
Physiology of the Gastrointestinal Tract
Sixth Edition



Physiology of the 
Gastrointestinal Tract
Sixth Edition
Volumes 1 and 2

Editor-in-Chief

Hamid M. Said
Departments of Medicine and Physiology/Biophysics
University of California-School of Medicine
Irvine, CA, United States

Associate Editors

Fayez K. Ghishan
Department of Pediatrics
Steele Children’s Research Center
University of Arizona Health Sciences Center
Tucson, AZ, United States

Jonathan D. Kaunitz
Greater Los Angeles VA Healthcare System
Departments of Medicine and Surgery
UCLA School of Medicine
Los Angeles, CA, United States

Juanita L. Merchant
Departments of Internal Medicine and Molecular and Integrative Physiology
University of Michigan
Ann Arbor, MI, United States

Jackie D. Wood
Departments of Physiology and Cell Biology and Internal Medicine
College of Medicine, The Ohio State University
Columbus, OH, United States



Academic Press is an imprint of Elsevier
125 London Wall, London EC2Y 5AS, United Kingdom
525 B Street, Suite 1800, San Diego, CA 92101-4495, United States
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

© 2018 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, 
including photocopying, recording, or any information storage and retrieval system, without permission in writing from 
the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our 
arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be 
found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as 
may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our 
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any 
information, methods, compounds, or experiments described herein. In using such information or methods they should be 
mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any 
injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or 
operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-809954-4 (Set)
ISBN: 978-0-12-815901-9 (Volume 1)
ISBN: 978-0-12-815902-6 (Volume 2)

For information on all Academic Press publications  
visit our website at https://www.elsevier.com/books-and-journals

Publisher: John Fedor
Acquisition Editor: Stacy Masucci
Editorial Project Manager: Sam W. Young
Production Project Manager: Punithavathy Govindaradjane
Cover Designer: Matthew Limbert

Typeset by SPi Global, India

http://www.elsevier.com/permissions
https://www.elsevier.com/books-and-journals


xxxiii

Numbers in parentheses indicate the pages on which the authors’ 
contributions begin.

VOLUME 1
Yasutada Akiba  (709), Greater Los Angeles Veterans 

Affairs Medical Center; UCLA School of Medicine, 
Los Angeles, CA, United States

Denise Al Alam  (71), Children’s Hospital Los Angeles, 
Los Angeles, CA, United States

Rana Al-Sadi  (587), Penn State University College of 
Medicine, Hershey, PA, United States

Qasim Aziz  (373), Queen Mary University of London, 
London, United Kingdom

Eric J. Battaglioli  (755), Mayo Clinic, Rochester, MN, 
United States

Adil E. Bharucha  (517), Mayo Clinic College of 
Medicine, Rochester, MN, United States

Richard S. Blumberg  (767), Brigham and Women’s 
Hospital, Harvard Medical School, Boston, MA, 
United States

Natacha Bohin  (141), The University of Michigan, Ann 
Arbor, MI, United States

Joel C. Bornstein  (429), University of Melbourne, 
Parkville, VIC, Australia

Stuart M. Brierley (387), Flinders University, SAHMRI, 
Adelaide, SA, Australia

Simon J.H. Brookes (517), Flinders University, Adelaide, 
SA, Australia

Joel Castro  (387), Flinders University, SAHMRI, 
Adelaide, SA, Australia

Eugene B. Chang (795), University of Chicago, Chicago, 
IL, United States

Benoit Chassaing  (775), Georgia State University, 
Atlanta, GA, United States

Mary Cheung  (485), Long Island Jewish Hospital, 
New Hyde Park; Hofstra Northwell Medical School, 
Hempstead, NY, United States

Matthew A. Ciorba (221), Washington University School 
of Medicine in St. Louis, St. Louis, MO, United States

Sheila E. Crowe  (663), University of California San 
Diego, La Jolla, CA, United States

Michael Czerwinski  (185), University of Michigan 
Medical School, Ann Arbor, MI, United States

Soula Danopoulos (71), Children’s Hospital Los Angeles, 
Los Angeles, CA, United States

Soumita Das  (663), University of California San Diego, 
La Jolla, CA, United States

Peter J. Dempsey  (141), The University of Colorado 
Denver – Anschutz Medical Campus, Aurora, CO, 
United States

Gerco den Hartog  (663), University of California San 
Diego, La Jolla, CA, United States

Hideki Enomoto (273), Kobe University, Kobe, Japan

Andelain Erickson  (387), University of Adelaide, 
SAHMRI, Flinders University, Adelaide, SA, Australia

Peter B. Ernst (663), University of California San Diego, 
La Jolla; School of Veterinary Medicine, UC Davis, 
Davis, CA, United States

Adam D. Farmer  (373), Queen Mary University of 
London, London; University Hospitals of North 
Midlands, Staffordshire, United Kingdom

Jaime P.P. Foong  (429), University of Melbourne, 
Parkville, VIC, Australia

Mark R. Frey (71,683), Children’s Hospital Los Angeles; 
University of Southern California, Los Angeles, CA, 
United States

Andrew T. Gewirtz  (775), Georgia State University, 
Atlanta, GA, United States

Fayez K. Ghishan  (235), Steele Children’s Research 
Center, University of Arizona Health Sciences Center, 
Tucson, AZ, United States

Fiona M. Gribble  (31), University of Cambridge, 
Cambridge, United Kingdom

Contributors



xxxiv  Contributors

Luke Grundy  (387), Flinders University, SAHMRI, 
Adelaide, SA, Australia

Marlene M. Hao  (273), University of Melbourne, 
Melbourne, VIC, Australia

Andrea M. Harrington  (387), University of Adelaide, 
SAHMRI, Flinders University, Adelaide, SA, Australia

Grant W. Hennig (469), University of Vermont, Burlington, 
VT, United States

Hongzhen Hu  (337), Washington University School of 
Medicine, Saint Louis, MO, United States

Jan D. Huizinga  (305), McMaster University, Hamilton, 
ON, Canada

Shankar S. Iyer  (767), Brigham and Women’s Hospital, 
Harvard Medical School, Boston, MA, United States

Izumi Kaji  (671), Vanderbilt University Medical Center, 
Nashville, TN, United States

Purna C. Kashyap  (755), Mayo Clinic, Rochester, MN, 
United States

Jonathan D. Kaunitz (671,709), Greater Los Angeles VA 
Healthcare System; UCLA School of Medicine, Los 
Angeles, CA, United States

Jennifer S. Labus (419), David Geffen School of Medicine 
at UCLA, Los Angeles, CA, United States

Brigitte Lavoie (453), University of Vermont, Burlington, 
VT, United States

Cambrian Y. Liu (683), Children’s Hospital Los Angeles; 
University of Southern California Keck School of 
Medicine, Los Angeles, CA, United States

Thomas Y. Ma  (587), Penn State University College of 
Medicine, Hershey, PA, United States

Xiaoya Ma (131), University of Michigan Medical School, 
Ann Arbor, MI, United States

Gary M. Mawe (453), University of Vermont, Burlington, 
VT, United States

Juanita L. Merchant  (3), University of Michigan, Ann 
Arbor, MI, United States

Jeannette S. Messer  (795), University of Chicago, 
Chicago, IL, United States

Larry Miller (485), Long Island Jewish Hospital, New Hyde 
Park; Hofstra Northwell Medical School, Hempstead, 
NY, United States

Bruce D. Naliboff (419), David Geffen School of Medicine 
at UCLA, Los Angeles, CA, United States

Mark T. Nelson (453), University of Vermont, Burlington, 
VT, United States

Donald F. Newgreen  (273), Royal Children’s Hospital, 
Parkville, VIC, Australia

Prashant Nighot (587), Penn State University College of 
Medicine, Hershey, PA, United States

Monica Passi  (485), Long Island Jewish Hospital, New 
Hyde Park; Hofstra Northwell Medical School, 
Hempstead, NY, United States

D. Brent Polk  (683), Children’s Hospital Los Angeles; 
University of Southern California Keck School of 
Medicine, Los Angeles, CA, United States

Maria J. Pozo  (453), University of Extremadura, Cáceres, 
Spain

Frank Reimann  (31), University of Cambridge, 
Cambridge, United Kingdom

Geoffrey P. Roberts  (31), University of Cambridge, 
Cambridge, United Kingdom

Bani C. Roland  (485), Lenox Hill Hospital, New York, 
NY, United States

James K. Ruffle (373), Queen Mary University of London, 
London, United Kingdom

Hyder Said (709), UC Irvine School of Medicine, Irvine, 
CA, United States

Linda C. Samuelson  (141), The University of Michigan, 
Ann Arbor, MI, United States

Michael A. Schumacher  (71), Children’s Hospital Los 
Angeles; University of Southern California Keck School 
of Medicine, Los Angeles, CA, United States

Yatrik M. Shah  (131), University of Michigan Medical 
School, Ann Arbor, MI, United States

Terez Shea-Donohue  (641), University of Maryland 
School of Medicine, Baltimore, MD, United States

Noah F. Shroyer  (185), Baylor College of Medicine, 
Houston, TX, United States

Jason R. Spence  (185), University of Michigan Medical 
School, Ann Arbor, MI, United States

Nick J. Spencer  (337,469), Flinders University of South 
Australia, Bedford Park, SA, Australia

Stephanie N. Spohn (737), University of Michigan Medical 
School, Ann Arbor, MI, United States

Lincon A. Stamp  (273), University of Melbourne, 
Melbourne, VIC, Australia

William F. Stenson (221), Washington University, St Louis, 
MO, United States

Miyako Takaki (289), Nara Medical University, Kashihara, 
Nara, Japan

Kirsten Tillisch (419), David Geffen School of Medicine at 
UCLA, Los Angeles, CA, United States

Toshihiro Uesaka (273), Kobe University, Kobe, Japan



Contributors  xxxv

Gijs R. van den Brink  (103), Tytgat Institute for Liver 
and Intestinal Research; Academic Medical Center, 
Amsterdam, The Netherlands

Willemijn A. van Dop  (103), Tytgat Institute for Liver 
and Intestinal Research; Academic Medical Center, 
Amsterdam, The Netherlands

Anil Vegesna  (485), Long Island Jewish Hospital, New 
Hyde Park; Hofstra Northwell Medical School, 
Hempstead, NY, United States

Jakob von Moltke  (721), University of Washington, 
Seattle, WA, United States

Arnold Wald  (565), University of Wisconsin School 
of Medicine and Public Health, Madison, WI, 
United States

B. Florien Westendorp  (103), Tytgat Institute for Liver 
and Intestinal Research; Academic Medical Center, 
Amsterdam, The Netherlands

Mathew Whitson  (485), Long Island Jewish Hospital, 
New Hyde Park; Hofstra Northwell Medical School, 
Hempstead, NY, United States

Jackie D. Wood  (361), College of Medicine, The Ohio 
State University, Columbus, OH, United States

Hua Xu (235), Arizona Health Sciences Center, University 
of Arizona, Tucson, AZ, United States

Vincent W. Yang (197), Stony Brook University School of 
Medicine, Stony Brook, NY, United States

Heather M. Young  (273), University of Melbourne, 
Melbourne, VIC, Australia

Vincent B. Young (737), University of Michigan Medical 
School, Ann Arbor, MI, United States

VOLUME 2
Nada A. Abumrad (1087), Washington University School 

of Medicine in St. Louis, St. Louis, MO, United States

Waddah A. Alrefai  (1317), University of Illinois at 
Chicago; Jesse Brown VA Medical Center, Chicago, IL, 
United States

Rana Ammoury (1669), Children’s Hospital of The King’s 
Daughters, Norfolk, VA, United States

Gregory J. Anderson  (1451), QIMR Berghofer Medical 
Research Institute, Brisbane, QLD, Australia

Shinji Asano (831), Ritsumeikan University, Shiga, Japan

Giorgos Bamias  (1579), National and Kapodistrian 
University of Athens, Athens, Greece

Yangzom D. Bhutia (1063), Texas Tech University Health 
Sciences Center, Lubbock, TX, United States

Niviann M. Blondet (981), University of Washington and 
Seattle Children’s Hospital, Seattle, WA, United States

Patrick Borel  (1181), Aix Marseille Univ, INSERM, 
INRA, C2VN, Marseille, France

Vincenza Cifarelli (1087), Washington University School 
of Medicine in St. Louis, St. Louis, MO, United States

James F. Collins (1451), University of Florida, Gainesville, 
FL, United States

Robert J. Cousins  (1485), University of Florida, 
Gainesville, FL, United States

Nicholas O. Davidson  (1109), Washington University 
School of Medicine in St. Louis, St. Louis, MO, 
United States

Paul A. Dawson  (931), Emory University, Atlanta, GA, 
United States

Guillaume de Lartigue  (1501), The John B. Pierce 
Laboratory; Yale Medical School, New Haven, CT, 
United States

Charles Desmarchelier  (1181), Aix Marseille Univ, 
INSERM, INRA, C2VN, Marseille, France

Pradeep K. Dudeja  (1317), University of Illinois at 
Chicago; Jesse Brown VA Medical Center, Chicago, 
IL, United States

Shireen R.L. Flores  (1451), University of Florida, 
Gainesville, FL, United States

Vadivel Ganapathy (1063), Texas Tech University Health 
Sciences Center, Lubbock, TX, United States

Chiara Ghezzi (1051), David Geffen School of Medicine 
at UCLA, Los Angeles, CA, United States

Fayez K. Ghishan  (1273,1405,1669), Steele Children’s 
Research Center, University of Arizona Health Sciences 
Center, Tucson, AZ, United States

Ravinder K. Gill (1547), University of Illinois at Chicago, 
Chicago, IL, United States

Fred S. Gorelick  (869), Yale University School of 
Medicine, West Haven, CT, United States

Matthew B. Grisham  (1579), Texas Tech University 
Health Sciences Center, Lubbock, TX, United States

Earl H. Harrison  (1133), The Ohio State University, 
Columbus, OH, United States

Gail A. Hecht (1547), Loyola University Medical Center 
and Stritch School of Medicine, Maywood, IL, 
United States

Dawn A. Israel  (1517), Vanderbilt University School of 
Medicine, Nashville, TN, United States

James D. Jamieson  (869), Yale University School of 
Medicine, West Haven, CT, United States



xxxvi  Contributors

Bryson W. Katona  (1615), University of Pennsylvania, 
Philadelphia, PA, United States

Pawel R. Kiela  (1273,1405), Steele Children’s Research 
Center; University of Arizona, Tucson, AZ, United States

Rachel E. Kopec  (1133), The Ohio State University, 
Columbus, OH, United States

Kris V. Kowdley (981), Swedish Medical Center, Seattle, 
WA, United States

Nicholas F. LaRusso (1003), Mayo Clinic, Rochester, MN, 
United States

Seong M. Lee  (1153), University of Wisconsin-Madison, 
Madison, WI, United States

Rodger A. Liddle  (895), Duke University Medical 
Center; Veterans Affairs Medical Center, Durham, NC, 
United States

Juan P. Liuzzi  (1485), Florida International University, 
Miami, FL, United States

Donald D.F. Loo  (1051), David Geffen School of 
Medicine at UCLA, Los Angeles, CA, United States

John P. Lynch  (1615), University of Pennsylvania, 
Philadelphia, PA, United States

Anatoliy I. Masyuk (1003), Mayo Clinic, Rochester, MN, 
United States

Tatyana V. Masyuk (1003), Mayo Clinic, Rochester, MN, 
United States

Donald J. Messner  (981), Bastyr University, Kenmore, 
WA, United States

Mark B. Meyer (1153), University of Wisconsin-Madison, 
Madison, WI, United States

Karen F. Murray  (981), University of Washington and 
Seattle Children’s Hospital, Seattle, WA, United States

Ebba Nexo  (1201), Aarhus University Hospital, Aarhus, 
Denmark

Curtis T. Okamoto  (831), University of Southern 
California, Los Angeles, CA, United States

Bernardo Ortega  (1027), SUNY Brockport, Brockport, 
NY, United States

Stephen Pandol  (869), Cedars-Sinai Medical Center and 
University of California, Los Angeles, CA, United States

Richard M. Peek Jr. (1517), Vanderbilt University School 
of Medicine, Nashville, TN, United States

J. Wesley Pike (1153), University of Wisconsin-Madison, 
Madison, WI, United States

Shubha Priyamvada  (1317), University of Illinois at 
Chicago, Chicago, IL, United States

Gordon B. Proctor  (813), King’s College London, 
London, United Kingdom

Vazhaikkurichi M. Rajendran  (1363), West Virginia 
University School of Medicine, Morgantown, WV, 
United States

Helen E. Raybould (1501), University of California Davis, 
Davis, CA, United States

Jesus Rivera-Nieves (1579), University of California San 
Diego, La Jolla, CA, United States

Hamid M. Said  (1197,1201), University of California-
School of Medicine, Irvine, CA, United States

Hideki Sakai (831), University of Toyama, Toyama, Japan

Seema Saksena (1317), University of Illinois at Chicago; 
Jesse Brown VA Medical Center, Chicago, IL, 
United States

Monica Sala-Rabanal  (1051), Washington University 
School of Medicine, Saint Louis, MO, United States

Jörg-Dieter Schulzke  (1363), Institute of Clinical 
Physiology, Berlin, Germany

Ursula E. Seidler  (1363), Hannover Medical School, 
Hannover, Germany

Abeer K. Shaalan (813), King’s College London, London, 
United Kingdom

Irshad A. Sheikh  (1669), Steele Children’s Research 
Center, University of Arizona Health Sciences Center, 
Tucson, AZ, United States

Jay R. Thiagarajah  (1249), Harvard Medical School, 
Boston, MA, United States

Alan S. Verkman  (1249), University of California, San 
Francisco, CA, United States

Xiaoyu Wang  (1451), University of Florida, Gainesville, 
FL, United States

Paul A. Welling (1027), University of Maryland School of 
Medicine, Baltimore, MD, United States

Allan W. Wolkoff  (957), Marion Bessin Liver Research 
Center; Albert Einstein College of Medicine, Bronx, 
NY, United States

Jackie D. Wood  (1643), College of Medicine, The Ohio 
State University, Columbus, OH, United States

Ernest M. Wright  (1051), David Geffen School of 
Medicine at UCLA, Los Angeles, CA, United States



xxxvii

Preface

This is the sixth edition of Physiology of the Gastrointestinal 
Tract, a book that was started by the distinguished  
Dr. Leonard R. Johnson some 38 years ago with an aim of 
presenting a source for a most up-to-date and comprehensive  
knowledge of the field of gastrointestinal physiology. Our 
aim in this edition was to maintain the same outstanding 
level of knowledge that Dr. Johnson established by involv-
ing the most prominent and recognized authorities in the 
different fields of investigation in gastrointestinal physiol-
ogy. This project has been the product of a collective effort 
with my distinguished colleagues Drs. Ghishan, Kaunitz, 
Merchant, and Wood and the valuable advices provided by 
Dr. Johnson all along. These editors have been responsible 
for recruiting authors and for the scientific editing of most 
chapters. Their enthusiasm and dedication are indeed what 

made this project possible. I am also especially grateful to 
Sam Young, Stacey Masucci, and Anita Mercy Vethakkan 
for contacting our distinguished authors and extending a 
friendly line of help to them in all issues related to the 
preparation and submission of their chapters. Overall, the 
sixth edition is organized to be useful for a wide spec-
trum of gastrointestinal interests ranging from graduate 
students and postdoctoral fellows, active investigators, 
and clinicians. The volume emphasizes the broad scope of 
research in gastrointestinal physiology. The editors hope 
that the volume conveys the excitement and significance 
of modern research in the many aspects of gastrointestinal 
function.

Hamid M. Said
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Transcription and Epigenetic Regulation
Juanita L. Merchant

With the human genome sequencing project completed in 
2001, perhaps the most important piece of information that 
we have learned is that the clues to our genetic destiny are 
contained in more than just the primary sequence of DNA 
encoding 20,500 proteins.1 Apparently, what distinguishes 
man from other life forms and most interestingly other 
mammals lies in the complex modifications, organization, 
and function of the 3.3 billion nucleotides (nt). Not only are 
these ~20,500 genes alternatively spliced, but their DNA, 
RNA, and protein products are chemically modified so as 
to change gene function. Therefore, as opposed to our ge-
netic template being composed of a mere 20,500 genetic 
units, we are actually controlled by 20,500 to the nth power. 
The exponent has yet to be determined, but likely results 
in an enormous, perhaps infinite, combination of genetic 
events. This chapter will briefly summarize our basic un-
derstanding of gene expression, but will focus primarily on 
the new concepts and technologies of gene regulation in the 
postgenomic era. Arguably, the major advances since the 
5th edition of this textbook continue to be the explosion in 
our understanding of noncoding RNAs, the impact of epi-
genetics, chromatin topology, and the refinement of high-
throughput techniques.

1.1. OVERVIEW OF GENE 
ORGANIZATION

1.1.1 Nucleic Acids

The molecular definition of a eukaryotic gene is complex, 
but in the simplest terms, it is a nucleic acid sequence that 
encodes one polypeptide and one messenger ribonucleic 
acid molecule (mRNA).2 Genes are comprised of “two in-
tertwining polymers” of deoxyribonucleic acids (DNAs) 
that are noncovalently attached to a variety of proteins, 
including histones and specialized proteins (e.g., poly-
merases and various accessory proteins). The association 
of DNA, histones, and specialized nuclear proteins collec-
tively is called chromatin. Chromosomes are comprised of 
continuous strands of chromatin that have been compacted 
by supercoiling and looping so as to fit into the nucleus 
(Fig.1.1). The steps governing the compacting and location 

of chromatin are now an area of intense investigation and 
will be discussed in Section 1.2. Chromosomes are the ba-
sic heritable unit in the mammalian cell. In humans, there 
are 46 individual chromosomes or 23 chromosome pairs. 
The smallest unit of the DNA polymer is a nucleotide—
a base attached to the first carbon of a five-carbon sugar 
phosphorylated at its fifth carbon (Fig. 1.2). Nucleosides 
do not contain phosphates linked to the pentose sugar, 
thus differing from nucleotides, which contain one, two, 
or three phosphate groups. The type of base distinguishes 
the 4 nt found in DNA: adenine (A), thymine (T), cytosine 
(C), or guanine (G). They are bases because of the nitrogen 
groups contained within their single-ring (thymine, cyto-
sine, or uracil) or double-ring structures (adenine or gua-
nine). DNA contains the sugar deoxyribose, whereas RNA 
contains the sugar ribose and the base uracil (U) instead 
of thymine. CpG islands are dinucleotides consisting of a 
deoxycytidine in the 5′ position adjacent to deoxyguano-
sine. These dinucleotides are “hot spots” for enzymes (e.g., 
DNMTs = DNA methyl transferases), which add a methyl 
group to the 5th carbon of the cytosine ring. The “p” in-
dicates that one phosphate group separates these two nu-
cleosides. This epigenetic mark blocks the expression of 
DNA and is a mechanism used frequently by gastrointesti-
nal (GI) cancers to silence genes that block their ability to 
proliferate.3

1.1.2 Nucleic Acid Polymers: DNA, RNA

Polymers of nucleotides or nucleic acids (also called nu-
cleoside mono-, di-, or triphosphates) are formed when the 
free phosphate group attached to the fifth carbon of an ad-
jacent nucleotide of the pentose sugar condenses with the 
hydroxyl group on the third pentose carbon to produce two 
ester bonds and water (phosphodiester bond). Accordingly, 
the proximal end of each DNA strand (5′ end) contains 
a phosphate group at the fifth carbon of the deoxyribose 
sugar residue. The terminal nucleic acid at the 3′ end of 
each DNA strand contains a free hydroxyl group at the third 
carbon of the deoxyribose ring. By convention, nucleotide 
sequences are written from 5′ to 3′ reading from left to right 
with the sense strand presented as the upper strand. The 
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antisense strand, written on the bottom, is antiparallel and 
complementary to the sense strand so that the 5′ to 3′ direc-
tion proceeds from right to left. Each nucleotide within the 
polymer is base paired with a particular nucleotide on the 
opposing strand by hydrogen bonds: adenine with thymine 
and guanine with cytosine. The DNA strand containing the 

same sequence as the messenger RNA (mRNA) is desig-
nated the sense strand, and the strand that it pairs with is 
designated the antisense strand. The antisense strand be-
comes the template sequence that will be transcribed by 
RNA polymerase II (Pol II) into mRNA and subsequently 
translated into amino acids.4

Most of the studies on transcriptional control focus 
on genes transcribed by the 12-subunit enzyme Pol II and 
thus are designated as class II genes.5,6 It is Pol II that is 
responsible for transcribing gene sequences into protein-
encoding messenger RNA (mRNA). Less than 2% of total 
RNA in the cell is mRNA. Many of these initial primary 
transcripts (hnRNA for heterogeneous nuclear RNA) are 
further processed as discussed below. Therefore, 98% of  
the nucleotides in the human genome do not reside in exons 
(sequences that encode proteins). Nevertheless, at least 50% 
of the noncoding RNA is transcribed and serves a function. 
Nine percent of cellular RNA is hnRNA, the bulk of which 
are small nuclear RNAs (snRNA, e.g., U2 involved in RNA 
splicing, 4%) and small nucleolar RNAs, for example, 
U22 snoRNA, comprising 1%. The other 4% of hnRNA is 
mRNA. An additional 1% of total cell RNA is microRNA 
(miRNA), previously called guide RNA (gRNA), which ed-
its mature mRNA transcripts.7 RNA polymerase I (Pol I)  
transcribes all of the ribosomal genes except for the 5S 

Chromosome terminology

Genes

Centromere

DuplicatedUnduplicated

Sis

Cell

Base pairs
Histones

Telomere

Telomere

Centromere

ChromatidNucleus
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DNA double
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FIG. 1.1 Chromatin structure and organization. Each chromosome exists in a haploid (germ cells) or diploid/tetraploid state depending on their stage 
in the cell cycle. The short arm of the chromosome relative to the centromere is the "p" arm and the long arm is the "q" arm. Chromosomes represent 
compressed, compacted DNA double strand helix wrapped around core histones. (From the Language of medicine. 4th ed.)

OCH2

Nucleoside

Nucleotide

P
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FIG. 1.2 Nucleic acid structure. A nucleoside consists of a purine or py-
rimidine base covalently linked to the firs carbon of the pentose ring. The 
addition of one, two, or three phosphate groups is a nucleotide mono-, di-, 
or triphosphate. The type of sugar determines the type of nucleic acid: 
ribose in ribonucleic acids (RNAs) and deoxyribose in deoxyribonucleic 
acids (DNAs). (Reprinted from Physiology of the gastrointestinal tract. 4th 
ed. 2006.)
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gene. Ribosomal RNA represents about 75% of the RNA 
in the cell and is therefore essential for translation.8,9 RNA 
polymerase III (Pol III) transcribes the 5S ribosomal gene 
and the genes-encoding transfer RNA (tRNA).10 Transfer 
RNA represents about 15% of the total RNA in the cell. Pol 
I and III transcribe genes that will not be further translated 
into peptides and noncoding RNA transcripts, although 
their primary transcripts are also processed before reach-
ing the cytoplasm. Since Pol II transcribes genes-encoding 
proteins, peptides, long noncoding RNA (lncRNA), and 
miRNAs, Pol II-regulated genes will be the primary focus 
of this chapter.

1.1.3 Gene Composition

A gene is analogous to a long sentence read from left to 
right and comprised of letters organized into words sepa-
rated by spaces and punctuations. Specific DNA sequences 
“punctuate” the gene with important start and stop sig-
nals for transcription and translation. Several hundred to 
several thousand DNA base pairs (bp) may comprise one 
gene. These bp (the alphabet) are organized into functional 
groups (phrases) on the basis of whether a particular se-
quence is untranscribed, only transcribed (RNA), or both 
transcribed and translated (RNA and protein) (Fig.  1.3). 
Exons are DNA sequences that are transcribed into mRNA 
by Pol II and exit the nucleus. Within the cytoplasm, ex-
ons may or may not be translated into peptides. Those 
exons that are transcribed and translated form the coding  

sequences (coding exon). In general, the term intron is used 
to describe the intervening DNA sequence that is transcribed 
but is subsequently removed from the primary transcript by 
RNA splicing (RNA processing) before exiting the nucleus 
as a mature transcript. However, it is now clear that many 
transcribed DNA sequences generate small noncoding RNA 
transcripts such as miRNAs or lncRNAs that can inhibit or 
modulate protein-coding genes in “cis or trans.” LncRNAs 
are commonly defined as transcripts that are >200 nt that do 
not encode a protein compared to the significantly shorter 
miRNAs.

DNA sequences or elements that regulate transcription 
and are not transcribed into mRNA usually reside in the 5′ 
portion of a gene upstream (to the left) of the promoter. The 
promoter is a cluster of DNA sequences that binds Pol II in 
concert with accessory proteins to initiate the synthesis of 
mRNA. Accessory proteins control the accuracy and rate 
of polymerase binding. The first nucleotide transcribed into 
mRNA is assigned the number 1 with subsequent nucleo-
tides (downstream or to the right of the promoter) assigned 
positive numbers as transcription proceeds toward the 3′ 
end. Nucleotides preceding the promoter (upstream or 5′) 
are assigned negative numbers. DNA sequences that encode 
a polypeptide (open reading frame) begin with the transla-
tional start site codon ATG (encoding methionine) and end 
with one of the three stop codons: TAA, TAG, and TGA. 
Thus, the translational start and three stop codons, respec-
tively, are transcribed into mRNA as AUG, UAA, UAG, and 
UGA. Since there are four different DNA bases and it takes 
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FIG. 1.3 Gene structure, transcription, and posttranscriptional processing. A gene is comprised of several hundred to several thousand bp, subdivided 
into functional elements. The locations of 5′ and 3′ untranslated sequences, exons, and introns are shown. The 5′ flanking sequences contain specific 
DNA elements (e.g., TATA box). RNA polymerase II transcribes DNA into heterogeneous nuclear RNA (hnRNA) during transcription. Twenty bp after 
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only three bases (a triplet) to encode an amino acid. There 
are 43 = 64 possible codons for 20 amino acids. In this way, 
the nucleotide code for proteins is considered “degenerate.” 
The redundant genetic code protects against the deleterious 
effects of mutations as detailed in the next paragraph. In 
addition, two or three peptides can be encoded by overlap-
ping codons simply by shifting the reading frame by 1 or 2 
nt. Regulatory sequences that are transcribed but not trans-
lated reside at both the 5′ and 3′ ends of the mature RNA 
transcript. Both 5′ and 3′ untranslated regulatory sequences, 
which range from 10 to several thousand nucleotides, par-
ticipate in the fidelity of translation and mRNA stabilization 
or destabilization.

The degeneracy of the genetic code (several codon 
triplets encoding one amino acid) is what makes some bp 
changes (mutations) within an exon exhibit no deleterious 
phenotype. The bp change is designated synonomous if 
the same amino acid is substituted (also known as a silent 
mutation) or nonsynonomous if a different amino acid is 
substituted. Strictly speaking, mutations mean that there 
has been a bp change whether or not the change affects the 
type of amino acid inserted into a peptide. Despite a non-
synonomous mutation in the coding sequence, the amino 
acid substitution might not exhibit a change in the physi-
cal characteristics (phenotype) of the organism nor render 
phenotypic advantages or disadvantages to the organism. 
Changes in the genetic code that put an organism at a dis-
advantage and contribute to disease are what we commonly 
call “mutations.” BP changes in DNA that are neutral or 
impart a positive or negative advantage to the organism are 
also known as single nucleotide polymorphisms (SNPs). 
These SNPs can render subtle differences in the way an 
organism responds to its environment or other genetic in-
fluences (Fig. 1.4). SNPs are a focus of intense investiga-
tion due to their use in genome-wide scans to identify genes 
contributing to common multigene disorders, for example, 
diabetes, hypertension, etc.11,12

1.1.4 RNA Species

RNA molecules that encode proteins (except most histone 
proteins) are distinguished from ribosomal and transfer 
RNA by the series of adenosines added to the 3′ end of the 
molecule commonly referred to as the poly(A) RNA tail 
(Fig. 1.3). This feature is a useful means to isolate mRNA 
from more abundant RNA species (transfer and ribosomal 
RNA) and also designates the functional termination of the 
protein-encoding portion of the gene.13 During transcrip-
tion, the primary RNA transcript is cleaved 20 bp down-
stream of the AAUAAA site at the 3′ end, and ~150–200 
adenine nucleotides are added to form the poly(A) tail.14–16 
The 5′ end of the mRNA transcript receives a protective 
“cap” after synthesis of the first 30 nt that consists of a gua-
nylate residue methylated at the seventh position and linked 
to the first nucleotide of RNA by three phosphates. The 
RNA cap is a high-affinity binding site for ribosomes.17,18 
It should be noted that the element AATAA indicates the 
site of the poly A tail, but is not necessarily the functional 
end of the gene. Rather, the 3′ untranslated region (3′UTR) 
and 3′ untranscribed regions may still contain regulatory 
elements that modulate gene expression. In fact, most 
mRNAs bind sequences in the 3′UTR. Therefore, like the 
5′ end of a gene, the 3′ end of the gene must be determined 
empirically.

Two classes of noncoding RNAs transcribed by Pol II 
have motivated the current expanded interest in RNA biol-
ogy—mRNAs and long noncoding RNAs.19 mRNAs (miR-
NAs) are a class of noncoding RNAs generated primarily 
from DNA sequences between genes (intergenic) within 
introns or at the 3′ end of the gene. They were originally 
identified in plants and worms as posttranscriptional regu-
lators of gene silencing.20–22 Pol II and sometimes Pol III 
transcribe DNA to produce primary miRNA transcripts.23–25 
In addition, transcription factors modulate the expression of 
these mRNAs as for protein-encoding genes. For instance, 

FIG. 1.4 Single nucleotide polymorphism (SNP). Schematic diagram of a SNP in which a protein encoding gene sequence differs between two individu-
als by one nucleotide.
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extracellular signaling via typical signal transduction path-
ways and epigenetic mechanisms regulate the expression of 
mRNAs.26 The gene product is RNA rather than protein and 
exerts its effect on its own locus as well as multiple loci 
due to their small size and less stringent binding require-
ments.7,27 In this way, miRNAs are thought to regulate at 
least one-third of all human genes.

miRNAs are synthesized in the nucleus as a primary 
transcript (pri-miRNA) capable of forming several hairpin 
structures through internal complementarity (Fig. 1.5). The 
microprocessing complex containing a nuclear RNase III 
endonuclease called Drosha and the DiGeorge syndrome 
critical region 8 protein (DGCR8) cleaves the pri-miRNA 
transcript. The Drosha protein complex removes flanking 
segments and an ~11 bp stem region. This step converts 
the pri-miRNA to precursor miRNAs (pre-miRNAs). Pre-
miRNAs are typically 60–70-nt long hairpin RNAs with  
2-nt overhangs at the 3′ end. The nuclear export receptor 
exportin-5 and RanGTP transport the pre-miRNA into the 
cytoplasm where it is further processed by a complex con-
taining another RNase III endonuclease called Dicer. Dicer 
partners with RNA-binding proteins to cleave the pre-
miRNA into 21–25 nt duplexes. The miRNA/miRNA* du-
plex consists of a guide RNA strand and a passenger strand 
indicated by an asterisk (miRNA*) that is discarded upon 
assembly of the RNA-induced silencing complex (RISC). 
Loading the miRNA/miRNA* duplex into RISC is a four-
step process requiring ATP hydrolysis and the major RISC 
protein component called Argonaute (Ago proteins). Upon 

unwinding of the duplex, the miRNA* strand is discarded 
leaving a single strand 21–25 nt RNA molecule available for 
silencing specific clusters of genes by hybridizing to their 
3′UTRs. Ago protein coat miRNAs and along with exo-
somes protect miRNAs from degradation in biofluids such 
as blood and urine rendering them potential biomarkers.28,29

Long noncoding RNAs are nucleic acids that do not 
encode a protein and are at least 200-nt long or greater.30 
They are distinguished from miRNAs by their size (ln-
cRNA >200 nt versus miRNAs ~22 nt) and the ability to 
exhibit more diverse functions. miRNAs typically sup-
press multiple gene targets, whereas lncRNAs typically 
regulate the gene from which they are transcribed, albeit 
by multiple mechanisms. The advent of whole genome se-
quencing has identified more noncoding transcripts than 
coding complicating our ability to define their function. 
lncRNAs can function in “cis” or “trans,” can circularize 
or remain linear. Moreover, lncRNAs can function as pro-
tein scaffolds by recruiting regulatory complexes to genes, 
or behave as decoys, signaling molecules or as antisense 
interference transcripts. Therefore, through these diverse 
behaviors, lncRNAs exhibit pleomorphic functions such 
as genomic imprinting, chromosome shaping, and al-
losterically enzyme regulation. The function of most ln-
cRNAs is unknown and thus the transcripts have simply 
been named numerically. Those lncRNAs that have been 
assigned a function include XIST (X chromosome inac-
tivation), HOTAIR (Hox transcript antisense RNA), and 
TERC (telomerase elongation).

FIG. 1.5 Synthesis of microRNAs (miRNA). miRNAs are synthesized from the primary miRNA (pri-miRNA), which are then edited to the pre-miRNA. 
The RAN-GTP/Exportin 5 complex transports the Pre-RNA to the nucleus where the pre-miRNA is further processed to the miRNA/miRNA* duplex. 
*miRNA indicates the passenger strand that is discarded upon assembly of the RNA-induced silencing complex (RISC). The Argonaute (Ago) protein 
are the major protein component of the RISC. TRBP = TAR RNA-binding protein (aka PACT). (Reproduced from Kwak PB, Iwasaki S, Tomari Y. The 
microRNA pathway and cancer. Cancer Sci 2010;101(11):2309–15. doi: 10.1111/j.1349-7006.2010.01683.x)
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1.1.5 Linking Gene Structure to Function

Previously the 5′ border of a gene was identified by the 
promoter region (functionally determined) and by the first 
nucleotide transcribed into mRNA (cap site) determined 
empirically by various reverse transcriptase methods—
for example, primer extension analysis or anchored poly-
merase chain reaction (PCR and DNAse1 hypersensitivity 
sites).31 These techniques used reverse transcriptase to syn-
thesize complementary or copy DNA (cDNA) (Fig.  1.6). 
Radiolabeled primers complementary to the 5′ end of the 
DNA sequence to be copied were allowed to anneal to 
mRNA. Reverse transcriptase then adds deoxynucleotides 
to the primer in the 3′ to 5′ direction. Synthesis of the 
cDNA terminates when the 5′ end of the mRNA is reached. 
Template mRNA molecules were removed by ribonucleases 
(RNases), and the synthesis of a double-stranded cDNA was 
completed through the action of DNA polymerase. Because 
the newly synthesized cDNA was radiolabeled at the 5′ end, 
the length of the cDNA (and hence the transcriptional start 
site) was determined by resolving the fragments on a de-
naturing polyacrylamide gel and comparing the length ob-
served in bp to the known cDNA sequence.

In the age of whole genome analysis, the characteriza-
tion of gene function has lagged behind the generation of 
transcript mapping. In other words, the biochemical as-
says such as DNase-seq, ATAC-seq (assay for transposase- 

accessible chromatin), ChIP-seq, and 3C (chromatin confor-
mation capture) genome-based methods do not provide an 
assessment of function.32–36 This has led to the development 
of high-throughput methods to identify changes in gene 
transcription levels (both coding and noncoding).37 These 
include RNA-seq and STARR-seq (self-transcribing active 
regulatory region sequencing.38 In addition, CRISPR/Cas9 
methods of activating or silencing gene in situ have per-
mitted the development of functional readouts for enhancer 
modification within its endogenous environment.12,39,40

We now know that these additional DNA sequences might 
encode noncoding RNA that regulates gene expression in ad-
dition to the well-described enhancer sequences. Specific 
DNA elements called insulator elements mark the boundary of 
genes.41–44 These elements, originally identified on the globin 
gene, bind an 11-zinc finger transcription factor called CTCF, 
which is capable of blocking histone acetylation spreading 
between adjacent genes.45,46 More recently, it is now under-
stood that gene expression occurs in insulated neighborhoods 
generated by chromosomal loops formed by the binding site 
for CTCF and the cohesion complex.47 Thus, enhancer or re-
pressor sequences that are kilobases away from the transcrip-
tional start site (TSS) can brought closer to the genes that they 
regulate by forming gene-enhancer/repressor “neighborhoods” 
called topologically associated domains (TADs).48 It has re-
cently been shown that CTCF-binding site mutations that pre-
vent the formation of TADs can cause disease.49
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FIG. 1.6 Complementary DNA (cDNA). Primers complementary to a portion of the mRNA are allowed to anneal. For unknown sequences, as in the 
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Given the requirement for larger and larger pieces of 
DNA to recapitulate native expression in transgenic mouse 
models, techniques have been developed to clone and ma-
nipulate large pieces of DNA (over 50 kilobases), for ex-
ample, yeast artificial chromosomes (YACs) and bacterial 
artificial chromosomes (BACs).50,51 Recombineering is a 
powerful technique performed in bacteria that permits the 
introduction of foreign DNA or point mutations into these 
large plasmids that are eventually introduced into trans-
genic mice,52–54 but has been superceded by a powerful new 
technology called CRISPR-Cas9.55,56

CRISPR/Cas represents the latest and to date the most 
powerful breakthrough in our ability to modify or manipu-
late the genome with precision. The term CRISPR stands 
for clustered regularly interspaced short palindromic re-
peats and Cas is the abbreviation for CRISPR-associated 
protein. Cas9 is a nuclease that uses guide RNA to direct 
the enzyme to the specific DNA sequence to be modified 
by forming Watson-Crick base pairing. Thus, the tech-
nique is a simple, RNA-guided method by which bacteria 
and Archaea defend themselves from the DNA of invading 
bacteriophages (adaptive immune mechanism). In short, the 
technology originates from studying the bacterial immune 
system and consists of two parts: a DNA-binding domain 
that recognizes the sequence to be modified and an effector 
domain that mediates double-strand DNA breakage. These 
two steps activate the host cell’s sequence-specific endonu-
cleases to repair the break by nonhomologous recombina-
tion resulting in modification of the targeted sequence. The 
specificity of the technology lies in the ability to program 
the guide RNA. Prior to CRISPR/Cas, zinc-finger nucleases 
(ZFNs)57,58 and transcription activator-like effector nucle-
ases (TALENs) were the primary methods used to execute 
programmable genome editing.59,60

1.2. EPIGENETIC INFLUENCES

Epigenetics, literally means “outside of or beyond genet-
ics,” refers to the “study of genetic modifications that are 
mitotically and/or meiotically heritable yet do not change 
the DNA sequence”.61 Thus, mutations or deletions can al-
ter the length of a gene that in turn alters the primary se-
quence of the protein. By contrast, epigenetic influences 
chemically modify the nucleotide or amino acid structure 
that in turn changes how that particular DNA or (histone) 
protein is recognized by nuclear proteins without chang-
ing the sequence itself. Although it is now clear from the 
completed sequence of the human genome that there are 
only about 20,500 gene loci,2 the complexity of the genetic 
information encoded in human chromosomes must enlist 
other features of chromatin.62 The epigenetic influences 
on chromatin appear to be one of the critical features that 
enhance genomic complexity. A major target of epigenetic 
changes is histones, basic proteins that coat the naked DNA 

double helix. The N-terminal tails of histones (H1, H2A, 
H2B, H3, H4) are positively charged due to the basic amino 
acid lysine. The positively charged histones attach to DNA 
because of the negatively charged phosphate groups com-
prising the DNA backbone. The ionic interaction is reduced 
if the positive charge on the lysines is removed. Specific 
enzymes called histone acetyltransferases (HATs) acetylate 
the lysine side group effectively eliminating the positive 
charge (Fig. 1.7). The loss of the ionic interaction between 
the histones and phosphate groups on DNA permit greater 
access to the DNA helix by accessory proteins such as poly-
merases, transcription factors, and coactivators or repres-
sors. Chromatin becomes “open,” accessible and readily 
transcribed. By contrast, there are enzymes called histone 
deacetylases (HDACs) that “close” chromatin by removing 
the acetyl groups from the lysines at the N-terminal tails of 
histone proteins. These enzymes are called histone deacety-
lates (HDACs). Removal of the acetyl group restores the 
positive charge to histones allowing the ionic interaction 
between histones and DNA to be restored. Consequently, 
nonhistone proteins such as polymerases and transcription 
factors become excluded from DNA, transcription is si-
lenced, and chromatin becomes inactive.

Collectively, histones and accessory proteins associ-
ated noncovalently with DNA are what forms chroma-
tin. Chromatin exists in two forms—euchromatin and 
heterochromatin.63 Euchromatin contains actively tran-
scribed genes that decondense during DNA replication. 
Euchromatin is also centrally located in the nucleus. By 
contrast, heterochromatin contains transcriptionally silent 
genes that remain condensed at the periphery of the nucleus. 
The DNA sequences within heterochromatin are repetitive 
and only 15% of nuclear chromatin is heterochromatin. The 
major forms of epigenetic modifications in mammalian 
cells occur on DNA and histones and include such cova-
lent modifications as methylation and acetylation, but also 
the addition of other organic residues. The most common 
epigenetic change is DNA methylation. In addition, meth-
ylation is currently the only epigenetic change known to 
occur on DNA. By contrast, histone proteins undergo over 
100 types of epigenetic modifications, of which the most 
common include acetylation, methylation, and phosphory-
lation.64 Histones are frequently the target of changes, but 
nuclear regulatory proteins, for example, transcription fac-
tors can also be covalently modified, most commonly by 
phosphorylation. Epigenetic changes affect such events as 
chromatin folding, gene expression, X-chromosome inacti-
vation, and genomic imprinting.65,66 They are essential for 
development and differentiation in which clusters of genes 
must be activated or silenced at precisely timed intervals 
during an organism’s growth and maturation. In addition, 
epigenetic changes provide mechanisms by which the envi-
ronment affects the genome, for example, microbiota, im-
mune disorders, and cancer.67–70
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1.2.1 DNA Methylation

DNA methylation is a postsynthesis modification that normal 
DNA undergoes after each replication. This modification is 
catalyzed by DNA methyltransferases (DNMTs) and occurs 
on the C-5 position of cytosine residues within CpG dinu-
cleotides located primarily in the promoter of a gene. There 
are three major DNMTs (DMNT1, 3A, 3B). Each DNMT 
plays a distinct and critical role in cells. Murine knockouts 
of DNMT1 and DNMT3b exhibit embryonic lethality.71 
The DNMT3a homozygous mouse appeared normal at birth 
but died by 4  weeks of age.71,72 In humans, mutations of 
DNMT3b are linked to ICF syndrome (Immunodeficiency, 
Centromere instability, Facial anomalies).71,73 DNMTI func-
tions as the “maintenance” methyltransferase since it func-
tions during cell division to methylate the newly synthesized 
DNA strand as dictated by the hemi-methylated complemen-
tary strand.74 DNMT3a plays a central role in the methyla-
tion of neural specific genes.75,76

Sixty percent of human genes contain a CpG island.77 
While methylation can also occur in other parts of the gene, 
CpG dinucleotides tend to be underrepresented in the ge-
nome and when they are found appear in clusters ranging 
from 0.5 to several kilobases with GC content greater than 
55%.78 About 15% of CpG dinucleotides cluster in short 

DNA segments known as CpG islands.79 The remaining 
85% of the islands are spread throughout the genome in re-
petitive hypermethylated segments that are transcriptionally 
silent.80 Methylation of “CpG islands” is a late evolutionary 
development and functions to maintain genome stability by 
repressing transposons and repetitive DNA elements.81

DNA methylation is an important event in many pro-
cesses, including transcriptional repression, X chromosome 
inactivation and genomic imprinting. CpG islands locate in 
the promoter region of genes about 60% of the time78,82,83 
and are normally hypomethylated particularly in the germ 
cells. Collectively, these CpG clusters or islands cover only 
about 0.7% of the entire genome, which is still equivalent 
to several million nucleotides. Hypermethylation at CpG is-
lands induces transcriptional silencing that in turn is stably 
inherited. Thus as cells differentiate, a significant percent-
age of these CpG islands become methylated in a tissue spe-
cific manner. Typically these would be genes involved in 
cell renewal. As observed with HDACs and deacetylation, 
the methylation status of cancers might seem contradictory. 
Yet, aberrant de novo hypermethylation of CpG islands is a 
hallmark of some human cancers and occurs early during 
carcinogenesis.84–86 Tumor suppressor genes are locally hy-
permethylated by some cancers to silence their expression; 
whereas, oncogenes might be hypomethylated.78
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FIG. 1.7 Nucleosome structure and histone modifications on histone tails. (A) The double-strand DNA helix winds twice around a complex of the four 
core histones assembled as dimmers. Unacetylated histones are positively charged and adhere tightly to the negatively charged DNA preventing access 
by transcription regulatory proteins. Histones that are acetylated are less positively charged and do not adhere as tightly to chromatin allowing access of 
regulatory proteins to the DNA. The addition or removal of acetyl groups to the ends of histones is regulated by acetyltransferase (HATs) and deacetylase 
enzyme complexes (HDACs). The short chain fatty acid butyrate inhibits the activity of HDACs. (B) Shown are the amino-terminal histone residues modi-
fied by acetylation, methylation and phosphorylation. (Reprinted from Physiology of the gastrointestinal tract. 4th ed. 2006.)
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The DNA of tumor cells is globally hypomethylated, 
a process that is linked to nutritional status, for example, 
B12 or cobalamin absorption.87 Cobalamin is required for 
the synthesis of S-adenosylmethionine, the primary methyl 
donor in the cell.88 In this way, reduced cobalamin absorp-
tion as sometimes observed in Crohn’s or pernicious ane-
mia would provide an environment favorable to cancer.89 
Niacin required to form NAD, which is necessary for ADP-
ribosylation of histones, also affects chromatin structure.90

The most precise approach to assessing DNA methylcy-
tosines is through bisulfite sequencing. Treating DNA with 
sodium bisulfite converts unmethylated cytosines to uracil 
that when subjected to conventional DNA sequencing are 
read as thymines. Methylated cytosines are still read as cy-
tosines. Although bisulfite sequencing is not as easy to scale 
up as a genome-wide analysis by methylation-sensitive re-
striction enzyme (MSRE) analysis, sequencing is the most 
accurate way to determine the methylated sites in DNA or 
the methylome.91

Genomic imprinting occurs in gametogenesis and is 
necessary for development. One of the X chromosomes in 
females is not expressed due to the heavy methylation of 
the inactive X chromosome. The epigenetic phenomenon 
whereby expression of a gene depends on whether it is in-
herited from the mother or the father is called imprinting 
and is due to differential methylation of specific cytosine 
bases on the maternal versus the paternal genes.92 Recent 
genome-wide analysis of genomic imprinting in the mouse 
identified 1300 loci that exhibit parental bias in the expres-

sion of specific mRNA transcripts. The gene loci identified 
control neural systems associated with feeding and behav-
ior.93 In addition, the authors in a separate article showed 
preferential selection of the X chromosome inherited from 
the mother as opposed to the one from the father in gluta-
matergic neurons of the female cortex.94 The interleukin-18 
gene was identified as an important locus controlling sex-
specific preferences.

1.2.2 Histone Modifications

The basic repeating unit of chromatin is the nucleosome. 
Each nucleosome is composed of 147 bps of DNA wrapped 
twice around a histone protein octamer consisting of two 
molecules of each of the four core histones (H2A, H2B, 
H3, and H4). The linker histone H1 sits alone between 
each core nucleosome facilitating further compaction.95 
Each histone contains a structured globular domain with a  
histone-fold motif important for nucleosome assembly, and 
a highly charged unstructured amino-terminal tail of 25–40 
residues, which protrudes from the body of the nucleosome 
to latch onto the phosphate backbone. The amino-termini 
are the major sites for histone modifications.96 Histones 
can be modified by acetylation, methylation, phosphory-
lation, ADP-ribosylation, ubiquitination, and sumoylation 
(Table 1.1).97 The mixture of these covalent modifications 
create a “code” on the surface of the histone molecule that is 
subsequently recognized by a class of chromatin-binding pro-
teins, for example, bromo- and chromodomain-containing  

TABLE 1.1 Enzymes, Targets, and Effect of Epigenetic Modifications

Target Covalently 
Modified Group Adds Removes

Effect on Gene 
Expressiona

Enzyme 
Inhibitors

DNA Methyl DNMT Gadd45 ↑ increases or ↓ 
decreases

Azacytadine; 
RG-108

Histone Acetyl (KAT)/HAT HDACs ↑ increases or ↓ 
decreases

Butyrate, SAHA, 
trichostatin A, 
valproic acid

Add to lysines (K) Methyl KMT (SETs, 
PCG1, 2, TrG)

KDM Jumonji 
(JMjC, Jarid)

↑ if H3K4me3; 
H3K36me3; H3K79me3 
↓ if H3K9me2,3; 
H3K27me3

BIX-01294

Add to arginines (R) Methyl PRMTs (CARM1, 
PRMT1)

PADI4 ?  

Add to S10H3 Phosphate AurB PP1 ↑  

Add to lysines (K) Ubiquitin 76 aa peptide Ub ligases (Ring 
2)

Ub protease 
(USP)

↑  

Add to lysines (K) Sumo = small ubiquitin-like 
modifiers, ~76 aa

Ubc9 Ub protease 
(SUSP)

↑  

a"?" means unknown.
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proteins that mediate chromatin compaction, transcription, 
and DNA repair.98 Acetylation, methylation, ubiquitination, 
and sumoylation occur on the lysine residues while meth-
ylation also occurs on arginine residues.99 Phosphorylation 
occurs on serines and threonines, ADP-ribosylation on glu-
tamic acids. Most of these modifications, particularly acety-
lation, alters the charge distribution on the amino-terminus 
and alters nucleosome structure, which can in turn regulate 
chromatin structure.100,101 Some covalent modifications act 
as molecular switches, enabling or disabling subsequent 
covalent modifications, which explains the functional com-
plexity of epigenetic modifications.102 Each modification 
correlates with a specific physical status of chromatin. The 
next several sections will highlight the most common his-
tone modifications.

1.2.2.1 Histone Acetylation
Acetylation of histones occurs at the ε-amino side group 
of specific lysines within the N-termini of histones. HATs 
transfer an acetyl group from the donor acetyl-CoA to the 
histone terminal lysines.103 In hypoacetylated chromatin, 
the positive charges on unacetylated lysines are attracted 
to the negatively charged DNA, producing compact, closed 
chromatin, which represses transcription.104 By contrast, 
acetylation of the lysines removes their positive charges re-
sulting in a less compact, open chromatin structure, which 
facilitates gene transcription. Therefore, HAT activity 
and subsequently histone acetylation are linked mainly to 
transcriptional activation105 (Fig.1.7). Removal of the ace-
tyl group (deacetylation) by HDACs restores the positive 
charge on lysines, chromatin becomes compacted and less 
accessible to regulatory proteins required for transcription. 
Thus, HDACs and deacetylation are primarily associated 
with transcriptional repression (Fig. 1.7).

The HATs are divided into five families. These include 
the p300/CBP HATs (p300 and CBP), Gcn5-related acetyl-
transferases (GNATs, including Gcn5, PCAF, etc.), MYST 
(MOZ, Ybf2/Sas3, Sas2 and Tip60)-related HATs, the gen-
eral transcription factor HATs (TFIID subunit TAF250 and 
TFIIIC), and the nuclear hormone-related HATs (SRC1 and 
ACTR).106 The most consistent functional characteristic of 
HATs is that they are transcriptional coactivators. These 
proteins are components of large multisubunit complexes 
that do not bind DNA directly, but instead form protein- 
protein interactions with DNA-binding transcription fac-
tors.107 The MYST proteins are the largest family of 
acetyltransferases.108 More recently, the Gcn5-related acet-
yltransferases are considered to be part of a complex called 
SAGA for Spt-Ada-Gcn5-Acetyltransferase.109 SAGA pref-
erentially acetylates several N-terminal lysines within H3 
and H2B in response to cellular stress, for example, low 
glucose, hypoxia, and UV damage.110 Moreover, in ad-
dition to its HAT activity, SAGA also has deubiquitinase 
activity.110 In summary, the themes that are consistently 

emerging are first that these histone-modifying enzymes 
are components of large complexes and second for every 
enzymatic complex that adds an organic residue to histones, 
there is a complementary enzymatic complex that can re-
move them (Table 1.1).

The more numerous mammalian HDACs have been 
grouped into three protein classes.111 Class I includes 
HDACs 1, 2, 3, and 8; class IIA includes HDACs 4, 5, and 
7; class IIB includes HDACs 6 and 10; and class IV is com-
prised of HDAC 11. HDACs 1–11 are zinc-dependent.112 
The class III HDAC family consists of the conserved nico-
tinamide adenine dinucleotide (NAD)-dependent Sir2 fam-
ily of deacetylases or sirtuins of which there are 7. The 
sirtuins are not zinc dependent. Like HATs, HDACs do not 
bind directly to DNA, but are recruited to genes by large 
multisubunit complexes to function primarily as corepres-
sors of transcription.113

The function of HATs and HDACs is of particular  
relevance in the GI tract due to the effect of butyrate, a  
by-product of colonic bacterial fermentation, on histone 
acetylation (Fig. 1.7). Epidemiologic studies uniformly con-
cur that a diet high in fiber is protective against colon can-
cer.114 The short-chain fatty acid butyrate is one of several 
fiber-derived fermentation products capable of maintaining 
epithelial cell differentiation.115 The differentiation effects 
were initially revealed after treatment of erythroleukemic 
cells with butyrate.116 Subsequently, it was discovered 
that the induction of differentiation by butyrate correlated 
with histone hyperacetylation117–119 due to suppression of 
HDACs.120–124 Thus, the HDAC inhibitory effects of butyr-
ate and resulting histone hyperacetylation might, in fact, be 
one mechanism by which dietary fiber exerts its antican-
cer effects.125,126 While butyrate is normally used by colo-
nocytes as a carbon source under low glucose conditions, 
colon cancers use the Warburg effect when glucose is in 
abundance to generate ATP via glycolysis.127 The butyrate 
that is not converted by fatty acid oxidation in the mito-
chondria to produce ATP is taken up by the nucleus where it 
suppresses HDACs.128 Thus, the HDAC inhibitory effect of 
butyrate depends on the metabolic state of the cell.127

Most reviews support the viewpoint that butyrate and 
HDAC inhibitors are potent anticancer agents.129–133 
Collectively, early studies emphasized the global effects of 
butyrate on chromatin remodeling, but the molecular basis 
for the gene-specific effects of butyrate remains poorly de-
fined. HDAC inhibitors regulate less than 10% of actively 
transcribed genes. Most of those are upregulated through 
GC-rich sites.134,135 In addition to histone acetylation, it is 
now known that DNA-binding proteins can become acety-
lated.106 Thus, a possible mechanism by which hyperacet-
ylation induced by butyrate might target specific genes is 
through acetylation of specific transcription factors. The 
proposed function of acetylated transcription factors varies 
and includes increased or decreased DNA binding as well 
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as protein stability.136 In many instances, the genetic tar-
gets of butyrate are GC-rich sequences that bind Sp1 and 
Sp3.137–139 Gamma glutamyl transferase,140 IGF-binding 
protein 3,141 G alpha (i2),142 galectin,143 Cox 1,144 and intes-
tinal alkaline phosphatase145 are all upregulated by butyrate 
through Sp1 sites. Sp1-binding sites are also implicated in 
the butyrate induction of p21WAF1 gene expression.146 HAT 
p300 recruited to the p21WAF1 promoter cooperates with Sp1 
and Sp3 to mediate the effects of butyrate.147 However, Sp1 
does not cooperate directly with p300, but instead binds the 
histone deacetylase HDAC1.148,149 The Sp1-HDAC1 com-
plex in turn forms complexes with other corepressors such 
as Sin3A.150 Thus, Sp1 appears to be the factor that confers 
p21WAF1 promoter repression by recruiting HDAC4 and co-
repressor complexes.151

HDACs have opposing functions especially in cancer. 
On the one hand, HDACs can prevent the activation of tu-
mor suppressor genes and block the ability of a cancer cell 
to undergo apoptosis.152 However, HDAC2 silencing trig-
gers apoptosis.153 Another important feature of HDACs is 
their interaction with DNA methylation. HDACs cooperate 
with DNMTs by removing the acetyl groups blocking meth-
ylation targets on histones or DNA.154–156

1.2.2.2 Histone Methylation
There are two types of histone methylation, targeting ei-
ther lysine or arginine residues. Histone methyltrans-
ferases (HMTs) perform these modifications utilizing 
S-adenosylmethioine as the methyl group donor. Lysine 
methylation is implicated in changes in chromatin structure 
and gene regulation; whereas, arginine methylation corre-
lates with the active state of transcription, like acetylation.157

1.2.2.2.1 Histone Methylation at Lysines

Methylation of lysine residues (K) occurs on histone H3 
primarily at K4, K9, and K27 and on H4 at K20 (Fig. 1.7B). 
The lysine residue can be mono-, di-, or trimethylated at the 
episilon amino group. Methylation of H3 especially on ly-
sine 4 and 36 (H3K4 and H3K36) is associated with an open 
chromatin configuration and transcribed chromatin.83,158,159 
In contrast, the methylation of H3 at K9, K27, and H4K20 
is associated with condensed, repressed chromatin.160 Thus, 
the overall effect of histone methylation on gene expression 
depends on which lysine is methylated and to what degree 
(mono-, di-, trimethylated).

In general, there are at least four families of lysine 
methyltransferases. All of the lysine methyltransferases 
(KMT or HMT for histone methyltransferases) are distin-
guished by the presence of SET domains. One family of 
these methyltransferases is further distinguished by the 
presence of an additional protein domain separate from the 
SET domain and will be discussed further in Section 1.2.3 
on chromatin-binding proteins. SET protein domains are 

approximately 130 residues homologous to amino acid 
segments in Su(var)3-9, Enhancer of Zeste and Trithorax, 
three Drosophila proteins with intrinsic methyltransferase 
activity.161,162 The mammalian form of the prototypical ly-
sine methyltransferase (or KMT) Su(var)3-9 is Suv39h and 
is involved in stabilizing heterochromatin by trimethylation 
of histone H3 at lysine K9. Histone methylation at K9 is 
recognized by a subgroup of E2F-related transcription fac-
tors called HP1α, β, or γ.163 These HP1 proteins use chro-
modomains to recognize the trimethylated atomic feature 
or imprint on H3.164 The methylated or acetylated imprints 
on DNA or two classes of proteins—those with chromo-
domains that recognize methyl group imprints, and those 
with bromodomains that recognize acetyl group imprints. 
Transcriptional coactivators such as CBP, p300, and PCAF 
are HATs that contain bromodomains. They acetylate his-
tones and other nuclear proteins and so not surprisingly 
also recognize an acetyl group imprint. These proteins are 
discussed in greater detail below under Section 1.2.3. So, 
in summary, the initial and prototypical KMT protein fam-
ily are the SET domain-containing proteins, which target 
H3K9 and are recognized by HP1 factors.

Proteins involved in histone demethylation underscore 
the fact that like acetylation, protein methylation is a dy-
namic process. The Jumonji domain-containing proteins 
demethylate histone lysines. The Jumonji C protein family 
(JmjC) catalyzes the removal of methyl groups from lysines 
while the Jumonji D family (JmjD) removes methyl resi-
dues from arginines.165,166 In addition, JARID2 (a Jumonji 
C and ARID-domain-containing protein) catalyzes the re-
moval of methyl groups from H3K4me3 and H3K4me2 
and can function as corepressors167 or balances stem cell 
self-renewal with differentiation by affecting methylation 
at H3K27.168 It has been recently shown that JARID2 is a 
component of the PRC2 and mediates transcriptional re-
pression by recruiting PCR2, an H3K27 methylase, to gene 
promoters.169–171

1.2.2.2.2 Histone Methylation at Arginines

Methylation at arginines occurs within the tails of histone 
H3 (R2, R17, and R26) and H4 (R3) and is catalyzed by 
CARM1 (coactivator-associated arginine methyltransfer-
ase 1) and PRMT1 (protein arginine N-methyltransferase 
1 (PRMT1), respectively, in mammalian cells (Fig.  1.7). 
Like lysines, arginines can be either mono- or di- 
methylated (asymmetric or symmetric additions) on the 
guanidino nitrogen and this process is antagonized by hu-
man PADI4 (peptidylarginine deiminase 4), which converts 
methyl-Arg to citrulline.172,173 Less is known about the fate 
of histones methylated at arginines. However, initial studies 
indicate that the methylated arginines create an imprint rec-
ognized by coregulatory molecules, for example, p300 and 
SWI/SNF.174,175 CARM1 has been shown to inhibit alveolar 
cell proliferation and promote differentiation.176
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1.2.2.3 Histone Phosphorylation
Histone phosphorylation occurs on all four core histones: 
H2A (S1), H2B (S14), H3 (S10 and S28), and H4 (S1)177,178 
(Fig. 1.7A). The phosphorylation of S10 in H3 is associ-
ated with transcriptional activation179 and chromosome 
condensation during mitosis.180 In addition, phosphoryla-
tion of S10 in H3 is also associated with the transduction 
of external signals to chromatin leading to the transient 
expression of immediate-early (IE) genes.181,182 The phos-
phorylation of H3 is mediated by several specific kinases, 
activated by distinct pathways. For example, mammalian 
mitotic H3 phosphorylation is associated with Aurora B/
IPL kinase.183–185 H3 phosphorylation by IKKα is impor-
tant for the activation of NF-κB,186 and the IE gene re-
sponse is mediated mainly by mitogen and stress-activated 
kinases MSK1 and MSK2.187 Histone H2B phosphory-
lation condenses chromatin and is involved in apopto-
sis.188,189 The downstream effect of H2A phosphorylation 
by Bub1 kinase is apparently required for chromosome 
stability.190 By contrast, the effect of H4 phosphorylation 
is unknown.

Most of the covalent modifications of histones are 
known to be reversible. Consequently, if the presence of a 
modification influences transcription in a particular way, 
its removal might have the opposite effect. In this way, the 
cell could effectively respond to changes in environmental 
cues. Moreover, some histone modifications are mechanis-
tically linked. For example, phosphorylation of S10 on H3 
enhances histone acetylation by Gcn5 (part of the SAGA 
complex),191,192 while H3 K9 methylation inhibits phos-
phorylation at H3 S10.161 Given the number of sites and the 
variety of possible covalent modifications, the combinato-
rial possibilities are extremely large. The combinatorial pat-
tern of N-terminal modifications results in a heterogeneous 
identity for each nucleosome that the cell interprets as a 
readable code from the genome to the cellular machinery 
directing various processes to occur. This concept is com-
monly referred to as the “histone code hypothesis”.98,193 The 
precise modification status of a specific histone tail on a 
given gene can also change during the process of transcrip-
tional regulation and each of these different combinations 
of histone modifications may elicit distinct downstream 
transcriptional signals.98,177

1.2.3 Chromatin-Binding Proteins

The remaining histone methyltransferase families also rec-
ognize methyl groups on regulatory proteins other than his-
tones and therefore are discussed here. The second group 
of SET domain methyltransferase proteins is related to the 
Drosophila protein Enhancer of Zeste, with the prototypical 
mammalian protein named Ezh2. Ezh2 is part of a complex 
of proteins called the Polycomb group (PcG). The two vari-
ations of these complexes have been designated Polycomb 

repression complexes 1 (PRC1) and 2 (PRC2). Ezh2 be-
longs to the PRC2 complex that also includes Eed, Suz12; 
whereas, PRC1 includes the Ring finger proteins (Ring1a,b, 
Rnf, Hpc, Edr, and Bmi1). Conditional deletion of Eed 
in the intestinal crypt resulted in crypt degeneration.194 
Therefore, the PRC2 complex is required for normal stem 
cell maintenance. Ezh2 has recently garnered significant at-
tention due to its overexpression and therefore oncogeneic 
function in several epithelial cancers including prostate and 
breast,195–197 compared to its tumor suppressor function in 
some hematopoietic cancers.198,199 Consistent with its onco-
genic role in epithelial cancers, Ezh2 is also overexpressed 
in colon, gastric, and liver cancer.200–202 A genome-wide 
analysis of prostate cancers recently revealed an androgen- 
dependent fusion protein called TMPRSS2-ERG that in 
Chip-Seq analysis was found to transcriptionally target 
Ezh2.203 Bmi1 has received increased attention because it 
is an important marker of normal and cancerous hemato-
poeitic stem cells.204–206 Bmi1 is also associated with the 
+4 reserve stem cell in the intestinal crypt zone.207–209 In 
addition, the PRC1 complex contains proteins that have E3 
ubiquitin ligase activity.210,211 The Polycomb group of pro-
teins with their SET domains not only participates in his-
tone lysine methylation, but both PRC1 and 2 complexes 
are also important in recognizing the methylated protein 
imprint.

The human homolog of the Drosophila Trithorax (Trx) 
protein is the mixed leukemia gene (MLL1). There are four 
human MLL homologs. MLL1 has been shown to be a 
specific methyltransferase of H3 at K4.212 It in turn forms 
protein-protein interactions with coactivators, for example, 
CBP and corepressor chromatin remodelers, for example, 
SWI/SNF.213,214 Other Trithorax homologs, for example, 
Ash1, Trx, form complexes with different coregulatory 
complexes. Collectively, the Trithorax group (TrG) of pro-
teins can either activate or repress transcription depending 
on the coregulator with which it associates. Nevertheless, 
the TrG proteins characteristically oppose the activity of 
the Polycomb group (PcG).215 The tumor suppressor pro-
tein menin (positionally cloned gene product of the MEN 
type 1 locus) interacts with MLL1 and normally induces the 
cyclin-dependent inhibitor p27Kip.216,217

RIZ (retinoblastoma protein-interacting zinc finger pro-
tein), SMYD3, and MDS-EVI1 form a fourth family of 
SET-domain proteins because they have two isoforms that 
exhibit opposing functions. The isoform containing the SET 
domain has tumor suppressor function while the isoform 
missing the SET domain is cancer promoting. This “ying-
yang” theory put forth by Huang is especially true for RIZ 
and MDS-EVI1 in which the cancer by an unclear mecha-
nism disturbs the normal ratio between the two isoforms.89 
The SMYD3 protein contains another DNA-binding domain 
called MYND in addition to a SET domain and is overex-
pressed in colorectal and hepatocellular carcinomas.218
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Crosstalk between DNA methylation and the histone 
modifications exists.219 These interactions were revealed by 
the observation that HDAC1 forms a complex with DNMT1 
and 5-methyl-cytosine-binding protein (MBP) on a methyl-
ated promoter to silence gene expression.220 Similar cross-
talk occurs between HDACs, Suv39, and HP1; HDACs, 
PRC2, and PRC1; HATs, MLL1, and BRM.101 The enzymes 
that epigenetically modify the genome are categorized in 
terms of those that “erase” chromatin marks; add chromatin 
marks (“writers”) or “read” chromatin marks (Table 1.2).

1.2.4 Epigenetics and Development

The epigenetic control of gene expression is a fundamen-
tal feature of mammalian development, as indicated by 
developmental arrest or abnormalities in methylation or  
acetylation-deficient mutants.221 X-chromosome inactiva-
tion is an example of sequence-identical alleles being sta-
bly maintained in different functional states. In humans, 
X-linked inactivation serves to normalize the level of ex-
pression of X-linked genes in females (XX) and males (XY). 
Mutations in genes that affect global epigenetic profiles can 
give rise to human diseases. For example, the Fragile X 
syndrome results when a CGG repeat in the FMR1 (frag-
ile X mental retardation gene 1) 5′ regulatory region ex-
pands and becomes methylated de novo, causing the gene 
to be silenced and creating a visible “fragile” site on the 
X chromosome under certain conditions.222 On a more 
global level, mutations in the DNMT3b (which regulates 
DNA methylation) gene lead to ICF syndrome71,73 and CBP 
(with acetyltransferases activity) mutations cause RSTS 
(Rubinstein-Taybi syndrome).223,224 Discovered in 2004, ly-
sine demethylases (LSDs) appear to play an essential role in 
stem cell pluripotency versus lineage specification.225

1.2.5 Epigenetics and Cancer

Epigenetic changes play an important role in tumorigenesis. 
The major epigenetic changes that take place during cancer 
development are generally the aberrant DNA methylation of 
tumor suppressor genes and histones. Genomic methylation 
patterns are frequently altered in tumor cells, with global 
hypomethylation accompanying region-specific hypermeth-
ylation events. When hypermethylation events occur within 

the promoter of a tumor suppressor gene, this can silence 
expression of the associated gene and provide the cell with a 
growth advantage in a manner similar to deletions or muta-
tions. Although cancer cells are hypomethylated in the ge-
nome compared to normal tissues, many tumor-suppressor 
genes are silenced in tumor cells due to hypermethylation. 
This aberrant methylation event occurs early in tumor de-
velopment and increases progressively, eventually leading 
to the malignant phenotype. For example, a high percentage 
of patients with sporadic colorectal cancers with a micro-
satellite instability phenotype show methylation and silenc-
ing of the gene-encoding MLH1 (MutL protein homolog 
1).226 Other methylated tumor suppressors loci include 
CDKN2A (p16INK), p14ARF, Rb, E-cadherin, and BRCA1. 
Deregulation of genomic imprinting can also play a role in 
cancer development, as exemplified by loss of IGF2 gene 
imprinting in Wilms’ tumor.227

Chromatin remodeling also plays an important role dur-
ing tumorigenesis. Loss or misdirection of HATs has been 
linked to embryonic aberrations in mice228,229 and to human 
cancers.230,231 Misdirection of HAT activities as a result of 
chromosomal translocations is associated with multiple 
human leukemias.232–234 In acute promyelocytic leukemia, 
the oncogenic fusion protein PML-RARα (promyelocytic  
leukemia-retinoic acid receptor-α) recruits an HDAC to re-
press genes essential for the differentiation of hematopoietic 
cells.235 Similarly, in acute myeloid leukemia, AML1-ETO 
fusions recruit the repressive N-CoR-Sin3-HDAC1 com-
plex that in turn inhibits normal myeloid development.236

More recently, noncoding RNAs transcribed from in-
tervening (intronic) sequences have been linked to epigen-
etic changes cell cycle regulation, immune surveillance 
and cancer.237 These large intervening noncoding RNAs 
(originally called lincRNAs, currently called lncRNAs) in 
some instances redirect the repressive polycomb repressor 
complex 2 (PRC2) to genes that promote cell renewal.238 In 
particular, the lncRNA called HOTAIR is overexpressed in 
breast cancer and redirects the PRC2 complex, which meth-
ylates H3K27, an epigenetic change that tends to condense 
chromatin.239,240 Perhaps not surprising, many epigenetic 
marks target the developmentally relevant homeobox class 
of transcription factors (Hox genes),241 which in turn are 
master regulators of embryonic development and stem cell 
pluripotency that when altered can lead to disease.242

TABLE 1.2 Erasers, Writers, Readers

Categories Erasers Writers Readers

 HDACs HATs Bromodomain

 NURD PRC1, PRC2 Chromodomain

  PARP  
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The fact that many human diseases, including can-
cer, have an epigenetic etiology has encouraged the de-
velopment of a new therapeutic option called “epigenetic 
therapy”.64 Many agents have been discovered that alter 
methylation patterns on DNA or the modification of his-
tones, and several of these agents are currently being tested 
in clinical trials.243

1.3. ANATOMY OF A GENE PROMOTER

The major advances in the area of transcriptional initia-
tion since the prior edition of this textbook have occurred 
primarily in the explosion of information on epigenetic 
modifications.244,245 The prototypical epigenetic therapies 
include the use of demethylating agents, for example, 5- 
azacytidine, for myelodysplastic disorders and histone 
deacetylase inhibitors, for example, SAHA, to treat a num-
ber of epithelial cancers.246–249 A major focus of transcrip-
tional elongation has been the role of the enzymes involved 
in epigenetic changes, for example, the HAT Gcn5.250 
Moreover, the trithorax group of epigenetic factors, specifi-
cally MLL1, forms a lysine methyltransferase complex with 
the elongation factor ELL.251 Thus, the following section 
will briefly summarize the historical basis of gene promoter 
structure and transcriptional initiation. For more details, the 
reader is referred to recent reviews12 and the prior edition 
of this chapter.

1.3.1 DNA Elements

RNA polymerase II (Pol II) and its accessory factors bind 
to a DNA sequence called the promoter located upstream of 
protein-coding sequences to direct RNA transcription.252,253 
Without the promoter, the genetic sequences that encode the 
information to make a functional peptide product will not 
be transcribed. Other 5′ flanking sequences or DNA ele-
ments that participate in transcription are sequence-specific 
binding sites for proteins that regulate the fidelity, rate, and 
timing of Pol II binding, formation of the preinitiation com-
plex, and initiation of transcript elongation under basal and 
regulated conditions.254–256 These sequences are defined 
as cis-acting elements because they are a part of the same 
(cis) gene.257–260 DNA elements are categorized according 
to their ability to regulate transcription as a function of their 
distance and orientation from the promoter. Sequences that 
are contained within the first 30–100 bp of the promoter 
are considered promoter-dependent cis-acting elements. If 
they are positive-acting elements and increase the rate of 
transcription, they are considered activating DNA elements, 
whereas if they are negative-acting DNA elements and de-
crease or repress the rate of transcription, they are consid-
ered repressor or silencer elements.261–263

The RNA core promoter consists of two types—focused 
and dispersed.264 Focused promoters contain either one or a 

tight cluster of start sites over a few bp; whereas, a dispersed 
promoter contains several start sites over about 100 bp and 
are typically found at CpG dinucleotide sites. Critical pro-
moter elements include TATA elements, which lie upstream 
of the transcription start site, the initiator sequence (Inr) 
that spans the start site, upstream regulatory elements that 
bind either transcriptional activators or repressors and fi-
nally downstream poly(dA-dT) elements.265 The TATA ele-
ment or “TATA box” is an element whose DNA sequence is 
TATA or variants thereof.258,266–269 This sequence resides at 
a fixed distance 25–30 bp upstream from the transcriptional 
start site in many Pol II promoters, and its location relative 
to the start site is position- and distance dependent.270–272 
However, many genes do not have TATA sequences. These 
“TATA-less promoters” still remain dependent on the 
TATA-binding protein (TBP) to assemble at the promoter to 
form the preinitiation complex (PIC) but the recruitment of 
TBP is not rate limiting.

Initiator elements (Inr) although initially identified at 
the “TATA-less promoters”273,274 have subsequently been 
found at both TATA-containing and TATA-less promoters. 
Their role appears to be in directing the accuracy of Pol 
II initiation.275 These Inr elements reside within the first 
60 bp of the transcriptional start site, directly overlap the 
start site itself, but do not have a clearly defined consensus 
sequence.276 Many of the genes-encoding gastrointestinal 
peptides (e.g., gastrin, somatostatin, cholecystokinin, gluca-
gons, and secretin) contain TATA elements277–281; however, 
the gene-encoding the growth factor, transforming growth 
factor alpha (TGFα), does not.282

1.4. METHODOLOGY

This section summarizes some of the molecular techniques 
used to study the transcriptional control of genes. These 
methods are used to study either genetic structure or func-
tion. Three systems have been used to study function: re-
constituted cell-free transcription assays, cell and tissue 
culture models, and whole-animal studies. Methods that 
analyze the structural interactions include those techniques 
that assess DNA-protein interactions and those that assess 
protein-protein interactions. More recently, studies of non-
coding RNAs involve understanding RNA-DNA, RNA-
RNA and RNA-protein interactions.

1.4.1 Structural Methods

Once functional regulatory DNA elements have been iden-
tified, assays that assess DNA-protein interactions are per-
formed.283 Indeed, in circumstances where a long sequence 
(>50 bp) must be analyzed, it is simpler to identify DNA-
protein interactions first and then determine if these DNA 
elements are involved in transcriptional regulation. DNase 
I footprinting assays are used to identify DNA-binding 
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elements that interact with crude or purified nuclear pro-
teins by protecting them from chemical or enzymatic 
cleavage.284,285 Such assays are particularly well suited for 
studying cooperative interactions among proteins bound to 
adjacent DNA elements. The technique can be carried out 
in vivo or in vitro.31 However, in vivo footprinting has been 
superceded by chromatin immunoprecipitation (ChIP) as-
says described below. Electrophoretic gel mobility shift 
assays (EMSA, gel shift, gel delay, or band shift assays) 
permit a more detailed analysis of (a) the type of protein 
complexes that bind to individual DNA elements and 
(b) the specificity of the protein interaction with specific 
bp286–288 (Fig. 1.8). This assay is also rapid and easier to 
perform than footprinting assays. Methylation interference 
assays extend the power of the gel shift assay by identify-
ing specific nucleotide contacts that are required for DNA 
binding.289 DNA affinity precipitation (DAPA) is a DNA-
protein interaction assay that uses a biotinylated DNA-
binding site to identify the proteins that are recruited to an 
element.290 The assay uses the DNA element to isolate the 
protein factors along with immunoblots to identify the pro-
teins that form both the protein-DNA and protein-protein 
interactions. Southwestern blot analysis takes advantage of 
specific DNA elements that are used to detect nuclear pro-
teins separated on a denaturing gel and transferred to nitro-
cellulose or produced by a phage expression library.291–293

1.4.1.1 Chromatin Immunoprecipitation 
Assays
ChIP analysis is now the most effective method to docu-
ment an in vivo interaction at DNA.294–296 First, a fixative, 
usually formaldehyde, is used to crosslink proteins to DNA. 
Antibodies are then used to immunoprecipitate the DNA-
binding proteins. After a series of extractions to remove the 
protein from DNA, specific primers are used to PCR amplify 
the DNA-binding element precipitated with the protein and 
antibody. Variations of this method are used to identify pre-
ferred in vivo binding sites of known DNA-binding proteins. 
The latest iterations of ChIP analyses include genome-wide 
analysis of the genomic DNA precipitated in the protein- 
antibody complex. After genomic DNA purification, adapters 
are added to permit fluorescent labeling of the DNA for mi-
croarray chip analysis (ChIP-chip) or to permit primer bind-
ing and size fractionation prior to direct DNA sequencing 
(ChIP-Seq).297 Using ChIP-Seq, binding sites for the protein 
of interest are analyzed across the entire genome in 25–35 nt 
reading frames. However, 35 nt reads over 3 billion will re-
sult in an enormous amount of sequence data to be analyzed 
requiring significant computing power to establish genomic 
linkage and identify specific genes. The computational capa-
bilities as opposed to sequencing costs tend to be the major 
limitations to these genome-wide approaches. In addition, a 
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similar analysis can be applied to RNA-binding proteins.298 
Alternatively, the immunoprecipitate is resolved on an SDS 
gel, and mass spectroscopy can be used to identify the proteins 
that coprecipitate and are likely involved with protein-protein 
interactions with the DNA-binding proteins. ChIP tech-
niques completely depend upon the quality of the antibodies, 
the quality and quantity of genomic DNA precipitated, and 
primer specificity. ChIP assays complement in vitro DNA-
protein interaction assays such as EMSAs or footprinting. To 
demonstrate functional significance, expression vectors or a 
cell-based knockout strategies using dominant negative con-
structs, antisense technology, or RNA interference may be 
used.299 These approaches are rapid and useful to perform 
prior to using transgenic mouse approaches.

1.4.1.2 Microarray Technology
At the transcription level, DNA array technology increases by 
several orders of magnitude the number of genes that can be 
examined simultaneously under different conditions.300–302 
The number of genes that are either stimulated or inhibited 
under various conditions can be studied simultaneously with 
the limitations being the number of genomic sequences that 
are spotted on the glass slide. A glass slide is able to hold the 
genomic sequences of the 25,500 genes, the current estimate 
of the total number of genes in the human genome. Two types 
of arrays are available—EST/cDNA and oligonucleotide 
Affymetrix-based. The EST microarray chips use expressed 
sequence tags that are fragments of DNA corresponding to 
segments of the genome that encode mRNA. The Affymetrix 
gene chips spot commercially designed oligonucleotide se-
quences. These DNA fragments are subsequently “arrayed” 
onto glass slides. In most instances, several regions of the 
genomic sequence unique to that gene are spotted in multiple 
copies to ensure reproducibility. Different genetic domains 
are plated because of differences in hybridization affinity. 
The RNA is isolated from cells or tissues after treatment with 
an extracellular molecule or from cells at different stages of 
development or transformation. Copy DNA is then generated 
and fluorescently tagged and then hybridized under stringent 
conditions to the DNA arrayed on the glass slide followed 
by analysis by a special plate reader. Computer-generated 
algorithms are required to interpret the fluorescent signals 
and rank the degree of change from baseline fluorescence. 
The technology is being used to study the gene expression 
pattern found in various tissues at under various conditions, 
for example, development, inflammation, and transforma-
tion.303–305 The significance of the findings must be confirmed 
by alternative methods including Northern blot analysis or 
quantitative polymerase chain reaction.

1.4.1.3 Whole Genome Sequencing
Thanks to the intense focus on sequencing the genomes 
of various species, especially human, there are now  

high-throughput methods to batch sequence genomic DNA. 
Genomic DNA is prepared after treating cells with growth 
factors, pharmaceuticals, etc., or after ChIP. Primer tags are 
ligated to the raw ends of the extracted genomic DNA gen-
erated after sonication (ChIP-Seq) or restriction digest, then 
submitted for multiple automated rounds of sequencing.306 
Depending on the Sequencer used, an average of 70–3000 
nt can be sequenced over 0.1–3 gigabytes. The longer the 
sequencing run, the fewer the total number of bases that 
are sequenced.307 RNA-Seq methods are becoming more 
frequent as the focus on alternative splice products and 
noncoding RNAs expands.308,309 The expectation within the 
next 5–10 years is that the cost of genomic sequencing will 
be sufficiently inexpensive to permit sequencing the DNA 
of participants in all clinical studies or of animal models. As 
a result, the storage of such data is beginning to spawn new 
industries focused on storage, access, privacy, and ethical 
issues as well as repetitive data mining.

1.4.1.4 Proteomics
Analogous high-throughput approaches have been de-
veloped to study protein modifications.310 However, the 
techniques used to detect protein posttranslational modi-
fications are more complex and use more labor-intensive 
technology. Protein is extracted from the cell or organelle 
of interest and resolved by two-dimensional gel electropho-
resis in which proteins are separated by both size and ionic 
charge (along a pH gradient). The proteins are visualized 
with a dye either directly on the gel or transferred to a paper 
substrate. Both substrates (gel or paper) can be used for fur-
ther analysis. However, proteins transferred to a paper sub-
strate permit several options for analysis. Resolved proteins 
that are transferred to paper can be submitted for analysis 
with an antibody (immunoblot) that might recognize phos-
phorylated or acetylated peptides. Computers are used to 
analyze differences in the size of the spot corresponding to 
the amount of a particular protein modification (phosphory-
lated, acetylated). Proteins that cannot be identified by an-
tibody can be analyzed by mass spectroscopy. Therefore, 
proteomics allows regulatory changes that occur because of 
posttranslational modifications to be followed and quanti-
fied for a large number of proteins simultaneously. Taking 
advantage of information on the same technology used to 
develop DNA arrays, companies are now developing pro-
tein arrays that will be applied to new drug discovery.311

1.4.1.5 Bioinformatics and Computational 
Biology
Perhaps not surprisingly, these high-throughput technolo-
gies have generated enormous amounts of information that 
require sophisticated computers to analyze. As computer 
technology logarithmically improves, so does desktop com-
puting such that individual investigators can manipulate  



Transcription and Epigenetic Regulation  Chapter | 1 19

the data generated with the assistance of sophisticated pro-
grams.312,313 In most instances, investigators will need to 
recruit the assistance of a computational core facility or 
specially trained statisticians to analyze the reams of data. 
Since a discussion of complex computing algorithms is be-
yond the scope of this chapter, the author refers the reader 
to several recent reviews on the topic.314–316

1.5. POSTTRANSCRIPTIONAL 
PROCESSING

1.5.1 Polyadenylation

Three major events occur at the end of transcription: (i) the 
poly(A) tail is added, (ii) adenine bases are methylated, and 
(iii) hnRNA is processed by removing introns prior to exit-
ing the nucleus (Fig.  1.3).317 All mRNA except those en-
coding most histone proteins have poly(A) tails. The length 
of the poly(A) tail that added ranges from 200 to 250 bp 
and is quite uniform among eukaryotic organisms. Once the 
transcript reaches the cytoplasm, the length of the poly(A) 
sequence decreases with the age of the transcript.318 Thus, 
polyadenylation contributes to mRNA stability and trans-
lational activation, processes that also involve a synergis-
tic interaction with the cap site.319–321 Because there is no 
poly(dT) sequence within DNA, addition of the poly(A) tail 
represents a posttranscriptional modification of the newly 
synthesized mRNA. The AATAAA site in DNA is tran-
scribed as AAUAAA and signals endonuclease cleavage of 
hnRNA ~20 bp after this RNA element.322 Several factors 
are required for specific recognition of the AAUAAA ele-
ment before the addition of adenylate residues by poly(A) 
polymerase.323,324 Polyadenylation occurs in two phases: (i) 
an AAUAAA-dependent phase marked by addition of the 
first 10 residues and (ii) an AAUAAA-independent phase 
marked by rapid elongation and catalyzed by a poly(A)-
binding protein.325 In addition, endonuclease cleavage of 
poly adenylated histone H1 transcripts has also been shown 
to require the presence of small nuclear ribonucleoproteins 
(U7 snRNP, pronounced “snurp”), trans-acting factors that 
participate in RNA splicing reactions.326 Transcription can 
proceed for up to 2 kb past the polyadenylation site and may 
terminate prematurely 30% of the time. Adenylate residues 
within exons are methylated at the sixth nitrogen and are 
thought to serve a protective role for those sequences that 
will eventually be translated.327 It is now known that forma-
tion of the preinitiation complex is linked to the assembly of 
factors involved in polyadenylation.328

1.5.2 RNA Splicing

1.5.2.1 The Spliceosome
Soon after the termination of transcription, most vertebrate 
hnRNA (pre-mRNA) will be posttranscriptionally processed 

after exiting the nucleus into a form that can be translated 
(Fig.  1.3). This involves removing intervening sequences 
that in some transcripts contain transcriptional regulatory 
signals (cis-acting elements) some of which are now known 
to encode miRNAs. Comparing the genomic sequence with 
the cDNA prepared from an RNA template identifies splice 
sites. The cis-acting elements within the intron that regu-
late RNA splicing are GU (GT in the genomic sequence) 
at the 5′ splice border, AG at the 3′ splice border, and a 
pyrimidine-rich element that defines the area of the branch-
point 20 bp upstream from the 3′ splice junction (Fig. 1.9). 
The branchpoint lies just upstream of the pyrimidine-rich 
region (PyPy)n and is a highly conserved sequence in yeast 
(UACUAAC) but much less so in vertebrates.

Five small nuclear RNAs—U1, U2, U5, U4, and U6 
(snRNAs)—combine with subsets of about 10 different 
proteins to form small nuclear ribonucleoproteins (snRNPs; 
pronounced “snurps”).329,330 The snRNAs, ranging in size 
from 56 to 217 nt, are quite abundant in the nucleoplasm 
and contain a trimethylguanylate cap. Some proteins are 
components of all five major snRNPs, while others are 
unique to one snRNP. The U7 snRNP, which is present in 
low concentrations, participates in the 3′ posttranscriptional 
processing of hnRNA (poly(A).331 The five major snRNPs 
assemble into large multicomponent complexes called spli-
ceosomes to carry out the splicing reactions.332 There re-
actions occur in three steps: cleavage at the 5′ exon-intron 
border with formation of a branchpoint, excision of the 
branchpoint as a lariat, and joining of the exons. Splice site 
selection can be influenced by subtle changes in flanking 
exon sequences.333–335

The basic steps in RNA processing illustrated in Fig. 1.9 
are as follows331: U1 snRNP binds in a sequence-specific 
manner to the 5′ exon-intron junction of capped pre-
mRNA.336 An U2 snRNP accessory factor (U2AF) then 
binds to the pyrimidine-rich element prior to sequence-
specific recognition of the branchpoint element by U2 sn-
RNP.337,338 The 5′ exon is released by cleavage of the 5′ 
exon junction. This allows the freed 5′-guanylate residue 
to form a phosphodiester bond at the 2′ site of an adenyl-
ate residue within the branchpoint. U4 and U6 snRNPs 
are paired together by complementary bases and function 
as a single snRNP complex.339 The recruitment of the U4/
U6 snRNPs to the spliceosome is essential to the last ex-
cision step and final removal of the intron from the pre-
mRNA. U4/U6 snRNP cooperates with the U2 branchpoint 
complex without direct contact with RNA.340 U5 snRNP 
binds just upstream of the 3′ splice junction to initiate 
cleavage of the 3′ intron border. Finally, the intron is re-
moved as a lariat and the two exons are joined. More recent 
evidence indicates that small RNAs themselves catalyze 
the splicing reactions without the presence of specific en-
zymes.341,342 As observed for polyadenylation, the splicing 
events coincide with transcriptional events.343 It is therefore  



20 Section | I Basic Cell Physiology, Genetics, and Growth of the GI Tract

somewhat surprising that the events involved in splicing are 
not better understood. Nevertheless, with the understanding 
that the complexity of the human genome lies beyond the 
DNA sequence and at the level of epigenetics, alternative-
splice products and noncoding RNA, the next decade will 
likely witness heightened attention to these other nuclear 
processes.343,344

1.5.2.2 Alternative Splicing
Eukaryotic cells have applied the mechanics of RNA splic-
ing to generate the protein diversity necessary to meet their 
multiple demands. Thus, in contrast to the original definition 
of a gene in which only one transcript is produced, complex 
genes can generate multiple protein isoforms from mul-
tiple RNA transcripts through alternative splicing.345 This 
can be achieved by altering which introns and exons are 
included in or excluded from the mature mRNA transcript 
that is used as the template for peptide chain elongation. 
Accordingly, the definition of introns and exons for each 

gene is actually a fluid concept because an intron for one 
gene product might become an exon within another tran-
script. Alternative splicing is a mechanism used by many 
protein classes, including muscle-related genes, hormones, 
and transcription factors.346–350

1.5.2.3 Regulated Posttranscriptional 
Mechanisms—mRNA Stability
In addition to cis-acting DNA elements, the cis and trans 
models of regulation also occur at the posttranscriptional 
level.351 Ferritin and the transferrin receptor (TfR), which 
regulate the storage and uptake of iron, were the best-
known examples of regulated posttranscriptional control352 
until the discovery of noncoding RNAs. cis-Acting RNA 
elements, responsible for conferring iron regulation to 
both proteins (iron response elements or IREs), reside in 
the 5′ and 3′ untranslated regions (UTRs) of ferritin and 
TfR mRNA transcripts, respectively. The same iron-binding 
protein (IRE-BP), which binds to the IRE in the 5′ UTR of 
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ferritin to block translation, will also bind to the 3′ UTR of 
TfR to block mRNA degradation.351,353,354 Therefore, regu-
lation of iron levels ultimately depends upon posttranscrip-
tional mechanisms that either block translation or increase 
mRNA stability.

1.5.2.4 Regulated Posttranscriptional 
Mechanisms—mRNAs
Due to the explosion of interest in these molecules, a sep-
arate section has been devoted to this specialized type of 
posttranscriptional regulation.355 miRNAs have become es-
pecially important in understanding GI development due to 
their role in embryonic stem cells356 and in GI cancers,25,357 
especially hepatocellular358 and gastric.359,360 How miRNAs 
repress translation has not been firmly established. Kwak 
and Tomari proposed at least six different mechanisms sev-
eral of which include interference with elongation factors or 
ribosome assembly.25 miRNAs exhibit broader regulation 
of gene expression by coincidently targeting the multiple 3′ 
UTRs of different genes. miRNAs are categorized by their 
“seed region” in positions 2–8 and 12–16 in the 3′ region. 
This permits mismatching of the remaining 12 or so nucleo-
tides and subsequently the ability to target several gene loci. 
By contrast short-interfering or siRNA molecules are quite 
stringent in their sequence recognition and primarily target 
the 5′ UTR of the same gene from which it is transcribed. 
Thus, genome-wide high-throughput approaches are now 
being used to identify and catalog the miRNAs of differ-
ent tissues under various conditions, for example, cancer, 
inflammation.

1.6. TRANSPORT ACROSS THE NUCLEAR 
MEMBRANE

As noted earlier, RNA is synthesized initially as a much 
larger primary transcript molecule that in many instances 
undergoes posttranscriptional modification (e.g., splicing, 
degradation). However, for any mature RNA transcript to 
be translated, it must be transported from the nucleus to 
the cytoplasm.13 In contrast, nuclear regulatory proteins 
are translated in the cytoplasm and are eventually returned 
to the nucleus, either immediately following synthesis or 
following a dormant state from which they are activated in 
response to signals.361 This bidirectional shuttling of mac-
romolecules between the cytoplasm and the nucleus occurs 
through the nuclear pore complex (NPC), a specialized 
compartment of the nuclear membrane regulated by a group 
of transport receptors called karyopherins.362 Both import 
and export processes through the nucleus require energy in 
the form of the Ras-related GTPase Ran and specific target-
ing signals on the cargo to be transported (nuclear localiza-
tion and export signals or NLS, NES, respectively).363,364 
The three-dimensional structure of the NPC reveals a  

doughnut-shaped structure comprised of eight subunits.365 
From the eight subunits emanate “spoke-like” structures, 
which radiate inward to form a central plug.366,367 Its cy-
toplasmic surface is closely associated with ribosomes. Its 
nuclear surface is thought to participate in the organization 
of the genome by binding to specific DNA sequences within 
transcribed genes whose products may be destined for export 
from the nucleus (gene-gating hypothesis).368 Perturbations 
in the nuclear envelope affect chromosome organization, 
DNA repair, and the cell cycle.369 Consequently, there are 
several rare clinical disorders associated with a defective 
nuclear envelope, for example, muscular dystrophic and pre-
mature aging (Hutchinson-Gilbert progeria syndrome).370,371

1.7. CONCLUDING REMARKS

In summary, the goals of this initial chapter are to introduce 
the reader to the basic molecular building blocks of the cell 
and the techniques used to study them. Some of the sections 
provide a historic perspective tinged with recently estab-
lished or evolving concepts. In no way are the sections meant 
to be exhaustive reviews. Rather, they will hopefully arm the 
reader with sufficient background to understand the current 
molecular biology literature and apply the concepts to the 
study of the GI tract. Molecular physiology continues to  
be strongly impacted by the explosion of knowledge about 
the epigenome and noncoding RNAs. Although our ability to  
access the genetic basis for cellular structure and function us-
ing genome-wide approaches has become routine, the chal-
lenges that lie ahead will exist primarily at the level of data 
management, function (phenotype) characterization, and 
translation to whole organisms, for example, in vivo animal 
models and ultimately to human physiology and disease.
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Gastrointestinal Hormones☆

Fiona M. Gribble, Frank Reimann, Geoffrey P. Roberts

2.1. INTRODUCTION

The intestinal tract secretes a number of hormones that 
coordinate local, peripheral, and central responses to food 
intake. Hormones produced in the stomach are regulated 
rapidly after food ingestion and are largely involved in 
the control of acid and enzyme secretion. As food reaches 
the small intestine, it triggers the secretion of a range of 
hormones that serve to match the release of digestive en-
zymes, electrolytes, and bile acids to the composition of the 
ingested food and to regulate the rate of delivery of nutri-
ents into the duodenum. When nutrients are subsequently 
absorbed into the bloodstream, the parallel release of gut 
hormones reflects the rate of nutrient absorption and fa-
cilitates downstream hormonal responses such as insulin 
release, as well as sending signals to the brain to control 
appetitive behaviors.

Gut hormones are produced from specialized entero-
endocrine cells (EECs) located in the epithelium of the 
gastrointestinal (GI) tract from the stomach through to 
the rectum. Like other cell types of the intestinal epi-
thelium, EECs are continuously replaced by new cells 
formed from crypt stem cells. Approximately 1% of 
newly formed epithelial cells differentiate into EECs, 
and they share with neighboring enterocytes a similar life 
span of ~3–5 days in the small intestine, and up to a few 
weeks in the stomach and colon.1 Many EECs have an 
apical surface facing into the intestinal lumen and a baso-
lateral surface facing the interstitium, and are known as 
open-type cells because they make contact with luminal 
contents. The exception is the stomach, where except in 
the antrum, most EECs are closed type and do not have 
a surface opening into the lumen. Whereas open-type 
EECs are believed to respond primarily to nutritional 
stimuli arriving in the local vicinity after food ingestion, 
closed-type cells are regulated by paracrine, circulat-
ing, or neural signals, although nutrients might directly 
regulate these cells if concentrations rise in their vicinity 
postabsorption.

2.1.1 Production and Processing of 
Peptides by Enteroendocrine Cells

EECs have traditionally been classified and named accord-
ing to the principal hormones they produce as determined by 
immunostaining (Table 2.1) with each hormone and cell type 
exhibiting a characteristic distribution along the length of the 
GI tract.2 Gastric epithelium, for example, contains a large 
number of EECs-producing gastrin, somatostatin (SST), 
ghrelin, or histamine. Small intestine preferentially generates 
EECs-producing cholecystokinin (CCK), secretin, glucose-
dependent insulinotropic polypeptide (GIP), glucagon-like 
peptides 1 and 2 (GLP-1, GLP-2), peptide YY (PYY), neuro-
tensin (NT), and serotonin (5-HT). In the colon and rectum, 
EECs have been shown to secrete serotonin, GLP-1, GLP-2, 
PYY, NT, SST, and insulin-like  peptide-5 (INSL5).

Recent molecular techniques examining EEC subpopu-
lations, labeled with fluorescent reporters driven by hor-
mone specific promoters in transgenic mice, have yielded 
transcriptomic data at odds with the simple EEC classifi-
cation suggested by the early immunostaining studies that 
used only one or two antibodies at a time.3,4At the messen-
ger RNA (mRNA) level, there is a high degree of overlap 
between different EEC types that were originally thought 
to be distinct, and many single EECs produce mRNA for a 
number of different gut hormones.4,5 Coproduction of sev-
eral different hormones in the same EECs has been con-
firmed by immunostaining.6 It is now thought that intestinal 
EECs-producing CCK, GIP, secretin, GLP-1, PYY, and 
5-HT form a continuum, with individual cells producing 
a mix of hormones dependent on their position along the 
GI tract. Within individual cells, there are conflicting views 
about whether coexpressed hormones are localized in the 
same or distinct vesicles, but no convincing evidence has 
yet been presented to show separate mobilization of differ-
ent hormones from individual cells.6,7

Peptide hormones are biosynthesized as prepropep-
tides containing N-terminal signal sequences that direct the 
growing peptide chain into the lumen of the endoplasmic 
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reticulum during translation. Propeptides transit through the 
Golgi and are packaged into secretory vesicles where they 
are cleaved by prohormone convertases (PCs) and further 
posttranslationally modified by, for example, amidation, 
sulfation, or acylation. The predominant PC identified in 
most intestinal EECs is PC1/3, which cleaves propeptides 
at dibasic residues and is likely responsible for the majority 
of peptide hormone processing in the small intestine and 
colon.8,9 By contrast, PC2 plays a more prominent role in 
the stomach.10 EECs are often identified by immunolabel-
ing with antibodies against chromogranins and secretogra-
nins.3,11 These large granin proteins are believed to play a 
functional role in vesicular packaging but are also subject to 
PC-mediated cleavage, resulting in the generation of smaller 
peptides that might themselves play signaling roles.12

2.1.2 How Do EECs Respond to  
Nutrition-Related Stimuli?

It has long been recognized that a wide variety of nutritional 
and nonnutritional signals trigger gut hormone  secretion, 
with some stimuli preferentially linked to the release of cer-
tain hormones. Comparisons between plasma gut hormone 
concentrations following matched nutrient loads adminis-
tered orally versus intravenously in humans have revealed 
that most gut hormones are preferentially released after oral 
nutrient ingestion.13,14 Many additional studies have dem-
onstrated that polymeric macronutrients must be digested 
into monomers (monosaccharides, free fatty acids, and 
monoacylglycerides or di/tripeptides and amino acids) be-
fore they are capable of triggering gut hormone release.15

TABLE 2.1 Gut Hormones, Classic Cells of Origin, Principle Location Within the GI Tract and Functions

Peptide
Cell of 
Origin

Locations of GI Tract 
Secreted From Function

Gastrin G cells Gastric antrum Stimulates gastric acid secretion.
Differentiation and integrity of gastric mucosa.

Somatostatin (SST) D cells Whole GI tract Delays gastric emptying and gastrointestinal motility.
Inhibits secretion of all other gastrointestinal hormones.
Reduces colonic fluid secretion.
Reduces bile flow and pancreatic exocrine secretion.
Reduces splanchnic blood flow.

Ghrelin X/A like 
cells

Stomach Stimulates hunger.
Protective during fasting induced hypoglycaemia.

Cholecystokinin (CCK) I cells Duodenum Stimulates gallbladder contraction and pancreatic exocrine secretion.
Inhibits gastric emptying and acid secretion.
Signals satiety.

Secretin S cells Duodenum, jejunum Stimulates pancreatic exocrine secretion.
Inhibits gastric emptying and acid production.

Motilin M cells Duodenum, jejunum Stimulates gastrointestinal motility.

Neurotensin (NT) N cells Ileum Delays gastrointestinal motility.
Stimulates pancreatic exocrine secretion.

Glucose-dependent 
insulinotropic polypeptide 
(GIP)

K cells Duodenum, jejunum Enhances glucose-stimulated insulin secretion (incretin effect).
Promotes fat deposition.
Reduces bone turnover.

Glucagon-like peptide 1 
(GLP-1)

L cells Jejunum, ileum, colon Enhances glucose-stimulated insulin secretion (incretin effect), 
inhibits glucagon secretion.
Delays gastric emptying.
Signals satiety, reduces food intake.

Glucagon-like peptide 2 
(GLP-2)

L cells Jejunum, ileum, colon Adaptation and recovery of intestinal mucosa in response to 
injury.

Oxyntomodulin L cells Jejunum, ileum, colon Body weight homeostasis.

Peptide YY (PYY) L cells Jejunum, ileum, colon, Signals satiety.
Inhibits gastric emptying and acid secretion.
Maintenance of salt/water homeostasis.

Insulin-like peptide 5 (INSL5) L cells Colon Stimulates hunger.
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Transcriptomic analysis and single-cell characteriza-
tion of fluorescently tagged murine EECs have revealed 
that they express a range of receptors and transporters ca-
pable of detecting a wide variety of stimuli.1 Even at the 
single cell level, individual EECs produce machinery ca-
pable of detecting multiple stimuli.5 Unlike taste cells in the 
tongue, therefore, individual EECs seem to be multimodal 
rather than tuned to respond to single stimuli. There are two 
major molecular pathways by which EECs detect ingested 
 nutrients—one involving nutrient transporters and a second 
involving G-protein-coupled receptors (GPCRs).

Enterocytes typically employ ion-coupled transporters 
to absorb nutrients across the brush border, using inwardly 
directed gradients for Na+ or H+ ions to drive the uphill ab-
sorption of nutrients. A large body of evidence supports the 
idea that many EECs have hijacked sodium-coupled glucose 
transporters (SGLT1) on the apical membrane to act as glu-
cose sensors, as the coupled uptake of Na+ ions with glucose 
molecules generates an inward current capable of triggering 
electrical activity, leading to Ca2+ entry through voltage-
gated Ca2+ channels and activation of vesicular exocytotic 
pathways.1 There is some, albeit weaker, evidence that cer-
tain amino acids and di/tripeptides might similarly trigger gut 
hormone release via their Na+- and H+-coupled uptake.16,17

Many small molecules are detected by members of the 
GPCR superfamily, which include receptors specifically 
responsive to small molecules including long- and short-
chain fatty acids, monoacylglycerides, amino acids, bile 
acids, and bitter tastants. Nutrient and bile acid respon-
sive GPCRs are highly and specifically expressed in EECs 
within the intestinal epithelium and likely underlie gut hor-
mone responses to ingested fats and protein, as well as bile 
acids.1 GPCRs linked to the stimulation of EECs are mostly 
Gs and Gq coupled, linked, respectively, to the elevation of 
cytoplasmic cAMP and Ca2+ concentrations. An increas-
ing body of evidence suggests that coincident activation of 
different signaling pathways in EECs results in synergistic 
enhancement of gut hormone secretion.18

Rather than merely “tasting” the luminal contents, it is 
increasingly apparent that EECs respond to the local rates of 
nutrient absorption. In the case of glucose, the rate of SGLT1-
mediated glucose uptake by EECs, and hence the degree of 
glucose-dependent membrane depolarization, will mirror rates 
of glucose influx by neighboring enterocytes, being determined 
by the local concentrations of glucose and Na+ ions.19 Results 
from perfused intestinal preparations and Ussing chambers 
have now shown that EEC receptors for long chain fatty acids 
and bile acids are functionally located on the basolateral rather 
than the apical surface of EECs, requiring local absorption 
across the epithelium prior to receptor activation.20–22 Linking 
gut hormone secretion to local nutrient absorption might en-
sure that the circulating hormonal signal reflects the rate of 
nutrient entry into the bloodstream, rather than the mass of 
unabsorbed nutrients in the lumen that do not yet require the 
activation of a peripheral homeostatic response.

2.1.3 Pathophysiology Affecting Multiple 
Enteroendocrine Cell Subtypes

In the sections below, we will describe pathologies primarily 
affecting specific gut hormones, but there are a few condi-
tions that have more generalized effects on the enteroendo-
crine system. There have been rare case reports of humans 
born with an almost complete lack of EECs due to muta-
tions in the transcription factor NeuroG3, which is required 
for cell differentiation down the EEC pathway.23,24 Affected 
neonates presented with severe malabsorptive diarrhea. Rare 
human cases have also been reported with homozygous loss 
of PC1/3 due to mutations in the PCSK1 gene, resulting in 
a variable presentation that can include malabsorptive diar-
rhea, impaired glucose homeostasis, and obesity, as well as 
other endocrinopathies attributable to the global deficiency 
of many active hormones and peptide neurotransmitters in 
the gut, pancreas, and central nervous system.25 Secondary 
EEC deficiency associated with gastrointestinal symptoms 
has been described in the autoimmune-polyendocrine- 
candidiasis-ectodermal-dystrophy (APECED) syndrome, 
associated with a mutation in the AIRE gene.25a

Neuroendocrine tumors (NETs) of the GI tract can pro-
duce a range of unprocessed, partially processed, and fully 
processed peptide hormones, with the consequence that 
clinical presentations vary markedly between cases. In most 
cases, the exact pattern of active peptides produced by an 
individual tumor is not currently measurable, because of 
the lack of suitable methodology for the identification and 
quantification of partially processed peptides.

Some of the most dramatic gut hormone changes in hu-
mans have been observed after upper GI surgical procedures 
such as Roux-en-Y gastric bypass (RYGB) surgery, gastrec-
tomy, or esophagectomy. RYGB and sleeve gastrectomy are 
performed routinely as a treatment for morbid obesity, but 
have dramatic metabolic consequences that result in the 
resolution of the majority of cases of type 2 diabetes.26,27 As 
discussed in some of the sections below, dramatic postpran-
dial elevations of gut hormones such as GLP-1 and PYY 
in these patients are likely caused by increased nutrient de-
livery to and absorption in the more distal small intestine, 
and almost certainly contribute to observed improvements 
in glucose tolerance and reduced appetite.28,29 Similar hor-
monal changes have been observed in lean subjects, for 
example, following resection for gastric cancer, and may 
contribute to some of the symptoms encompassed under the 
umbrella of “dumping syndrome.”30

2.1.4 Details of Specific Gut 
Hormones With Known Biological and 
Pathophysiological Roles

In the sections below, we provide details of the major iden-
tified gut hormones produced by EECs, focusing particu-
larly on hormones that have known cognate receptors and 
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 functional roles. Peptide sequence nomenclature is based 
on human sequences, as published in the Uniprot/Swissprot 
database. The list is not exhaustive and does not include the 
large number of additional signaling peptides produced by 
non-EECs types in the gut, such as enteric nerves [e.g., va-
soactive intestinal peptide (VIP), gastrin-releasing peptide, 
galanin], Paneth cells (e.g., defensins), enterocytes (e.g., 
FGF 15/19), immune cells (e.g., interleukins), and as yet 
unidentified cell types (e.g., guanylin/uroguanylin).

2.2. GASTRIN

It was first observed in 1905 that mucosal extracts from 
the gastric antrum stimulated gastric acid secretion when 
injected intravenously in cats, but it was not until 1942 that 
this effect was demonstrated to be due to a peptide, gastrin, 
rather than contamination with histamine.31,32 The main 
physiological actions of gastrin are regulation of gastric 
acid secretion and control of gastric epithelial cell growth 
and differentiation.32,33

2.2.1 Synthesis

Gastrin is primarily secreted from gastric antral G cells, 
but has also been identified in the pituitary gland, devel-
oping pancreas and sperm.34–36 The gastrin gene encodes a 
101 amino acid prepropeptide, containing a 21 amino acid 
N-terminal signal peptide and 80 amino acid progastrin 
peptide. All subsequent amino acid position nomenclature 
refers to the position in the preprogastrin peptide. Following 
cleavage of the signal peptide in the endoplasmic reticulum, 
progastrin is sulfated at tyrosine 86 and phosphorylated at 
serine 96. Further processing in the trans-golgi network 
and secretory vesicles results in the two mature, C-terminal 
amidated forms—Gastrin34 (G34) and Gastrin17 (G17). 
Progastrin is cleaved by PC 1/3 (PC1/3) and carboxypep-
tidase E (CPE) at amino acid positions 58-59 and 92-93 
(the latter removing a C-terminal flanking peptide). The 
resulting 34 amino acid peptide (G34-Gly) is amidated by 
 peptidyl-glycine α-amidating monooxygenase (PAM), with 
the glycine group acting as an amide donor. G34 is then 

cleaved by PC2 to G17, with the two forms present in hu-
man G cell vesicles at a G34:G17 ratio of 1:9 (Fig. 2.1).37–39

Gastrin shares a significant degree of sequence and 
structural homology with CCK, and G34 and G17 both act 
through the CCK2 receptor. Whereas G17 and G34 undergo 
regulated exocytosis, progastrin, and nonamidated forms 
of G17 and G34 are secreted via the constitutive pathway. 
They have no known receptor and have previously been 
regarded as inactive metabolites, although recent evidence 
suggests that they may play a role in colonic mucosal pro-
liferation and have a complementary role to that of the ami-
dated gastrins.40,41

2.2.2 Secretion

Gastrin secretion is regulated by neuronal-, hormonal-, and 
nutrient-responsive factors. Gastrin is secreted in response 
to luminal amino acids detected via apical calcium-sensing 
receptors (CaSRs), sympathetic and parasympathetic ner-
vous activity, and gastrin-releasing peptide derived from lo-
cal neurons.42–50 Gastrin secretion is inhibited by SST, when 
the gastric luminal pH is below 3. Chronic use of proton 
pump inhibitors results in hypergastrinaemia.51

2.2.3 Function

Gastrin’s key role in gastric acid secretion has been dem-
onstrated through gastrin infusion and CCK2R antago-
nist experiments in man, immunoneutralization in dogs, 
and in gastrin gene knockout in mice.52–55 Gastrin acts on 
enterochromaffin-like (ECL) cells to stimulate histamine 
secretion, which then acts in a paracrine fashion via H2 
receptors on parietal cells to stimulate acid secretion.56–58 
Interestingly, in gastrin-deficient mice, the coinfusion of 
G17 and the nonamidated G17-Gly more potently restored 
gastric acid secretion than G17 alone.40 In addition to stim-
ulating acute histamine secretion, the gastrin upregulated 
the expression of histidine decarboxylase, the enzyme re-
sponsible for conversion of histidine to histamine, in ECL 
cells.59 Although CCK2 receptors are also present on pari-
etal cells, these appear to be only of limited role for gastrin 
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FIG. 2.1 Amino acid sequence of gastrin prepropeptide and secreted peptides, derived from Uniprot/Swissprot database.
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stimulation of parietal cell acid secretion, with the majority 
of the effect of gastrin on acid secretion arising due to his-
tamine from ECLs.60

Gastrin is not essential for the development and main-
tenance of the gastric mucosa, but gastrin gene knockout 
mice had reduced numbers of parietal and ECL cells, which 
could be restored by infusion of gastrin.33,55 It therefore 
appears that gastrin plays a key role in the differentiation 
and integrity of the gastric mucosa, although the underly-
ing pathways remain subject to ongoing investigation. One 
pathway of note involves the urokinase plasminogen activa-
tor (uPA) family, including uPA and plasminogen activator 
inhibitors 1 and 2 (PAI1, PAI2), which localize to gastric 
parietal and ECL cells.61–63

2.2.4 Clinical Aspects

Zollinger-Ellison syndrome, hypergastrinemia secondary 
to gastrin secreting NETs, is a cause of gastric acid hyper-
secretion, multiple peptic ulcers, and secretory diarrhea.64 
This is associated with multiple endocrine neoplasia type 1 
(MEN1) in up to 20% of cases.65

The role of gastrin in gastric mucosal proliferation is of 
interest in the pathogenesis and treatment of gastric can-
cer.66 Specifically, it has been demonstrated that gastrin 
stimulates the growth of gastric cancer cell lines in vitro by 
stimulation of CCK2 receptors, and nonendocrine gastric 
cancer cell lines can secrete gastrin, which may act in an 
autocrine fashion.67,68 Despite this, any link between hyper-
gastrinemia secondary to proton pump inhibitor therapy and 
an increased prevalence of gastric adenocarcinoma remains 
controversial.69,70 However, there is a more established link 
between hypergastrinemia and ECL cell NETs of the stom-
ach, evidence arising from potent H2 receptor blockade in 
rats using loxtidine and transgenic Men1/Sst knockout mice 
treated with omeprazole.71,72 Gastric carcinoids in man 
can be associated with hypergastrinemia due to Zollinger-
Ellison syndrome (principally in the presence of multiple 
endocrine neoplasia type 1 [MEN1]) or atrophic gastritis, 
but not PPI therapy.73–76

2.3. SST

SST was originally described in 1973 as a 14 amino acid 
peptide inhibitor of hypothalamic growth hormone secre-
tion.77 A 28 amino acid N-terminal extended form was 
subsequently identified from the GI tract, and the two SST 
forms are now considered together as a global counterregu-
latory hormone, with inhibitory effects in multiple target 
tissues.78,79

2.3.1 Synthesis

Both SST-14 and SST-28 are products of a single 116 amino 
acid prepropeptide translated from the SST gene. The pre-
propeptide consists of a 24 amino acid N-terminal signal 
peptide and a 92 amino acid propeptide, of which the ter-
minal 14 and 28 amino acids correspond to the active SST 
peptides (Fig. 2.2).80,81

2.3.2 Secretion

Both 14 and 28 amino acid forms of SST are secreted from 
gastric and intestinal D cells and pancreatic δ cells, with SST-
28 predominating in the small intestine, and SST-14 pre-
dominating in the rest of the GI tract and pancreas. Gastric 
D cells differ between the proximal and distal stomach, with 
oxyntic D cells exhibiting a closed-type morphology and 
those in the antrum an open-type morphology. Closed-type 
oxyntic D cells are inhibited by the vagus nerve soon after 
food ingestion, thereby reducing the tonic inhibitory control 
by SST of gastrin and histamine secretion that predominates 
between meals.82,83 SST release from the distal antrum is 
stimulated by nutrient ingestion, reduced gastric pH, CCK, 
GIP, GLP-1, acetylcholine, VIP, CGRP, and secretin, result-
ing in a delayed feedback inhibition of gastric secretions that 
restores acid secretion to basal levels.84–88

2.3.3 Receptors

There are five G-protein-coupled SST receptors, labeled 
numerically from 1 to 5, with SSTR2 having two isoforms, 
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FIG. 2.2 Amino acid sequence of somatostatin prepropeptide and secreted peptides, derived from Uniprot/Swissprot database.
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SSTR2A and SSTR2B.89,90 All SSTRs act through pertussis 
toxin-sensitive pathways (Gi) to inhibit adenylate cyclase, 
activate inwardly rectifying potassium channels, and prevent 
cellular depolarization, calcium influx, and subsequent ves-
icle exocytosis.90,91 SSTRs also activate other downstream 
pathways that reduce cellular proliferation through the ac-
tion of protein tyrosine phosphatases on MAPKs.89–91 SST-
14 and SST-28 bind with equal affinity to SSTRs 1–4, but 
SST-28 has a 10–30 fold higher affinity for SSTR5 than other 
SSTRs, whereas SST-14 has reduced affinity at SSTR5.90

2.3.4 Function

2.3.4.1 Stomach
SST acts to inhibit gastrin-mediated acid secretion from 
gastric parietal cells, acting in a paracrine, endocrine, and 
neurocrine fashion. SST receptor knockout mouse experi-
ments suggest this is mediated by SSTR2, although a de-
tailed discussion of gastric acid secretion is the topic of a 
further chapter of this book.92,93

2.3.4.2 Gastrointestinal Motility
SST delays intestinal transit by slowing gastric emptying 
and prolonging migrating motor complexes (MMCs), as 
well as inhibiting the relaxation of the lower oesophageal 
sphincter.94–97 It however remains a topic of some debate 
as to whether these are global effects, or if SST has dif-
ferential effects on stomach, small intestine, and colon.98,99 
Experiments to elucidate the underlying mechanisms by 
which SST has this effect have focused on ex vivo intestines 
or intestinal smooth muscle. SST has been shown to inhibit 
VIP-induced relaxation or acetylcholine- and CCK-induced 
contraction independent of the intestinal section and spe-
cies investigated; in isolated human colonic smooth muscle 
cells, removing thereby indirect effects through the modu-
lation of the release of myenteric plexus-derived transmit-
ters, a combination of SSTR1 and SSTR2 activity relaxed 
smooth muscle cells directly, although high concentrations 
in the absence of other contracting agents resulted in SST-
induced contraction.99 In rodent small intestine examined 
ex  vivo, SST prolonged MMCs in a SSTR2 and nitric 
 oxide-dependent fashion.100

2.3.4.3 Intestinal and Pancreatic Endocrine 
and Exocrine Secretion
In keeping with its global counterregulatory role, SST in-
hibits the secretion of multiple gut peptides, including 
gastrin, GLP-1, motilin, secretin, ghrelin, PYY, 5-HT, and 
GIP.101–109

SST, acting directly on colonocytes, reduces colonic 
fluid secretion.110,111

A series of in  vivo and in  vitro experiments in dogs, 
rodents, and humans have used gastroduodenal perfusion 

and sampling, bile duct ligation, and endoscopic sphincter 
of Oddi cannulation to examine the role of SST in bilio-
pancreatic secretion. SST has been demonstrated to reduce 
bile flow by inhibiting secretion and enhancing resorption 
of fluid by cholangiocytes.112,113 SST appears to inhibit 
secretin-mediated pancreatic bicarbonate secretion, but had 
limited effects on basal pancreatic secretion, with the net 
result of reduced sphincter of Oddi flow in human infusion 
experiments, albeit with conflicting evidence on whether it 
induces sphincter contraction.107

2.3.4.4 Splanchnic Circulation
Exogenous administration of SST or its analogues has been 
shown to reduce splanchnic blood flow and pressure in dogs 
and man, although there is little information on the underly-
ing mechanism of action.118–120 It has been proposed as a 
treatment for bleeding oesophageal varices, although there 
is evidence that its pressure lowering effects are less potent 
in the cirrhotic patient and a recent Cochrane review con-
cluded that it had no mortality benefit and only a modest 
reduction in transfusion requirements.121,122

2.3.5 Clinical Aspects

SST analogues are of considerable utility in the diagnosis 
and treatment of gastroentero-pancreatic NETs. As many 
moderately and well-differentiated NETs express recep-
tors to SST, radio-nucleotide labeled SST analogues can be 
used in the diagnosis and staging of disease and for targeted 
radiotherapy. Palliative treatment with SST analogues, in 
the presence of symptomatic NETs, can control hormone-
mediated symptoms including diarrhea, tachycardia, and 
flushing and has recently been shown to delay tumor 
progression.123–126

Other GI uses of SST analogues are based on limited 
case series or expert opinion and utilize their counterregu-
latory and antisecretory effects. The evidence is at present 
equivocal on the benefits of SST analogues in the prevention 
of postpancreatectomy cutaneous fistula, or the treatment of 
enterocutaneous fistula.127–130 Long- and short-acting SST 
analogues have also been used for the management of con-
genital hyperinsulinemia and reactive hypoglycemia and 
accelerated intestinal transit after upper GI surgery, with 
mixed success.131–137

2.4. GHRELIN

Ghrelin was first identified in 1999 as the endogenous ligand 
for the growth hormone secretagogue receptor (GHS-R).138 
While primarily described as an orexigenic hormone 
through its hypothalamic actions, it has also diverse roles 
including as a GHS, promoter of adipogenesis, and suppres-
sor of pancreatic insulin secretion (Fig. 2.3).139–141



Gastrointestinal Hormones  Chapter | 2 37

2.4.1 Synthesis

Ghrelin is primarily secreted by X/A-like cells of the stom-
ach, but has also been identified in other tissues including 
duodenum, pancreas, lymphocytes, and the central nervous 
system.142–145 Following total gastrectomy, circulating total 
and acyl ghrelin concentrations are undetectable, suggesting 
that the extra-gastric sources do not contribute significantly 
to circulating levels. It is encoded by the GHRL gene, lo-
cated on chromosome 3p25-26. Translation of Ghrl mRNA 
produces a 117 amino acid preprohormone (preproghrelin), 
which is cleaved to the active 28 amino acid ghrelin by 
PC1/3. Ghrelin is modified by the addition of an octanoyl 
moiety to the hydroxyl group of the serine at position 3 of 
proghrelin catalyzed by ghrelin O-acyltransferase (GOAT, 
also membrane bound O-acyltransferase, MBOAT4), al-
though it is unclear whether this step precedes or follows 
cleavage of proghrelin to ghrelin.146–148 Acylation of ser-
ine 3 is essential for activity at the GHSR1a receptor, and 
acyl-ghrelin has historically been regarded as the active, 
and des-acyl-ghrelin the inactive, form of the peptide, al-
though independent functions have been considered for the 
latter.149 The fatty acid chain used for ghrelin acylation ap-
pears to derive from the diet.150

2.4.2 Secretion

Circulating concentrations of ghrelin are highest in the 
fasting state, with secretion suppressed by glucose and 
fat ingestion, and exercise, but less so by protein intake 
or gastric distension.151–154 In vitro experimental evidence 
exists for direct sensing of fatty acids, glucose, and gluta-
mate by X/A-like cells, for suppression of ghrelin secre-
tion by insulin, leptin, and GLP-1 and for stimulation of 
ghrelin secretion by glucagon.155–160 However, X/A cells are 
predominantly closed-type EECs making no contact with 
the gastric lumen, so they are likely regulated primarily by 
internal factors. Pharmacological experiments in rats dem-
onstrated increased ghrelin secretion in response to musca-
rinic and beta-adrenergic activity and decreased secretion 
in response to alpha-adrenergic activity.161 Plasma ghrelin 
concentrations increased in healthy humans in response 
to a cholinergic agonist and were suppressed by a musca-
rinic antagonist.162 Vagotomy initially suppressed  ghrelin 

 secretion in rats, but seven days postvagotomy plasma 
ghrelin concentrations were elevated.161 GLP-1 and PYY, 
independently and synergistically, suppressed ghrelin se-
cretion in a study of 25 overweight men.163 Investigation 
of FACS purified ghrelin secreting cells from mice dem-
onstrated G-protein-coupled actions of α-CGRP, long- and 
short-chain fatty acids, lactate, SST, GIP, and α-MSH, but 
interestingly not PYY or GLP-1 on ghrelin secretion.164

2.4.3 Function

The majority of experimental studies on ghrelin have 
focused on the actions of its acyl form on the cognate 
G-protein-coupled receptor GHSR1a. Des-acyl-ghrelin is 
presumed to be an inactive metabolite, as it has no identi-
fied receptor or major physiological effects.149,165

Ghrelin plays a significant role in appetite regulation, 
stimulating neuropeptide Y/Agouti-related peptide (NPY/
AgRP) neurons within the arcuate nucleus of the hypothala-
mus, in a counterregulatory fashion to leptin, to stimulate 
hunger and initiate feeding.166–169 Multiple animal and hu-
man studies disagree on the relative importance of vagal-
mediated ghrelin signaling versus direct central nervous 
system action of circulating ghrelin. In vivo animal models, 
and infusion experiments involving human participants who 
had undergone vagotomy, suggest that an intact vagus nerve 
is essential for the meal initiation effects of ghrelin.170,171 
This is consistent with the finding that ghrelin increased 
the sensitivity of gastric vagal mechanosensory nerves to 
stretch.172 However, it has been demonstrated that cen-
tral nervous system and intraperitoneal administration of 
ghrelin in rats resulted in similar feeding behavior, and a 
randomized controlled trial of ghrelin administration in pa-
tients after total gastrectomy (i.e., with minimal circulating 
ghrelin and a truncal vagotomy) improved food intake and 
reduced body weight loss.166,173

Ghrelin stimulates pituitary growth hormone secretion 
through its direct actions on GHSR1a.174,175 In particular, 
it seems that ghrelin is a key stimulus of growth hormone-
mediated gluconeogenesis in the fasting state.176 In GOAT 
or ghrelin knockout mice, prolonged fasting resulted in pro-
found hypoglycaemia, associated with a reduced growth 
hormone response, which was reversed on infusion of 
acyl-ghrelin.177,178
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FIG. 2.3 Amino acid sequence of ghrelin prepropeptide and secreted peptide, derived from Uniprot/Swissprot database.
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Ghrelin also influences glucose homeostasis in a growth 
hormone-independent fashion. Acyl-ghrelin indirectly in-
hibited glucose-mediated insulin and glucagon secretion 
in mouse models by stimulation of SST secretion from 
pancreatic islet delta cells.140,179 Although a population of 
pancreatic islet ghrelin secreting cells has been described, 
supporting the possibility that ghrelin might also act in a 
paracrine fashion within pancreatic islets, the physiologi-
cal importance of this finding remains controversial.180 
Examination of peripheral insulin sensitivity using an eu-
glycaemic hyperinsulinemic clamp with and without exog-
enous ghrelin, in hypopituitary patients on stable doses of 
exogenous growth hormone, demonstrated that ghrelin in-
creased peripheral insulin resistance independent of growth 
hormone.181,182 Both acylated and nonacylated forms of 
ghrelin have been demonstrated to stimulate fat accumu-
lation in human visceral adipocytes, through enhanced 
PPARgamma and SREBP1 signaling.141

The more direct roles of ghrelin in GI function include 
stimulation of gastric motility and increasing gastric acid 
secretion in a vagus and 5-HT-dependent fashion.183,184

2.4.4 Clinical Aspects

The diverse and as yet not completely understood roles of 
ghrelin in appetite regulation, glucose and energy homeo-
stasis, GI motility, and higher-order cognitive functioning 
make it a fertile area for ongoing research into disease pa-
thology and pharmacotherapy.

The orexigenic actions of ghrelin, an inverse correla-
tion between fasting ghrelin concentrations and BMI and 
observations of reduced postprandial suppression in obese 
humans make it an attractive target for the treatment of 
obesity.185–189 Plasma ghrelin concentrations are reduced in 
parallel with weight loss after sleeve gastrectomy, but vari-
ably increase after Roux-en-Y gastric bypass, suggesting it 
is not the primary regulator of appetite and body mass in hu-
mans.167,190 Animal knockout and pharmacological models 
targeting ghrelin, GOAT, and GHSR1 have resulted in con-
flicting results regarding metabolic homeostasis and protec-
tion from diet-induced obesity, with the most convincing 
results showing a reduced incidence of diet-induced obesity 
in Ghsr1−/− mice.191–195 One phase I/IIa trial of an antighre-
lin vaccine was halted due to lack of efficacy.196

Conversely, human studies of pharmacological augmen-
tation of the ghrelin axis have proved more fruitful. Partial 
and total gastrectomy and esophagectomy result in reduced 
plasma ghrelin concentrations and simultaneous severing of 
afferent vagal fibers. This is often associated with reduced 
appetite, weight loss, and impaired quality of life.197 One 
small trial of synthetic ghrelin in postgastrectomy patients 
yielded positive results on food intake.173 GHSR1a agonists 
are also in late-phase clinical trials for cancer-related ca-
chexia, with promising early results.198 It has been proposed 

that the hyperphagia of Prader-Willi syndrome may be me-
diated by hyperghrelinemia, although recent evidence sug-
gests the onset of elevated plasma ghrelin concentrations 
significantly predates hyperphagia and may be unrelated to 
the phenotype.199

The prokinetic effects of ghrelin offer a potential drug 
target for GI motility disorders. One small study has shown 
improved gastric emptying following the administration of 
a GHSR agonist in patients with diabetic gastroparesis, and 
the drug has entered phase 3 trials.200

2.5. CCK

Cholecystokinin (CCK) is widely distributed in the cen-
tral and peripheral nervous systems as a neurotransmitter, 
and in I cells of the duodenal mucosa from which it is se-
creted into the bloodstream.201,202 There are multiple post-
translational products of the CCK gene (including CCK-83, 
-58, -33, -22, -12, -8, and -5) that vary in length but share 
a common amidated C-terminus.203,204 The multiple CCK 
peptides have a diverse range of functions, including stimu-
lation of gallbladder contraction and pancreatic exocrine 
secretion, inhibition of gastric emptying and acid secretion, 
and signaling of satiety (Fig. 2.4).

2.5.1 Synthesis

The discovery of CCK dates back to the suggestion of a hor-
monal mechanism for gallbladder contraction in 1928, sup-
ported by an experiment wherein intestinal mucosal extracts 
were infused into dogs, cats, and guinea pigs and resulted 
in gallbladder contraction.205 The peptide sequence of CCK 
was first described in 1968, with the C-terminal pentapep-
tide Gly-Trp-Met-Thr-Phe conserved across all CCK and 
gastrin peptides.202

The CCK gene is located at chromosome 3p22.1.206 
PreproCCK is a 115 amino acid protein, with an N-terminal 
signal sequence and spacer sequence followed by the bio-
active domain.207 Posttranslational processing involves 
cleavage of the signal peptide and addition of a C-terminal 
amide group, followed by cleavage of the 83 amino acid 
peptides at basic amino acid residues, most likely by PC1/3, 
although PC2 and PC5 have been implicated in the process-
ing of CCK in rat brain.207–209 Addition of a sulfate group to 
the tyrosine residue seven amino acids from the C-terminus 
confers activity at the CCK 1 receptor (CCK1R), whereas 
sulfated and nonsulfated peptides are equally active at the 
CCK 2 receptor (CCK2R), which also acts as the gastrin 
receptor.210

Measurement of CCK concentrations in plasma is chal-
lenging, with acknowledged discrepancies in the sensitivity 
of immunoassays to different CCK peptides, and no gold 
standard test.211 High-pressure liquid chromatography ex-
traction of human intestinal lysates, and of plasma after a 
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meal test, revealed the 58 amino acid peptide to be the most 
abundant in man, with minor amounts of the 39 and 8 amino 
acid peptides.211,212 These results must, however, be inter-
preted in light of the finding that the in vivo half-life and 
hepatic clearance of CCK-8 is markedly faster than that of 
CCK-58.213,214 It is probably reasonable to regard current 
CCK assays as satisfactory for the examination of relative 
concentrations of plasma total CCK, but given the variabil-
ity in the rate of degradation and assay sensitivity between 
peptides, caution must be exercised when interpreting data 
attempting to assess the relative concentrations of different 
length CCK peptides.

It is acknowledged that CCK is widely distributed 
within the brain, with CCK-8 and CCK-5 being the primary 
neurotransmitter CCK peptides.215 In depth discussion of 
the role of CCK as a central neurotransmitter is beyond the 
remit of this chapter.

2.5.2 Secretion

CCK is secreted into the circulation from open-type I cells 
in the duodenal and jejunal mucosa. Plasma concentra-
tions of total CCK rise approximately three- to sevenfold 
in response to a mixed meal.212,216 While it is clear that 
CCK is secreted in a nutrient specific fashion in man, our 
knowledge of the underlying receptors is heavily reliant on 

 limited pharmacological experiments and animal and in vi-
tro data. Lipids are the most potent stimulus of CCK secre-
tion, followed by proteins, with only small effects triggered 
by intraduodenal carbohydrates.217–220 Intraduodenal lipid 
stimulation of CCK secretion is dependent upon medium 
and long-chain fatty acids acting via FFA1 (GPR40), FFA4 
(GPR120), and possibly CD36, with limited effects of 
short-chain fatty acids on plasma CCK concentration.221–225 
The mechanisms by which digested proteins stimulate CCK 
secretion include activation of PEPT1 and the calcium-
sensing receptor (CaSR).226–229 It appears that carbohy-
drates play a more limited role in CCK secretion.230,231 In 
one small human study, intraduodenal acidification in the 
absence of nutrients did not stimulate CCK secretion.219

It remains unclear to what extent vagal tone influences 
CCK secretion, if at all. Studies in vagotomized humans 
have either failed to take account of altered gastric transit, 
or found conflicting results, and one limited study in rats 
suggested that vagal activation could induce CCK secretion, 
but did not explore this in a physiological fashion.232–234

2.5.3 Function

CCK acts via the G-protein-coupled receptors CCK1R and 
CCK2R (previously CCKAR and CCKBR). CCK1R has a 
500–1000-fold greater affinity for sulfated than nonsulfated 
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FIG. 2.4 Amino acid sequence of cholecystokinin prepropeptide and secreted peptides, derived from Uniprot/Swissprot database.
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