Edited by

Robert Lanza Robert Langer Joseph P. Vacanti Anthony Atala

PRINCIPLES OF TISSUE ENGINEERIN

FIFTH EDITION

Principles of Tissue Engineering

Fifth Edition

Edited by

Robert Lanza

Astellas Institute for Regenerative Medicine, Westborough, MA, United States; Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States

Robert Langer

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States

Joseph P. Vacanti

Harvard Medical School, Center for Regenerative Medicine, Massachusetts General Hospital, Cambridge, MA, United States

Anthony Atala

Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States

An imprint of Elsevier

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2020 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-818422-6

For Information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Andre Gerhard Wolff Acquisitions Editor: Elizabeth Brown Editorial Project Manager: Pat Gonzalez Production Project Manager: Sreejith Viswanathan Cover Designer: Miles Hitchen

Typeset by MPS Limited, Chennai, India

Contents

List of contributors Preface		xxix xli
1.	Tissue engineering: current status and future perspectives	1
	Prafulla K. Chandra, Shay Soker and Anthony A	tala
	Clinical need	1
	Current state of the field	1
	Smart biomaterials	2
	Cell sources	4
	Whole organ engineering	8
	Biofabrication technologies	9
	Electrospinning	9
	Inkjet three-dimensional bioprinting	12
	Extrusion three-dimensional bioprinting	12
	Spheroids and organoids	13
	Imaging technologies	16
	Tissue neovascularization	16
	Bioreactors	16
	Organ-on-a-chip and body-on-a-chip	17
	Integration of nanotechnology	18
	Current challenges	19
	Future directions Smart biomaterials	21 21
	Cell sources	21
		24
	Whole organ engineering Biofabrication technologies	24
	Tissue neovasculatization	24
	Bioreactors	25
	Integration of nanotechnology	25
	Conclusions and future challenges	26
	References	26
	Further reading	35
_		
2.	From mathematical modeling and machine learning to clinical reality	37
	Ben D. MacArthur, Patrick S. Stumpf and Richard O.C. Oreffo	
	Introduction	37
	Modeling stem cell dynamics	37
	Positive feedback-based molecular switches	38

Variability in stem cell populations	40
Modeling tissue growth and development	41
Monolayer tissue growth in vitro	42
Tissue growth on complex surfaces in vitro	42
Three-dimensional tissue growth in vitro	43
Pattern formation	44
Machine learning in tissue engineering	45
Supervised methods	46
Unsupervised methods	46
Machine learning of cellular dynamics	47
Regulatory network inference	47
From mathematical models to clinical reality	47
References	48
3. Moving into the clinic	53
č	
Chi Lo, Darren Hickerson, James J. Yoo,	
Anthony Atala and Julie Allickson	
Introduction	53
Current state of tissue engineering	53
Pathway for clinical translation	54
Regulatory considerations for tissue	
engineering	58
Conclusion	60
Acknowledgment	60
References	60
Further reading	60
Part One	
The basis of growth and	
	()
differentiation	63
4. Molecular biology of the cell	65
J.M.W. Slack	

The cell nucleus	65
Control of gene expression	66
Transcription factors	67
Other controls of gene activity	67
The cytoplasm	68
The cytoskeleton	69
The cell surface	71

	Cell adhesion molecules	71
	Extracellular matrix	72
	Signal transduction	73
	Growth and death	74
	Culture media	75
	Cells in tissues and organs	76
	Cell types	76
	Tissues	77
	Organs	77
	Reference	78
	Further reading	78
5.	Molecular organization of cells	79
	Jon D. Ahlstrom	
	Introduction	79
	Molecules that organize cells	79
	Changes in cell-cell adhesion	80
	Changes in celleextracellular matrix adhesion	80
	Changes in cell polarity and stimulation of cell	
	motility	81
	Invasion of the basal lamina	81
	The epithelial-mesenchymal transition	
	transcriptional program	82
	Transcription factors that regulate	
	epithelial-mesenchymal transition	82
	Regulation at the promoter level	82
	Posttranscriptional regulation of	
	epithelial-mesenchymal transition	
	transcription factors	83
	Molecular control of the	
	epithelial-mesenchymal transition	83
	Ligand-receptor signaling	83
	Additional signaling pathways	85
	A model for epithelial–mesenchymal transition induction	
		85 96
	Conclusion	86 86
	List of acronyms and abbreviations Glossary	00 86
	References	87
	References	07
6.	1	
	matrix interactions, with implications	
	for tissue engineering	93
	M. Petreaca and M. Martins-Green	
	Introduction	02

Introduction	93
Historical background	93
Extracellular matrix composition	93
Receptors for extracellular matrix molecules	94
Cell-extracellular matrix interactions	
Development	96
Wound healing	100

	Signal transduction events during cell–extracellular matrix interactions Relevance for tissue engineering Avoiding a strong immune response that	104 111
	can cause chronic inflammation and/or rejection	111
	Creating the proper substrate for cell survival and differentiation Providing the appropriate environmental	111
	conditions for tissue maintenance References	112 113
7.	Matrix molecules and their ligands	119
	Allison P. Drain and Valerie M. Weaver	
	Introduction	119
	Collagens	120
	Fibrillar collagens	121
	Fibril-associated collagens with interrupted triple helices (FACIT)	122
	Basement membrane—associated collagens	122
	Other collagens	123
	Major adhesive glycoproteins	123
	Fibronectin	123
	Laminin	125
	Elastic fibers and microfibrils	126
	Other adhesive glycoproteins and	
	multifunctional matricellular proteins	126
	Vitronectin	126
	Thrombospondins	126
	Tenascins Protooglycops	126 127
	Proteoglycans Hyaluronan and lecticans	127
	Perlecan	127
	Small leucine-rich repeat proteoglycans and	120
	syndecans	128
	Conclusion	128
	References	128
8.	Morphogenesis and tissue	
	engineering	133
	Priscilla S. Briquez and Jeffrey A. Hubbell	
	Introduction to tissue morphogenesis	133
	Biology of tissue morphogenesis	133
	Morphogens as bioactive signaling molecules	
	during morphogenesis	134
	The extracellular matrix as a key regulator	105
	of tissue morphogenesis	135
	Cell–cell interactions during tissue	120
	morphogenesis Tissues as integrated systems in the body	136 136
	Engineering tissue morphogenesis	130
		.50

138
139
140
140
141
141

9. Gene expression, cell determination, differentiation, and regeneration 145

Frank E. Stockdale

Introduction	145
Determination and differentiation	145
MyoD and the myogenic regulatory factors	147
Negative regulators of development	148
MicroRNAs—regulators of differentiation	148
Pax in development	149
Satellite cells in skeletal muscle differentiatio	n and
repair	149
Tissue engineering—repairing muscle and for	stering
regeneration by controlling determination	and
differentiation	150
Conclusion	152
References	152

155

Part Two

In vitro control of tissue development

10. Engineering functional tissues: in vitro culture parameters	157
Jennifer J. Bara and Farshid Guilak	
Introduction	157
Key concepts for engineering functional	
tissues	158
Fundamental parameters for engineering	
functional tissues	158
Fundamental criteria for engineering	
functional tissues	159
Importance of in vitro studies for engineering	
functional tissues	159
In vitro studies relevant to tissue engineering	
and regenerative medicine	159
In vitro platforms relevant for high throughput	
screening of drugs and other agents	160
Influence of selected in vitro culture	
parameters on the development and	
performance of engineered tissues	161

	Culture duration Biomaterials	161 162
		162 166
	Bioreactors and growth factors Bioreactors and mechanical forces	169
	Conclusion	171
	Acknowledgments	171
	References	172
	Further reading	172
11.	Principles of bioreactor design for tissue engineering	179
	Hanry Yu, Seow Khoon Chong, Ammar Mansoor Hassanbhai, Yao Teng, Gowri Balachander, Padmalosini Muthukuma	aran.
	Feng Wen and Swee Hin Teoh	,
	Introduction	179
	Macrobioreactors	180
	Design principles	181
	Sustainable bioreactors	188
	Cell manufacturing quality attributes and	
	process analytics technology	189
	Future outlook	189
	Microbioreactors	191
	Design principles	191
	Types of microreactors	194
	Components and integration into	
	microreactors	194
	Applications	195
	Summary	197
	Acknowledgments	197
	References	197
12.	Regulation of cell behavior by	
	extracellular proteins	205
	•	-00
	Amy D. Bradshaw	
	Introduction	205
	Thrombospondin-1	205
	Thrombospondin-2	207
	Tenascin-C	208
	Osteopontin	209
	Secreted protein acidic and rich in cysteine	210
	Conclusion	212
	References	212
13.	Cell and matrix dynamics in branching morphogenesis	217
	Shaimar R. González Morales and Kenneth M. Yamada	
	Introduction	217
	The basis of branching morphogenesis	217

Branching morphogenesis in the lung		
Branching morphogenesis in the		
salivary gland	220	
Branching morphogenesis in the kidney	222	
Contributions of other cell types	224	
MicroRNAs in branching morphogenesis	225	
Extracellular matrix components in		
branching morphogenesis	226	
Laminin	226	
Collagen	226	
Heparan sulfate proteoglycan	227	
Fibronectin and integrins	228	
Basement membrane microperforations		
Mathematical and computational		
models	230	
Geometry	230	
Mechanical forces	230	
Signaling mechanisms	230	
Conclusion		
Acknowledgments		
References		

14. Mechanobiology, tissue

deve	lopment,	and	tissue
engir	neering		

David Li and Yu-li Wang

Introduction	237	
Mechanical forces in biological systems		
Tension	237	
Compression	238	
Fluid shear	238	
Cellular mechanosensing	238	
The cytoskeleton	239	
Stretch-activated ion channels	239	
Cell-cell adhesions	240	
Cell-substrate adhesions	240	
The extracellular matrix	241	
Cellular effects of mechanotransduction	243	
Substrate adhesion, spreading, and		
migration	243	
Cell-cell interactions in collectives	243	
Proliferation and differentiation	244	
Mechanotransduction in biological		
phenomena	245	
Wound healing	245	
Tissue morphogenesis	247	
Cancer metastasis	248	
Mechanobiology in tissue engineering		
Bone-implant design	248	
Organs-on-a-chip	250	
References	252	

Part Three

In Vivo Synthesis of Tissues and
Organs25715. In vivo engineering of organs259V. Prasad Shastri259

La Cara di va Cara	250
Introduction	259
Historical context	259
Nature's approach to cellular differentiation	
and organization	260
Conceptual framework of the in vivo	
bioreactor	261
In vivo bone engineering-the bone	
bioreactor	261
In vivo cartilage engineering	264
Induction of angiogenesis using biophysical	
cues—organotypic vasculature engineering	265
De novo liver engineering	267
Repairing brain tissue through controlled	
induction of reactive astrocytes	269
Conclusions and outlook	269
References	270

Part Four

Biomaterials in tissue engineering 273

16. Cell interactions with polymers	275
W. Mark Saltzman and Themis R. Kyriakides	
Methods for characterizing cell interactions	
with polymers	275
In vitro cell culture methods	275
In vivo mothods	278

In vivo methods	278
Cell interactions with polymers	280
Protein adsorption to polymers	280
Effect of polymer chemistry on cell behavior	280
Electrically charged or electrically conducting	
polymers	284
Influence of surface morphology on cell	
behavior	284
Use of patterned surfaces to control cell	
behavior	285
Cell interactions with polymers in suspension	286
Cell interactions with three-dimensional	
polymer scaffolds and gels	287
Cell interactions unique to the in vivo setting	287
Inflammation	287
Fibrosis and angiogenesis	288
References	289

17.	Polymer	scaffold	fabrication	295
-----	---------	----------	-------------	-----

Matthew L. Bedell, Jason L. Guo, Virginia Y. Xie, Adam M. Navara and Antonios G. Mikos

Introduction		
Design inputs: materials, processing, and cell		
types	297	
Materials and inks	297	
Processing and cell viability	299	
Cell types and biological interactions	300	
Assessment of cell viability and activity	301	
3D printing systems and printer types	302	
Inkjet printing	303	
Extrusion printing	304	
Laser-assisted bioprinting	305	
Stereolithography	305	
Open source and commercial 3D printing		
systems	306	
Print outputs: patterning, resolution, and		
porous architecture	307	
Printing/patterning of multiple inks	308	
Print resolution	308	
Porous architecture	309	
Assessment of scaffold fidelity	309	
Printing applications: vascularized and		
complex, heterogeneous tissues	310	
Conclusion	310	
Acknowledgments		
Abbreviations	311	
References	311	

18. Biodegradable polymers

Julian Chesterman, Zheng Zhang, Ophir Ortiz, Ritu Goyal and Joachim Kohn

Introduction	317
Biodegradable polymer selection criteria	317
Biologically derived polymers	318
Peptides and proteins	318
Biomimetic materials	322
Polysaccharides	322
Polyhydroxyalkanoates	325
Polynucleotides	326
Synthetic polymers	
Aliphatic polyesters	326
Aliphatic polycarbonates	330
Biodegradable polyurethanes	330
Polyanhydrides	331
Polyphosphazenes	331
Poly(amino acids) and pseudo-poly	
(amino acids)	332

Combinations (hybrids) of synthetic and biologically derived polymers Using polymers to create tissue-engineered	333
products	333
Barriers: membranes and tubes	334
Gels	334
Matrices	334
Conclusion	335
References	335

19. Three-dimensional scaffolds 343

```
Ying Luo
```

Introduction	343
Three-dimensional scaffold design and	
engineering	343
Mass transport and pore architectures	344
Mechanics	346
Electrical conductivity	348
Surface properties	349
Temporal control	352
Spatial control	354
Conclusion	355
References	355

Part Five

Transplantation of engineered cells and tissues 361

20. Targeting the host immune response for tissue engineering and regenerative medicine applications		363
	Jenna L. Dziki and Stephen F Badylak	
	Introduction	363

Immune cells and their roles in building	
tissues after injury	363
Neutrophils	364
Eosinophils	364
Macrophages	364
Dendritic cells	364
T and B cells	365
Specialized immune cell functions beyond	
host defense	365
Tissue engineering/regenerative medicine	
strategies as immunotherapy	365
Future considerations for immune cell target	ng
tissue engineering/regenerative medicine	
therapies	366
References	366
Further reading	368

21.	Tissue engineering and transplantation in the fetus	369
	Christopher D. Porada, Anthony Atala and Graça Almeida-Porada	
	Introduction	369
	Rationale for in utero therapies	370
	In utero transplantation	371
	Early murine experiments with in utero transplantation	372
	In utero transplantation experiments in large	
	preclinical animal models	372
	Barriers to in utero transplantation success Clinical experience with in utero	373
	transplantation	376
	Rationale for in utero gene therapy	376
	Hemophilia A as a model genetic disease for	0 77
	correction by in utero gene therapy	377
	The need for better hemophilia A	270
	treatments	378
	Preclinical animal models for hemophilia A	270
	and recent clinical successes	378
	Sheep as a preclinical model of hemophilia A Feasibility and justification for treating	379
	hemophilia A prior to birth	380
	Mesenchymal stromal cells as hemophilia A	500
	therapeutics	383
	Preclinical success with mesenchymal stroma	
	cell-based hemophilia A treatment	' 384
	Risks of in utero gene therapy	385
	Genomic integration—associated insertional	000
	mutagenesis	385
	Potential risk to fetal germline	386
	Conclusion and future directions	387
	References	388
22.	Challenges in the development of immunoisolation devices	403
	Matthew A. Bochenek, Derfogail Delcassian and Daniel G. Anderson	
	Introduction	403
	Rejection and protection of transplanted	
	cells and materials	403
	Rejection pathways	404
	Cellular nutrition	404
	Therapeutic cells	405
	Primary cells	405
	Immortalized cell lines	406
	Stem cells	407
	Device architecture and mass transport	407
	Transplantation site	408
	Improving oxygenation of immunoprotected	
	cells	409

Controlling immune responses to implanted materials	410
Steps in the foreign body reaction	411
The role of geometry in the foreign body	
reaction	411
Tuning chemical composition to prevent	
attachment	412
Directing immune cell behavior in the	
transplant niche	412
References	412

Part Six Stem cells

23.	Embryonic stem cells	421
	Irina Klimanskaya, Erin A. Kimbrel and Robert Lanza	
	Introduction Approaches to human embryonic stem cell	421
	derivation	421
	Maintenance of human embryonic stem cell	425
	Subculture of human embryonic stem cell Nuances of human embryonic stem cell	425
	culture	426
	Directed differentiation	426
	Safety concerns	430
	Conclusion	431
	Acknowledgment	431
	References	431
24.	Induced pluripotent stem cell technology: venturing into the second decade	435
	Yanhong Shi, Haruhisa Inoue, Jun Takahashi and Shinya Yamanaka	
	Disease modeling	435
	Drug discovery	436
	Stem cell-based therapeutic development	438
	Concluding remarks	440
	Acknowledgements	440
	References	440
25.	Applications for stem cells	445
	Andres M. Bratt-Leal, Ai Zhang, Yanling Wang and Jeanne F. Loring	
	Introduction Reprogramming of somatic cells into induced	445
	pluripotent stem cells	445
	Epigenetic remodeling	446

Reprogramming techniques

	Induced transdifferentiation	448
	Genomic stability	448
	Applications of induced pluripotent stem cells	448
	Disease modeling	448
	Challenges and future possibilities in disease	
	modeling	450
	Disease-modifying potential of induced	
	pluripotent stem cells	451
	Other applications for induced pluripotent	
	stem cells	452
	Conclusion	452
	List of acronyms and abbreviations	453
	References	453
26	Neonatal stem cells in tissue	
20.	engineering	457
	engineering	437
	Joseph Davidson and Paolo De Coppi	
	Introduction	457
	Stem cells	457
	Embryonic stem cells	457
	Induced pluripotent stem cells	458
	Perinatal stem cells	458
	Scaffolding specifics in fetal and neonatal	
	tissue engineering	459
	Synthetic materials	459
	Natural materials	459
	Relevance to prenatal therapy	460
	Immunology	460
	Physiology	460
	Conditions of interest	461
	Spina bifida	461
	Gastroschisis	461
	Congenital diaphragmatic hernia	461
	Esophageal atresia	461
	Congenital heart disease	462
	Congenital airway anomalies	462
	Bladder	463
	Bone and bone marrow	463
	Conclusion	463
	References	463
27	Embryonic stem cells as a cell	
_/ •	source for tissue engineering	467

Ali Khademhosseini, Nureddin Ashammakhi, Jeffrey M. Karp, Sharon Gerecht, Lino Ferreira, Nasim Annabi, Mohammad Ali Darabi, Dario Sirabella, Gordana Vunjak-Novakovic and Robert Langer

Introduction	467
Maintenance of embryonic stem cells	468
Directed differentiation	471
Genetic reprogramming	471

Microenvironmental cues	472
Three-dimensional versus two-dimensional	
cell culture systems	475
High-throughput assays for directing stem cell	
differentiation	475
Physical signals	477
Isolation of specific progenitor cells from	
embryonic stem cells	479
Transplantation	480
Transplantation and immune response	481
Future prospects	482
Conclusion	483
Acknowledgments	483
Conflicts of interest	483
References	483
Further reading	490

Part Seven

Gene therapy 491

28. Gene therapy493

Stefan Worgall and Ronald G. Crystal

Strategies of gene therapy	493
Ex vivo versus in vivo gene therapy	494
Ex vivo	494
In vivo	495
Chromosomal versus extrachromosomal	
placement of the transferred gene	495
Gene transfer vectors	495
Nonviral vectors	497
Adenovirus	497
Adeno-associated virus	499
Retrovirus	500
Lentivirus	501
Cell-specific targeting strategies	502
Targeting of Ad vectors	502
Targeting of adeno-associated virus vectors	505
Targeting of retroviral and lentiviral vectors	505
Regulated expression of the transferred gene	505
Using gene transfer vectors for gene editing	507
Combining gene transfer with stem-cell	
strategies	508
Gene transfer to stem cells	508
Gene transfer to control uncontrolled	
stem-cell growth	508
Gene transfer to instruct stem-cell	
differentiation	508
Gene transfer to regulate gene expression	509
Challenges to gene therapy for tissue	
engineering	509
Acknowledgments	510
References	510

29. Gene delivery into cells and tissues 519

Christopher E. Nelson, Craig L. Duvall, Aleš Prokop, Charles A. Gersbach and Jeffrey M. Davidson

Introduction	519
Fundamentals of gene delivery	519
Biodistribution, targeting, uptake, and	
trafficking	521
Tissue biodistribution/targeting	521
Cellular uptake and intracellular trafficking	523
Viral nucleic acid delivery	526
Introduction to viral gene therapy	526
Types of viral vectors	527
Engineering viral vectors	528
Nonviral nucleic acid delivery	530
Introduction to nonviral nucleic acid delivery	530
Oligonucleotide modifications	531
Conjugates	531
Synthetic polymers	531
Polymers derived from natural sources or	
monomers	534
Lipid-based delivery systems	536
Inorganic nanoparticles	537
High-throughput screening	537
Engineering tissues with gene delivery	538
Introduction to engineering tissue with gene	
delivery	538
Viral delivery to engineer tissues	538
Nonviral delivery from scaffolds	540
Nucleic acid delivery for tissue engineering	
advances into the clinic	541
Future challenges	541
Outlook	542
Acknowledgments	543
References	543

Part Eight Breast

30. Breast tissue engineering: implantation and three-dim tissue test system applicatio	
Karen J.L. Burg and Timothy C. Burg	g
Introduction	557
Breast anatomy and development	557
Breast cancer diagnosis and treatm	ents 558
Breast reconstruction	558
Synthetic implants	559
Tissue flaps	559
Cell transplants	559
Cellular scaffolds	560

Special considerations	565
Breast cancer modeling	565
Animal models	565
Breast tissue test systems	566
In silico breast cancer models	570
Concluding remarks	571
Acknowledgement	571
References	571

Part Nine

Cardiovascular	system	577
----------------	--------	-----

31. Cardiac progenitor cells, tissue	
homeostasis, and regeneration	579

Wayne Balkan, Simran Gidwani, Konstantinos Hatzistergos and Joshua M. Hare

Origin of cardiac stem/progenitor cells	579
Modeling cardiac development with	
pluripotent stem cells	581
In vivo fate mapping of cardiac progenitors	582
Neonatal cardiac repair	582
Reprogramming cardiac fibroblasts	584
Cardiac resident mesenchymal stem cells	584
Cardiomyocytes and cardiac repair/	
regeneration	585
Cell-based therapy	585
Cardiac progenitor/stem cell therapy	586
Combination stem cell therapy	586
Pluripotent stem cells	586
Future directions	588
References	588

32. Cardiac tissue engineering 593

Yimu Zhao, George Eng, Benjamin W. Lee, Milica Radisic and Gordana Vunjak-Novakovic

Introduction	593
Clinical problem	593
Engineering cardiac tissue: design principles	
and key components	594
Cell source	594
Scaffold	598
Biophysical stimulation	599
Directed cardiac differentiation of human	
stem cells	599
Derivation of cardiomyocytes from human	
pluripotent stem cells	599
Purification and scalable production of stem	
cell-derived cardiomyocytes	601
Scaffolds	601
Decellularization approach	601
Artificial scaffolds	602

	Biophysical cues	604
	Electrical stimulation	604
	Mechanical stimulation	604
	Perfusion	606
	In vivo applications of cardiac tissue	
	engineering	606
	Engineered heart issue	606
	Vascularized cardiac patches	608
	Electrical coupling of cardiomyocytes on the	
	heart	608
	Modeling of disease	609
	Generation of patient-specific	
	cardiomyocytes	609
	Engineered heart tissue models	609
	Cardiac fibrosis	609
	Titin mutation-related dilated	
	cardiomyopathy	611
	Diabetes-related cardiomyopathy	611
	Chronic hypertension induced left ventricle	
	hypertrophy	611
	Barth syndrome	611
	Tissue engineering as a platform for	
	pharmacologic studies	611
	Summary and challenges	612
	Acknowledgments	612
	References	612
33.	Blood vessels	617
	Luke Brewster, Eric M. Brey and	
	Howard P. Greisler	
	Introduction	617
	Normal and pathologic composition of	
	the vessel wall	617
	Developmental biology cues important in	
	vascular tissue engineering	618

Cellular and molecular mediators of graft	(2)(
outcome Conclusion and predictions for the future	626 630
References	630
34. Heart valve tissue engineering	635
Kevin M. Blum, Jason Zakko, Peter Fong, Mark W. Maxfield, Muriel A. Cleary and Christopher K. Breuer	
Introduction	635
Heart valve function and structure	635
Cellular biology of the heart valve	636
Heart valve dysfunction and valvular repair	
and remodeling	637
Heart valve replacement	638
The application of tissue engineering	
toward the construction of a replacement	6.40
heart valve	640
Tissue engineering theory	640
Biomaterials and scaffolds The search for appropriate cell sources	640 643
Cell seeding techniques	644
Bioreactors	645
Neotissue development in tissue engineered	
heart valves	645
Clinical applications of the tissue engineere	
heart valve	647
Conclusion and future directions	648
References	649
Part Ten	
Endocrinology and metabolism	655
35. Generation of pancreatic islets	<
from stem cells	657
Bárbara Soria-Juan, Javier López-Beas, Bernat Soria and Abdelkrim Hmadcha	
Introduction	657
State-of-the-art	657
The challenge of making a β -cell	658
Recent achievements (first generation of	000
pancreatic progenitors used in the clinic)	658
Need of late maturation: cabimer protocol	659

Strategies to maintain cell viability

The concept of cellular medicament

Conclusion

References

Acknowledgments

Encapsulation and tolerogenic strategies

Bioresorbable grafts

The living bioreactor

Hemodialysis vascular access	619
Inflammation and the host response to	
interventions and grafts	620
Host environment and the critical role of the	
endothelium	621
Prevalent grafts in clinical use	622
Vascular tissue engineering	
Early efforts—in vitro tissue-engineered	
vascular grafts	623
Endothelial cell seeding	623
In vitro approaches to tissue-engineered	
vascular grafts	624
In vivo tissue-engineered vascular grafts	625

Conduits

Veins

Arteries

Current status of grafts in patients

Conduit patency and failure

Venous reconstruction

36. Bioartificial pancreas: challenges	
and progress	665

Introduction	665
History of the bioartificial pancreas	666
Replenishable cell sources and encapsulation	666
Macro- or microedevices	667
Factors contributing to biocompatibility of	
encapsulation systems	669
Avoiding pathogen-associated molecular	
patterns in polymers	670
Natural and synthetic polymers	670
Multilayer capsule approaches	670
Antibiofouling approaches	671
Formation of polymer brushes	671
Immunomodulatory materials	672
Intracapsular environment and longevity	
of the encapsulated islet graft	672
Concluding remarks and future	
considerations	673
Acknowledgments	674
References	674

37. Thymus and parathyroid organogenesis

Craig Scott Nowell, Kathy E. O'Neill, Paul Rouse, Timothy Henderson, Ellen Rothman Richie, Nancy Ruth Manley and Catherine Clare Blackburn

Structure and morphology of the thymus	681	
Thymic epithelial cells		
Complexity of the thymic epithelium		
compartment	682	
Functional diversity	683	
In vitro T cell differentiation	683	
Thymus organogenesis		
Cellular regulation of early thymus		
organogenesis	685	
Origin of thymic epithelial cells	686	
Thymic epithelial progenitor cells	686	
Human thymus development	688	
Cervical thymus in mouse and human	688	
Molecular regulation of thymus and		
parathyroid organogenesis	689	
Molecular control of early organogenesis	689	
Transcription factors and regulation of third		
pharyngeal pouch outgrowth	691	
Specification of the thymus and		
parathyroid	692	
Foxn1 and regulation of thymic epithelial cell		
differentiation	695	
Medullary development and expansion	696	

Maintenance and regeneration of thymic	
epithelial cells: Progenitor/stem cells in	
the adult thymus	696
Strategies for thymus reconstitution	697
Summary	698
Acknowledgments	699
References	699

Part Eleven

Gastrointestinal	system	707
------------------	--------	-----

38.	Stem and progenitor cells of the gastrointestinal tract: applications for tissue engineering the intestine	or 709
	Kathryn M. Maselli, Christopher R. Schlieve, Mark R. Frey and Tracy C. Grikscheit	
	Introduction	709
	Stem cells of the intestine	709
	Cell types of the epithelial layer	709
	Stem and progenitor cell types	710
	Signaling pathways in the intestinal	
	epithelium	712
	The Wnt pathway	712
	The Notch pathway	713
	Epidermal growth factor receptor/ErbB	
	signaling	713
	The Hedgehog pathway	714
	The BMP pathway	714
	Tissue engineering the intestine with stem/	
	progenitor cells	714
	Organ-specific stem cell progenitors versus	
	pluripotent stem cells	714
	Synthetic and biological scaffolds	715
	Primary intestinal-derived organoid units	716
	Pluripotent stem cell approaches—human	
	intestinal organoids	717
	Remaining barriers to the generation of	
	tissue-engineered intestine	718
	Conclusion	718
	Acknowledgment	718
	References	718
39.	Liver stem cells	723
	Dagmara Szkolnicka and David C. Hay	
	Introduction	723
	Liver architecture and function	723
	Liver development	723
	Fetal liver stem cells	724
	Hepatocytes and liver progenitors in organ	
	regeneration	724

Molecular signaling and processes involved in	
liver regeneration	724
Hepatocytes' role in liver regeneration	725
Cholangiocytes and liver stem cells in liver	
regeneration	725
Pluripotent stem cell-derived hepatoblasts	
and hepatocytes	726
3D liver organoids and expansion	727
Pluripotent stem cell-derived liver	
organoids	728
Bile duct-derived organoids	728
Hepatocyte-derived organoids	728
Novel scaffolds for liver organoids	729
Organoids as a model to study liver cancer	
disease	730
Reprogramming of human hepatocytes to liver	
progenitors using different culture	
conditions	730
Conclusion	731
References	731
Further reading	736
40. Hepatic tissue engineering	737

Amanda X. Chen, Arnav Chhabra,

Heather E. Fleming and Sangeeta N. Bhatia

Liver disease burden	737
Current state of liver therapies	738
Extracorporeal liver support devices	738
Biopharmaceuticals	738
Liver transplantation	738
Hepatocyte transplantation	740
Current clinical trials	740
In vitro models	740
Two-dimensional liver culture	741
Three-dimensional liver constructs	741
Physiological microfluidic models of liver	742
Controlling three-dimensional architecture	
and cellular organization	742
In vivo models	743
Cell sourcing	743
Cell number requirements	743
Immortalized cell lines	744
Primary cells	744
Fetal and adult progenitors	744
Reprogrammed hepatocytes	744
Extracellular matrix for cell therapies	744
Natural scaffold chemistry and modifications	745
Synthetic scaffold chemistry	745
Modifications in scaffold chemistry	745
Porosity	746
Vascular and biliary tissue engineering	746
Vascular engineering	746
Host integration	747

Biliary network engineering	747
Conclusion and outlook	747
References	748

Part Twelve

Hematopoietic system	755
----------------------	-----

41. Hematopoietic stem cells	
Qiwei Wang, Yingli Han, Linheng Li and	

Pengxu Qian	
Introduction	757
Hematopoietic stem cells and hematopoietic	
stem cells niche	757
Effects of biomaterials on hematopoietic stem	
cells	758
Applications	759
Engineering hematopoietic stem cells niche	
for in vitro expansion	759
Manipulation of the multilineage	
differentiation of hematopoietic stem cells	760
In vivo tracking hematopoietic stem cells	761
Future perspectives	761
Acknowledgments	761
References	761

42. Blood components from
pluripotent stem cells765

Erin A.	Kimbrel	and	Robert	Lanza
---------	---------	-----	--------	-------

Introduction and history of modern	
hematology	765
Red blood cells	765
Megakaryocytes/platelets	769
White blood cells	770
Lymphocytes—T cells	770
Lymphocytes—NK cells	773
Lymphocytes—NKT cells	775
Monocyte-derived dendritic cells	776
Monocyte-derived macrophages	777
Granulocytes—neutrophils	778
Perspectives	779
References	779

43. Red blood cell substitutes 785

Andre Francis Palmer and Donald Andrew Belcher

785 785 785 787 787 789
789

Viscosity and colloid osmotic pressure	789
Cross-linked and polymeric hemoglobin	790
Surface conjugated hemoglobin	790
Encapsulated hemoglobin	791
Sources of hemoglobin	791
Recombinant hemoglobin	792
Erythrocruorins	792
Perfluorocarbons	793
Perspectives	794
Organ transplant preservation	794
Cancer treatment	795
Tissue-engineered construct oxygenation	795
References	795

Part Thirteen Kidney and genitourinary system 803

44. Stem cells in kidney development and regeneration	805
Kyle W. McCracken and Joseph V. Bonventre	
Kidney development	805
Early embryonic origins of nephrogenic	
tissues	806
Development of the nephric duct and	
ureteric bud	808
Maintenance and differentiation of the	
nephron progenitor cell	809
Role of stromal lineages in kidney	
organogenesis	811
Nephron endowment	812
Kidney repair and regeneration	813
Stem cells in kidney repair	813
Sources of nephrogenic cells	814
Differentiation of renal tissue from	
pluripotent stem cells (organoids)	815
Conclusion	817
Disclosures	818
Acknowledgements	818
References	818

45. Tissue engineering of the kidney

Ji Hyun Kim, Anthony Atala and James J. Yoo

Introduction	825
Cell-based tissue engineering of the kidney	826
Cell sources	826
Tissue-engineered cellular three-dimensional	
renal constructs	830
Cell-free tissue engineering of the kidney	
In situ kidney regeneration	835
Granulocyte-colony stimulating factor	835
Stromal cell-derived factor-1	837

	Conclusion and future perspectives Acknowledgment References	837 838 838
46.	Tissue engineering: bladder and urethra	845
	Yuanyuan Zhang, James J. Yoo and Anthony Atala	
	Introduction	845
	Cell sources	846
	Bladder and ureter cells	846
	Stem cell sources	846
	Mechanism of cell therapy	848
	Biodegradable biomaterials	850
	Synthetic scaffolds	850
	Natural collagen matrix	851
	Preclinical models	854
	Tissue regeneration models	854
	Fibrotic bladder model	854
	Clinical trials	856
	Clinical translation	856
	Clinical studies	857
	Conclusion	858
	References	858
47.	Tissue engineering for female reproductive organs	863
	Renata S. Magalhaes, James K. Williams and Anthony Atala	
	Introduction	863
	Uterus	863
	Acellular tissue engineering approaches	
	for uterine tissue repair	864
	Cell-seeded scaffolds for partial uterine repair	864
	Scaffold-free approaches for partial uterine	
	repair	865
	Uterine cervix tissue engineering	865
	Ovary	865
	Tissue engineering ovarian follicles	866
	Vagina	866
	Tissue engineering approaches for neovagina	
	reconstruction	866
	Conclusion and future perspectives	867
	References	867
48 .	Male reproductive organs	871
	Hooman Sadri-Ardekani, John Jackson and Anthony Atala	
	Introduction	871
	Testes	871

871
873
874
874
875
875
875
876
876
877
877

Part fourteenMusculoskeletal system881

49. Mesenchymal stem cells in musculoskeletal tissue engineering	883
Yangzi Jiang, Dan Wang, Anna Blocki and Rocky S. Tuan	
Introduction	883

Introduction	883
Mesenchymal stem cell biology relevant to	
musculoskeletal tissue engineering	883
Mesenchymal stem cell identification	883
Tissue sources of mesenchymal stem cells	885
Mesenchymal stem cell isolation and in vitro	
culture	886
Mesenchymal stem cell self-renewal and	
proliferation capacity	887
Skeletogenic differentiation of mesenchymal	
stem cells	888
Plasticity of mesenchymal stem cells	888
Mesenchymal stem cell heterogeneity	889
Mesenchymal stem cell effect on host	
immunobiology	889
Safety of using mesenchymal stem cells for	
transplantation	891
Mesenchymal stem cells in musculoskeletal	
tissue engineering	891
Cartilage tissue engineering	891
General properties of articular cartilage	892
Cells for cartilage tissue engineering	892
Bone tissue engineering	897
Osteochondral tissue engineering	898
Engineering other skeletal tissues with	
mesenchymal stem cells	899
Tendon/ligament	899
Meniscus	900
Gene therapy in musculoskeletal tissue	
engineering	901
Conclusion and future perspectives	901
Acknowledgments	902
References	902

50.	Bone tissue engineering and bone regeneration	917
	J.M. Kanczler, J.A. Wells, D.M.R. Gibbs, K.M. Marshall, D.K.O. Tang and Richard O.C. Oreffo	
	Introduction	917
	Skeletal stem cells	917
	Fracture repair—the (limited) self-reparative	
	capacity of bone	919
	A framework for bone repair:	
	biomaterial-driven strategies for bone	000
	regeneration	922
	Growth factors: biomimetic-driven strategies	923
	for bone regeneration Bone biofabrication	923 924
	Development of vascular bone	924
	Preclinical development—ex vivo/in vivo	525
	small and large animal preclinical models	926
	Clinical translation	929
	Summary and future perspectives	931
	Acknowledgments	931
	References	931
	disk	937
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J	ver,
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto	ver,
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J	ver,
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function	ver,
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral	937 938
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration	937 938 940
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants	937 937 938 940 940
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants Annulus fibrosus repair and regeneration	937 938 940
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants Annulus fibrosus repair and regeneration Composite cell-biomaterial intervertebral disk	937 938 940 940 942
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants Annulus fibrosus repair and regeneration Composite cell-biomaterial intervertebral disk implants	937 937 938 940 940
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants Annulus fibrosus repair and regeneration Composite cell-biomaterial intervertebral disk implants Cellular engineering for intervertebral disk	937 938 940 940 942 944
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants Annulus fibrosus repair and regeneration Composite cell-biomaterial intervertebral disk implants Cellular engineering for intervertebral disk regeneration	937 938 940 940 942
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants Annulus fibrosus repair and regeneration Composite cell-biomaterial intervertebral disk implants Cellular engineering for intervertebral disk	937 938 940 940 942 944 944
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants Annulus fibrosus repair and regeneration Composite cell-biomaterial intervertebral disk implants Cellular engineering for intervertebral disk regeneration Cell therapy preclinical studies	937 938 940 940 942 944 944 945 946
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants Annulus fibrosus repair and regeneration Composite cell-biomaterial intervertebral disk implants Cellular engineering for intervertebral disk regeneration Cell therapy preclinical studies Cell therapy clinical studies	937 938 940 940 942 944 944 945 946
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants Annulus fibrosus repair and regeneration Composite cell-biomaterial intervertebral disk implants Cellular engineering for intervertebral disk regeneration Cell therapy preclinical studies Cell therapy clinical studies Growth factors and other biologics for intervertebral disk regeneration In vitro studies	937 938 940 940 942 944 945 944 945 946 947 948 948
	Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants Annulus fibrosus repair and regeneration Composite cell-biomaterial intervertebral disk implants Cellular engineering for intervertebral disk regeneration Cell therapy preclinical studies Cell therapy clinical studies Growth factors and other biologics for intervertebral disk regeneration In vitro studies In vivo studies: growth factors	 vver, 937 938 940 940 942 944 945 946 947 948 952
	 Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants Annulus fibrosus repair and regeneration Composite cell-biomaterial intervertebral disk implants Cellular engineering for intervertebral disk regeneration Cell therapy preclinical studies Cell therapy clinical studies Growth factors and other biologics for intervertebral disk regeneration In vitro studies: growth factors In vivo studies: other biologics 	937 938 940 940 942 944 945 944 945 946 947 948 948
	 Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants Annulus fibrosus repair and regeneration Composite cell-biomaterial intervertebral disk implants Cellular engineering for intervertebral disk regeneration Cell therapy preclinical studies Cell therapy clinical studies Growth factors and other biologics for intervertebral disk regeneration In vitro studies: growth factors In vivo studies: other biologics Gene therapy for intervertebral disk 	 937 938 940 940 942 944 945 946 947 948 948 952 953
	 Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants Annulus fibrosus repair and regeneration Composite cell-biomaterial intervertebral disk implants Cellular engineering for intervertebral disk regeneration Cell therapy preclinical studies Cell therapy clinical studies Growth factors and other biologics for intervertebral disk regeneration In vito studies: growth factors In vivo studies: other biologics Gene therapy for intervertebral disk regeneration 	 ver, 937 938 940 940 942 944 945 946 947 948 952 953 953
	 Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants Annulus fibrosus repair and regeneration Composite cell-biomaterial intervertebral disk implants Cellular engineering for intervertebral disk regeneration Cell therapy preclinical studies Cell therapy clinical studies Growth factors and other biologics for intervertebral disk regeneration In vivo studies: growth factors In vivo studies: other biologics Gene therapy for intervertebral disk regeneration Gene transfer studies: viral 	ver, 937 938 940 940 942 944 945 944 945 947 948 947 948 952 953 954
	 Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants Annulus fibrosus repair and regeneration Composite cell-biomaterial intervertebral disk implants Cellular engineering for intervertebral disk regeneration Cell therapy preclinical studies Cell therapy clinical studies Growth factors and other biologics for intervertebral disk regeneration In vito studies: growth factors In vivo studies: other biologics Gene therapy for intervertebral disk regeneration Gene transfer studies: viral Gene transfer studies: nonviral 	ver, 937 938 940 940 942 944 942 944 945 946 947 948 947 948 953 953 954 954
	 Stephen R. Sloan Jr., Niloofar Farhang, Josh Sto Jake Weston, Robby D. Bowles and Lawrence J Bonassar Introduction Intervertebral disk structure and function Cell-biomaterial constructs for intervertebral disk regeneration Nucleus pulposus cell-biomaterial implants Annulus fibrosus repair and regeneration Composite cell-biomaterial intervertebral disk implants Cellular engineering for intervertebral disk regeneration Cell therapy preclinical studies Cell therapy clinical studies Growth factors and other biologics for intervertebral disk regeneration In vivo studies: growth factors In vivo studies: other biologics Gene therapy for intervertebral disk regeneration Gene transfer studies: viral 	ver, 937 938 940 940 942 944 945 944 945 947 948 947 948 952 953 954

In vivo preclinical models for intervertebral	
disk regeneration and replacement	955
Concluding remarks	957
Acknowledgment	957
References	957

52. Articular cartilage injury 967

J.A. Martin, M. Coleman and J.A. Buckwalter

967
968
968
970
970
971
971
972
972
972
973
973
973
973
974
974
974
974
977

53. Engineering cartilage and other structural tissues: principals of bone and cartilage reconstruction 979

Batzaya Byambaa and Joseph P. Vacanti

Introduction	979
Biomaterials for cartilage tissue engineering	979
Cell sources for cartilage tissue engineering	980
Biofabrication of cartilage tissue	981
Magnetic resonance imaging and	
computerized tomography scans	981
Scaffolds for cartilage tissue engineering	981
Bioprinting techniques for fabrication of	
cartilage constructs	982
Bioinks for cartilage tissue printing	982
Osteochondral tissue engineering	985
References	985

54. Tendon and ligament tissue engineering

Spencer P. Lake, Qian Liu, Malcolm Xing, Leanne E. Iannucci, Zhanwen Wang and Chunfeng Zhao

Introduction	989
Tendon and ligament composition, structure,	,
and function	990
Composition	990
Structure	990
Function	990
Requirements for a tissue-engineered	
tendon/ligament	991
Scaffold	992
Cell	994
Bioactive factors	995
Three-dimensional bioprinting and bioink	996
Bioink inspired from ligament and tendon	
structures	997
Tissue engineering tendon and ligament in	
clinical application	998
Summary	999
References	1000

55. Skeletal tissue engineering 1007

Matthew P. Murphy, Mimi R. Borrelli, Daniel T. Montoro, Michael T. Longaker and Derrick C. Wan

Introduction	1007
Distraction osteogenesis	1008
Critical-sized defects	1010
Cellular therapy	1010
Cytokines	1013
Scaffolds	1014
Tissue engineering in practice	1016
Conclusion	1017
References	1017

Part Fifteen

989

Nervous system	1023

56. Brain implants1025

Lars U. Wahlberg

In	ntroduction	1025
С	ell replacement implants	1025
	Primary tissue implants	1025
	Cell line implants	1027
С	ell protection and regeneration implants	1028
	Cell implants secreting endogenous factors	1028
	Cell implants secreting engineered factors	
	(ex vivo gene therapy)	1029
	Encapsulated cell brain implants	1029
	Controlled-release implants	1030
С	ombined replacement and regeneration	
	implants	1030
D	isease targets for brain implants	1031

Surgical considerations	1032
Conclusion	1032
References	1032

57. Brain–machine interfaces 1037

José del R. Millán and Serafeim Perdikis

Introduction	1037
Brain-machine interface signals	1037
Voluntary activity versus evoked potentials	1038
Mutual learning	1040
Context-aware brain-machine interface	1040
Future directions	1041
References	1042

58. Spinal cord injury1047

Nicolas N. Madigan and Anthony J. Windebank

Introduction	1047
Epidemiology	1047
Spinal cord organization	1047
Spinal cord injury	1048
Available clinical interventions	1049
The continuum of physical, cellular, and	
molecular barriers to spinal cord	
regeneration	1049
The role of tissue engineering in spinal cord	
injury repair	1051
Bioengineering for integrated spinal cord	
biocompatibility	1052
Animal models of spinal cord injury	1052
Principles of biomaterial fabrication for	
spinal cord injury repair	1054
spinal cord injury repair Biomaterials for spinal cord tissue	1054
	1054 1058
Biomaterials for spinal cord tissue engineering: natural polymers	
Biomaterials for spinal cord tissue	1058
Biomaterials for spinal cord tissue engineering: natural polymers Extracellular matrix polymers	1058 1058
Biomaterials for spinal cord tissue engineering: natural polymers Extracellular matrix polymers Polymers from marine or insect life	1058 1058 1065
Biomaterials for spinal cord tissue engineering: natural polymers Extracellular matrix polymers Polymers from marine or insect life Polymers derived from the blood	1058 1058 1065
Biomaterials for spinal cord tissue engineering: natural polymers Extracellular matrix polymers Polymers from marine or insect life Polymers derived from the blood Biomaterials for spinal cord tissue	1058 1058 1065 1071
 Biomaterials for spinal cord tissue engineering: natural polymers Extracellular matrix polymers Polymers from marine or insect life Polymers derived from the blood Biomaterials for spinal cord tissue engineering: synthetic polymers Poly α-hydroxy acid polymers 	1058 1058 1065 1071 1072
Biomaterials for spinal cord tissue engineering: natural polymers Extracellular matrix polymers Polymers from marine or insect life Polymers derived from the blood Biomaterials for spinal cord tissue engineering: synthetic polymers	1058 1058 1065 1071 1072 1073
Biomaterials for spinal cord tissue engineering: natural polymers Extracellular matrix polymers Polymers from marine or insect life Polymers derived from the blood Biomaterials for spinal cord tissue engineering: synthetic polymers Poly α-hydroxy acid polymers Nonbiodegradable hydrogels	1058 1058 1065 1071 1072 1073
Biomaterials for spinal cord tissue engineering: natural polymers Extracellular matrix polymers Polymers from marine or insect life Polymers derived from the bloodBiomaterials for spinal cord tissue engineering: synthetic polymers Poly α-hydroxy acid polymers Nonbiodegradable hydrogelsConclusion and future directions:	1058 1058 1065 1071 1072 1073 1077

59. Protection and repair of hearing 1093

Su-Hua Sha, Karl Grosh and Richard A. Altschuler

Introduction	1093
Protection from "acquired" sensory hair cell	
loss	1093
Oxidative stress and stress-related	
mitochondrial pathways	1094

Calcium influx	1094
Endoplasmic reticulum stress	1094
Prevention of ototoxicity	1094
Prevention of acoustic trauma	1096
Antiinflammatory agents	1097
Heat shock proteins	1097
Neurotrophic factors	1098
Protection from excitotoxicity: "acquired"	
loss of auditory nerve connections to hair	
cells	1098
Gene transfer for the prevention and	
treatment of genetic deafness	1099
Interventions for hair cell repair: gene	
therapy for transdifferentiation	1099
Interventions for repair: hair cell and	
auditory nerve replacement—exogenous	
stem cells	1101
Interventions for repair/replacement:	
cochlear prostheses	1101
Fully implantable cochlear prostheses	1101
Interventions for repair/replacement: central	
auditory prostheses	1102
Local delivery to cochlear fluids	1103
Conclusion	1103
Acknowledgments	1103
References	1104
Further reading	1112

Part Sixteen

Ophthalmic

60. Stem cells in the eye

Chao Huang, Julie Albon, Alexander Ljubimov and Maria B. Grant

1113

1115

Introduction	1115
Endogenous ocular stem cells	1115
Corneal stem cells	1115
Stromal stem cells	1119
Endothelial stem cells	1119
Conjunctival epithelial stem cells	1120
The bioengineered cornea	1120
Retinal progenitor cells	1120
Müller stem cells	1121
Retinal pigment epithelium stem cells	1121
Nonocular stem cells	1121
Induced pluripotent stem cells (iPSCs)	1121
Embryonic stem cells/iPSCs in retinal	
regeneration	1121
Bone marrow stem cells	1124
References	1126

UI. Comean replacement ussue	61.	Corneal	replacement tissue	1135
-------------------------------------	-----	---------	--------------------	------

Maria Mirotsou, Masashi Abe and Robert Lanza

Introduction	1135
Corneal anatomy and structure	1135
Epithelium	1136
Stroma	1138
Endothelium	1139
Conclusion	1140
References	1141

62. Retinal degeneration 1145

Epidemiology of visual impairment and	
blindness	1145
Structure/function of the retina and cell types	
affected in retinal degenerative diseases	1145
Age-related macular degeneration	1147
History of retinal pigment epithelium as a	
cellular therapy for age-related macular	
degeneration	1147
Retinal pigment epithelium from pluripotent	
stem cells	1149
Retinitis pigmentosa	1150
Photoreceptors from pluripotent stem cells	1151
Glaucoma	1153
Stem cell-based therapies to treat glaucoma	1154
Diabetic retinopathy	1155
Stem cell-based therapies to treat diabetic	
retinopathy	1155
Future directions and competing therapies	1156
References	1157

63. Vision enhancement systems 1163

Gislin Dagnelie, H. Christiaan Stronks and Michael P. Barry

Introduction	1163	
Visual system, architecture, and (dys)function	1163	
Current- and near-term approaches to vision		
restoration	1166	
Enhancing the stimulus through		
optoelectronic and optical means	1166	
Visual prostheses based on electrical tissue		
stimulation	1167	
Retinal cell transplantation	1170	
Optic nerve protection and regeneration	1171	
Drug delivery	1172	
Genetic interventions	1172	
Emerging application areas for engineered		
cells and tissues	1173	
Photosensitive structures	1174	

Optogenetics	1174
Outer retinal cell transplantation	1177
Cell matrices supporting axonal regrowth	1177
Repopulating ischemic or diabetic retina	1178
Assessing the functional outcomes of novel	
retinal therapies	1178
Conclusion: toward 2020 vision	1179
Acknowledgment	1179
References	1179
Further reading	1183

Part Seventeen

Oral/Dental applications 1185

64.	Biological tooth replacement and repair	1187
	Anthony J. (Tony) Smith and Paul T. Sharpe	
	Introduction	1187
	Tooth development	1187
	Whole tooth-tissue engineering	1189
	Stem cell-based tissue engineering of teeth	1189
	Bioteeth from cell-seeded scaffolds	1189
	Root formation	1190
	Cell sources	1191
	Dental-tissue regeneration	1191
	Natural tissue regeneration	1191
	Importance of the injury-regeneration	
	balance	1192
	Signaling events in dental regeneration	1193
	Control of specificity of dental-tissue	
	regeneration	1193
	Dental postnatal stem cells	1194
	Directed tissue regeneration	1195
	Signaling-based strategies	1195
	Cell- and gene-based strategies	1196
	Conclusion	1197
	References	1197

65. Tissue engineering in oral and maxillofacial surgery

1201

Simon Young, F. Kurtis Kasper, James Melville, Ryan Donahue, Kyriacos A. Athanasiou, Antonios G. Mikos and Mark Eu-Kien Wong

Introduction	1201
Special challenges in oral and maxillofacial	
reconstruction	1201
Current methods of oral and maxillofacial	
reconstruction	1204
Mandibular defects	1205
Maxillary defects	1207

Relevant strategies in oral and maxillofacial		
tissue engineering	1208	
Bone applications	1208	
Cartilage applications	1212	
Oral mucosa applications	1214	
Composite tissue applications	1215	
Animal models	1215	
The future of oral and maxillofacial tissue		
engineering	1216	
References	1216	

66. Periodontal tissue engineering and regeneration 1221

Xiao-Tao He, Rui-Xin Wu and Fa-Ming Chen

Introduction	1221
Stem cells for periodontal bioengineering	1222
Intraoral mysenchymal stem cells	1222
Periodontal tissue-derived stem cells	1223
Stem cells from apical papilla	1224
Dental follicle stem cells	1224
Hertwig's epithelial root sheath	1225
Stem cells from dental pulp or exfoliated	
deciduous teeth	1225
Extraoral mysenchymal stem cells	1225
Bone marrow-derived mysenchymal stem	
cells	1225
Adipose-derived stem cells	1226
Selection of cell types	1226
Signaling molecules	1227
Types of signals	1228
Crucial delivery barriers to progress	1230
Gene delivery as an alternative to growth	
factor delivery	1231
Scaffolding and biomaterials science	1232
Requirements of cell scaffolds	1232
Biomaterial-based immune modulation	1233
Classes of biomaterials	1233
Biomaterial redesign for periodontal	
application	1235
Periodontal bioengineering strategies	1236
Cell-free approaches	1237
Cell-based approaches	1239
Challenges and future directions	1242
Closing remarks	1243
Acknowledgments	1243
References	1243

Part EighteenRespiratory system1251

67. Cell- and tissue-based therapies	
for lung disease	1253

Jeffrey A. Whitsett	, William Zacharias,
Daniel Swarr and	Vladimir V. Kalinichenko

	Introduction: challenges facing cell and		
	tissue-based therapy for the treatment of	4050	
	lung disease	1253	
	Lung morphogenesis informs the process of	1054	
	regeneration	1254	
	Integration and refinement of signaling and transcriptional pathways during lung		
	formation	1256	
	The mature lung consists of diverse	1230	
	epithelial and mesenchymal cell types	1256	
	Structure and function of pulmonary	1230	
	vasculature	1257	
	Embryonic development of alveolar	1237	
	capillaries	1258	
	Evidence supporting lung regeneration	1250	
	A diversity of lung epithelial progenitor/stem	1233	
	cells is active during regeneration	1260	
	Role of lung microvasculature in lung repair	1262	
	Endothelial progenitor cells in lung repair	1262	
	Pulmonary cell-replacement strategies for		
	lung regeneration	1263	
	Induced pluripotent stem cells for study of		
	treatment of pulmonary disease	1263	
	Differentiation of induced pluripotent stem		
	and embryonic stem cells to pulmonary		
	epithelial cell lineages	1264	
	Bioengineering of lung tissues	1265	
	Mesenchymal stromal cells and mesenchymal		
	stromal cell products for the treatment of		
	lung disease	1265	
	Important role of the extracellular matrix in		
	lung structure and repair	1265	
	Tissue engineering for conducting airways	1266	
	Pulmonary macrophage transplantation for th		
	treatment of interstitial lung disease	1266	
	Conclusion	1266	
	Acknowledgments	1266	
	References	1266	
68 .	Lung tissue engineering	1273	
	Micha Sam Brickman Raredon, Yifan Yuan and Laura E. Niklason		
	Introduction	1273	
	Design criteria for pulmonary engineering	1273	

Pulmonary endothelial engineering1277Endothelial cell sources for lung tissue
engineering1278Endothelial seeding into lung scaffolds1278Organomimetic endothelial culture1279

Decellularized scaffolds and biofabrication

Pulmonary epithelial engineering

Mesenchymal support of pulmonary

Proximal airway engineering

Distal airway engineering

approaches

epithelium

	Mesenchymal support of pulmonary microvasculature	1280
	Bioreactor technologies for pulmonary	
	engineering	1280
	Conclusion	1281
	References	1281
	t Nineteen	
Ski	n	1287
69.	Cutaneous epithelial stem cells	1289
	Denise Gay, Maksim V. Plikus, Iris Lee, Elsa Treffeisen, Anne Wang and George Cotsareli	s
	Introduction	1289
	Interfollicular epidermal stem cells Models for skin renewal: epidermal proliferative unit versus committed	1289
	progenitor	1290
	Hair follicle stem cells	1291
	The bulge as stem cell source	1291
	Defining characteristics of the bulge as a	
	stem cell source	1292
	Multiple hair follicle stem cell subpopulation	าร
	by marker expression	1294
	Stem cells of other ectodermal appendages	1295
	Sebaceous glands	1295
	Sweat glands	1296
	Nails	1296
	Hair follicle stem cells in skin homeostasis,	
	wound healing, and hair regeneration	1297
	Homeostasis	1297
	Wound healing	1297
	Wound-induced hair follicle neogenesis and	
	regeneration	1298
	Epithelial stem cells in aging	1298
	Role of stem cells in alopecia	1299
	Skin as an active immune organ	1300
	Cross talk between hair follicles and the	1200
	immune system	1300
	The inflammatory memory of skin cells	1301
	Tissue engineering with epidermal stem cells	
	Epidermal stem cells as a therapy: the future Conclusion	1302 1302
	References	
	References	1302
	Wound repair: basic biology to tissue engineering	1309
	Richard A.F. Clark, Michael Musillo and Thomas Stransky	
	Introduction	1309
	Basic biology of wound repair	1310

	Inflammation	1310
	Transition from inflammation to	
	repair	1310
	Reepithelialization	1310
	Granulation tissue	1312
	Wound contraction and extracellular matrix	
	organization	1316
	Chronic wounds	1317
	Scarring	1318
	Pathological scars	1318
	Scarless healing	1319
	Tissue engineered therapy with skin cells	1320
	Engineered epidermal constructs	1320
	Engineered dermal constructs	1321
	Engineered skin substitutes	1321
	Skin autograft harvesting without scarring	1322
	Tissue-engineered therapy with stem cells,	1522
	bioactives, and biomaterials	1322
	References	1322
	References	1324
71.	Bioengineered skin constructs	1331
	Vincent Falanga	
		1001
	Introduction	1331
	Skin structure and function	1331
	The epidermis	1331
	The dermis	1332
	The process of wound healing	1333
	Impaired healing and its mechanisms	1333
	Acute versus chronic wound healing	1333
	Bacterial colonization	1333
	Growth factor imbalances	1334
	Matrix metalloproteinase activity	1334
	Moist wound healing in chronic wounds	1334
	Ischemia	1334
	Abnormalities at the cellular level	1335
	Engineering skin tissue	1335
	Design considerations	1335
	Commercial considerations	1336
	Process considerations	1337
	Regulatory considerations	1337
	Immunological considerations	1338
	Summary: engineering skin tissue	1338
	Epidermal regeneration	1338
	Dermal replacement	1339
	Bioengineered living skin equivalents	1339
	Bioengineered skin: FDA-approved	
	indications	1340
	Cutaneous indications	1340
	Oral indications	1341
	Apligraf and Dermagraft: off-label uses	1341
	The importance of wound bed preparation	1344
	Proposed mechanisms of action of	
	bioengineered skin	1345
	0	

Construct priming and a new didactic	
paradigm for constructs	1347
Other considerations	1348
Conclusion	1348
References	1349
Further reading	1352

Part Twenty

rait iwenty	
Tissue-engineered food	1353

72.	Principles of tissue engineering for food	1355
	Mark Post and Cor van der Weele	
	Introduction	1355
	Why tissue engineering of food?	1355
	Specifics of tissue engineering for medical	
	application	1356
	Uniqueness	1356
	Function	1356
	Skeletal muscle and fat tissue	
	engineering	1357
	Tissue engineering of skeletal muscle	1357
	Tissue engineering of fat	1359
	Specifics of food tissue engineering	1361
	Scale	1361
	Efficiency	1362
	Taste, texture, juiciness	1362
	Enhanced meat	1363
	Other foods	1363
	Consumer acceptance	1364
	Regulatory pathway	1365
	Conclusion	1365
	References	1365

73. Cultured meat—a humane meat
production system1369

Zuhaib F. Bhat, Hina Bhat and Sunil Kumar

Introduction	1369		
Need and advantages of cultured meat	1370		
Cultured meat	1372		
Scaffolding techniques	1372		
Self-organizing tissue culture	1373		
Organ printing	1375		
Biophotonics	1375		
Nanotechnology	1375		
Challenges and requirements for industrial			
production	1375		
Generation of suitable stem cell lines from			
farm-animal species	1376		
Safe media for culturing of stem cells	1377		
Safe differentiation media to produce muscle			
cells	1377		

Tissue engineering of muscle fibers	1378
Scaffolds	1378
Industrial bioreactors	1379
Fields	1380
Atrophy and exercise	1380
Senescence	1381
Meat processing technology	1381
Associated dangers and risks	1381
Regulatory issues	1381
Consumer acceptance and perception	1382
Role of media in publicity of cultured meat	1382
Market for cultured meat	1382
Conclusion	1383
References	1384

Part Twentyone Emerging technologies

74. Three-dimensional bioprinting for tissue engineering	1391
Jun Tae Huh, James J. Yoo, Anthony Atala and Sang Jin Lee	1
Introduction	1391
3D Bioprinting strategy: from medical	
image to printed bioengineered tissue	1391
Three-dimensional bioprinting techniques	1392
Jetting-based bioprinting	1392
Extrusion-based bioprinting	1394
Laser-assisted bioprinting	1394
Laser-based stereolithography	1395
Digital light processing	1395
Hybrid and other techniques	1396
Biomaterials as bioinks for three-dimensiona	
bioprinting	1396
Hydrogel-based bioinks for cell-based	
three-dimensional bioprinting	1396
Biodegradable synthetic polymers for	
structure-based three-dimensional	
bioprinting	1399
Scaffold-free cell printing	1399
Three-dimensional bioprinting in tissue	
engineering applications	1400
Three-dimensional bioprinted vascular	
structures	1400
In vitro tissue models	1400
Three-dimensional bioprinted implantable	
tissue constructs	1403
Conclusion and future	
perspectives	1409
Abbreviations	1410
Glossary	1410
References	1411

75.	Biofabricated three-dimensional tissue models	1417
	David B. Berry, Claire Yu and Shaochen Cher	ו
	Introduction Current methods of three-dimensional	1417
	biofabrication Biomaterials for three-dimensional	1418
	fabrication	1421
	Three-dimensional tissue models for drug screening, disease modeling, therapeutics,	4 405
	and toxicology	1425
	Conclusion and future directions	1435
	Acknowledgments References	1435 1435
	References	1433
76.	Body-on-a-chip: three-dimensional	
	engineered tissue models	1443
	Thomas Shupe, Aleksander Skardal and Anth Atala	iony
	Introduction	1443
	Advanced in vitro modeling	
	systems-progression from two-dimension	nal
	to three-dimensional models	1444
	Organ-on-a-chip technologies and their	
	applications	1445
	Microengineering and biofabrication	1446
	Liver-on-a-chip	1447
	Vessel-on-a-chip	1447
	Lung-on-a-chip	1448
	Heart-on-a-chip	1448
	Cancer-on-a-chip Pody on a chiny integrated multiorgan	1448
	Body-on-a-chip: integrated multiorgan systems and future applications	1449
	The importance of multiorganoid integration	
	Cutting edge body-on-a-chip: the first highly	
	functional multiorganoid systems	1452
	Conclusion and perspectives	1455
	References	1456
		<i>c</i>
//.	Monitoring and real-time control o tissue engineering systems	t 1459
	Jean F. Welter and Harihara Baskaran	
	Introduction	1459
	Current state-of-the-art	1460
	General environmental monitoring and	
	real-time control	1460
	Tissue-level monitoring	1462
	Mechanical properties	1462
	Cell-level monitoring	1463
	Reporter-based gene expression imaging	1463

Tissue-specific	1463
Cartilage monitoring and real-time control	1463
Skin	1464
Concluding remarks	1464
Acknowledgments	1465
References	1465

78. Biomanufacturing for regenerative
medicine1469

Joshua G. Hunsberger and Darren H.M. Hickerson

Current landscape of biomanufacturing	1469
Highlighting current workflows for	
biomanufacturing	1470
Current challenges in biomanufacturing for	
regenerative medicine	1470
Current platform technologies enabling	
biomanufacturing	1472
Regulatory challenges for biomanufacturing	1473
Food and Drug Administration guidance	
documents	1474
Creating standards	1475
The future: envisioned advanced	
biomanufacturing	1476
Closed-modular biomanufacturing systems	1476
Off-the-shelf products	1477
Preservation advances	1477
Synthetic biology advances	1477
Cell banking advances	1477
Medical applications for biomanufacturing in	
regenerative medicine	1477
Space exploration	1478
References	1479

Part Twentytwo

Clinical	experience	1481

79. Tissue-engineered skin products	1483
Jonathan Mansbridge	
Introduction	1483
Types of therapeutic tissue-engineered skin	
products	1484
Components of tissue-engineered skin	
grafts as related to function	1484

Components of tissue-engineered skin	
grafts as related to function	1484
Scaffold	1484
Keratinocytes	1485
Fibroblasts	1485
Extracellular matrix	1485
Subcutaneous fat	1485
Components of the immune system	1486
Melanocytes	1486
Adnexal structures	1487

	Commercial production of tissue-engineered	
	skin products	1487
	Regulation	1487
	Product development	1487
	Overall concept	1487
	Allogeneic cell source	1488
	Viability of product and avoidance of a final	
	sterile fill	1488
	Shelf life	1488
	Size, user convenience	1489
	The manufacture of Dermagraft and	
	TransCyte	1489
	Cells	1489
	Medium	1489
	Bioreactor design	1490
	The Dermagraft and TransCyte production	1750
	processes	1490
	Release specifications	1490
	Distribution and cryopreservation	1491
	Problems with commercial culture for tissue	
	engineering	1492
	Clinical trials	1492
	Immunological properties of	
	tissue-engineered skin	1493
	Commercial success	1494
	Mechanism of action	1494
	Future developments	1495
	Conclusion	1496
	Conclusion References	1496 1496
	References	
80.		
80.	References	
80.	References Tissue-engineered cartilage products	1496
80.	References Tissue-engineered cartilage	1496 1499
80.	References Tissue-engineered cartilage products <i>Henning Madry</i> Introduction	1496
80.	References Tissue-engineered cartilage products <i>Henning Madry</i>	1496 1499
80.	References Tissue-engineered cartilage products <i>Henning Madry</i> Introduction	1496 1499
80.	References Tissue-engineered cartilage products <i>Henning Madry</i> Introduction Cartilage defects, osteoarthritis, and	1496 1499 1499
80.	References Tissue-engineered cartilage products <i>Henning Madry</i> Introduction Cartilage defects, osteoarthritis, and reconstructive surgical options	1496 1499 1499
80.	References Tissue-engineered cartilage products <i>Henning Madry</i> Introduction Cartilage defects, osteoarthritis, and reconstructive surgical options Cartilage defects pathophysiology	1496 1499 1499
80.	References Tissue-engineered cartilage products Henning Madry Introduction Cartilage defects, osteoarthritis, and reconstructive surgical options Cartilage defects pathophysiology Surgical treatment options for articular cartilage defects	1496 1499 1499 1499 1499
80.	References Tissue-engineered cartilage products Henning Madry Introduction Cartilage defects, osteoarthritis, and reconstructive surgical options Cartilage defects pathophysiology Surgical treatment options for articular cartilage defects Tissue-engineered cartilage products for	1496 1499 1499 1499 1499
80.	References Tissue-engineered cartilage products Henning Madry Introduction Cartilage defects, osteoarthritis, and reconstructive surgical options Cartilage defects pathophysiology Surgical treatment options for articular cartilage defects Tissue-engineered cartilage products for orthopedic reconstruction	 1496 1499 1499 1499 1500
80.	References Tissue-engineered cartilage products Henning Madry Introduction Cartilage defects, osteoarthritis, and reconstructive surgical options Cartilage defects pathophysiology Surgical treatment options for articular cartilage defects Tissue-engineered cartilage products for orthopedic reconstruction Cells for tissue-engineered cartilage repair	1496 1499 1499 1499 1500 1500
80.	References Tissue-engineered cartilage products Henning Madry Introduction Cartilage defects, osteoarthritis, and reconstructive surgical options Cartilage defects pathophysiology Surgical treatment options for articular cartilage defects Tissue-engineered cartilage products for orthopedic reconstruction Cells for tissue-engineered cartilage repair Scaffolds for clinical tissue-engineered	1496 1499 1499 1499 1500 1500
80.	References Tissue-engineered cartilage products Henning Madry Introduction Cartilage defects, osteoarthritis, and reconstructive surgical options Cartilage defects pathophysiology Surgical treatment options for articular cartilage defects Tissue-engineered cartilage products for orthopedic reconstruction Cells for tissue-engineered cartilage repair Scaffolds for clinical tissue-engineered cartilage repair	1496 1499 1499 1499 1500 1500 1500 1501
80.	References Tissue-engineered cartilage products Henning Madry Introduction Cartilage defects, osteoarthritis, and reconstructive surgical options Cartilage defects pathophysiology Surgical treatment options for articular cartilage defects Tissue-engineered cartilage products for orthopedic reconstruction Cells for tissue-engineered cartilage repair Scaffolds for clinical tissue-engineered cartilage repair Collagen scaffolds	1496 1499 1499 1499 1500 1500 1500 1501 1501
80.	References Tissue-engineered cartilage products Henning Madry Introduction Cartilage defects, osteoarthritis, and reconstructive surgical options Cartilage defects pathophysiology Surgical treatment options for articular cartilage defects Tissue-engineered cartilage products for orthopedic reconstruction Cells for tissue-engineered cartilage repair Scaffolds for clinical tissue-engineered cartilage repair Collagen scaffolds Hyaluronan	1496 1499 1499 1499 1500 1500 1500 1501 1501 1502
80.	References Tissue-engineered cartilage products Henning Madry Introduction Cartilage defects, osteoarthritis, and reconstructive surgical options Cartilage defects pathophysiology Surgical treatment options for articular cartilage defects Tissue-engineered cartilage products for orthopedic reconstruction Cells for tissue-engineered cartilage repair Scaffolds for clinical tissue-engineered cartilage repair Collagen scaffolds Hyaluronan Synthetic polymers	1496 1499 1499 1499 1500 1500 1500 1501 1501 1502 1502
80.	References Tissue-engineered cartilage products Henning Madry Introduction Cartilage defects, osteoarthritis, and reconstructive surgical options Cartilage defects pathophysiology Surgical treatment options for articular cartilage defects Tissue-engineered cartilage products for orthopedic reconstruction Cells for tissue-engineered cartilage repair Scaffolds for clinical tissue-engineered cartilage repair Collagen scaffolds Hyaluronan Synthetic polymers Agarose and alginate	1496 1499 1499 1499 1500 1500 1500 1501 1501 1502 1502 1502
80.	References Tissue-engineered cartilage products Henning Madry Introduction Cartilage defects, osteoarthritis, and reconstructive surgical options Cartilage defects pathophysiology Surgical treatment options for articular cartilage defects Tissue-engineered cartilage products for orthopedic reconstruction Cells for tissue-engineered cartilage repair Scaffolds for clinical tissue-engineered cartilage repair Collagen scaffolds Hyaluronan Synthetic polymers Agarose and alginate Scaffold-free three-dimensional systems	1496 1499 1499 1499 1500 1500 1500 1501 1501 1502 1502
80.	References Tissue-engineered cartilage products Henning Madry Introduction Cartilage defects, osteoarthritis, and reconstructive surgical options Cartilage defects pathophysiology Surgical treatment options for articular cartilage defects Tissue-engineered cartilage products for orthopedic reconstruction Cells for tissue-engineered cartilage repair Scaffolds for clinical tissue-engineered cartilage repair Collagen scaffolds Hyaluronan Synthetic polymers Agarose and alginate Scaffold-free three-dimensional systems Bioreactors for tissue-engineered cartilage	1496 1499 1499 1499 1500 1500 1500 1501 1502 1502 1502 1502
80.	References Tissue-engineered cartilage products Henning Madry Introduction Cartilage defects, osteoarthritis, and reconstructive surgical options Cartilage defects pathophysiology Surgical treatment options for articular cartilage defects Tissue-engineered cartilage products for orthopedic reconstruction Cells for tissue-engineered cartilage repair Scaffolds for clinical tissue-engineered cartilage repair Collagen scaffolds Hyaluronan Synthetic polymers Agarose and alginate Scaffold-free three-dimensional systems Bioreactors for tissue-engineered cartilage repair	1496 1499 1499 1499 1500 1500 1500 1501 1501 1502 1502 1502
80.	References Tissue-engineered cartilage products Henning Madry Introduction Cartilage defects, osteoarthritis, and reconstructive surgical options Cartilage defects pathophysiology Surgical treatment options for articular cartilage defects Tissue-engineered cartilage products for orthopedic reconstruction Cells for tissue-engineered cartilage repair Scaffolds for clinical tissue-engineered cartilage repair Collagen scaffolds Hyaluronan Synthetic polymers Agarose and alginate Scaffold-free three-dimensional systems Bioreactors for tissue-engineered cartilage	1496 1499 1499 1499 1500 1500 1500 1501 1502 1502 1502 1502

	Clinical generations of autologous	
	chondrocyte implantation	1503
	Acellular, scaffold-based products	1503
	Particulated autologous or allogenic articular	
	cartilage	1503
	Commercial autologous chondrocyte	
	implantation products	1503
	MACI (Vericel, Cambridge, MA,	
	United States)	1503
	ChondroCelect (TiGenix, Leuven, Belgium)	1504
	Spherox (Co.don, Berlin, Germany)	1504
	Novocart 3D (Tetec, Reutlingen, Germany)	1504
	BioSeed C (Biotissue, Geneva, Switzerland)	1504
	Novocart Inject (Tetec, Reutlingen,	1304
	,	1504
	Germany)	1504
	Chondron (Sewon Cellontech, Seoul, Korea)	1505
	Cartipatch (Tissue Bank of France, Génie	1 5 0 5
	Tissulaire, Lyon, France)	1505
	CARTISTEM (Medipost, Seongnam, Korea)	1505
	Clinical application of autologous chondrocyt	e
	implantation in reconstructive articular	
	cartilage surgery	1505
	Indications for autologous chondrocyte	
	implantation	1505
	Contraindications	1505
	Surgical steps	1506
	Clinical results of autologous chondrocyte	
	implantation	1506
	Overview	1506
	Data from prospective randomized clinical	
	trials	1507
	Long-term results of autologous chondrocyte	
	implantation	1508
	Clinical factors affecting the clinical	
	outcomes of autologous chondrocyte	
	implantation	1508
	Conflict of interest	1509
	References	1509
81.	Bone tissue engineering	1511
•	0 0	
	Hani A. Awad, Regis J. O'Keefe and Jeremy J.	Mao
	Introduction	1511
	Conventional bone tissue engineering	
	strategies: cells, scaffolds, and biofactors	1511
	Delivery of molecules and/or scaffolds to	
	augment endogenous bone regeneration	1512
	Biomaterials development and	
	three-dimensional printing	1513
	Clinical successes and opportunities in	1919
	regenerative repair of craniofacial defects	1516
	Conclusion	1517
	Acknowledgments	
	References	1517 1517
	NEIGIEIILES	131/

82.	Tissue-engineered cardiovascular products	1521
	Doris A. Taylor, Camila Hochman-Mendez, Jo Huelsmann, Abdelmotagaly Elgalad and Luiz C. Sampaio	ern
	Clinical situation/reality Considerations for tissue-engineered	1521
	cardiovascular constructs Components for tissue-engineered	1521
	cardiovascular constructs	1521
	Cell sources	1521
	Scaffolds	1524
	Tissue-engineered cardiovascular constructs	1525
	Vascular grafts	1525
	Valves	1526
	Cardiac patches	1527
	Building the next level of complexity: whole	
	heart	1529
	Pathway to approval and commercialization	1530
	Future perspectives	1532
	References	1532
83.	Tissue organoid models and	
	applications	1537
	Timothy S. Leach, Anthony Dominijanni, Sean V. Murphy and Anthony Atala	
	Introduction	1537
	Cell sources	1537
	Types of organoid models	1538
	Cardiac organoid	1539
	Liver organoid	1540
	Brain organoid	1540
	Lung organoid	1541
	Gastrointestinal tract organoid	1541
	Other organoid models	1542
	Applications	1542
	Tumor and disease models	1542
	Drug analysis	1543
	Organ-on-a-chip	1544
	Developmental biology	1544
	Conclusion	1545
	References	1545

Part Twenty three

Regulation, commercialization and ethics 1551

84. The regulatory process from concept to market 1553

Kyung Eun Sung, Judith Arcidiacono, Donald W. Fink Jr., Andrea Gray, Johnny Lam, Winson Tang, Iwen Wu and Raj K. Puri

Introduction	1553
Regulatory background	1553
Overview of development and approval	
process	1554
Early-stage development	1554
Chemistry, manufacturing, and controls	1555
Pharmacology and toxicology	1555
Clinical	1556
US Food and Drug Administration/sponsor	
meetings	1557
Submitting an investigational new drug	
application	1557
Required US Food and Drug Administration	
forms	1557
Investigational new drug application	
contents	1558
US Food and Drug Administration review	
of an original investigational new drug	
application submission	1559
Later-stage development topics	1559
Compliance with current good	
manufacturing practice	1559
Product readiness for Phase 3	1559
Potency assay	1560
Pharmacology and toxicology	1560
Phase 3 clinical development	1560
Combination products	1561
Tissue-engineered and regenerative medicine	
products	1562
3D bio-printed tissue-engineered/	
regenerative-medicine products	1563
Medical devices	1563
Least burdensome principles	1563
Breakthrough device program	1563
Evaluation of devices used with regenerative	
medicine advanced therapy	1564
Expedited review programs	1564
Other regulatory topics	1565
Minimal manipulation and homologous	
use of human cells, tissues, and cellular an	d
tissue-based products	1565
Clinical research involving children	1566
Expanded access to investigational drugs for	
treatment use	1566
Charging for investigational drugs under an	
investigational new drug application	1566
Responsibilities of sponsors and investigators	1566
Clinical research conducted outside of the	
United States	1568
Use of standards	1568
US Food and Drug Administration	
international regulatory activities	1568
The role of cell-based products in medical	
product testing	1568
Conclusion	1568
Acknowledgments	1568

Appendix I: Code of Federal Regulations		86. Ethical issues	1585
citations relevant to cellular product development	1569	Laurie Zoloth	
Appendix II: The list of acronyms	1569	Introduction	1585
References	1570	Duty and healing: natural makers in a broke world	n 1587
85. Business issues	1573	To make is to know: notes on an old proble	n
Matthew Vincent		about knowledge	1587
		What is a thing? The perils of deconstruction	n 1588
Introduction	1573	What contextual factors should be taken inte	0
The aging population	1573	account, and do any of these prevent the	
Rise of regenerative medicine	1575	development and use of the technology?	1588
Product development	1577	What purposes, techniques, or applications	
Embryonic stem cells	1578	would be permissible and under what	
Induced pluripotent stem cells	1579	circumstances?	1589
Direct reprogramming of differentiated ce	ells 1580	On what procedures and structures, involvir	ıg
Small molecule-induced differentiation	1580	what policies, should decisions on	
Reimbursement	1580	appropriate techniques and uses be based	!? 1590
Conclusion	1582	Conclusion	1590
References	1582	References	1590
		Index	1593

List of contributors

- Masashi Abe Astellas Institute for Regenerative Medicine, Westborough, MA, United States
- Jon D. Ahlstrom PolarityTE, Salt Lake City, UT, United States
- Julie Albon School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
- Julie Allickson Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- **Graça Almeida-Porada** Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston Salem, NC, United States
- Richard A. Altschuler Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States; VA Ann Arbor Health Care System, Ann Arbor, MI, United States
- Daniel G. Anderson Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Anesthesiology, Boston Children's Hospital, Boston, MA, United States; Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, United States; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Nasim Annabi Department of Chemical Engineering, University of California, Los Angeles, Los Angeles, CA, United States
- Judith Arcidiacono Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States

- Nureddin Ashammakhi Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, United States; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States; Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Anthony Atala Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
- **Kyriacos A. Athanasiou** Department of Biomedical Engineering, University of California, Irvine, CA, United States
- Hani A. Awad Department of Biomedical Engineering, The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States
- Stephen F Badylak McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Gowri Balachander National University of Singapore, Singapore, Singapore
- Wayne Balkan Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States; Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
- Jennifer J. Bara Center of Regenerative Medicine, Washington University, St. Louis, MO, United States
- Michael P. Barry Second Sight Medical Products, Los Angeles, CA, United States
- Harihara Baskaran Department of Chemical Engineering, Case Western Reserve University, Cleveland, OH, United States; Case Center for Tissue Engineered Multimodal Evaluation of Cartilage, Cleveland, OH, United States

- Matthew L. Bedell Department of Bioengineering, Rice University, Houston, TX, United States
- **Donald Andrew Belcher** William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, OH, United States
- **David B. Berry** Department of NanoEngineering, University of California, San Diego, La Jolla, CA, United States
- Hina Bhat Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST of Kashmir, Srinagar, India
- Zuhaib F. Bhat Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
- Sangeeta N. Bhatia David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States; Wyss Institute for Biologically Inspired Engineering, Boston, MA, United States; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States
- **Catherine Clare Blackburn** MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Anna Blocki Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
- Kevin M. Blum Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, OH, United States; Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Matthew A. Bochenek Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Anesthesiology,

Boston Children's Hospital, Boston, MA, United States

- Lawrence J. Bonassar Meinig School of Biomedical Engineering, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
- **Joseph V. Bonventre** Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
- Mimi R. Borrelli Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- **Robby D. Bowles** Department Bioengineering, University of Utah, Salt Lake City, UT, United States
- **Amy D. Bradshaw** Deptartment of Medicine, Medical University of South Carolina, Charleston, SC, United States; The Ralph H. Johnson Department of Veteran's Affair Medical Center, Charleston, SC, United States
- Andres M. Bratt-Leal Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States; Aspen Neuroscience, Inc., San Diego, CA, United States
- Christopher K. Breuer Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Luke Brewster Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, United States; Atlanta VA Hospital, Decatur, GA, United States
- **Eric M. Brey** Surgical and Research Services, Edward J. Hines, Jr. VA Hospital, Hines, IL, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
- **Priscilla S. Briquez** Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
- **J.A. Buckwalter** Department of Orthopedics and Rehabilitation, Iowa City Veterans Administration Medical Center, University of Iowa College of Medicine, Iowa City, IA, United States
- Karen J.L. Burg Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, United States

- **Timothy C. Burg** Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, United States
- Batzaya Byambaa 3D BioLabs, LLC, Cambridge, MA, United States
- **Prafulla K. Chandra** Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
- Amanda X. Chen Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- **Fa-Ming Chen** State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
- Shaochen Chen Department of NanoEngineering, University of California, San Diego, La Jolla, CA, United States; Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States; Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, United States; Chemical Engineering Program, University of California, San Diego, La Jolla, CA, United States
- Julian Chesterman New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Arnav Chhabra David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Seow Khoon Chong Nanyang Technological University, Singapore, Singapore
- **Richard A.F. Clark** Departments of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States; Dermatology and Medicine, Stony Brook University, Stony Brook, NY, United States
- Muriel A. Cleary University of Massachusetts Medical School, Worcester, MA, United States
- **M. Coleman** Department of Orthopedics and Rehabilitation, Iowa City Veterans Administration

Medical Center, University of Iowa College of Medicine, Iowa City, IA, United States

- George Cotsarelis Department of Dermatology, Kligman Laboratories, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States
- **Ronald G. Crystal** Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, United States
- Gislin Dagnelie Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, United States
- Mohammad Ali Darabi Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, United States; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
- Jeffrey M. Davidson Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Joseph Davidson Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Paolo De Coppi Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Derfogail Delcassian Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; David H Koch Integrative Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Paul de Vos Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Anthony Dominijanni Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
- **Ryan Donahue** Department of Biomedical Engineering, University of California, Irvine, CA, United States
- Allison P. Drain Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, CA, United States

- Craig L. Duvall Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Jenna L. Dziki McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Abdelmotagaly Elgalad Regenerative Medicine Research, Texas Heart Institute, Houston, TX, United States
- George Eng Department of Biomedical Engineering, Columbia University, New York, NY, United States; College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Vincent Falanga Department of Dermatology, Boston University School of Medicine, Boston, MA, United States; Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States; Wound Biotechnology Foundation, Boston, MA, United States
- Niloofar Farhang Department Bioengineering, University of Utah, Salt Lake City, UT, United States
- Lino Ferreira Faculty of Medicine, Coimbra and Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
- **Donald W. Fink, Jr.** Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
- Heather E. Fleming David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
- **Peter Fong** Flagship Pioneering, Cambridge, MA, United States
- Mark R. Frey Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA, United States; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
- **Denise Gay** Department of Dermatology, Kligman Laboratories, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States

- Sharon Gerecht Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD, United States
- **Charles A. Gersbach** Department of Biomedical Engineering, Duke University, Durham, NC, United States
- **D.M.R. Gibbs** Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Simran Gidwani Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Shaimar R. González Morales Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States; Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, San Antonio, TX, United States; Department of Cell Systems & Anatomy, UT Health Science Center at San Antonio, San Antonio, TX, United States
- **Ritu Goyal** New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Maria B. Grant Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
- Andrea Gray Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
- Howard P. Greisler Cell Biology, Neurobiology, & Anatomy, Departments of Surgery, Loyola University Medical Center, Maywood, IL, United States
- **Tracy C. Grikscheit** Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Surgery, Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA, United States
- Karl Grosh Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States

- Farshid Guilak Department of Orthopaedic Surgery, Washington University, St. Louis, MO, United States; Shriners Hospitals for Children—St. Louis, St. Louis, MO, United States; Center of Regenerative Medicine, Washington University, St. Louis, MO, United States
- Jason L. Guo Department of Bioengineering, Rice University, Houston, TX, United States
- Yingli Han Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, P.R. China
- Joshua M. Hare Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States; Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
- Ammar Mansoor Hassanbhai Nanyang Technological University, Singapore, Singapore
- Konstantinos Hatzistergos Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States; Department of Cell Biology and Physiology, Miller School of Medicine, University of Miami, Miami, FL, United States
- **David C. Hay** MRC Centre for Regenerative Medicine, University of Edinburgh, United Kingdom
- Xiao-Tao He State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
- **Timothy Henderson** MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- **Darren Hickerson** Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- **Darren H.M. Hickerson** Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
- Abdelkrim Hmadcha Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain

- Camila Hochman-Mendez Regenerative Medicine Research, Texas Heart Institute, Houston, TX, United States
- **Chao Huang** Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
- Jeffrey A. Hubbell Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
- Joern Huelsmann Regenerative Medicine Research, Texas Heart Institute, Houston, TX, United States
- Jun Tae Huh Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Joshua G. Hunsberger Regenerative Medicine Manufacturing Society, Winston-Salem, NC, United States
- Leanne E. Iannucci Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Haruhisa Inoue Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
- John Jackson Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Yangzi Jiang Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
- Vladimir V. Kalinichenko Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- J.M. Kanczler Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Jeffrey M. Karp Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States

- **F. Kurtis Kasper** Department of Orthodontics, University of Texas Health Science Center – Houston, Houston, TX, United States
- Ali Khademhosseini Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, United States; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States; Department of Chemical Engineering, University of California, Los Angeles, Los Angeles, CA, United States; Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States; California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, United States
- Ji Hyun Kim Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Erin A. Kimbrel Astellas Institute for Regenerative Medicine, Westborough, MA, United States
- Irina Klimanskaya Astellas Institute for Regenerative Medicine, Westborough, MA, United States
- Joachim Kohn New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Sunil Kumar Division of Livestock Products Technology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST of Jammu, Jammu, India
- **Themis R. Kyriakides** Department of Pathology, Yale University, New Haven, CT, United States
- **Spencer P. Lake** Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, United States
- Johnny Lam Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
- Robert Langer Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- **Robert Lanza** Astellas Institute for Regenerative Medicine, Westborough, MA, United States; Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Timothy S. Leach Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States; Virginia Tech-

Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States

- Benjamin W. Lee Department of Biomedical Engineering, Columbia University, New York, NY, United States; College of Physicians and Surgeons, Columbia University, New York, NY, United States
- **Iris Lee** Bioengineering, University of Pennsylvania School of Engineering, Philadelphia, PA, United States
- Sang Jin Lee Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- **David Li** Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
- Linheng Li Stowers Institute for Medical Research, Kansas City, MO, United States
- Qian Liu Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
- Alexander Ljubimov Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- **Chi Lo** Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Michael T. Longaker Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Javier López-Beas Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain
- Jeanne F. Loring Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States; Aspen Neuroscience, Inc., San Diego, CA, United States
- Ying Luo Lyndra Therapeutics, Watertown, MA, United States
- **Ben D. MacArthur** Faculty of Medicine, School of Mathematics & Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Nicolas N. Madigan Department of Neurology, Regenerative Neurobiology Laboratory, Mayo Clinic, Rochester, MN, United States
- Henning Madry Center of Experimental Orthopaedics, Saarland University, Homburg, Germany

- **Renata S. Magalhaes** Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Nancy Ruth Manley Department of Genetics, University of Georgia, Athens, GA, United States
- Jonathan Mansbridge California Way, Woodside, California, United States
- Jeremy J. Mao Center for Craniofacial Regeneration, Columbia University Medical Center, New York, NY, United States; Department of Pathology and Cell Biology, Columbia University, New York, NY, United States; Department of Orthopedic Surgery, Columbia University Physician and Surgeons, New York, NY, United States; Department of Biomedical Engineering, Columbia University, New York, NY, United States
- **K.M. Marshall** Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- **J.A. Martin** Department of Orthopedics and Rehabilitation, Iowa City Veterans Administration Medical Center, University of Iowa College of Medicine, Iowa City, IA, United States
- **M. Martins-Green** Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, United States
- Kathryn M. Maselli Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Surgery, Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA, United States
- Mark W. Maxfield University of Massachusetts Medical School, Worcester, MA, United States
- Kyle W. McCracken Division of Pediatric Nephrology, Boston Children's Hospital, Boston, MA, United States; Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
- **James Melville** Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center – Houston, Houston, TX, United States
- Antonios G. Mikos Department of Bioengineering, Rice University, Houston, TX, United States
- José del R. Millán Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, United States; Department of Neurology,

University of Texas at Austin, Austin, TX, United States

- Maria Mirotsou Astellas Institute for Regenerative Medicine, Westborough, MA, United States
- **Daniel T. Montoro** Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Matthew P. Murphy Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Sean V. Murphy Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
- Michael Musillo Departments of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
- Padmalosini Muthukumaran Nanyang Technological University, Singapore, Singapore
- Adam M. Navara Department of Bioengineering, Rice University, Houston, TX, United States
- **Christopher E. Nelson** Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
- Laura E. Niklason Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Department of Anesthesiology, Yale University, New Haven, CT, United States
- **Craig Scott Nowell** MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- **Regis J. O'Keefe** Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Kathy E. O'Neill MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- **Richard O.C. Oreffo** Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom

- **Ophir Ortiz** New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Andre Francis Palmer William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, OH, United States
- Serafeim Perdikis Brain–Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
- **M. Petreaca** Department of Biology, DePauw University, Greencastle, IN, United States
- Maksim V. Plikus Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States
- Christopher D. Porada Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston Salem, NC, United States
- Mark Post Department of Physiology, Maastricht University, Maastricht, The Netherlands
- Aleš Prokop Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- **Raj K. Puri** Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
- Pengxu Qian Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, P.R. China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, P.R. China
- Milica Radisic Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Micha Sam Brickman Raredon Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Ellen Rothman Richie Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX, United States

- **Paul Rouse** MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Hooman Sadri-Ardekani Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- W. Mark Saltzman Deaprtment of Biomedical Engineering, Yale University, New Haven, CT, United States
- Luiz C. Sampaio Regenerative Medicine Research, Texas Heart Institute, Houston, TX, United States
- Christopher R. Schlieve Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Surgery, Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA, United States
- **Su-Hua Sha** Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Paul T. Sharpe Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
- V. Prasad Shastri Institute for Macromolecular Chemistry and Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Yanhong Shi Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
- **Thomas Shupe** Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
- **Dario Sirabella** Department of Biomedical Engineering, Columbia University, New York, NY, United States; Department of Medicine, Columbia University, New York, NY, United States
- Aleksander Skardal The Ohio State University College of Engineering, Columbus, OH, United States
- **J.M.W. Slack** Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Stephen R. Sloan, Jr. Meinig School of Biomedical Engineering, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States

- Shay Soker Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
- Bernat Soria Department of Physiology, School of Medicine, University Miguel Hernandez, Alicante, Spain; Institute of Bioengineering Avenida de la Universidad s/n, Alicante, Spain; Department of Regenerative Medicine, University Pablo de Olavide, Sevilla, Spain
- **Bárbara Soria-Juan** University of Pablo de Olavide, Sevilla, Spain; Fundación Jiménez Díaz Health Research Institute, Madrid, Spain
- Frank E. Stockdale School of Medicine, Stanford University, Stanford, CA, United States
- Josh Stover Department Bioengineering, University of Utah, Salt Lake City, UT, United States
- **Thomas Stransky** Departments of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
- H. Christiaan Stronks Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, United States; Department of Otorhinolaryngology, Leiden University, Leiden, The Netherlands
- **Patrick S. Stumpf** Faculty of Medicine, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
- **Kyung Eun Sung** Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
- Daniel Swarr Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Dagmara Szkolnicka Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
- Jun Takahashi Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- **D.K.O. Tang** Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom

- Winson Tang Division of Clinical Evaluation and Pharmacology/Toxicology, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
- **Doris A. Taylor** Regenerative Medicine Research, Texas Heart Institute, Houston, TX, United States
- Yao Teng National University of Singapore, Singapore, Singapore
- Swee Hin Teoh Nanyang Technological University, Singapore, Singapore
- Anthony J. (Tony) Smith University of Birmingham, Birmingham, United Kingdom
- Elsa Treffeisen Department of Dermatology, Kligman Laboratories, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States
- **Rocky S. Tuan** Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
- Joseph P. Vacanti Harvard Medical School, Center for Regenerative Medicine, Massachusetts General Hospital, Cambridge, MA, United States
- **Cor van der Weele** Department of Social Sciences, Wageningen University, Wageningen, The Netherlands
- Matthew Vincent Avacta Life Sciences, Cambridge, United Kingdom
- Gordana Vunjak-Novakovic Department of Biomedical Engineering, Columbia University, New York, NY, United States; Department of Medicine, Columbia University, New York, NY, United States
- Lars U. Wahlberg Gloriana Therapeutics, Inc., Providence, RI, United States
- **Derrick C. Wan** Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Anne Wang Department of Dermatology, Kligman Laboratories, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States
- **Dan Wang** Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China

- Qiwei Wang Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, P.R. China
- Yanling Wang Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States; Department of Neurological Sciences, Rush Medical Center, Chicago, IL, United States
- Yu-li Wang Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
- Zhanwen Wang Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, P.R. China
- Valerie M. Weaver Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, CA, United States; UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, United States; Departments of Bioengineering and Therapeutic Sciences, and Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States
- J.A. Wells Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Jean F. Welter Department of Biology, Case Western Reserve University, Cleveland, OH, United States; Case Center for Multimodal Evaluation of Tissue Engineered Cartilage, Cleveland, OH, United States
- Feng Wen Nanyang Technological University, Singapore, Singapore
- Jake Weston Department Bioengineering, University of Utah, Salt Lake City, UT, United States
- Jeffrey A. Whitsett Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- James K. Williams Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States

- Anthony J. Windebank Department of Neurology, Regenerative Neurobiology Laboratory, Mayo Clinic, Rochester, MN, United States
- Mark Eu-Kien Wong Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center – Houston, Houston, TX, United States
- Stefan Worgall Department of Pediatrics, Weill Medical College of Cornell University, New York, NY, United States; Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, United States
- **Iwen Wu** Division of Clinical Evaluation and Pharmacology/Toxicology, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
- **Rui-Xin Wu** State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
- Virginia Y. Xie Department of Bioengineering, Rice University, Houston, TX, United States
- Malcolm Xing Department of Mechanical Engineering, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Department of Biochemistry & Genetics, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Kenneth M. Yamada Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States; Department of Cell Systems & Anatomy, UT Health Science Center at San Antonio, San Antonio, TX, United States
- Shinya Yamanaka Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, CA, United States
- James J. Yoo Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Simon Young Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center – Houston, Houston, TX, United States
- **Claire Yu** Department of NanoEngineering, University of California, San Diego, La Jolla, CA, United States
- Hanry Yu National University of Singapore, Singapore, Singapore

- Yifan Yuan Department of Anesthesiology, Yale University, New Haven, CT, United States
- William Zacharias Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Jason Zakko Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, OH, United States; Department of Surgery, Ohio State University, Wexner Medical Center, Columbus, OH, United States
- Ai Zhang Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States; Aspen Neuroscience, Inc., San Diego, CA, United States

- Yuanyuan Zhang Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Zheng Zhang New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- **Chunfeng Zhao** Department of Orthopedic Surgery and Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Yimu Zhao Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Laurie Zoloth University of Chicago, Chicago, IL, United States

Preface

The first edition of *Principles of Tissue Engineering* was published almost a quarter-of-a-century ago—back in the 1990s when the term "tissue engineering" was first coined—and quickly became the most widely relevant and cited textbook in the field. Since that time there have been powerful developments, including breakthroughs at all stages of development, ranging from two Nobel Prizes for pioneering work in the area of stem cells, which could be used as an unlimited source of cells for repair and engineering of tissues and organs, to actual clinical therapies, ranging from skin and bladder replacement to cartilage, bone, and cardiovascular repair.

The fifth edition of "Principles" covers all of this tremendous progress as well as the latest advances in the biology and design of functional tissues and organs for repair and replacement, from mathematical models to clinical reality. We have also added Anthony Atala, the W.H. Boyce Professor and Director of the Wake Forest Institute for Regenerative Medicine, as a new editor and have expanded the book to include a new section on emerging technologies, including 3D bioprinting and biomanufacturing for tissue-engineering products. As in the previous editions, the book attempts to simultaneously connect the basic sciences with the potential application of tissue engineering to diseases affecting specific organ systems. While the fifth edition furnishes a much needed update of the rapid progress that has been achieved in the field in the last 6 years, we have retained the fundamentals of tissue engineering, as well as those facts and sections which, while not new, will assist scientists, clinicians, and students in understanding this exciting area of biology and medicine.

The fifth edition of "Principles" is divided into an introductory section, followed by 23 parts starting with the basic science of the field and moving upward into applications and clinical experience. The organization

remains largely unchanged, combining the prerequisites for a general understanding of cellular differentiation and tissue growth and development, the tools and theoretical information needed to design tissues and organs, as well as a presentation by the world's experts of what is currently known about each specific organ system, including breast, endocrine and metabolism, ophthalmic, oral/dental applications, skin, and the cardiovascular, gastrointestinal, hematopoietic, kidney and genitourinary, musculoskeletal, nervous, and respiratory systems. We have again striven to create a comprehensive book that, on one hand, strikes a balance among the diversity of subjects that are related to tissue engineering, including biology, chemistry, material science, medicine, and engineering, while emphasizing those research areas that are likely to be of clinical value in the future.

While we cannot describe all of the new and updated material of the fifth edition, we continue to provide expanded coverage of stem cells, including neonatal, postnatal, embryonic, and induced pluripotent stem cells and progenitor populations that may soon lead to new tissueengineering therapies for cardiovascular disease, diabetes, and a wide variety of other diseases that afflict humanity. This up-to-date coverage of stem cell biology and other emerging technologies is complemented by updated chapters on gene therapy, the regulatory process, and the challenges of tissue engineering for food and in vitro meat production, which someday may end up a routine part of our food system, potentially reducing environmental pollution and land use. As with previous editions, we believe the result is a comprehensive textbook that will be useful to students and experts alike.

Robert Lanza, Robert Langer, Joseph Vacanti and Anthony Atala

Chapter 1

Tissue engineering: current status and future perspectives

Prafulla K. Chandra, Shay Soker and Anthony Atala

Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States

Clinical need

Tissue and organ failure due to disease, injury, and developmental defects has become a major economical and healthcare concerns [1]. At present, use of donated tissues and organs is the clinical practice to address this situation. However, due to the shortage of organ donors, the increasing number of people on the transplant waiting lists, and an ever-increasing aging population, dependence on donated tissues and organs is not a practical approach. In addition, due to severe logistical constraints, many organs from donors cannot be matched, transported, and successfully transplanted into a patient within the very limited time available. In the United States alone, more than 113,000 people are on the National Transplant Waiting list and around 17,000 people have been waiting for more than 5 years for an organ transplant (US Department of Health and Human Services, Organ Procurement and Transplantation network; https://optn. transplant.hrsa.gov; data as of February, 2019). To address this critical medical need, tissue engineering (TE) has become a promising option. TE and regenerative medicine (RM) are multidisciplinary fields that combine knowledge and technologies from different fields such as biology, chemistry, engineering, medicine, pharmaceutical, and material science to develop therapies and products for repair or replacement of damaged tissues and organs [2,3].

The process of TE is multistep and involves engineering of different components that will be combined to generate the desired neo-tissue or organ (Fig. 1.1). Today, this field has advanced so much that it is being used to develop therapies for patients that have severe chronic disease affecting major organs such as the kidney, heart, and liver. For example, in the United States alone, around 5.7 million people are suffering from

Principles of Tissue Engineering. DOI: https://doi.org/10.1016/B978-0-12-818422-6.00004-6 Copyright © 2020 Elsevier Inc. All rights reserved. congestive heart failure [5], and around 17.9 million people die or cardiovascular diseases globally (World Health Organization data on Cardiovascular disease; https://www.who.int/cardiovascular_diseases/en/). TE can help such patients by providing healthy engineered tissues (and possibly whole organ in future) to replace their diseased tissue for restoring function. For example, chronic kidney disease (CKD) is a worldwide health crisis that can be treated, but it also depends on organ donation. In the United States alone, around 30 million people are suffering from CKD (Center for Disease Control & Prevention; National Chronic Kidney Disease Fact Sheet 2017; https://www.cdc.gov/kidneydisease/pdf/ kidney factsheet), while close to 10% of the population is affected worldwide. Liver disease is another healthcare problem, which is responsible for approximately 2 million deaths per year worldwide [6]. Other diseases or conditions that can benefit from TE technologies include skin burns, bone defects, nervous system repair, craniofacial reconstruction, cornea replacement, volumetric muscle loss, cartilage repair, vascular disease, pulmonary disease, gastrointestinal tissue repair, genitourinary tissue repair, and cosmetic procedures. The field of TE, with its goal and promise of providing bioengineered, functional tissues, and organs for repair or replacement could transform clinical medicine in the coming years.

Current state of the field

TE has seen continuous evolution since the past two decades. It has also seen assimilating of knowledge and technical advancements from related fields such as material science, rapid prototyping, nanotechnology, cell biology, and developmental biology. Specific advancements that have benefited TE as a field in recent years include novel

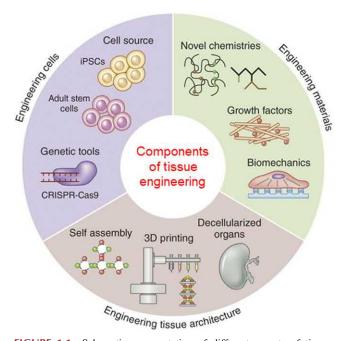
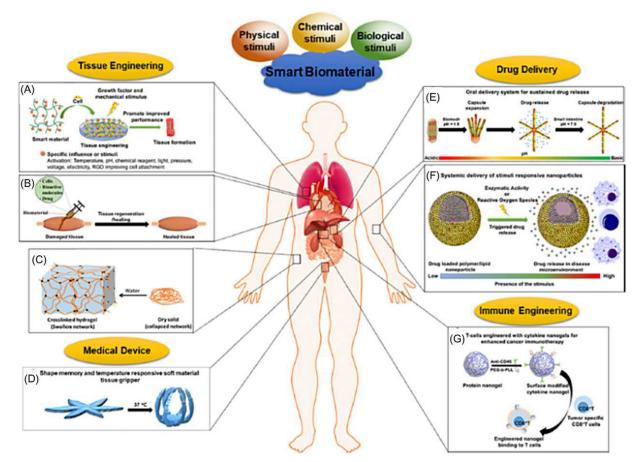


FIGURE 1.1 Schematic representation of different aspects of tissue engineering. Each component (materials, cells, and tissue architectures) can be engineered separately or in combination to achieve the therapeutic goals. *Reprinted with permission from Khademhosseini A., Langer R. A decade of progress in tissue engineering. Nat Protoc* 2016;11 (10):1775–81. doi: 10.1038/nprot.2016.123 [4]. ©2016 Springer Nature Publishing AG.

biomaterials [7], three-dimensional (3D) bioprinting technologies [8], integration of nanotechnology [9], stemcell technologies such as induced pluripotent stem cells (iPSCs) [9,10], and gene editing technology such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) [11]. All these have led to promising developments in the field that include smart biomaterials, organoids, and 3D tissue for disease modeling and drug development, whole organ engineering, precise control and manipulation of cells and their environments, and personalized TE therapies.

Biomaterials are critical components of many current TE strategies. Recent developments in this field that are benefiting TE include synthesis of new biomaterials that can respond to their local environment and cues (smart biomaterials). Advancements in 3D bioprinting technologies are at the core of many developments in TE. It is now possible to print multiple biocompatible materials (both natural and synthetic), cells, and growth factors together into complex 3D tissues, many with functional vascular networks, which match their counterparts in vivo. We have also learned a great deal about cell sourcing, culture, expansion, and control of differentiation. This is also true for stem cells, where new sources such as placenta, amniotic fluid, and iPSCs have been explored and optimized for use. Vascularization and innervation in bioengineered tissue is a continuing challenge essential to warrant sustained efforts success of tissues implanted in vivo would be very low. Therefore there is a need for greater understanding of vascularization and innervation as applied to bioengineered tissues. This is an ongoing effort, and the results we are seeing from various studies are encouraging. Biofabrication technologies are playing a great role in this regards.


Several engineered tissues are moving toward clinical translation or are already being used in patients. These include cartilage, bone, skin, bladder, vascular grafts, cardiac tissues, etc. [12]. Although, complex tissues such as liver, lung, kidney, and heart have been recreated in the lab and are being tested in animals, their clinical translation still has many challenges to overcome. For in vitro use, miniature versions of tissues called organoids are being created and used for research in disease modeling, drug screening, and drug development. They are also being applied in a diagnostic format called organ-on-achip or body-on-a-chip, which can also be used for the above stated applications. Indeed, the development of 3D tissue models that closely resemble in vivo tissue structure and physiology are revolutionizing our understanding of diseases such as cancer and Alzheimer and can also accelerate development of new and improved therapies for multiple diseases and disorders. This approach is also expected to drastically reduce the number of animals that are currently being used for testing and research. In addition, 3D tissue models and organ-on-a-chip or body-on-achip platforms can support advancement of personalized medicine by offering patient-specific information on the effects of drugs, therapies, environmental factors, etc.

Development of advanced bioreactors represent another recent developments that are supporting clinical translation of TE technologies. Such bioreactors can better mimic in vivo environments by provide physical and biochemical control of regulatory signals to cells and tissue being cultured. Examples of such control include application of mechanical forces, control of electrical pacing, dynamic culture components, induction of cell differentiation. Incorporation of advanced sensors and imaging capabilities within these bioreactors are also allowing for real-time monitoring of culture parameters such as pH, oxygen consumption, cell proliferation, and factor secretion from a growing tissue. 3D modeling is also a new tool relevant to TE that provides great opportunities and better productivity for translational research, with wide clinical applicability [13]. Recent advancements in specific field that are helping advance TE are discussed next.

Smart biomaterials

Smart biomaterials are biomaterials that can be designed to modulate their physical, chemical, and mechanical

properties in response to changes in external stimuli or local physiological environment (Fig. 1.2) [14,15]. Advances in polymer synthesis, protein engineering, molecular self-assembly, and microfabrication technologies have made producing these next-generation biomaterials possible. These biomaterials can respond to a variety of physical, chemical, and biological cues such as temperature, sound, light, humidity, redox potential, pH, and enzyme activity [16,17]. Other unique characteristics displayed by some smart biomaterials are self-healing or shape-memory behavior [18]. The development of biomaterials with highly tunable properties has been driven by the desire to replicate the structure and function of extracellular matrix (ECM). Such materials can enable control of chemical and mechanical properties of the engineered tissue, including stiffness, porosity, cell attachment sites, and water uptake. For hydrogels, use of reversible crosslinking through physical methods, self-assembly, or thermally induced polymer chain entanglement is creating hydrogels that undergo structural changes in response to external stimuli [19,20]. Another class of hydrogels that are recent developments is called self-healing and shear thinning hydrogels. These materials are now being used to develop injectable biomaterials, which have low viscosity during application (injection) due to shear thinning and once at their target site, they self-crosslink (or heal) to fill the defect site [21]. Injectable biomaterials are also often loaded with drugs, biologics, and cells. For example, Montgomery et al. created an injectable shapememory biomaterial for minimally invasive delivery of functional tissues [22]. In other applications, tissue glues are being developed using smart biomaterials, where they are used to bond and allow the tissue to self-heal. An example of this approach is a study by Bhagat and Becker

FIGURE 1.2 Different applications of smart biomaterials in the fields of tissue engineering and related fields. (A) Stimuli-responsive material that can promote cell differentiation and tissue growth; (B) injectable biomaterial loaded with cells, drugs, or bioactive molecules can be delivered less-invasively and can promote healing of tissue at the target damage site; (C) swelling polymer can be delivered as small scaffolds but can expand in vivo to achieve 3D structure of the target defect after exposure to water; (D) shape-memory and temperature-responsive soft material can be used as a tissue adhesive; (E) star-shaped delivery system for sustained drug release in the gastrointestinal tract; (F) nanoparticle-based stimuli-responsive drug delivery system for systemic application; (G) materials for enhanced cancer immunotherapy using targeted delivery of chimeric antigen receptor T cell. *3D*, Three-dimensional. *Reprinted with permission from Kowlaski PS, Bhattacharya C, Afewerki S, Langer R. Smart biomaterials: recent advances and future directions. ACS Biomater Sci Eng 2018;4(11):3809–17 [14].* ©2018 American Chemical Society.

who created a chondroitin-based tissue glue that helps direct improved tissue repair [23].

The ECM is a complex and dynamic structural scaffold for cells within tissues and plays an important role in regulating cell function [1]. Given the role of the ECM in structural support of tissues, there has been significant effort in developing ECM-based scaffolds for TE and RM [24,25]. However, as with all materials implanted into the body, the immune response significantly influences the ability of scaffold-containing engineered tissues to integrate and functionally interact with the host [26]. Thus an emerging strategy in TE is to design materials that can directly control the host immune response [27]. For example, the Arg-Gly-Asp (RGD) of ECM proteins can exert immunomodulatory effects on both innate and adaptive immune cells while also having an inhibitory effect on phagocytosis and neutrophil chemotaxis [28]. In the context of TE, synthetic ECM-mimetic hydrogels containing the RGD sequence have been shown to cause increased cellular adhesion on polymer scaffolds and also have an antiinflammatory effects from macrophages [29,30]. Under certain conditions, the RGD peptides have also been found to effect cytokine secretion from T cells [31]. Therefore use of RGD as part of TE scaffolds or hydrogels can be used to enhance cells adhesion in addition to controlling the ability of macrophages to degrade and remodel the surrounding tissue environment.

Matrix metalloproteinases (MMPs) are a family of proteases that not only selective degrade a wide variety of ECM proteins but also interact with bioactive molecules, some of which have immunomodulatory effects [32,33]. So, another strategy to control the extent of matrix remodeling, integration of engineered tissues into native host tissues or invasion of immune cell into implanted materials could be by incorporating MMP-sensitive peptides into the TE constructs. Examples of this approach include studies by Patterson and Hubbell, who showed that the rate of scaffold material degradation depends on the MMP-sensitive peptide sequence, the type of MMP, and also the MMP concentrations [34]. In a separate study, West and Hubbell created biomimetic poly(ethylene glycol) (PEG) hydrogels that incorporated peptides that could be degraded by either a fibrinolytic protease (plasmin) or a fibroblast collagenase (MMP-1) [35,36]. One drawback of this using MMP-sensitive peptides in TE constructs is their immunogenicity and more work will be needed to get around this issue. Possibly, use of immunomodulatory domains along with MMP-sensitive peptides could support long-term viability and integration within native host tissues.

Another category of smart biomaterials is multidomain peptides (MDPs) hydrogels. These are injectable ECM mimetic materials that are engineered to form selfassembling meshes at the target site [37,38]. These MDPs can also control cellular behavior. For example, in a mouse study by Moore et al., MDPs alone were found to be biocompatible and had prohealing effects in vivo [39]. Hydrogel have also been prepared from multiple ECM mimetic peptides for the purpose of enhancing the viability of the biomaterial in vivo. Smart biomaterials are going to have a big impact on 3D printing of tissues and organs. By combining smart biomaterials with 3D bioprinting, a wide variety of architectures can be created which can further offer control over how these materials perform in a biological environments. Smart biomaterials can also be made from proteins. Some protein-protein interactions can be utilized to physically crosslink protein chains, while small coiled-coil domains within some proteins (called leucine zippers) can self-assemble into superhelical structures. Leucine zippers have been used to make hydrogels by physically crosslinking protein domains [40]. The stability of the leucine zipper selfassembly (and hence the hydrogel) can be controlled by changing the temperature. Another way to control the stability of some protein-based hydrogels is by arrangement of the interacting domains [41].

One drawback of hydrogels made of self-interacting protein domains is their low-to-moderate mechanical properties, which is not ideal for TE applications. However, these week interactions can be reinforced by introducing covalent bonds into the network (e.g., disulfide bonds between cysteine in the protein chains). This will not only improve the mechanical properties of the hydrogel but also its stability [42].

Cell sources

For TE, a variety of cell types are now being used. They include autologous, allogeneic, progenitors, adult unipotent or multipotent stem cells and iPSCs (Fig. 1.3). For some applications, the ability to expand a sufficient number of autologous cells from a small biopsy is wellestablished [44]. A good example is bladder augmentation, where smooth muscle and urothelium can be easily isolated from then native tissue, expanded in culture and used for engineering a new bladder tissue. However, in many cases, it is challenging to harvest and/or expand enough appropriate autologous cells for this purpose. Examples of such cell types include hepatocytes, kidney cells, insulin-producing pancreatic beta cells, cardiomyocytes, neurons. New sources or methods to obtain these cell types in quantities can advance engineering of these tissues/organs and significantly benefit treatment of associated diseases. Immature precursor cells present within tissue such as skin, cartilage, muscle, and bladder are essential for the expansion of corresponding cells from biopsies and enabling engineering of neo-tissues [45]. The extension of this approach to other tissue and organ

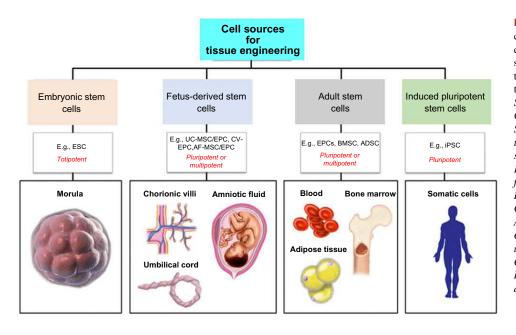


FIGURE 1.3 Different sources of cells for tissue engineering. Fetusderived and induced pluripotent stem cells are gaining more attention for tissue engineering applications. Reprinted from Al-Himdani S, Jessop ZM, Al-Sabah A, Combellack E, Ibrahim A, Doak SH, et al. Tissue-engineered solution in plastic and reconstructive surgery: principles and practice. Front Surg 2017;4:4. doi: 10.3389/ fsurg.2017.00004. [43]. ©2017 Al-Al-Sabah, Himdani. Jessop. Combellack, Ibrahim, Doak, Hart, Archer, Thornton and Whitaker. Open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). Some portions of the original artwork have been modified.

systems will depend greatly on finding sources of appropriate stem and progenitor cells.

Three major stem-cell sources are currently under intensive investigation:

- embryonic stem (ES) cells, which are derived from discarded human embryos, and the equivalent embryonic germ (EG) cells;
- **2.** iPSCs derived by genetic reprograming of somatic cells; and
- **3.** Autologous or allogeneic adult tissue stem cells (sourced from fetal, neonatal, pediatric, or adult donor tissue).

Shared features of all stem cells include their capacity self-renewal and their ability to give rise to particular classes of differentiated cells. The ES, EG, and iPSCs can serve as precursors for many specialized cell type found during normal development and therefore are pluripotent. Adult stem cells are generally restricted to limited sets of cell lineages, hence called unipotent (constrained to a single fate) or multipotent (can give rise to multiple cell types). It appears likely that multiple tissue-engineered products based on each class of stem-cell source will be tested in the clinic in the coming years. Previous clinical and commercial experience sheds light on key differences between personalized products containing autologous cells and off-the-shelf products containing allogeneic cells. The vast majority of human studies till date have focused on using either adult stem or progenitor cells. More recently, clinical trials have begun with tissueengineered products derived from pluripotent stem cells and their future looks promising.

The first clinical tissue-engineered products to achieve marketing approval from the US Food and Drug Administration (FDA) were skin substitutes that were used for wound healing. Examples of such products include Dermagraft (Shire Regenerative Medicine Inc., CT, United States) and Apligraf (Organogenesis, MA, United States), which were off-the-shelf products that used cells (fibroblasts for Dermagraft and fibroblasts plus keratinocytes for Apligraf) expanded from donated human foreskins. Whereas fibroblasts have been cultured in vitro since the early 20th century, the successful large-scale culture of human keratinocytes represented an important breakthrough for RM [46]. The success of off-the-shelf skin substitutes can be attributed to the lack of antigenpresenting cells, because of which they were not acutely rejected despite the inevitable histocompatibility mismatches between donors and recipients [47,48]. Eventually, the cells in the skin substitutes could be rejected, but the grafts has enough time for patients' own skin cells to regenerate. This stands in contrast to standard tissue/organ transplantation in which immune rejection is a major concern and immunosuppressive drug therapy is generally part of the application of allogeneic grafts [49]. Tissue-engineered products based on harvesting and expanding autologous cells containing stem and/or progenitor populations have also been developed successfully. Prominent examples include Epicel (Genzyme, MA, United States), a permanent skin replacement product based on expanded keratinocytes for patients with lifethreatening burns, and Carticel (Genzyme, MA, United States), a chondrocyte-based treatment for large articular cartilage lesions [50,51].

Embryonic stem cells

ES cells and EG cells are indeed quite similar to early germ cells, with an apparently unlimited self-renewal capacity and pluripotency. Their great degree of plasticity represents both a strongest virtue and a significant potential limitation to their use in TE. A major ongoing challenge is in efficiently obtaining pure populations of specific desired specialized cell types from human ES cells [52,53]. Efforts during recent years have yielded more robust methods to isolate and grow ES cells under conditions consistent with Good Manufacturing Practice (GMP) and to generate differentiated cell products. While initial efforts have focused on cell therapies, these advances will positively impact production of tissueengineered constructs using ES cells. Human ES cells are considerably more difficult to isolate and maintain stably in culture than the cell types that have previously been used in clinical testing. However, they can now be derived, grown, and cryopreserved without exposure to nonhuman cells or proteins, even under a GMP environment [54,55]. In the future, use of bioreactors, microcarriers, along with improved xeno-free and serum-free media and possibly small molecules that inhibit spontaneous differentiation of these cells would facilitate expansion of these stem cells to population sizes that are normally required for product development and clinical application [56,57].

Human tissues include more than 200 distinct cell types, and ES cells, in principle, can give rise to all of them. The historical approach of allowing ES cells to differentiate spontaneously has now been supplanted. Current strategies employ staged differentiation guided by knowledge of signaling events that regulate normal embryonic development [58]. For example, fine tuning of the exposure of early embryonic cells to the growth factor Nodal (a member of the transforming growth factor beta or TGF- β family) or its analog Activin A, in conjunction with other growth factors or small molecules, can now allow consistent generation of endoderm-specific cells from ES cells in vitro [59,60]. This is an early, but key milestone in a multistep process to generate differentiated cells that can eventually be used for TE of tissues/ organs like the liver and pancreas. Conversely, inhibition of Nodal/Activin signaling favors the production of ectoderm specific cells, a precursor for neural lineage cells [61].

Despite substantial challenges, the first ES-cellderived therapeutic product to enter clinical trials was the human ES-cell-derived oligodendrocyte progenitors (Geron Corporation; CA, United States) for stimulating nerve process growth in subjects with spinal cord injury [62]. Similarly, ES-cell-derived retinal pigment epithelium cells (Advanced Cell Technology, now Astellas Institute for Regenerative Medicine; CA, United States) were used in clinical trials in patients to treat Stargardt's macular dystrophy and dry age-related macular degeneration. Encouraging results from such clinical studies using ES cell-derived product will have a positive impact to develop tissue-engineered products from pluripotent stem cells in the near future. Areas of clear unmet medical need that might benefit from stem-cell-derived products include type 1 diabetes and Parkinson's disease. For type 1 diabetes, research at a biotech company called Viacyte Inc. (CA, United States) similarly pursued the produced progenitors of pancreatic endocrine cells from human ES cells using growth factors and hormones [63]. The progenitor cells from the final-stage differentiation in vitro were able to mature further in vivo to yield glucoseresponsive β -like cells [64]. As a potential therapy for Parkinson's disease, significant advances have been made in the production of functional midbrain dopaminergic neurons by staged differentiation from ES cells [65,66]. Studies in the past few years have demonstrated that efficient grafting of these cells can lead to physiological correction of symptoms in several animal models, including nonhuman primates [67]. A particular safety concern is that undifferentiated pluripotent ES and iPS cells form teratomas in vivo. The risk of tumorigenicity makes it essential to rigorously determine the residual level of undifferentiated stem-cell population in any therapeutic product derived from ES or iPS cells [68]. It will also be valuable to determine whether a small number of undifferentiated pluripotent stem cells can be introduced into human patients without significant risk of tumor growth and if this threshold is influenced by use of immune suppressive drugs during treatment.

Induced pluripotent stem cells

Theoretically, the development of iPSCs represent the most direct way to ensure immune compatibility of tissue-engineered products when the recipient themselves serve as the donor. Generation of iPSCs through reprograming of mature somatic cells to a pluripotent state was first accomplished by ectopic expression of four transcription factors: OCT4 and SOX2, both with KLF4 and c-MYC [69] or NANOG and LIN28 [70]. The resulting iPSCs closely resembled ES cells in key properties such as the capacity for extensive self-renewal, ability to differentiate to multiple cell lineages, and generation of teratomas in vivo. Initial studies on reprograming of fibroblasts soon were extended to a variety of other cell types such as peripheral blood cells [71], cord blood cells [72], keratinocytes from hair shafts [73], and urinederived cells [74]. Many recent developments have advanced this reprograming technology toward a safer, efficient translation toward therapeutic products. Also,