.

The main site of action for GnRH-induced release
of FSH and LH in females is the ovary. Stimulation
of the ovaries by LH and FSH leads to secretion of
estrogen and progesterone and follicular develop-
ment. Estrogen mediates the appearance of secondary
sex characteristics and the maturation of the genital
organs. Following the hormone events of female
puberty, the pattern of hormonal secretion transitions
to the adult ovarian cycle (Fig. 2.2). In the adult
female, there is an alternating cyclic pattern of GnRH
release which shifts between tonic and cyclic release,
an effect which influences the estrous cycle. The
pattern of the cyclic release is essential to appropriate
hormone coordination to maintain reproductive via-
bility. Hypothalamic release of GnRH stimulates the
anterior pituitary to produce LH and FSH which
stimulate estradiol (E2) and progesterone (P4) pro-
duction in the ovaries. E2 rises during the follicular
phase and P4 rises during the luteal phase of the
menstrual cycle. This cyclicity in the female will
continue until menopause (discussed below).

Puberty is also stimulated by GnRH in the male,
but the subsequent events diverge from the female.
GnRH-stimulated release of LH leads to the produc-
tion of testosterone in the Leydig cells and thereby
the initiation of spermatogenesis and development of
secondary sex characteristics. Testosterone also serves
as a modulator of negative feedback on the hypo-
thalamus and anterior pituitary. FSH stimulates the
Sertoli cells to release Inhibin which provides nega-
tive feedback at the level of the anterior pituitary.
The pulsatile release of GnRH and the subsequent

negative feedback that is initiated at puberty con-
tinues throughout the life of the adult male and no
cyclic pattern in activity is present.

Initiation of Puberty

We have established that GnRH is essential to
puberty and there is a wealth of literature demonstrat-
ing the essential nature of GnRH. So, when one asks
“what triggers puberty” what they are really asking is
“what triggers the pubertal increase in GnRH?” There
are two basic means by which GnRH surges could
originate at puberty. One possibility is that the release
of GnRH is stimulated de novo at puberty. The second
possibility is that tonic inhibition of GnRH is released
at puberty. The first of these possibilities is referred to
as the Gonadostat Hypothesis and was proposed by
Dohrn & Hohlweg in 1931. The Gonandostat
Hypothesis proposed that before puberty minute
quantities of estrogen can block GnRH function and
over time this inhibitory ability decreases releasing
GnRH activity. If this were true, high doses of exoge-
nous estrogen should stimulate puberty. This appears
to be true for sheep but has not been found to account
for puberty in other species. The second hypothesis is
termed the GnRH Pulse Hypothesis. The basic princi-
ple of this hypothesis is that GnRH is inhibited cen-
trally until puberty, but not by sex steroids. A stimulus
triggers an increase in GnRH pulsatility which then
leads to puberty. If this hypothesis is true, then a
hypothalamic lesion which disinhibits GnRH should
lead to puberty. Two lines of evidence for this hypoth-
esis are that GnRH secretion in the absence of gonads
remains intact until puberty despite the absence of
gonadal steroids and precocious puberty is, in fact,
caused by hypothalamic lesions, which is reversible
with amelioration of the lesion.

Collectively, it appears that in most mammals
GnRH is present but tonically inhibited. The determi-
nation of what specifically is inhibiting GnRH until
puberty has been an area of intense study [19]. A few
important themes from this work are as follows. The
control of GnRH pre- and postpubertally is not identi-
cal. GABA, leptin, and NPY all contribute to the start
of puberty but no one independently accounts for the
initiation. Norepinephrine, opioids, and other neuro-
transmitters and neuropeptides are involved in the
coordination of GnRH release—but none of these mes-
sengers completely accounts for the initiation of GnRH
pulsatile release at puberty. A relatively new neuro-
peptide first documented in 2000, kisspeptin, appears
to be the critical factor in the initiation of pubertal pat-
terns of GnRH release.
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The discovery of kisspeptin stems from the docu-
mentation of a family with a high incidence of hypogo-
nadotropic hypogonadism. Multiple members of this
family had an absence of spontaneous puberty and
partial or absent LH pulses. However, the individuals
had a normal response to GnRH replacement. This
pinpointed the abnormality to GnRH synthesis, secre-
tion, or activity. Genetic analysis of the family deter-
mined that there was a leucine to serine substitution at
position 148 on the GPR54 gene in the affected indivi-
duals [20]. Further study revealed that Gpr54 is the
cognate ligand of kisspeptin, GnRH neurons express
GPR54, and GPR54 mRNA expression increases in the
hypothalamus at puberty. In addition, Gpr54 knockout
mice fail to initiate puberty [20]. Adding to the connec-
tion between GnRH, kisspeptin, and puberty are
demonstrations of increasing kisspeptin neuron appo-
sition to GnRH neurons with progression toward
puberty in rodents [21]. Furthermore, kisspeptin
antagonists blunt the release of GnRH suggesting a
causal relationship [22]. The precise relationship
between kisspeptin and GnRH is still being established
and the factors that initiate maturation of kisspeptin
are still being recognized, but it is clear at this time
that kisspeptin is a strong initiating factor in the stimu-
lation of GnRH pulses which initiate puberty. For
more detailed information on the initiation of puberty,
detailed reviews are available [23�25].

ENDOCRINE FUNCTIONS ACROSS LIFE
SPAN: AN EMPHASIS ON MAMMALIAN

MENOPAUSE

Levels of reproductive hormones vary greatly across
the life span. During human fetal development, repro-
ductive hormones are high but then enter a phase of
quiescence during childhood before a cascade of endo-
crine changes commence during puberty [26]. In
human adults, reproductive hormones in men are gen-
erally consistent across the life span although slow
age-related declines in hormone and sexual activity
exist [27,28]. Further, whereas sperm production
diminishes across the male’s life span, fertility may
exist throughout the aging process [26]. On the con-
trary, endocrine hormones fluctuate across the men-
strual cycles in women and, as they age, women
experience drastic reductions in endocrine function
(Fig. 2.3) [29]. In women, menopause refers to the final
menstrual cycle associated with the natural cessa-
tion of ovulation [30]. Around the time of meno-
pause, physiological changes affecting secondary sex
characteristics, vasomotor instability in the form of
hot flashes, loss of bone density, and increased

cardiovascular vulnerabilities are observed. Further,
research suggests a decrease in sexual desire in meno-
pausal women, accompanied by diminished frequency
of sexual activity [31], an effect that may be mitigated
with hormone replacement therapy [32].

Although many reproductive processes have been
conserved through evolution, the phenomenon of men-
opause is rather unique. Specifically, as human females
age, intervals between menstrual cycles increase,
accompanied by lower estradiol levels and higher
FSH concentrations [33], decreased ovary size, and
increased androgen secretion [30,34,35]. Although
human females’ average life span is 80 years, they
experience menopause at approximately 50 years of
age, resulting in an extended postmenopausal phase at
the end of the life span that is unique among mammals
[30]. In fact, using the criterion of the cessation of
breeding many years prior to the end of the life span,
across all mammals, only pilot and killer whales are
thought to have a similar menopause to humans [36].
However, other nonhuman primates are also consid-
ered to undergo variations of menopause [30].

Although certain mammals have evolved to live
a significant portion of their lives in a postmeno-
pausal state, this final reproductive stage in females
presents many questions about the adaptive signifi-
cance of this phenomenon [36]. There are also many
additional effects of drastic reductions in reproduc-
tive hormones in women, apart from the physiologi-
cal effects described above. For example, cognition
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FIGURE 2.3 Changes in circulating levels of sex steroid
hormones across life span in women. In premenopausal women,
circulating estradiol varies from 18 to 110 pM, depending on
the phase of the menstrual cycle. After menopause or bilateral
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Figure adapted from Knochenhauer E, Azziz R. Ovarian hormones and
adrenal androgens during a woman’s life span. J Am Acad Dermatol
2001; 45:S105�15.
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and mood have been reported to be adversely
affected, resulting in attempts to mitigate these
symptoms with interventions such as hormone
replacement therapy [37]. With all the uncertainties
surrounding these questions about variations in
reproductive endocrine levels in aging females, more
research is necessary to provide the most informed
responses to questions about how women can live
the healthiest postmenopausal lives.

INFLUENCES ON SEXUAL
DIFFERENTIATION AND DEVELOPMENT

Thus far in this chapter, the trajectory of sexual dif-
ferentiation has been presented in a typical manner in
which developmental events follow in an expected
sequence; however, exceptions to these developmental
processes exist that can disrupt the organizational
impact of sex hormones. Genetic variations, modified
environmental and chemical contexts, and altered
endocrinological patterns may contribute to various
forms of alterations in sexual differentiation.

Environmental influences—Given the findings that
ambient temperature influences gonadal sexual differ-
entiation in amphibians and reptiles [38], it is interest-
ing to consider the potential role of various
environmental factors on sexual differentiation in
mammals. For example, exposure to environmental
chemicals has been investigated with some substances,
mostly in the pesticide category, identified as endo-
crine disruptors [39]. A primary route of action for
these endocrine disruptors is their binding to estrogen
and androgen receptors and subsequent mimicking of
natural hormones.

An unfortunate lesson was learned about artificial
manipulations of fetal estrogens via pharmacological
manipulations when women were prescribed the drug
diethylstilbestrol (DES) to reduce the risk of spontane-
ous abortion in the 1940s�60s. After about 25 years
and millions of fetuses exposed to this drug, causal
connections were made between the drug and effects
on the reproductive organs in females, including
deformed uteri and increased risk for vaginal cancer
(as well as immune and behavioral adverse effects).
Consequently, DES was banned in 1972 [40]. In fact,
evidence from both animal and human studies suggest
an epigenetic effect for offspring of individuals
exposed to DES during fetal development [41].

Outside of the pharmacological realm, environmen-
tal chemicals have also been found to have an impact
on sexual development [14]. Bisphenol A, a chemical
released from polycarbonate products such as water

and baby bottles is an estrogen receptor ligand and,
consequently, considered an endocrine-disrupting
chemical [40]. In females, fetal exposure to this chemi-
cal results in mammary gland and vaginal alterations
as well as accelerated puberty and, in males, increased
prostate weight [42]. Other chemicals known as alkyl
phenols, found in products such as paints, detergents,
and herbicides also bind to estrogen receptors as well
as exert a weak androgenic effect, have been found to
reduce the synthesis of testosterone and size of testes
and masculinize females by interrupting steroid feed-
back sensitivity [43�45]. Certain chemicals found in
natural sources such as plants also have effects on sex-
ual development; specifically, isoflavones have been
reported to feminize male-typical behavior and mascu-
linize gonadal, endocrine, and behavioral sex-typical
responses in females [46�48].

Finally, natural variations in the uterine environ-
ment have been found to influence sexual dif-
ferentiation in rodents. For example, the specific
position of fetuses in litter-bearing mammals such as
rats and mice may influence sexual development.
Research confirms that having a uterine position
between male and female fetuses differentially
exposes the fetuses to varied levels of gonadal ster-
oids and affects sexual differentiation, especially in
females [42]. Considering that during sexual differen-
tiation male fetuses produce high levels of test-
osterone that can pass into adjacent fetuses, the fetus
positioned next to the male fetuses experiences
supplemental testosterone levels. Thus, a female
positioned between two male fetuses experiences
a different fetal hormonal milieu than in the
same uterus as a female positioned between two
female fetuses [49]. In humans, however, uterine
exposure to gonadal steroid levels during fetal devel-
opment varies according to variables such as mater-
nal age, reproductive history, and diet [50].

Natural genetic and endocrine variations have both
short-term and long-term effects on sexual differentia-
tion. In humans, case studies have been monitored
to characterize the general effects of these naturally
varied conditions. One of the most extensively studied
medical conditions affecting sexual differentiation is
the genetic condition congenital adrenal hyperplasia
(CAH), a spectrum of related conditions resulting from
exposure to higher than normal androgen levels
during gestation due to enzymatic disruptions in ste-
roid hormone production in the adrenal glands [51].
This condition often results in ambiguous-looking
genitalia in females prompting early hormone therapy
following birth. Researchers have followed these cases
throughout childhood and adulthood to determine
long-term effects of high levels of androgens during
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