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Preface

The first edition of Principles of Tissue Engineering was

published almost a quarter-of-a-century ago—back in the

1990s when the term “tissue engineering” was first coine-

d—and quickly became the most widely relevant and

cited textbook in the field. Since that time there have

been powerful developments, including breakthroughs at

all stages of development, ranging from two Nobel Prizes

for pioneering work in the area of stem cells, which could

be used as an unlimited source of cells for repair and

engineering of tissues and organs, to actual clinical thera-

pies, ranging from skin and bladder replacement to carti-

lage, bone, and cardiovascular repair.

The fifth edition of “Principles” covers all of this tre-

mendous progress as well as the latest advances in the

biology and design of functional tissues and organs for

repair and replacement, from mathematical models to

clinical reality. We have also added Anthony Atala, the

W.H. Boyce Professor and Director of the Wake Forest

Institute for Regenerative Medicine, as a new editor and

have expanded the book to include a new section on

emerging technologies, including 3D bioprinting and bio-

manufacturing for tissue-engineering products. As in the

previous editions, the book attempts to simultaneously

connect the basic sciences with the potential application

of tissue engineering to diseases affecting specific organ

systems. While the fifth edition furnishes a much needed

update of the rapid progress that has been achieved in the

field in the last 6 years, we have retained the fundamen-

tals of tissue engineering, as well as those facts and sec-

tions which, while not new, will assist scientists,

clinicians, and students in understanding this exciting area

of biology and medicine.

The fifth edition of “Principles” is divided into an

introductory section, followed by 23 parts starting with

the basic science of the field and moving upward into

applications and clinical experience. The organization

remains largely unchanged, combining the prerequisites

for a general understanding of cellular differentiation and

tissue growth and development, the tools and theoretical

information needed to design tissues and organs, as well

as a presentation by the world’s experts of what is cur-

rently known about each specific organ system, including

breast, endocrine and metabolism, ophthalmic, oral/dental

applications, skin, and the cardiovascular, gastrointestinal,

hematopoietic, kidney and genitourinary, musculoskeletal,

nervous, and respiratory systems. We have again striven

to create a comprehensive book that, on one hand, strikes

a balance among the diversity of subjects that are related

to tissue engineering, including biology, chemistry, mate-

rial science, medicine, and engineering, while emphasiz-

ing those research areas that are likely to be of clinical

value in the future.

While we cannot describe all of the new and updated

material of the fifth edition, we continue to provide

expanded coverage of stem cells, including neonatal, post-

natal, embryonic, and induced pluripotent stem cells and

progenitor populations that may soon lead to new tissue-

engineering therapies for cardiovascular disease, diabetes,

and a wide variety of other diseases that afflict humanity.

This up-to-date coverage of stem cell biology and other

emerging technologies is complemented by updated chap-

ters on gene therapy, the regulatory process, and the chal-

lenges of tissue engineering for food and in vitro meat

production, which someday may end up a routine part of

our food system, potentially reducing environmental pol-

lution and land use. As with previous editions, we believe

the result is a comprehensive textbook that will be useful

to students and experts alike.

Robert Lanza, Robert Langer, Joseph Vacanti and
Anthony Atala
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Chapter 1

Tissue engineering: current status and
future perspectives
Prafulla K. Chandra, Shay Soker and Anthony Atala
Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States

Clinical need

Tissue and organ failure due to disease, injury, and

developmental defects has become a major economical

and healthcare concerns [1]. At present, use of donated

tissues and organs is the clinical practice to address this

situation. However, due to the shortage of organ donors,

the increasing number of people on the transplant waiting

lists, and an ever-increasing aging population, dependence

on donated tissues and organs is not a practical approach.

In addition, due to severe logistical constraints, many

organs from donors cannot be matched, transported, and

successfully transplanted into a patient within the very

limited time available. In the United States alone, more

than 113,000 people are on the National Transplant

Waiting list and around 17,000 people have been waiting

for more than 5 years for an organ transplant (US

Department of Health and Human Services, Organ

Procurement and Transplantation network; https://optn.

transplant.hrsa.gov; data as of February, 2019). To

address this critical medical need, tissue engineering (TE)

has become a promising option. TE and regenerative

medicine (RM) are multidisciplinary fields that combine

knowledge and technologies from different fields such as

biology, chemistry, engineering, medicine, pharmaceuti-

cal, and material science to develop therapies and pro-

ducts for repair or replacement of damaged tissues and

organs [2,3].

The process of TE is multistep and involves engineer-

ing of different components that will be combined to

generate the desired neo-tissue or organ (Fig. 1.1).

Today, this field has advanced so much that it is being

used to develop therapies for patients that have severe

chronic disease affecting major organs such as the kid-

ney, heart, and liver. For example, in the United States

alone, around 5.7 million people are suffering from

congestive heart failure [5], and around 17.9 million

people die or cardiovascular diseases globally (World

Health Organization data on Cardiovascular disease;

https://www.who.int/cardiovascular_diseases/en/). TE can

help such patients by providing healthy engineered tis-

sues (and possibly whole organ in future) to replace their

diseased tissue for restoring function. For example,

chronic kidney disease (CKD) is a worldwide health

crisis that can be treated, but it also depends on organ

donation. In the United States alone, around 30 million

people are suffering from CKD (Center for Disease

Control & Prevention; National Chronic Kidney Disease

Fact Sheet 2017; https://www.cdc.gov/kidneydisease/pdf/

kidney factsheet), while close to 10% of the population is

affected worldwide. Liver disease is another healthcare

problem, which is responsible for approximately 2 mil-

lion deaths per year worldwide [6]. Other diseases or

conditions that can benefit from TE technologies include

skin burns, bone defects, nervous system repair, craniofa-

cial reconstruction, cornea replacement, volumetric mus-

cle loss, cartilage repair, vascular disease, pulmonary

disease, gastrointestinal tissue repair, genitourinary tissue

repair, and cosmetic procedures. The field of TE, with its

goal and promise of providing bioengineered, functional

tissues, and organs for repair or replacement could trans-

form clinical medicine in the coming years.

Current state of the field

TE has seen continuous evolution since the past two dec-

ades. It has also seen assimilating of knowledge and tech-

nical advancements from related fields such as material

science, rapid prototyping, nanotechnology, cell biology,

and developmental biology. Specific advancements that

have benefited TE as a field in recent years include novel

1
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biomaterials [7], three-dimensional (3D) bioprinting

technologies [8], integration of nanotechnology [9], stem-

cell technologies such as induced pluripotent stem

cells (iPSCs) [9,10], and gene editing technology such as

Clustered Regularly Interspaced Short Palindromic

Repeats (CRISPR) [11]. All these have led to promising

developments in the field that include smart biomaterials,

organoids, and 3D tissue for disease modeling and drug

development, whole organ engineering, precise control

and manipulation of cells and their environments, and

personalized TE therapies.

Biomaterials are critical components of many current

TE strategies. Recent developments in this field that are

benefiting TE include synthesis of new biomaterials that

can respond to their local environment and cues (smart

biomaterials). Advancements in 3D bioprinting technolo-

gies are at the core of many developments in TE. It is

now possible to print multiple biocompatible materials

(both natural and synthetic), cells, and growth factors

together into complex 3D tissues, many with functional

vascular networks, which match their counterparts

in vivo. We have also learned a great deal about cell

sourcing, culture, expansion, and control of differentia-

tion. This is also true for stem cells, where new sources

such as placenta, amniotic fluid, and iPSCs have been

explored and optimized for use. Vascularization and

innervation in bioengineered tissue is a continuing chal-

lenge essential to warrant sustained efforts success of tis-

sues implanted in vivo would be very low. Therefore

there is a need for greater understanding of vasculariza-

tion and innervation as applied to bioengineered tissues.

This is an ongoing effort, and the results we are seeing

from various studies are encouraging. Biofabrication tech-

nologies are playing a great role in this regards.

Several engineered tissues are moving toward clinical

translation or are already being used in patients. These

include cartilage, bone, skin, bladder, vascular grafts, car-

diac tissues, etc. [12]. Although, complex tissues such as

liver, lung, kidney, and heart have been recreated in the

lab and are being tested in animals, their clinical transla-

tion still has many challenges to overcome. For in vitro

use, miniature versions of tissues called organoids are

being created and used for research in disease modeling,

drug screening, and drug development. They are also

being applied in a diagnostic format called organ-on-a-

chip or body-on-a-chip, which can also be used for the

above stated applications. Indeed, the development of 3D

tissue models that closely resemble in vivo tissue struc-

ture and physiology are revolutionizing our understanding

of diseases such as cancer and Alzheimer and can also

accelerate development of new and improved therapies

for multiple diseases and disorders. This approach is also

expected to drastically reduce the number of animals that

are currently being used for testing and research. In addi-

tion, 3D tissue models and organ-on-a-chip or body-on-a-

chip platforms can support advancement of personalized

medicine by offering patient-specific information on the

effects of drugs, therapies, environmental factors, etc.

Development of advanced bioreactors represent

another recent developments that are supporting clinical

translation of TE technologies. Such bioreactors can bet-

ter mimic in vivo environments by provide physical and

biochemical control of regulatory signals to cells and tis-

sue being cultured. Examples of such control include

application of mechanical forces, control of electrical pac-

ing, dynamic culture components, induction of cell differ-

entiation. Incorporation of advanced sensors and imaging

capabilities within these bioreactors are also allowing for

real-time monitoring of culture parameters such as pH,

oxygen consumption, cell proliferation, and factor secre-

tion from a growing tissue. 3D modeling is also a new

tool relevant to TE that provides great opportunities and

better productivity for translational research, with wide

clinical applicability [13]. Recent advancements in spe-

cific field that are helping advance TE are discussed next.

Smart biomaterials

Smart biomaterials are biomaterials that can be designed

to modulate their physical, chemical, and mechanical

FIGURE 1.1 Schematic representation of different aspects of tissue

engineering. Each component (materials, cells, and tissue architectures)

can be engineered separately or in combination to achieve the therapeu-

tic goals. Reprinted with permission from Khademhosseini A., Langer R.

A decade of progress in tissue engineering. Nat Protoc 2016;11

(10):1775�81. doi: 10.1038/nprot.2016.123 [4]. r2016 Springer

Nature Publishing AG.
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properties in response to changes in external stimuli or

local physiological environment (Fig. 1.2) [14,15].

Advances in polymer synthesis, protein engineering,

molecular self-assembly, and microfabrication technolo-

gies have made producing these next-generation biomater-

ials possible. These biomaterials can respond to a variety

of physical, chemical, and biological cues such as temper-

ature, sound, light, humidity, redox potential, pH, and

enzyme activity [16,17]. Other unique characteristics dis-

played by some smart biomaterials are self-healing or

shape-memory behavior [18]. The development of bioma-

terials with highly tunable properties has been driven by

the desire to replicate the structure and function of extra-

cellular matrix (ECM). Such materials can enable control

of chemical and mechanical properties of the engineered

tissue, including stiffness, porosity, cell attachment sites,

and water uptake. For hydrogels, use of reversible cross-

linking through physical methods, self-assembly, or ther-

mally induced polymer chain entanglement is creating

hydrogels that undergo structural changes in response to

external stimuli [19,20]. Another class of hydrogels that

are recent developments is called self-healing and shear

thinning hydrogels. These materials are now being used

to develop injectable biomaterials, which have low vis-

cosity during application (injection) due to shear thinning

and once at their target site, they self-crosslink (or heal)

to fill the defect site [21]. Injectable biomaterials are also

often loaded with drugs, biologics, and cells. For exam-

ple, Montgomery et al. created an injectable shape-

memory biomaterial for minimally invasive delivery of

functional tissues [22]. In other applications, tissue glues

are being developed using smart biomaterials, where they

are used to bond and allow the tissue to self-heal. An

example of this approach is a study by Bhagat and Becker

FIGURE 1.2 Different applications of smart biomaterials in the fields of tissue engineering and related fields. (A) Stimuli-responsive material that

can promote cell differentiation and tissue growth; (B) injectable biomaterial loaded with cells, drugs, or bioactive molecules can be delivered less-

invasively and can promote healing of tissue at the target damage site; (C) swelling polymer can be delivered as small scaffolds but can expand

in vivo to achieve 3D structure of the target defect after exposure to water; (D) shape-memory and temperature-responsive soft material can be used

as a tissue adhesive; (E) star-shaped delivery system for sustained drug release in the gastrointestinal tract; (F) nanoparticle-based stimuli-responsive

drug delivery system for systemic application; (G) materials for enhanced cancer immunotherapy using targeted delivery of chimeric antigen receptor

T cell. 3D, Three-dimensional. Reprinted with permission from Kowlaski PS, Bhattacharya C, Afewerki S, Langer R. Smart biomaterials: recent

advances and future directions. ACS Biomater Sci Eng 2018;4(11):3809�17 [14]. r2018 American Chemical Society.
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who created a chondroitin-based tissue glue that helps

direct improved tissue repair [23].

The ECM is a complex and dynamic structural scaf-

fold for cells within tissues and plays an important role in

regulating cell function [1]. Given the role of the ECM in

structural support of tissues, there has been significant

effort in developing ECM-based scaffolds for TE and RM

[24,25]. However, as with all materials implanted into the

body, the immune response significantly influences the

ability of scaffold-containing engineered tissues to inte-

grate and functionally interact with the host [26]. Thus an

emerging strategy in TE is to design materials that can

directly control the host immune response [27]. For exam-

ple, the Arg-Gly-Asp (RGD) of ECM proteins can exert

immunomodulatory effects on both innate and adaptive

immune cells while also having an inhibitory effect on

phagocytosis and neutrophil chemotaxis [28]. In the con-

text of TE, synthetic ECM-mimetic hydrogels containing

the RGD sequence have been shown to cause increased

cellular adhesion on polymer scaffolds and also have an

antiinflammatory effects from macrophages [29,30].

Under certain conditions, the RGD peptides have also

been found to effect cytokine secretion from T cells [31].

Therefore use of RGD as part of TE scaffolds or hydro-

gels can be used to enhance cells adhesion in addition to

controlling the ability of macrophages to degrade and

remodel the surrounding tissue environment.

Matrix metalloproteinases (MMPs) are a family of

proteases that not only selective degrade a wide variety of

ECM proteins but also interact with bioactive molecules,

some of which have immunomodulatory effects [32,33].

So, another strategy to control the extent of matrix remo-

deling, integration of engineered tissues into native host

tissues or invasion of immune cell into implanted materi-

als could be by incorporating MMP-sensitive peptides

into the TE constructs. Examples of this approach include

studies by Patterson and Hubbell, who showed that the

rate of scaffold material degradation depends on the

MMP-sensitive peptide sequence, the type of MMP, and

also the MMP concentrations [34]. In a separate study,

West and Hubbell created biomimetic poly(ethylene gly-

col) (PEG) hydrogels that incorporated peptides that could

be degraded by either a fibrinolytic protease (plasmin) or

a fibroblast collagenase (MMP-1) [35,36]. One drawback

of this using MMP-sensitive peptides in TE constructs is

their immunogenicity and more work will be needed to

get around this issue. Possibly, use of immunomodulatory

domains along with MMP-sensitive peptides could sup-

port long-term viability and integration within native host

tissues.

Another category of smart biomaterials is multidomain

peptides (MDPs) hydrogels. These are injectable ECM

mimetic materials that are engineered to form self-

assembling meshes at the target site [37,38]. These MDPs

can also control cellular behavior. For example, in a

mouse study by Moore et al., MDPs alone were found to

be biocompatible and had prohealing effects in vivo [39].

Hydrogel have also been prepared from multiple ECM

mimetic peptides for the purpose of enhancing the viabil-

ity of the biomaterial in vivo. Smart biomaterials are

going to have a big impact on 3D printing of tissues and

organs. By combining smart biomaterials with 3D bio-

printing, a wide variety of architectures can be created

which can further offer control over how these materials

perform in a biological environments. Smart biomaterials

can also be made from proteins. Some protein�protein

interactions can be utilized to physically crosslink protein

chains, while small coiled-coil domains within some pro-

teins (called leucine zippers) can self-assemble into super-

helical structures. Leucine zippers have been used to

make hydrogels by physically crosslinking protein

domains [40]. The stability of the leucine zipper self-

assembly (and hence the hydrogel) can be controlled by

changing the temperature. Another way to control the sta-

bility of some protein-based hydrogels is by arrangement

of the interacting domains [41].

One drawback of hydrogels made of self-interacting

protein domains is their low-to-moderate mechanical

properties, which is not ideal for TE applications.

However, these week interactions can be reinforced by

introducing covalent bonds into the network (e.g., disul-

fide bonds between cysteine in the protein chains). This

will not only improve the mechanical properties of the

hydrogel but also its stability [42].

Cell sources

For TE, a variety of cell types are now being used. They

include autologous, allogeneic, progenitors, adult unipo-

tent or multipotent stem cells and iPSCs (Fig. 1.3). For

some applications, the ability to expand a sufficient

number of autologous cells from a small biopsy is well-

established [44]. A good example is bladder augmenta-

tion, where smooth muscle and urothelium can be easily

isolated from then native tissue, expanded in culture and

used for engineering a new bladder tissue. However, in

many cases, it is challenging to harvest and/or expand

enough appropriate autologous cells for this purpose.

Examples of such cell types include hepatocytes, kidney

cells, insulin-producing pancreatic beta cells, cardiomyo-

cytes, neurons. New sources or methods to obtain these

cell types in quantities can advance engineering of these

tissues/organs and significantly benefit treatment of asso-

ciated diseases. Immature precursor cells present within

tissue such as skin, cartilage, muscle, and bladder are

essential for the expansion of corresponding cells from

biopsies and enabling engineering of neo-tissues [45].

The extension of this approach to other tissue and organ
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systems will depend greatly on finding sources of appro-

priate stem and progenitor cells.

Three major stem-cell sources are currently under

intensive investigation:

1. embryonic stem (ES) cells, which are derived from

discarded human embryos, and the equivalent embry-

onic germ (EG) cells;

2. iPSCs derived by genetic reprograming of somatic

cells; and

3. Autologous or allogeneic adult tissue stem cells

(sourced from fetal, neonatal, pediatric, or adult donor

tissue).

Shared features of all stem cells include their capacity

self-renewal and their ability to give rise to particular

classes of differentiated cells. The ES, EG, and iPSCs can

serve as precursors for many specialized cell type found

during normal development and therefore are pluripotent.

Adult stem cells are generally restricted to limited sets of

cell lineages, hence called unipotent (constrained to a sin-

gle fate) or multipotent (can give rise to multiple cell

types). It appears likely that multiple tissue-engineered

products based on each class of stem-cell source will be

tested in the clinic in the coming years. Previous clinical

and commercial experience sheds light on key differences

between personalized products containing autologous

cells and off-the-shelf products containing allogeneic

cells. The vast majority of human studies till date have

focused on using either adult stem or progenitor cells.

More recently, clinical trials have begun with tissue-

engineered products derived from pluripotent stem cells

and their future looks promising.

The first clinical tissue-engineered products to achieve

marketing approval from the US Food and Drug

Administration (FDA) were skin substitutes that were

used for wound healing. Examples of such products

include Dermagraft (Shire Regenerative Medicine Inc.,

CT, United States) and Apligraf (Organogenesis, MA,

United States), which were off-the-shelf products that

used cells (fibroblasts for Dermagraft and fibroblasts plus

keratinocytes for Apligraf) expanded from donated human

foreskins. Whereas fibroblasts have been cultured in vitro

since the early 20th century, the successful large-scale

culture of human keratinocytes represented an important

breakthrough for RM [46]. The success of off-the-shelf

skin substitutes can be attributed to the lack of antigen-

presenting cells, because of which they were not acutely

rejected despite the inevitable histocompatibility mis-

matches between donors and recipients [47,48].

Eventually, the cells in the skin substitutes could be

rejected, but the grafts has enough time for patients’ own

skin cells to regenerate. This stands in contrast to standard

tissue/organ transplantation in which immune rejection is

a major concern and immunosuppressive drug therapy is

generally part of the application of allogeneic grafts [49].

Tissue-engineered products based on harvesting and

expanding autologous cells containing stem and/or pro-

genitor populations have also been developed success-

fully. Prominent examples include Epicel (Genzyme, MA,

United States), a permanent skin replacement product

based on expanded keratinocytes for patients with life-

threatening burns, and Carticel (Genzyme, MA, United

States), a chondrocyte-based treatment for large articular

cartilage lesions [50,51].

Cell sources
for

tissue engineering

Embryonic stem
cells

Morula Chorionic villi

Umbilical cord

Amniotic fluid Blood Bone marrow

Adipose tissue

Somatic cells

Fetus-derived stem
cells

Adult stem
cells

Induced pluripotent
stem cells

E.g., ESC
E.g., UC-MSC/EPC, CV-

EPC,AF-MSC/EPC
E.g., EPCs, BMSC, ADSC E.g., iPSC

Pluripotent
Pluripotent or
multipotent

Pluripotent or
multipotent

Totipotent

FIGURE 1.3 Different sources of

cells for tissue engineering. Fetus-

derived and induced pluripotent

stem cells are gaining more atten-

tion for tissue engineering applica-

tions. Reprinted from Al-Himdani

S, Jessop ZM, Al-Sabah A,

Combellack E, Ibrahim A, Doak

SH, et al. Tissue-engineered solu-

tion in plastic and reconstructive

surgery: principles and practice.

Front Surg 2017;4:4. doi: 10.3389/

fsurg.2017.00004. [43]. r2017 Al-

Himdani, Jessop, Al-Sabah,

Combellack, Ibrahim, Doak, Hart,

Archer, Thornton and Whitaker.
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Embryonic stem cells

ES cells and EG cells are indeed quite similar to early

germ cells, with an apparently unlimited self-renewal

capacity and pluripotency. Their great degree of plasticity

represents both a strongest virtue and a significant poten-

tial limitation to their use in TE. A major ongoing chal-

lenge is in efficiently obtaining pure populations of

specific desired specialized cell types from human ES

cells [52,53]. Efforts during recent years have yielded

more robust methods to isolate and grow ES cells under

conditions consistent with Good Manufacturing Practice

(GMP) and to generate differentiated cell products. While

initial efforts have focused on cell therapies, these

advances will positively impact production of tissue-

engineered constructs using ES cells. Human ES cells are

considerably more difficult to isolate and maintain stably

in culture than the cell types that have previously been

used in clinical testing. However, they can now be

derived, grown, and cryopreserved without exposure to

nonhuman cells or proteins, even under a GMP environ-

ment [54,55]. In the future, use of bioreactors, microcar-

riers, along with improved xeno-free and serum-free

media and possibly small molecules that inhibit spontane-

ous differentiation of these cells would facilitate expan-

sion of these stem cells to population sizes that are

normally required for product development and clinical

application [56,57].

Human tissues include more than 200 distinct cell

types, and ES cells, in principle, can give rise to all of

them. The historical approach of allowing ES cells to dif-

ferentiate spontaneously has now been supplanted.

Current strategies employ staged differentiation guided by

knowledge of signaling events that regulate normal

embryonic development [58]. For example, fine tuning of

the exposure of early embryonic cells to the growth factor

Nodal (a member of the transforming growth factor beta

or TGF-β family) or its analog Activin A, in conjunction

with other growth factors or small molecules, can now

allow consistent generation of endoderm-specific cells

from ES cells in vitro [59,60]. This is an early, but

key milestone in a multistep process to generate differen-

tiated cells that can eventually be used for TE of tissues/

organs like the liver and pancreas. Conversely, inhibition

of Nodal/Activin signaling favors the production of ecto-

derm specific cells, a precursor for neural lineage cells

[61].

Despite substantial challenges, the first ES-cell-

derived therapeutic product to enter clinical trials was the

human ES-cell-derived oligodendrocyte progenitors

(Geron Corporation; CA, United States) for stimulating

nerve process growth in subjects with spinal cord injury

[62]. Similarly, ES-cell-derived retinal pigment epithe-

lium cells (Advanced Cell Technology, now Astellas

Institute for Regenerative Medicine; CA, United States)

were used in clinical trials in patients to treat Stargardt’s

macular dystrophy and dry age-related macular degenera-

tion. Encouraging results from such clinical studies using

ES cell-derived product will have a positive impact to

develop tissue-engineered products from pluripotent stem

cells in the near future. Areas of clear unmet medical

need that might benefit from stem-cell-derived products

include type 1 diabetes and Parkinson’s disease. For type

1 diabetes, research at a biotech company called Viacyte

Inc. (CA, United States) similarly pursued the produced

progenitors of pancreatic endocrine cells from human ES

cells using growth factors and hormones [63]. The pro-

genitor cells from the final-stage differentiation in vitro

were able to mature further in vivo to yield glucose-

responsive β-like cells [64]. As a potential therapy for

Parkinson’s disease, significant advances have been made

in the production of functional midbrain dopaminergic

neurons by staged differentiation from ES cells [65,66].

Studies in the past few years have demonstrated that effi-

cient grafting of these cells can lead to physiological cor-

rection of symptoms in several animal models, including

nonhuman primates [67]. A particular safety concern is

that undifferentiated pluripotent ES and iPS cells form

teratomas in vivo. The risk of tumorigenicity makes it

essential to rigorously determine the residual level of

undifferentiated stem-cell population in any therapeutic

product derived from ES or iPS cells [68]. It will also be

valuable to determine whether a small number of undif-

ferentiated pluripotent stem cells can be introduced into

human patients without significant risk of tumor growth

and if this threshold is influenced by use of immune sup-

pressive drugs during treatment.

Induced pluripotent stem cells

Theoretically, the development of iPSCs represent the

most direct way to ensure immune compatibility of

tissue-engineered products when the recipient themselves

serve as the donor. Generation of iPSCs through repro-

graming of mature somatic cells to a pluripotent state was

first accomplished by ectopic expression of four transcrip-

tion factors: OCT4 and SOX2, both with KLF4 and c-

MYC [69] or NANOG and LIN28 [70]. The resulting

iPSCs closely resembled ES cells in key properties such

as the capacity for extensive self-renewal, ability to dif-

ferentiate to multiple cell lineages, and generation of tera-

tomas in vivo. Initial studies on reprograming of

fibroblasts soon were extended to a variety of other cell

types such as peripheral blood cells [71], cord blood cells

[72], keratinocytes from hair shafts [73], and urine-

derived cells [74]. Many recent developments have

advanced this reprograming technology toward a safer,

efficient translation toward therapeutic products. Also,
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