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The inspiration for ‘Right Ventricular Physiology, Adaptation and Failure in 
Congenital and Acquired Heart Disease’ stemmed from the 3rd International 
RV Symposium held in Toronto. Many of its authors were invited speakers in 
that symposium, and all are leaders in their areas of expertise.

Paediatric cardiologists and cardiovascular surgeons have been well aware 
of the importance of the right ventricle (RV) for many years, yet the RV is still 
sometimes characterised as the ‘forgotten ventricle’. However, it is evident 
from the explosion of research in the past decade or two that the RV is ‘com-
ing of age’ and its importance increasingly recognised. Indeed, there have 
been substantial advances in basic research, diagnosis and management of a 
diverse array of conditions that affect the RV, and although our understanding 
of the RV is far from complete, it is considerably more comprehensive than 
just a few years ago.

Despite these advances in knowledge, to date, there has not been a written 
framework that provides a comprehensive review of RV embryology, physi-
ology, function, failure and disease. This text aims to fill that gap, with state-
of-the-art contributions from thought leaders in the field. The book 
incorporates a wide variety of topics including chapters that relate to early 
development, molecular adaptation to stress, interactions between the right 
and left ventricles, imaging, RV failure, neonatal conditions, congenital heart 
disease, interventional management and surgery. We hope these will be of 
interest to a wide audience of professionals including basic scientists, neona-
tologists, intensive care physicians, paediatric cardiologists, surgeons, heart 
failure specialists and specialists in adult congenital heart disease.

It is our hope that this ‘translational’ approach will not only be new and 
informative but will place the RV at the centre of discussion and research 
across disciplines that will bridge between scientists and clinicians to enrich 
and advance our field for the betterment of our patients.

The saying ‘it takes a village’ is particularly appropriate when producing 
a book such as this. Many people deserve our gratitude in helping this book 
come to fruition, including colleagues at the Hospital for Sick Children in 
Toronto; family, friends and colleagues from across the globe; and Noreen 
Adatia and Elektra McDermott for their administrative support.

Toronto, ON, Canada Mark K. Friedberg
Cincinnati, OH, USA Andrew N. Redington
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Embryological Origins: How Does 
the Right Ventricle Form

Paul Delgado-Olguin

Abstract

The heart originates from a group of cardiac progenitor cells that form the 
cardiac tube, which develops into a complex four-chambered beating 
organ. Several tissues signal to stimulate cardiac progenitors to acquire 
cell fate and differentiate. The timing of differentiation of cardiac progeni-
tors defines the first and second heart fields. The first heart field gives rise 
to the left ventricle. The second heart field, located anterior to the first 
heart field, is added to the cardiac tube to give rise mainly to the outflow 
tract and the right ventricle. Several epigenetic mechanisms including his-
tone and DNA methylation stabilize the transcriptional programs control-
ling cardiac development.

Keywords

Cardiac development • Second heart field • Cardiac progenitors • Right 
ventricle • Cardiomyocyte differentiation • Transcriptional regulation

 Introduction

The heart develops from cardiac progenitor cells 
that originate during gastrulation and which 
move through the primitive streak and emerge as 
a bilateral cardiac field that fuses in the embry-

onic midline to form the cardiac crescent and the 
heart tube later on. The cardiac tube, in which 
cardiac progenitors start differentiating into car-
diomyocytes, serves as a scaffold for addition of 
cardiac progenitors through the arterial and 
venous poles. The cardiac tube undergoes com-
plex morphogenetic movements including loop-
ing and septation that result in the division of the 
heart into chambers [1, 2]. Understanding how 
these processes occur has been the goal of very 
active research. Early experiments aimed at iden-
tifying the cells acting as the building blocks that 
form the heart identified the population of pro-
genitors cells that are added to the cardiac tube 
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[3]. These observations fueled further research 
that confirmed the existence of two groups of car-
diac progenitors, known as the first and second 
heart fields. The first heart field forms the cardiac 
crescent and the cardiac tube, and gives rise 
mainly to the left ventricle. The second heart 
field, added to the cardiac tube, contributes the 
totality of outflow tract and the right ventricle [4]. 
A recent finding of a group of progenitors regu-
lated by canonical Wnt signaling that gives rise to 
pacemaker cells in chicken led to proposing the 
existence of a “tertiary” heart field [5]. The exact 
nature of the molecular cues that induce segrega-
tion of these progenitors is not clear, however 
extensive research using mainly animal and cel-
lular model systems has made significant prog-
ress in uncovering the transcriptional pathways 
that regulate differentiation of cardiac progeni-
tors and cardiogenesis.

This chapter provides an overview of the pro-
cess of cardiac development, starting with a con-
cise explanation of the morphogenetic events that 
transform the cardiac crescent into the four- 
chambered heart. Then, the events that led to the 
identification of the cardiac fields are discussed, 
emphasizing the discovery of the second heart 
field and its contribution to cardiogenesis. The 
transition from proliferating to differentiating 
cardiac progenitors and its relevance for develop-
ment of the second heart field and right ventricle 
is discussed. Finally, recent findings on the 
molecular mechanisms controlling differentia-
tion and maturation of cardiac myocytes are 
summarized.

 Overview of Cardiac Development

 Early Cardiac Development

The heart is the first organ to function during 
embryogenesis. The formation of the heart is a 
complex process that starts very early during 
development. The earliest cardiac progenitors 
arise during gastrulation [6, 7], during which the 
three embryonic layers ectoderm, mesoderm and 
endoderm are patterned. Multipotent cardiac pro-
genitors arise from a cell population expressing 

mesoderm posterior 1 homolog, or Mesp1. 
Mesp1-expressing progenitors give rise first to 
the first heart field, and then to the second heart 
field at E6.75 in the gastrulating mouse embryo. 
Progenitors of the first heart field give rise to 
either cardiomyocytes or endothelial cells. 
Progenitors of the second heart field give rise to 
cardiomyocytes, endothelial cells, and smooth 
muscle cells [7]. Thus, cardiac progenitors are 
hierarchically segregated early during gastrula-
tion. Studies using stem cell models of cardiac 
differentiation, as well as cell lineage tracing in 
animal models have shed light on some of the 
intermediate stages in the progression from stem 
cells to specialized differentiated cardiac lineages 
(Fig. 1.1) [8].

The cardiac progenitors emerge through the 
primitive streak and they take position cranially 
to the forming neural tube and surrounding the 
neural plate at approximately 18 days of human 
development. The cardiac progenitors aggregate 
to form two bilateral primitive heart fields, which 
fuse in the midline to form a horse shoe-shaped 
tube from splanchnic mesoderm known as the 
cardiac crescent. The cardiac crescent harbors a 
population of cardiac progenitors known as the 
first heart field, which contributes to the forma-
tion of the left ventricle and portions of the atria. 
As a result of ventral folding of the embryo in a 
cranial to caudal direction, the limbs of the car-
diac crescent coalesce and fuse in the midline to 
form the linear heart tube (Fig. 1.2). Co-migration 
of cardiac and vascular progenitors allows for 
the formation of the endothelial heart tube, 
which is separated from the primitive myocar-
dium by cardiac jelly, and which will form the 
endocardium. At this stage, day 22 of develop-
ment, dilations and constrictions of the heart 
tube define the truncus arteriosus, bulbus cordis, 
primitive ventricle and atrium, and the sinus 
venosus (Fig. 1.3). The transition from cardiac 
progenitors into differentiating cardiomyocytes 
results in coordinated contraction of the linear 
heart tube and blood flow from the sinus venosus 
towards the cranial portion of the embryo. The 
linear heart tube is then extended by prolifera-
tion of resident differentiating cardiac progeni-
tors and by contribution of additional ones 
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originated from splanchnic and pharyngeal 
mesoderm, which migrate into the linear heart 
through the arterial and venous poles. This popu-
lation of cardiac progenitors added to the linear 
heart is known as the second heart field. Cardiac 
progenitors of the second heart field give rise to 
the totality of the right ventricular myocardium, 
the outflow tract and an important proportion of 
the atria (Fig. 1.2) [4, 9, 10].

 Cardiac Looping

Looping of the heart tube is the first visual evi-
dence of embryonic asymmetry. Progenitors of 
the second heart field continue to be added during 
the process of looping, in which torsion forces 
cause the elongating heart tube to simultaneously 

twist and rotate rightwards, resulting in the for-
mation of a C-shaped cardiac tube at embryonic 
day 23 (Fig. 1.3). These morphogenetic move-
ments push the ventral portion of the linear tube 
towards the right outer curvature of the C-shaped 
tube, while the dorsal portion of the linear heart 
separates from the dorsal pericardial wall and 
forms the inner left curvature. Elongation contin-
ues at the arterial and venous poles, and the car-
diac tube arranges into and S-shape structure, in 
which the outflow and inflow tracts come closer 
together cranially. Displacement of the bulbus 
cordis caudally, ventrally and rightwards, left-
wards displacement of the primitive ventricle, 
and dorsal and cranial displacement of the primi-
tive atrium by embryonic day 28, results in the 
proper spatial arrangement of the future cardiac 
chambers (Fig. 1.3). The rightwards movement 

Ectoderm
precursor

Pro-epicardial
cell

Epicardium-derived
progenitor

First heart field
progenitor

Second heart
field progenitor

Primordial
cardiovascular

precursor
Mesodermal

precursor
Pluripotent
stem cell

Oct4+ Bry+ Mesp1+

Tertiary heart
field progenitor?

Pacemaker cells?

Right ventricle CM
Atrial CM

Outflow tract CM
Smooth muscle cells

Endothelial cells
Cardiac conduction

system

Left ventricle CM
Atrial CM

Cardiac conduction
system

Fibroblasts
Endothelial cells

Smooth muscle cells

Outflow tract smooth
muscle cells

Endocardial cushions

Nkx2.5+
HCN4+

Nkx2.5+
IsI1+

Cardiac neural
crest cell

Wt1+
Tbx18+

Pax3+Nestin+

Fig. 1.1 Cardiac cell lineage progression. Intermediate 
stages generated from pluripotent stem cells towards dif-
ferentiated cardiac lineages. Markers expressed in the 
intermediate progenitors are indicated. CM cardiomyo-

cytes. Progression towards tertiary heart progenitors is 
speculative and is indicated with dotted arrows. Modified 
from [8]
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CC
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PEOPEO
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a b c

d e

Fig. 1.2 Cardiac development. (a) Cardiac progenitors 
migrate anteriorly from the primitive streak (PS) to form 
two bilateral cardiac fields that (b) fuse in the midline to 
form the cardiac crescent (yellow) with the second heart 
field (purple) located medially. (c, d) Front (left) and lat-
eral (right) views of the (c) linear, and (d) looping heart 
tube. Progenitors of the second heart field and the neural 
crest (red) migrate into the looping heart. (e) Fully devel-

oped heart. Green colored atria represent contribution of 
first and second heart field progenitors. The proepicardial 
organ gives rise to the epicardium. AO aorta, CC cardiac 
crescent, LA left atrium, LV left ventricle, PEO proepicar-
dial organ, PA pulmonary artery, SHF second heart field, 
RA right atrium, RV right ventricle, SVC superior vena 
cava, VP venous pole. (a–d) modified from [10]. (e) 
Modified from [126]

Linear heart tube

Aortic roots

Bulbus cordis

C-shaped cardiac tube S-shaped cardiac tube

Primitive
right

ventricle

Primitive
right

ventricle
Ventricle

Atrium

Sinus
venosus

a b c

Fig. 1.3 Cardiac looping. The linear heart tube (a) twists 
and rotates rightwards resulting in the formation of the 
C-shaped tube (b). Elongation at the arterial and venous 
poles force arrangement into the S-shape tube (c), in 
which the outflow and inflow tracts come closer together 

cranially. Displacement of the bulbus cordis caudally, 
ventrally and rightwards, leftwards displacement of the 
primitive ventricle, and dorsal and cranial displacement of 
the primitive atrium, results in the proper spatial arrange-
ment of the future cardiac chambers. Modified from [127]
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of the heart tube and the establishment of asym-
metry is regulated by leftwards flow in the node, 
which is a structure formed at the distal tip of the 
primitive streak containing motile cilia. The left-
wards flow in the node elicits asymmetrical acti-
vation of diverse signaling pathways controlling 
left-right asymmetry, and include Ssh, Notch, 
Wnt, and FGF signaling. Nodal signaling acti-
vates expression of FoxH1, resulting in down-
stream asymmetric activation of left-right 
determinants Nodal, Lefty and Pitx2c [11].

After looping is complete, cells from the pro-
epicardial organ (Fig. 1.2), which is a transient 
group of cells originated from lateral plate meso-
derm and located ventro-caudally to the base of 
the heart [12], migrate towards the surface of the 
heart to form the epicardium and later contribute 
to formation of the coronary vasculature, early 
sinus venosus, and endocardium [13].

 Cardiac Septation

The process of cardiac septation has been exten-
sively reviewed [1, 14, 15]. Cardiac septation 
occurs during the fourth to the seventh week of 
embryogenesis and completely defines the car-
diac chambers, separating the left from the right 
side and establishing the pulmonary and sys-
temic circulatory systems. Studies on animal 
models have identified numerous molecular 
pathways that regulate cardiac septation and 
valve development, highlighting the complexity 
of the process. TFG, BMP, SMAD, Notch, Wnt, 
EGF, calcineurin/NFAT and VEGF signaling 
pathways are important regulators of cardiac 
septation. Transcription factors also required for 
the process are Pax3, Pbx and Meis, GATA, and 
T-box factors. In addition, epigenetic mecha-
nisms controlling the expression of genes, 
including microRNAs and chromatin regulators 
also play central roles [16].

 Ventricular Septation
Septation of the common ventricle occurs during 
the fifth week of development, and is completed 
by the ninth week. The muscular projection that 
will separate the ventricle starts forming during 

the looping process, when the walls of the future 
right and left ventricles grow concomitantly and 
coalesce resulting in the formation of the primi-
tive interventricular septum, or interventricular 
ridge, at the base of the common ventricle [17]. 
The interventricular septum grows and extends 
posteriorly towards the endocardial atrioventric-
ular cushions, leaving a space known as interven-
tricular foramen. The interventricular foramen is 
closed when the interventricular septum fuses 
with the conotruncal septum, which forms from 
the fusion of conotruncal ridges derived from the 
endocardial cushions [18, 19].

The molecular processes patterning the ven-
tricles are poorly understood. Comparative stud-
ies of the expression of the developmental 
regulator Tbx5, which is a key transcription  factor 
regulating cardiac differentiation, have provided 
interesting insight. While Tbx5 is homogenously 
expressed in the early developing single ventricle 
of turtle and lizard, it is restricted to precursors of 
the left ventricle in chicken and mouse. In later 
stages of development, Tbx5 is preferentially 
expressed in a left to right gradient in the turtle 
ventricle, which by then develops an interven-
tricular primary septum-like structure. Consistent 
with a key function for Tbx5 in cardiac septation, 
genetically modified mice that mimic the reptil-
ian Tbx5 expression pattern develop a single ven-
tricle. Thus, expression of Tbx5 may constitute a 
patterning cue for ventricular septation [20].

 Atrial Septation
The process of atrial septation has also been 
extensively reviewed [1, 14, 21]. Cardiac septa-
tion starts in the atrioventricular (AV) canal, a 
constriction of the looped cardiac tube that 
defines the primitive ventricle and atria. A subset 
of endothelial cells on the ventral and dorsal sur-
face of the AV canal undergo endothelial to mes-
enchymal transition and migrate into the 
underlying cardiac jelly to form the endocardial 
cushions, which grow and fuse separating the 
right and left sides of the AV canal and partially 
separating the primitive atria from the ventricle. 
Then, the primitive atrium starts septation 
through the growth of the septum primum, which 
is a muscular appendage arising from the roof of 

1 Embryological Origins: How Does the Right Ventricle Form
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the left side of the chamber that grows towards, 
but does not reach the endocardial cushion [21], 
leaving an orifice known as the ostium primum or 
atrial foramen (Fig. 1.4). Apoptosis in the elon-
gating septum primum creates a perforation 
known as the ostium secundum. The mesenchy-
mal cap at the end of the growing septum primum 
fuses with the endocardial cushion in the AV 
canal. Before fusion of the septum primum with 
the endocardial cushion, another muscular 
appendage grows from the roof of the atrial 
chamber in the right side of the septum primum 
[21], known as septum secundum, which grows 
downwards overlapping the ostium secundum but 
does not reach the endocardial cushion. The par-
tial overlap of the septum secundum with the sep-
tum primum and ostium secundum results in 
incomplete septation of the embryonic atria, 
which communicate through the foramen ovale 
(Fig. 1.4). This communication allows oxygen-
ated blood coming from the placenta to reach the 
fetal circulation. Atrial septation is completed 
after birth, when increased pressure in the left 
atrium pushes the septum primum laterally 
towards the septum secundum closing the fora-
men ovale.

 Outflow Tract Septation
Given the relevant function of the outflow tract in 
development of the right ventricle, its early stages 
of development will be discussed in more detail 
later in the “Development of the second heart 
field” section.

The process of septation of the outflow tract 
has been extensively reviewed [15, 16]. 
Septation of the outflow tract starts during the 
fifth week of development, and consists in the 
division of the common outflow chamber and 
truncus arteriosus to form the outlets and valves 
of the right and left ventricles, the pulmonary 
trunk and the aorta, respectively (Fig. 1.4). At 
the fifth week of human development, the out-
flow tract myocardium extends from the aortic 
sac [22]. At this stage, the proximal (conal) and 
distal (truncal) portions of the outflow tract can 
be distinguished by the presence of the conotrun-
cal curvature, also known as the “dog-leg bend” 
[23]. Two pairs of endocardial ridges, the 

conotruncal and intercalated ridges, follow a 
spiral path and give rise to cushions that develop 
along the proximal and distal outflow tract. The 
spiral arrangement of the endocardial ridges 
positions the pulmonary trunk around the aorta. 
These cushions are formed in part with migrat-
ing mesenchyme derived from the neural crest. 
Septation starts with the fusion of the distal 
cushions, located towards the aortic sac, fol-
lowed by fusion of the proximal cushions. 
Fusion of the distal portion of the proximal 
cushions with distal intercalated cushions will 
generate the aortic and pulmonary valves [15]. 
Around the 50th day of gestation, fusion of the 
proximal part of the outflow tract cushions 
results in formation of an embryonic outlet sep-
tum within the right ventricle. This septum is 
muscularized by invasion of parietal cardiac 
myocytes [24]. The septum then fuses with the 
muscular ventricular septum, confining the out-
let of the aorta to the left ventricle and separat-
ing the ventricles. Further muscularization of 
the endocardial cushions [25], contribution of 
progenitor cells originated in the neural crest, 
and apoptosis [26] are required for complete 
separation of the outflow tract into the pulmo-
nary artery and aorta.

 Trabeculation

Trabeculae are projections of cardiac myoctes 
covered by endocardium that extend into the 
ventricle. Trabeculae are very important in the 
developing heart, as they extend the surface area 
favoring cardiac oxygenation and nutrient 
uptake before development of the coronary vas-
culature [27]. Trabeculae begin to form after 
looping of the cardiac tube by delamination of 
myocytes from the ventricular wall into the car-
diac jelly [28]. Coordinated myocardial prolif-
eration and differentiation results in the 
definition of two myocardial layers, the com-
pact and trabecular myocardium. This process 
requires reciprocal communication between 
myocardium and endocardium via NOTCH and 
bone morphogenetic protein (BMP) signaling. 
NOTCH is activated exclusively in endocardial 
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