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  Pref ace   

   ‘Twas strange that one so young should thus concern 
 His brain about the action of the sky; 
 If you think ‘twas philosophy that this did, 
 I can’t help thinking puberty assisted. 

 Lord Byron “ Don Juan ” 
 Canto the First, XCIII 

   The exact neuroendocrinological mechanisms that bring childhood to an end still 
remain unclear, and the subsequent period of puberty represents a sequence of pro-
found hormonal, physical, and psychical changes. The social relationships of matur-
ing individuals are likewise altered. The transition from girl to woman and from boy 
to man, respectively, is a time of raised concerns: Both parents and children con-
stantly worry about growth and sexual maturation advancing normally. Some dis-
eases, hidden to this point, become apparent. As a complex process of profound 
changes, puberty is one of the most vulnerable periods of life. No one has repre-
sented so skillfully the drama of those who are no longer children but not yet mature, 
overshadowed by the dark uncertainty of the future, as the Norwegian artist Edvard 
Munch in his masterpiece,  Puberty . 

 With that in mind, the need for a comprehensive textbook on the growth and 
development of children, as well as on the most important abnormalities and devia-
tions of puberty, is more than imperative. The responsibility of the medical com-
munity to growing children is substantial, as this period of transformation from 
childhood to maturity is crucial for lifelong health. An insuffi cient or inadequate 
approach to the mental or physical stability of adolescents may have serious conse-
quences afterwards. The problem has escalated in the last few decades given the 
aging population and lower worldwide birth rates. Normal reproduction would be 
impossible without a healthy puberty. 

 This book is mainly clinically oriented but extends to also cover corresponding 
theoretical aspects. It will be useful for pediatricians, endocrinologists, gynecolo-
gists, andrologists, urologists, family practitioners, child psychologists, and public 
health specialists—all those who are challenged in their everyday practice with the 
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problems of puberty. The chapters are prepared by internationally reputed experts, 
whose contributions are thankfully acknowledged. 

 Throughout the book, the reader should keep in mind that the second most 
remarkable phenomenon, after birth of normal child, is its transition to a healthy 
mature person.

     

    Edvard Munch “Puberty” 
 The National Museum of Art, Architecture and Design, Oslo 
 [Reprinted with kind permission from National Museum of Art, Architecture 

and Design]  

 Sofi a, Bulgaria    Philip     Kumanov  ,  MD   
 Cleveland, United States   Ashok   Agarwal ,  PhD   
 July 2016 

Preface
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    Chapter 1   
 Maturation and Physiology of Hypothalamic 
Regulation of the Gonadal Axis                     

     Yoshihisa     Uenoyama     ,     Naoko     Inoue     ,     Nahoko     Ieda     ,     Vutha     Pheng     , 
    Kei-ichiro     Maeda     , and     Hiroko     Tsukamura    

          Introduction 

 It is well accepted that the hypothalamus plays a pinnacle role in the hierarchical 
control of the gonadal axis through the anterior lobe of the pituitary gland in mam-
mals. The concept of hypothalamic regulation of the gonadal axis dates back to the 
late 1940s, when Geoffrey Harris and colleagues [ 1 ] predicted the presence of neu-
rohumoral substances, which control the pituitary gland. By this time, two  gonado-
tropins  , i.e.,  follicle-stimulating hormone (FSH)   and  luteinizing hormone (LH)  , had 
already been isolated from the pituitary gland [ 2 ]. Intensive studies have been per-
formed to isolate the predicted substance(s) controlling FSH and/or LH release. In 
the early 1970s, a decapeptide, which stimulates both FSH and LH release [ 3 ], was 
isolated from porcine and ovine hypothalami by two groups, led by Andrew Schally 
[ 4 ] and Roger Guillemin [ 5 ], respectively. The discovery of the gonadotropin- 
releasing hormone ( GnRH)   facilitated the studies on the involvement of hypotha-
lamic neurotransmitters and neuropeptides in GnRH/gonadotropin release system 
during the last three decades of the twentieth century. It has become increasingly 
clear that the activity of GnRH neurons is under a complex infl uence of afferent 
inputs, which mediates the feedback action of gonadal steroids, timing of sexual 
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maturation at puberty, drives estrous/menstrual cycles, and arrests gonadal activity 
under the adversity such as lactation, malnutrition, and diseases [ 6 – 11 ]. 

 At the turn of the twenty-fi rst century, discoveries via inactivating mutations of  novel 
neuropeptide signaling  , i.e., kisspeptin-GPR54 signaling, in humans suffering the hypogo-
nadotropic hypogonadism, provided a breakthrough in our understanding of the hypotha-
lamic mechanism controlling GnRH/gonadotropin release at the onset of puberty. This 
review focuses on our current understanding of how the hypothalamus regulates pubertal 
maturation of gonadal axis in mammals via GnRH/gonadotropin release.  

    Tonic GnRH/Gonadotropin Release Controls Pubertal 
Maturation of Gonadal Activity 

 There are two modes of GnRH/gonadotropin release in mammals. Males exhibit 
only tonic GnRH/gonadotropin release, whereas females exhibit both tonic and 
surge-mode GnRH/gonadotropin  release  . The tonic GnRH/gonadotropin release is 
characterized by its pulsatile nature, which was originally detected by a combina-
tion of frequent blood sampling and radioimmunoassay for LH in primates [ 12 ], and 
controls follicular development and maintenance of corpus luteum in females, and 
spermatogenesis in males, along with the steroidogenesis in both sexes. The surge- 
mode GnRH/gonadotropin release is observed at the mid-menstrual cycle in pri-
mates [ 13 ,  14 ] and the end of the follicular phase in other animals [ 15 ,  16 ] to trigger 
ovulation and the corpus luteum formation. 

  Sexual maturation   at the puberty onset seems to be timed by an increase in tonic 
GnRH/gonadotropin release in several mammals examined to date [ 17 – 21 ]. 
Experimentally, a pioneer study by Ernst Knobil and colleagues demonstrated that 
intermittent GnRH stimulation to the pituitary at a physiological frequency observed 
in adulthood induced puberty onset in immature female rhesus monkeys and that its 
withdrawal reverted to the immature state [ 22 ]. This fi nding strongly suggests that an 
increase in tonic GnRH/gonadotropin release is the fi rst step in the pubertal onset. 
Knobil and colleagues also established a method for electrophysiological recording of 
 multiple unit neuronal activity (MUA)   that is synchronized with LH pulses [ 23 ] and 
suggested that the neuronal activity recorded in the mediobasal hypothalamus could 
be derived from the so-called GnRH pulse generator. The periodic increase in electri-
cal activity, called  MUA volleys  , is considered as a manifestation of GnRH release 
and seems to be suppressed in prepubertal animals. The onset of puberty, therefore, is 
considered to be dependent on the activation of the GnRH pulse generator.  

     KNDy Neurons      as a Master Regulator of Tonic 
GnRH/Gonadotropin Release 

 An intrinsic source of the GnRH pulse generator had been deemed as a great enigma 
of the GnRH/gonadotropin-releasing system before the discovery of kisspeptin 
(fi rst named  metastin   [ 24 ]). To date, the most plausible interpretation is that 
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kisspeptin neurons localized in the hypothalamic arcuate nucleus (ARC) (also 
known as KNDy neurons as described below) serve as a master regulator of tonic 
GnRH/gonadotropin release in mammals. A critical role of  kisspeptin   in puberty 
onset has emerged from clinical studies for familial hypogonadotropic hypogonad-
ism, characterized by pubertal failure due to gonadotropin defi ciency. Two years 
after the deorphanization of GPR54 as a receptor for kisspeptin in 2001 [ 24 ,  25 ], 
two studies demonstrated that inactivating mutations of   GPR54  gene   caused pubertal 
failure in humans [ 26 ,  27 ]. Subsequently, the phenotype of humans with inactivat-
ing mutations of the  GPR54  gene was recapitulated in humans bearing inactivating 
mutations of the  KISS1  gene (coding kisspeptin) [ 28 ] and in rodent models carrying 
targeted mutations of  Kiss1  or  Gpr54  loci [ 27 ,  29 – 33 ]. In particular,  Kiss1  knockout 
rats showed a severe hypogonadotropic hypogonadal phenotype, suggesting an 
indispensable role of kisspeptin in pubertal maturation of gonadal axis in both sexes 
[ 33 ]. Because  Gpr54  gene expression in GnRH neurons is evident in rodents [ 29 ,  34 ], 
kisspeptin is thought to directly control GnRH release and thus gonadotropin 
release. Indeed, increasing evidence indicates that kisspeptin stimulates gonadotropin 
release via GnRH neurons in several mammals [ 34 – 36 ]. 

 Clinical studies for  hypogonadotropic hypogonadism   also demonstrated a critical 
role of  neurokinin B (NKB)  , a member of tachykinin family, in hypothalamic regu-
lation of puberty onset. Inactivating mutations of  TAC3  (coding NKB) or its cognate 
 TACR3  (coding tachykinin NK3 receptor) gene were found in humans suffering 
from the hypogonadotropic hypogonadism [ 37 – 40 ]. It should be noted that kiss-
peptin, NKB, and an endogenous opioid, dynorphin A, are co-localized in a cohort 
of ARC neurons in mammalian species [ 41 – 43 ], and thus the cohort of neurons has 
now become known as the KNDy neurons for the names of three neuropeptides, 
such as kisspeptin, NKB, and dynorphin A. Our previous studies demonstrated that 
the neuronal activity accompanied with LH pulses is successfully detected in the 
area near the cluster of KNDy neurons in goats [ 43 ,  44 ], suggesting that KNDy 
neurons are an intrinsic source of the GnRH pulse generator. Based on the results 
currently available [ 43 – 45 ], we envision that NKB and dynorphin A regulate the 
intermittent discharge of KNDy neurons in an autocrine and/or paracrine manner, 
resulting in pulsatile GnRH/gonadotropin release. Indeed, our recent study indi-
cates the involvement of NKB and dynorphin A in pubertal maturation of GnRH/
gonadotropin release [ 46 ], i.e., chronic administration of tachykinin NK3 receptor 
agonist or kappa-opioid receptor antagonist facilitated puberty onset along with the 
induction of tonic LH release in female rats. This result suggests that a lack of NKB 
signaling and relatively high dynorphin A tone may play a key role in suppression 
of the intermittent discharge of KNDy neurons, which drive pulsatile  GnRH/gonad-
otropin release. In other words, it is likely that an increase in NKB stimulation and/
or decrease in the inhibitory tone of dynorphin A (#1 in Fig.  1.1 ) drives intermittent 
discharge of KNDy neurons and hence GnRH/gonadotropin release (#2 in Fig.  1.1 ), 
resulting in puberty onset along with follicular development in the ovary (#3 in 
Fig.  1.1 ). Double-labeled immunoelectron microscopic studies indicate that an action 
site of kisspeptin seems GnRH neuronal terminals in the median eminence, where 
kisspeptin exerts stimulatory infl uence on GnRH neurons via volume transmission 
[ 47 ,  48 ]. Direct evidence for pubertal increase in  kisspeptin      release was proposed 
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from a previous study, in which Keen et al. [ 49 ] showed a pubertal increase in both 
kisspeptin and GnRH release and coordinated release of pulsatile kisspeptin and 
GnRH at the median eminence in rhesus monkeys.

        Estrogen-Dependent and Estrogen-Independent Prepubertal 
Restraint   of GnRH/Gonadotropin-Releasing System 

 The GnRH/gonadotropin-releasing system seems to be already matured before the 
onset of puberty. Indeed, ARC  Kiss1  gene expression and pulsatile LH release 
immediately increased after ovariectomy in prepubertal rats [ 50 ,  51 ]. Estrogen 
replacement restores the prepubertal restraint of the ARC  Kiss1  gene expression 
and LH pulses in female rats [ 50 ,  51 ], suggesting that the prepubertal suppression 
of the tonic GnRH/gonadotropin-releasing system is dependent on a circulating 
estrogen derived from the immature ovaries. A possible mechanism involved in the 
pre pubertal restraint   of tonic GnRH/gonadotropin-releasing system is illustrated in 
Fig.  1.2 . Based on the results currently available [ 50 ,  51 ], we envisage that estro-
gen derived from the immature ovaries (#1 in Fig.  1.2 ) may play a key role in 
prepubertal suppression of ARC  Kiss1  gene expression (#2 in Fig.  1.2 ), resulting 

  Fig. 1.1    Schematic illustration showing the possible hypothalamic mechanism regulating puber-
tal increase in GnRH/gonadotropin release in female mammals.  KNDy neurons   localized in the 
hypothalamic arcuate nucleus (ARC) play a key role in pubertal increase in GnRH/gonadotropin 
release in mammals. At the onset of puberty, an increase in neurokinin B stimulation and/or 
decrease in the inhibitory tone of dynorphin A (#1) may drive the intermittent discharge of KNDy 
neurons in an autocrine/paracrine manner. Kisspeptin stimulates tonic GnRH release at the median 
eminence and thus gonadotropin secretion (#2), which times puberty onset along with the follicular 
development in females (#3)       
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in a restraint of tonic GnRH/gonadotropin release during the prepubertal period 
(#3 in Fig.  1.2 ). Since kisspeptin neuron-specifi c estrogen receptor α (ERα) knock-
out mice show precocious puberty onset along with a higher ARC  Kiss1  gene 
expression than wild- type  mice   [ 52 ], estrogen-dependent prepubertal restraint of 
 Kiss1  gene expression and LH pulses would be directly mediated by ERα in ARC 
KNDy neurons. Similarly, in males, the prepubertal suppression of the tonic 
GnRH/gonadotropin- releasing system seems dependent on a circulating testoster-
one derived from the immature testes, because castration increases plasma LH levels 
in prepubertal male rats [ 53 ].

   In addition to the direct inhibitory effect on ARC  Kiss1  gene expression, estro-
gen may indirectly inhibit  Kiss1  gene expression and/or  GnRH/gonadotropin- 
releasing system during the prepubertal period. Our recent study showed that 
site-specifi c micro-implants of estradiol in the  medial preoptic area (mPOA)   or 
ARC restored suppression of LH pulses in prepubertal ovariectomized rats [ 50 ]. 
This suggests that estrogen-responsive neurons, at least, in the mPOA and ARC, 
are involved in the estrogen-dependent prepubertal restraint of GnRH/
gonadotropin- releasing system in female rats. Given the critical role of kisspeptin 
and NKB in pubertal maturation in humans and rodents, KNDy neurons could be 
a fi rst candidate for the estrogen-responsive neurons in the ARC. Additionally, 

  Fig. 1.2    Schematic illustration showing a possible mechanism regulating the  pubertal restraint   of 
the GnRH/gonadotropin release system in female mammals. During the prepubertal period, estro-
gen derived from the immature gonads (#1) strongly suppresses ARC  Kiss1  gene expression in 
KNDy neurons (#2) and hence GnRH/gonadotropin release (#3). Estrogen may exert an inhibitory 
infl uence on ARC  Kiss1  gene expression via direct or indirect pathways (#1). Estrogen-responsive 
neurons in the medial preoptic area (mPOA) may exert an inhibitory infl uence on GnRH/gonado-
tropin release via suppression of ARC  Kiss1  gene expression (#4)       
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estrogen- responsive neurons in the mPOA may exert an inhibitory infl uence on 
ARC  Kiss1  gene expression (#4 in Fig.  1.2 ). 

 The inhibitory infl uence of estrogen on ARC  Kiss1  gene expression and GnRH/
gonadotropin release appears to decrease during the pubertal transition, resulting in 
upregulation of ARC  Kiss1  gene expression and GnRH/gonadotropin release [ 51 ]. 
This scenario is consistent with the classical gonadostat hypothesis [ 54 ] that changes 
in hypothalamic sensitivity to negative feedback action of estrogen are associated 
with pubertal maturation of the GnRH/gonadotropin-releasing system in rodents. 
We envisage that pubertal decrease in the responsiveness to estrogen in ARC KNDy 
neurons plays a role in pubertal increase in  Kiss1  gene expression. It is unlikely that 
changes in responsiveness to estrogen negative feedback action during the pubertal 
transition are simply caused by a change in the expression of ERα, because our 
previous study showed that the number of ERα-expressing cells and  Esr1  gene 
(encoding ERα) expression in the POA and ARC was comparable between pre- and 
postpubertal periods in female rats [ 50 ]. Further studies are warranted to address 
this issue. 

 It should be noted that the central mechanism controlling the prepubertal 
restraint of GnRH/gonadotropin-releasing system in primates appears to differ 
from other species such as rodents and sheep [ 10 ,  11 ]. In monkeys, gonadectomy 
induces an increase in gonadotropin release during the neonatal period and after 
the onset of puberty, but not during the prepubertal period [ 11 ]. This indicates that 
both steroid- dependent and steroid-independent pathways are responsible for 
restraint of GnRH/gonadotropin-releasing system. Terasawa and Fernandez [ 10 ] 
suggest that the steroid- independent inhibition may be due to the abundant synap-
togenesis in primate brain than other species and that the decrease in the number of 
synapse to the adult levels could lead to pubertal increase in GnRH/gonadotropin 
release via removal of inhibitory inputs in primates. The characteristic steroid-
independent restraint period of GnRH/gonadotropin-releasing system in primates 
is called the juvenile  period      [ 55 ]. In humans, the juvenile hiatus in GnRH/gonado-
tropin secretion is seen between the ages of 4–9 years [ 55 ], even in girls suffering 
from Turner syndrome with gonadal dysgenesis [ 56 ] and boys with testicular 
defects [ 57 ], both which exhibit elevated plasma gonadotropin levels in infantile 
and peripubertal period.  

     Cues Relieving Prepubertal Restraint   of GnRH/
Gonadotropin-Releasing System 

 It is well demonstrated that the timing of puberty onset is dependent on body weight 
rather than chronological age [ 58 ]. Epidemiologic studies showed that age of men-
arche in girls declined from 17 years old in the nineteenth century to 13 years old in 
the twentieth century in developed countries [ 58 ]. This secular trend can be under-
stood in terms of the faster somatic growth in humans in the twentieth century [ 58 ]. 
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Thus, nutritional cues are likely to contribute to the regulation of pubertal maturation 
of GnRH/gonadotropin-releasing system. Energy storage in the body fat has been 
considered to be a possible determinant for the onset of puberty for a long time [ 59 , 
 60 ]. Leptin, the fi rst hormone discovered from fat tissue [ 61 ,  62 ], was then consid-
ered as a signal that relays the attainment of energy storage to the brain, because 
leptin-defi cient mice do not show puberty and exogenous leptin restores fertility 
[ 63 ]. In fact, the leptin receptor is expressed in several hypothalamic and extra-hypo-
thalamic nuclei including ARC [ 64 ]. Recently, KNDy  neurons   were found to express 
leptin receptors [ 65 ]. Mice with a leptin defi ciency showed decreased ARC  Kiss1  
gene expression [ 65 ], suggesting that leptin seems to be a nutritional cue relieving 
the prepubertal restraint of GnRH/gonadotropin-releasing system. Leptin, however, 
could be a prerequisite of normal puberty, because the increase in leptin secretion is 
not necessarily synchronized with the onset of puberty [ 58 ]. 

 In addition to nutrition, the photoperiod tightly regulates the timing of puberty 
onset in seasonal breeders such as sheep and Syrian hamsters. Foster et al. [ 18 ] 
clearly showed that the onset of puberty is postponed to the next breeding season 
in lambs, which achieved critical body size in late winter. Earlier studies showed 
that  Kiss1  gene expression is higher in the breeding season than in the nonbreeding 
season in sheep and Syrian hamsters [ 66 ,  67 ]. Taken together, KNDy neurons may 
integrate multiple external cues, such as nutrition or photoperiod, to control puber-
tal maturation of the GnRH/gonadotropin-releasing system.  

    Conclusions and Unanswered Questions 

 Studies during the last few decades have provided a new framework for the under-
standing of pubertal maturation of hypothalamic regulation of gonadal axis in mam-
mals. It is now well accepted that KNDy neurons are responsible for the regulation 
of pubertal increase and GnRH/gonadotropin release in mammals. But, there are 
still some important unanswered questions. Little is known about the cellular and 
molecular mechanisms controlling the prepubertal restraint of and pubertal increase 
in kisspeptin biosynthesis, which is tightly controlled by steroid-dependent and 
steroid-independent mechanism. In particular, mechanisms underlying the relation-
ship between nutritional statuses and relieving the prepubertal restraint of kisspeptin 
biosynthesis are still unanswered questions. Further studies, therefore, are needed to 
fully elucidate the pubertal maturation of hypothalamic mechanism regulating 
gonadal axis in mammals.     
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