


Physiological and Biotechnological Aspects of
Extremophiles



Physiological and
Biotechnological Aspects of
Extremophiles

Edited by

Richa Salwan
Assistant Professor (Microbiology),

Department of Basic Sciences, College of Horticulture and Forestry,

(Dr. YSP- University of Horticulture and Forestry),

Neri, Hamirpur, Himachal Pradesh, India

Vivek Sharma
University Centre For Research and Development,

Chandigarh University Punjab, SAS Nagar, India



Academic Press is an imprint of Elsevier
125 London Wall, London EC2Y 5AS, United Kingdom
525 B Street, Suite 1650, San Diego, CA 92101, United States
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2020 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with
organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.
elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be
noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding,
changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information,
methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their
own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury
and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of
any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-818322-9

For Information on all Academic Press publications
visit our website at https://www.elsevier.com/books-and-journals

Publisher: Andre G. Wolff
Acquisitions Editor: Linda Versteeg-Buschman
Editorial Project Manager: Sam W. Young
Production Project Manager: Maria Bernard
Cover Designer: Miles Hitchen

Typeset by MPS Limited, Chennai, India

http://www.elsevier.com/permissions
http://www.elsevier.com/permissions
https://www.elsevier.com/books-and-journals


Contents

List of contributors xiii

About the editors xv

Preface xvii
Acknowledgments xix

Part I
Physiological aspects 1

1. Overview of extremophiles 3

Richa Salwan and Vivek Sharma

1.1 Introduction 3

1.2 Eukaryotic extremophiles 3

1.3 Prokaryotic extremophiles in diverse habitats 4

1.4 Biotechnological potential of extremophiles 5

1.5 Molecular approaches like metagenomics

and whole genome sequencing (WGS) of

extremophiles 6

1.6 Conclusion 7
Acknowledgments 7

References 7

Further reading 11

2. Physiology of extremophiles 13

Richa Salwan and Vivek Sharma

2.1 Introduction 13

2.2 Taxonomy of extremophiles 13

2.3 Diversity of extremophiles 14
2.4 Physiological adaptations of extremophiles 15

2.4.1 Psychrophiles 15

2.4.2 Thermophiles 17

2.4.3 Alkaliphiles 17

2.4.4 Acidophiles 17

2.4.5 Halophiles 17

2.4.6 Peizophiles 18

2.5 Genomics and evolution 18
2.6 Chemotaxis in extremophiles 18

2.7 Conclusions and future directions 19

Acknowledgments 19

References 19

Further reading 22

3. Mechanism of resistance focusing on
copper, mercury and arsenic in
extremophilic organisms, how
acidophiles and thermophiles cope
with these metals 23

Javiera Norambuena

3.1 Introduction 23

3.2 Mechanism 1—cellular sequestration by

thiol systems 24

3.2.1 Low molecular weight (LMW) thiols 24

3.2.2 Protein thiols 25

3.3 Mechanism 2—none thiol, extracellular
and intracellular complexation 25

3.3.1 Nanoparticles 25

3.3.2 Inorganic polyphosphates 26

3.4 Mechanism 3—enzymatic detoxification 26

3.4.1 Copper (Cu) 26

3.4.2 Mercury 27

3.4.3 Arsenic 27

3.5 Mechanism 4—efflux pumps and
transporter 29

3.5.1 Copper 29

3.5.2 Mercury 30

3.5.3 Arsenic 30

3.6 Conclusions and future perspectives 31

References 31

4. Halotolerant microbes and their
applications in sustainable
agriculture 39

Jayant Kulkarni, Sandeep Sharma, Ashish K.
Srivastava and Suprasanna Penna

4.1 Introduction 39

4.2 Halotolerant biota 40

4.3 Rhizospheric bacteria and plant growth

promotion 41
4.4 Stress alleviation through halotolerant

rhizospheric bacteria 42

v



4.5 Beneficial attributes of halotolerant PGPR 43

4.6 Conclusions and future perspective 45

Acknowledgments 46

References 46

5. Halophilic microorganisms: Interesting
group of extremophiles with important
applications in biotechnology and
environment 51

Lobna Daoud and Mamdouh Ben Ali

5.1 Introduction 51
5.2 Habitats of halophilic microorganisms 51

5.3 Classification 52

5.4 Mechanisms of salt adaptation 53

5.5 Structural characteristics of halophilic

proteins 54

5.6 Current and potential applications of

halophiles 55

5.6.1 Food fermentation 56
5.6.2 Production of stable enzyme 56

5.6.3 Production of organic osmotic

solutes 56

5.6.4 Production of biosurfactants and

exopolysaccharides 57

5.6.5 Liposomes production 57

5.6.6 Processing of halogenated products 57

5.6.7 Production of alternative energy 57
5.6.8 Production of polyhydroxyalkanoates

(PHA) 57

5.6.9 Transfer of the halo-tolerance 58

5.6.10 Production of bacteriorhodopsin with

original roles 58

5.6.11 Important role in the bioremediation 59

5.7 New molecular and genomic approaches 60

5.7.1 Development of new genetic tools for
halophiles 60

5.7.2 Genomic and metagenomic

sequencing 60

5.8 Conclusion 61

References 62

6. Overview of extremophiles and their
food and medical applications 65

Jane A. Irwin

6.1 Introduction: what are extremophiles? 65

6.2 Adaptations of extremophiles at a

molecular level 66
6.3 Thermophiles: life at high temperature 67

6.3.1 Habitats and diversity 67

6.3.2 Physiology and adaptation to high

temperature 68

6.3.3 Thermophiles in medicine and food 68

6.3.4 Thermophilic enzymes and their

applications 69

6.4 Psychrophiles: life at low temperature 69
6.4.1 Habitats and diversity 69

6.4.2 Physiological adaptation to low

temperature 69

6.4.3 Applications of enzymes and

metabolites from psychrophiles 70

6.5 Halophiles 71

6.5.1 Habitats and diversity 71

6.5.2 Physiological adaptations to high
salt concentration 71

6.5.3 Medical applications of molecules

from halophiles 72

6.5.4 Halophiles and food products 72

6.6 Acidophiles 73

6.6.1 Habitats and diversity 73

6.6.2 Physiological adaptation to low pH 73

6.6.3 Food and medicinal relevance of
acidophiles 74

6.7 Alkaliphiles 74

6.7.1 Habitats and diversity 74

6.7.2 Physiological adaptation to high pH 74

6.7.3 Applications of alkaliphile enzymes 75

6.8 Piezophiles 75

6.8.1 Habitats and diversity 75

6.8.2 Physiological adaptation to high
pressure 76

6.9 Radioresistant microorganisms 76

6.9.1 Diversity and survival strategy 76

6.9.2 Defense against ultraviolet radiation:

sunscreen molecules and their

applications 77

6.10 Xerophiles: life with little or no water 78

6.11 Metallophiles 78
6.12 Conclusions 78

References 79

7. Applications of extremophiles in
astrobiology 89

Rebecca S. Thombre, Parag A. Vaishampayan and
Felipe Gomez

7.1 Introduction and historical background 89

7.2 Study of extremophiles in astrobiology 90

7.3 Planetary field analogue sites in India

and its extremophilic microbial diversity 91

7.3.1 Lonar lake 91
7.3.2 Extremophiles from rocks, seawater

and intertidal sea zones in arabian sea 91

vi Contents



7.3.3 Salt deposits and saline systems in

Rajasthan, Gujarat and Maharashtra 94

7.3.4 Mud volcanoes of Andaman 95

7.3.5 Geothermal hotsprings, cold deserts

and glaciers in Leh Ladakh,

Himalayas 95
7.4 Extremophiles from planetary field

analogue sites in Europe: astrobiological

implications 96

7.4.1 Rio Tinto, Spain 96
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14.1 Introduction 183

14.2 Thermoanaerobacter ADHs and their

role in physiology 183

14.3 Structure and thermostability 185
14.3.1 Structure and binding pocket

specificity 185

14.3.2 Thermal stability of TADHs 186

14.4 Biocatalysis using thermostable TADHs 187

14.5 Enzyme improvement 188

14.5.1 Altering cofactor preference 189

14.5.2 Altering stereoselectivity 189

14.5.3 Altering substrate specificity 190
14.6 Conclusions and future directions 190

References 191

15. Biotechnological platforms of the
moderate thermophiles, Geobacillus
species: notable properties and
genetic tools 195

Keisuke Wada and Hirokazu Suzuki

15.1 Introduction 195

15.2 Overview of the genus Geobacillus 196

15.2.1 History 196

15.2.2 Species placed under the genus

Geobacillus 196
15.2.3 Diverse habitats and their

implications 197

15.2.4 Cellular characterization 200

15.2.5 Genomic features 200

15.3 Genetic tools for Geobacillus spp. 200

15.3.1 Plasmid replicons 201

viii Contents



15.3.2 Antibiotic resistance markers 201

15.3.3 Counterselection markers 202

15.3.4 Recombinant plasmids 202

15.3.5 Protoplast transformation 204

15.3.6 Electroporation 204

15.3.7 Conjugative plasmid transfer 204
15.3.8 Strategic circumvention of

restriction-modification (RM)

systems 205

15.3.9 Genetic elements to control

gene expression 206

15.3.10 Reporter proteins 206

15.3.11 Protein secretion 207

15.4 Geobacillus spp. that have potential in
whole-cell applications 207

15.4.1 G. caldoxylosilyticus T20 208

15.4.2 G. kaustophilus HTA426 208

15.4.3 G. stearothermophilus ATCC

12978 208

15.4.4 G. stearothermophilus NUB3621 208

15.4.5 G. thermocatenulatus 11 209

15.4.6 G. thermodenitrificans OS27 209
15.4.7 G. thermodenitrificans T12 209

15.4.8 G. thermoglucosidasius DSM

2542 209

15.4.9 G. thermoglucosidasius M10EXG 210

15.4.10 G. thermoglucosidasius NCIMB

11955 210

15.4.11 G. thermoglucosidasius NY05 210

15.4.12 G. thermoglucosidasius PB94A 210
15.4.13 Geobacillus sp. LC300 211

15.4.14 Geobacillus sp. XT15 211

15.5 Conclusion and perspective 211

Acknowledgments 211

References 211

16. Thermophiles and thermophilic
hydrolases 219

Shilpi Ghosh, Khusboo Lepcha, Arijita Basak and
Ayan Kumar Mahanty

16.1 Introduction 219

16.2 Discovery and diversity of thermophiles 219
16.3 Thermophilic adaptations 220

16.3.1 Membrane level adaptations 220

16.3.2 Genome level adaptations 220

16.3.3 Proteome level adaptations 223

16.4 Thermophilic enzymes 225

16.4.1 Amylases 225

16.4.2 Proteases 226

16.4.3 Cellulases 227
16.4.4 Xylanases 227

16.4.5 Lipases 228

16.5 Conclusion 229

References 229

17. Effects of single nucleotide mutations in
the genome of multi-drug resistant
biofilm producing Pseudomonas
aeruginosa 237

Sanjay Gunabalan, Chew Jactty and Babu
Ramanathan

17.1 Introduction 237

17.2 β-Lactam resistance 239

17.3 Fluoroquinolone resistance 239

17.4 Aminoglycoside resistance 239

17.5 Target efflux pumps (before jumping

to each system give 2-3 lines details

about this) 239

17.5.1 MexAB-OprM 240
17.5.2 MexXY-OprM 240

17.5.3 MexCD-OprJ 240

17.5.4 MexEF-OprN 240

17.6 Antibiotic resistance and bacterial

phenotype in biofilm formation 240

17.7 Conclusion 241

References 241

18. Understanding the structural basis of
adaptation in enzymes from
psychrophiles 245

Mahejibin Khan

18.1 Introduction 245

18.2 Cold adapted enzymes 245

18.3 Structure-function relationship of cold

adapted enzymes 246
18.4 Conclusion and future directions 249

References 249

19. Molecular and functional
characterization of major compatible
solute in Deep Sea halophilic
actinobacteria of active volcanic
Barren Island, Andaman and
Nicobar Islands, India 253

Balakrishnan Meena, Lawrance Anburajan,
Nambali Valsalan Vinithkumar, Ramalingam
Kirubagaran and Gopal Dharani

19.1 Introduction 253

19.2 Ectoine � a major compatible solute in
halophilic eubacteria 255

19.3 Physicochemical properties of ectoine 256

19.4 Osmolytic properties of ectoine 256

19.5 Biosynthesis of ectoine 256

19.6 Transport of ectoine 258

19.7 Industrial production of ectoine 258

Contents ix



19.8 Biotechnological applications of

ectoine 259

19.8.1 Chemical chaperones for protein

folding 259

19.8.2 Enhancing PCR 259

19.8.3 Cryo-protection of
microorganisms 259

19.8.4 Use in cosmeceuticals and

pharmaceuticals 260

19.8.5 Generation of stress-resistant

transgenic organisms 260

19.8.6 Ectoine based products in

market 260

19.9 Molecular and functional characterization
of ectoine in deep sea halophilic

actinobacteria, nocardiopsis alba 261

19.10 PCR amplification, cloning and

sequencing of ectoine biosynthesis

genes 262

19.11 Molecular characterization of ectoine

biosynthesis genes 262

19.12 Sequence analysis of ectA, B and C
genes 263

19.13 Phylogenetic tree construction and

analysis of ectoine biosynthesis genes 263

19.14 Concluding remarks 264

Acknowledgments 264

References 264

20. Antarctic microorganisms as
sources of biotechnological
products 269

Tarcı́sio Correa and Fernanda Abreu

20.1 Introduction 269

20.2 Bioprospection of microbial derived

bioactive compounds in Antarctica 269

20.2.1 Enzymes 270

20.2.2 Drug discovery 275
20.2.3 Ice-binding proteins 279

20.3 Nanoparticles 280

20.3.1 Cadmium nanoparticles 280

20.3.2 Iron-oxide nanoparticles 280

20.4 Conclusion and future directions 281

References 281

21. The secretomes of extremophiles 285

Eyad Kinkar and Mazen Saleh

21.1 Introduction 285

21.2 The Sec pathway 285

21.3 The Tat pathway 287

21.4 The signal sequence 287

21.5 Secretomes of archaea 288

21.6 Conclusion and future directions 292

References 293

22. Carbonic anhydrase from
extremophiles and their potential
use in biotechnological applications 295

Claudiu T. Supuran and Clemente Capasso

22.1 Extremophiles 295

22.2 Bacterial carbonic anhydrases 295

22.3 Carbonic anhydrases in extremophilic

bacteria 296

22.4 Potential use of extreme carbonic

anhydrases in biotechnological

applications 298

22.4.1 Biosensors 298
22.4.2 Artificial lungs 298

22.4.3 Post-combustion carbon dioxide

capture 298

22.5 SspCA immobilization 299

22.5.1 Polyurethane foam 299

22.5.2 Ionic liquid membranes (supported

ionic liquid membranes) 300

22.5.3 Magnetic particles 300
22.5.4 In vivo immobilization 300

22.6 Conclusion 303

References 304

23. Understanding the protein sequence
and structural adaptation in
extremophilic organisms through
machine learning techniques 307

Abhigyan Nath and S. Karthikeyan

23.1 Introduction 307

23.2 Databases 307

23.3 Machine learning 308

23.3.1 Machine learning platforms 308
23.3.2 Feature extraction and

representation 308

23.3.3 Feature selection 309

23.3.4 Model performance validation 309

23.3.5 Model performance evaluation

metrics 310

23.4 Statistical analysis for inferring the

molecular basis of extremophilic
adaptation 310

23.5 Inferences from preceding methods 311

23.6 Conclusion 312

References 313

x Contents



24. Exploration of extremophiles genomes
through gene study for hidden
biotechnological and future
potential 315

Pijush Basak, Arpita Biswas and Maitree
Bhattacharyya

24.1 Introduction 315

24.2 Types and characteristics of

extremophiles 316
24.2.1 Temperature adaptation 316

24.2.2 pH adaptation 316

24.2.3 Salt adaptation 317

24.2.4 Pressure adaptation 317

24.3 Survival strategy to combat cold stress 317

24.3.1 Membrane fluidity 317

24.3.2 Protein synthesis and

cold-accustomed protein 318
24.3.3 Structural adaptation of cold-active

enzyme 318

24.3.4 Mutational study 318

24.4 Bioactive natural products by

extremophiles 318

24.4.1 Gene study 319

24.4.2 Bioactive natural products 319

24.5 Biotechnological use of extremophiles 320
24.5.1 Polymerase chain reaction 320

24.5.2 Biomining 320

24.5.3 Biofuel production 321

24.5.4 Industrial use 321

24.5.5 Medicinal aspects 322

24.6 Conclusion 322

References 323

25. The ecophysiology, genetics, adaptive
significance, and biotechnology of
nickel hyperaccumulation in plants 327

Anthony L. Ferrero, Peter R. Walsh and
Nishanta Rajakaruna

25.1 Introduction 327

25.2 Physiology: mechanisms of Ni uptake,

translocation, chelation, and storage 328

25.2.1 Uptake 328

25.2.2 Chelation 328

25.2.3 Transport 329

25.2.4 Localization and storage 331
25.3 Why hyperaccumulate nickel? 332

25.3.1 Elemental defense 332

25.3.2 Nutritional demand 333

25.3.3 Elemental allelopathy 333

25.3.4 Drought tolerance 334

25.4 Genetics of nickel accumulation 334

25.4.1 Identification of target genes

involved in Ni hyperaccumulation
by transporters 335

25.4.2 Identification of target genes

involved in Ni hyperaccumulation

by chelators 336

25.5 Phytoremediation and agromining 336

25.6 Conclusion 339

Acknowledgments 340

References 340
Further reading 347

Index 349

Contents xi



List of contributors
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Villeurbanne, France

Richa Salwan Department of Basic Sciences, College of

Horticulture and Forestry (Dr. YSP - University of

Horticulture and Forestry), Neri, Hamirpur (HP), India

Sean M. Scully Department of Natural Resource

Sciences, University of Akureyri, Akureyri, Iceland

Anu Sharma University Centre for Research and

Development, Chandigarh University, Chandigarh,

India

Sandeep Sharma CSIR-Central Salt & Marine

Chemicals Research Institute, Bhavnagar, India;

Institute of Agricultural Sciences, Banaras Hindu

University, Varanasi, India

Vivek Sharma University Centre for Research and

Development, Chandigarh University, Chandigarh,

India

Birbal Singh Indian Veterinary Research Institute-

Regional Station, Palampur, India

Ashish K. Srivastava Nuclear Agriculture and

Biotechnology Division, Bhabha Atomic Research

Centre, Mumbai, India; Homi Bhabha National

Institute, Mumbai, India

Claudiu T. Supuran Sezione di Scienze Farmaceutiche,

Dipartimento Neurofarba, Università degli Studi di
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Preface

The present book on “Physiological and Biotechnological Aspects of Extremophiles” describes the role and importance

of extremophiles under extreme conditions. Extremophiles can be found in all domains including Bacteria, Archaea and

Eukarya and adapt themselves to survive in extremities which are important for evolutionary differences across different

ecological areas. Extremophilic organisms are blessed with ability to tolerate and survive extremes of pH, salt, pressure,

heavy metals, organic solvents, and growth in presence of toxic wastes and other habitats which are harsh for normal

survival. Extremophiles are differentiated into a variety of groups including psychrophiles, psychrotrophs and thermo-

philes, alkaliphiles and acidophiles, peizophiles, metal and radiation tolerant. Different extremophiles are source of

inspiration and often explored for getting a deep insight into the physiological adaptations. Further, the genomic cockpit

of these microbes is known to encode information which helps these microbes to survive under harsh conditions.

Extremophiles have vital importance in industrial applications as they are known for the production of enzymes and

metabolites produced under extremes of environmental conditions. These enzymes and metabolites are being applied in

detergent, food, leather, paper and pulp, pharmaceutical, textile and agricultural industries. These metabolic products

offer properties such as high stability and catalytic efficiency, high salt and alkalinity, oxidant and bleach stability, low

water activity and shelf life. The higher catalytic efficiency of their encoding gene products offers industrial advantages

over their contemporaries under normal environmental conditions. The thrust for these microbes offers vast potential in

present climatic scenario for developing efficient processes. The recent advancements in technology like whole genome

sequencing and gene/ genome editing coupled to bioinformatic tools have enhanced the pace of mining microbial diver-

sity of extremophiles and their genome plasticity for human welfare.

The book comprises of 25 chapters that covers both physiological and biotechnological aspects of extremophiles.

Chapters on physiological aspects like mechanisms and adaptations of metal tolerance, halotolerant, peizophiles, marine

and Antarctic microbes are included. On the other hand, biotechnological aspects cover role of extremophiles in the

production of enzymes such as lipases, carbonic anhydrases and thermophilic hydrolases as well as advances in molecu-

lar tools such as CRISPR-Cas, metagenomics, SNPs in Pseudomonas and adaptations in plants including Nickel

Hyperaccumulation. Written with the cooperation of leading international experts with already published research and a

strong background in relevant field from academia, government institutions or industries, it will contribute towards

interdisciplinary knowledge and a common resource platform on extremophiles at global level. Overall, this book vol-

ume seeks to spur the role of extremophiles in bioremediation, industries and ecosystems. The book will be beneficial

to the scientific community including students pursuing their doctoral studies, researchers and scientists working in the

area of Microbiology in various research institutions and academic Universities.
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Chapter 1

Overview of extremophiles

Richa Salwan1 and Vivek Sharma2
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1.1 Introduction

Extremophiles are living organisms that have the ability to grow under conditions where normal organisms are not able

to survive. These extremophilic organisms are always attracted towards conditions like extremely high and low temper-

ature, extreme acidic or basic pH, high exposure to radiations, high salinity, low and high pressure, growth in presence

of toxic wastes, organic solvents, heavy metals and other habitats which are harsh for normal survival. According to the

growth conditions, extremophiles are categorized into extremophilic and extremotolerant organisms. The extremophilic

category includes organisms which have the ability to grow under one or more extreme environmental conditions

whereas extremotolerant includes organisms that normally grow under optimal conditions but can also survive on expo-

sure to extreme environmental conditions [1]. The extremotolerant organisms are also known as extremotrophs [2].

Besides this, there are organisms which can tolerate more than one extreme condition like extreme temperature and pH,

radiations, metals etc are known as polyextremophiles.

Extremophiles include prokaryotic bacteria and archaea as well as eukaryotic organisms. Among prokaryotes, most

archaebacteria are extremophilic because of their high versatility and adaptive behavior towards extreme conditions.

These archaea are salt loving, high temperature and acid tolerant, and strictly anaerobic. Archaea such as Pyrolobus

fumarii are also known as hyperthermophiles as they can tolerate temperature up to 121 �C whereas bacteria

Geothermobacterium ferrireducens can tolerate up to 95 �C [3,4]. Archaebacteria identified as Methanopyrus kandleri

and Picrophilus torridus grow at high temperature 122 �C and 0.06 pH, respectively. Similarly, cyanobacteria are highly

adaptive in combating extreme environmental conditions by forming mats with other organisms. These cyanobacteria

can tolerate extremes of salt and metal concentrations, alkalinity and less water in dry areas but can’t tolerate low pH

conditions [1]. Gloeocapsa spp. is an extremotolerant which can withstand extreme conditions in space such as temper-

ature shifts, radiation and vacuum exposure. Similarly, spiral shaped Helicobacter pylori can survive extreme acidic

environment of stomach. Previously, extremophile term was used to include organisms which are unicellular and pro-

karyotic but studies have reported that all extremophiles are not unicellular organisms [5].

1.2 Eukaryotic extremophiles

Eukaryotic multicellular organisms including fungi have well adapted physiology to survive in extreme conditions.

Various microorganisms such as Chlamydomonas, Dunaliella, Euglena and Ochromonas, zooplankton, fungi and pro-

tists can grow and tolerate acidic and metal-rich conditions [6�11]. The fungal species can also thrive in acidic and

alkaline environments, salt and metal tolerant but they cannot tolerate extremely high temperatures as they do not grow

above 60 �C [12]. Species of Exophiala and Cladophialophora have the capacity to metabolize hydrocarbons to obtain

energy and survive in polluted environments [13]. Micro-algae can also withstand extremophilic conditions as they are

resistant towards light, high temperature, acidic or alkaline pH, CO2 and metal concentration [14]. In similar studies, a

red algae Cyanidioschyzon merolae can adapt to extreme environmental conditions by regulating the expression of 35%

genes in blue and red light [15]. Moreover, lichens such as Usnea antarctica and Umbilicaria cylindrica representing

algal and fungal association can also tolerate extremes of low temperatures [16]. These lichens have the ability to do

photosynthesis at subzero temperature and protects photosystems from damage [17].
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Eukaryotic diversity has also been reported in acid mine drainage and certain aquatic environments [8,18�21].

A microscopic invertebrate Tardigrade also known as polyextremophilic organism can tolerate 2272 �C temperature,

dry and dehydrated conditions, high pressure and radiation exposure. Tardigrades undergo a process known as crypto-

biosis to survive in extreme environmental conditions by suspending their metabolism. Tardigrades can survive in such

extreme conditions for several years and become active during the onset of favorable environmental conditions [22].

Similarly, Artemia salina also known as Sea Monkey can survive in extreme of salt concentrations. Poecilia mexicana,

a viviparous teleost can grow in environment when there are low oxygen availability and high hydrogen sulfide concen-

trations [23].

1.3 Prokaryotic extremophiles in diverse habitats

Microorganisms constitute the major component of the earth’s biodiversity. The species biodiversity under extreme con-

ditions such as hot and springs, saline and alkaline lakes, hot and cold deserts, and ocean beds is mainly limited to

microbes as these extremes are harsh for the existence of life. Even in space where harsh environment like extreme

radiation, extreme temperatures, altered gravity, extreme salinity and nutrients restrict the growth of other organisms

but do allow the growth of these microbes. Nearly 70% of the earth’s biosphere like Arctic, Antarctic, and moderately

cold regions are having temperature below 5
%
oC [24�27]. Such cold environments are occupied by microorganisms cat-

egorized into psychrophiles and psychrotrophs. Psychrophiles are known to show optimum growth at or below 15 �C
but are able to show growth maximum and minimum growth within 0�20 �C. Psychrotrophs show optimum growth at

or above 20 �C but even tolerate a temperature below 5 �C [28�30]. Psychrophilic microorganisms inhabit environ-

ments such as deep seas mountains and Polar Regions which are permanently cold whereas psychrotrophs inhabit envir-

onments where temperature fluctuates [29,31�34].

Similarly, thermophilic microorganisms are found in hydrothermal vents, hot springs and heated mud flats.

Extremely thermophilic Thermus thermophilus, Thermoanaerobacter tengcongensis and Thermotoga maritima have

wide biotechnological potential and importance in studying structural biology [35�37]. Similarly, bacteria such as

Pyrodictium abyssi can survive in hot boiling water [38] and Desulforudis audaxviator which lives in groundwater

below the Earth’s surface. These microbes can survive without oxygen, light and can resist heat. Besides hot and cold

areas, there are certain environments which have high salinity, high pressure, low water content, high radiations expo-

sure and metals ions which are also considered as extreme environments (Fig. 1.1). Extremophilic microbes that can tol-

erate high metal concentrations such as arsenic, cadmium, copper and zinc are generally adapted to acidic

environments, hot springs or from bio-oxidation/bioleaching processes where metal concentration is high.

Health-related applications such as 
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bioremediation

Enzymes with application in 
industrial processes
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microorganisms including psy-

chrophiles, thermophiles, halo-
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type of stress conditions. The met-

abolic products of these extremo-

philes find applications in red,

white and gray biotechnology.
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Extremophiles possess many systems that are common to all microbes likewise Acidithiobacillus ferrooxidans showed

resistance towards heavy metals cadmium and copper, Thermus thermophilus towards mercury, Ferrimicrobium acidi-

philum towards iron and zinc, and Geobacillus stearothermophilus towards cadmium [39�42]. Various organisms such

as Thiobacillus and Thiobacillus thioparus have capacity to oxidize reduced sulfur to harmless state and hence play

important role in the biogeochemical cycling of sulfur. Sulfur oxidizing bacteria also finds applications in bioleaching,

bioremediation, biofertilizer, biofilters, biosensors and biodeodourizers and rubber recycling [43�49].

Halophilic microorganisms another category of extremophiles thrive in saline environments. These organisms have

the capacity to tolerate high sodium chloride concentrations ranging from 0.5 to 5 M [50]. Diverse prokaryotic organ-

isms have been reported from Dead Sea, Salterns, Great Salt Lake and solar lakes in USA, Europe and Africa [51].

Halophilic organisms Haloarcula marismortui, Halofrex volcanii, Halorubrum lacusprofundi , Natronomonas pharaonis

and square archaeon Haloquadratum walsbyi have been reported from Dead Sea, Antarctic lake and Soda Lake

[52�55]. Halotolerance has been reported in several yeasts such as Hortaea werneckii [56�58] and plants

Chenopodium quinoa. Both of these are adapted to osmotic stress and excessive salinity [59].

There are some environmental areas where pressure remains very high. These areas are occupied by the microorgan-

isms that can tolerate ambient to high pressure raging from 70 to 120 MPa and are designated as strict or obligate piezo-

philes. Piezophiles excel in sustaining pressure conditions beyond the usual limits for humans. Piezophilic bacteria

Shewanella benthica, Colwellia marinimaniae, Pyrococcus yayanossi, and Photobacterium profundum have well

adapted proteins, lipids and genes for tolerating stress due to high pressure [60�63].

Moreover, microorganisms also survive in environments with limited nutrients like carbon, iron, nitrate, and phos-

phate source which plays important role in biogeochemical cycles for biomass production and nutrient cycling. These

microorganisms are known as oligotrophs. Several organisms including Deinococcus peraridilitoris survive under

extreme desert conditions Besides this, various organisms can live inside rocks known as endoliths and some lives

inside rocks in cold deserts called as hypoliths. Some organisms such as Dienococcus radiodurans can resist high levels

of ionizing radiation called as radioresistant [64] and organisms able to withstand damaging agents including organic

solvents called as toxitolerant. Some organisms are capable of tolerating desiccation known as xerophiles.

1.4 Biotechnological potential of extremophiles

The presence of extremophiles in extremes of environments has evolved biotechnologically suitable additives, enzymes,

proteins and other metabolites. The capacity of extremophiles to perform better in harsh environment such as salinity,

alkalinity and/or low water activity has opened exciting opportunities in industrial processes as compared to mesophilic

counterparts. In today’s world, emphasis is given on biological products such as biofuels, bioplastics and biosurfactants

to overcome the high production costs and hazardous aspects of chemically produced products. All types of extremo-

philes including thermophiles, alkaliphiles, halophiles and psychrophiles offer applications in white, gray and red bio-

technology. Extremophiles mostly offer applications which are enzymes based but biomolecules such as antifreeze

proteins, lipids, and other molecules also find applications in industrial processes. For examples, various proteases have

been reported from Acinetobacter sp., Bacillus cereus, Colwellia sp., Curtobacterium luteum , Exiguobacterium undae

Su-1 and Stenotrophomonas sp. for detergent industry [65].

Metabolic products known as extremozymes including enzymes such as amylases, cellulases, esterases, keratinases,

lipases, pectinases, peroxidases, proteases and xylanases finds applications in agriculture, beverages, detergent, food

and feed, pharmaceuticals, textiles, leather, pulp and paper industries. These extremozymes have characteristic proper-

ties like high stability and catalytic efficiency under varied temperature and pH conditions, salinity, low water activity,

low oxygen and more shelf life [66,67]. Enzymes such as Taq DNA polymerase obtained from thermophilic Thermus

aquaticus is widely used and finds applications in molecular biology [68]. Similarly, ligases, alkaline phosphatases,

restriction enzymes and other thermostable polymerases have been reported from various extremophilic organisms [69].

The enzymes responsible for cellulose degradation including cellobiohydrolase, endoglucanase and β-glucosidase have

been reported from thermophilic Thermotoga maritima, T. neapolitana and Pyrococcus furiosus [68]. Genencor

International first commercialized cellulase from alkaliphile with applications in textiles and detergents [69].

Besides the production of extremozymes, extremophiles also produce organic compounds known as extremolytes

under stressed conditions. These extremolytes include polyols, carbohydrates like trehalose, mannose and their deriva-

tives like mannosylglycerate and mannosylglyceramide, glucosylglycerate (GG), glucosylglucosylglycerate, and amino

acids [70]. Other derivatives including phosphodiesters di-myoinositol-1,10-phosphate, cyclic 2,3-diphosphoglycerate

and α-diglycerol phosphate and trianionic pyrophosphate are produced by archaeabacteria [71,72]. other compounds

including bacterioruberin, ectoines, melanin, scytonemin and mycosporin-like amino-acids (MAAs) have been reported
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from UV-resistant extremophilic bacteria [73�75]. These extremolytes find applications in pharmaceutical sector like

cosmetics, therapeutics for developing pharmacophore with antiproliferative and anti-inflammatory activity and chemo-

preventive agents [76,77]. For example, Pseudomonas has been reported for the production of pyochelin, an iron bind-

ing compound with antifungal activity against Candida and Aspergillus spp [78]. Extremophiles are also known for the

production of metabolites like exopolysaccharides biosurfactants, biopolymers and peptides with diverse industrial

potential [79]. Biosurfactants are mostly employed as adjuvants for herbicides, pesticides formulations, bioremediation

processes and biocontrol agents [70]. In different studies, halophiles are explored for the production of polysaccharides

made of fructans with applications in food, medical, pharmaceutical, chemical and cosmeceutical industries [80�82].

Several halophiles are reported for poly-hydroxyalkanoate as biodegradable plastic, exopolysaccharides as emulsifiers,

osmotic solutes as stabilizers and bacteriorhodopsin in energy conversion [83]. Additionally, extremophilic organisms

such as Bacillus licheniformis are efficient in degrading complex materials produced by industrial wastes and effluents,

sewage and petroleum hydrocarbons [84]. Planococcus is a halophile having the capacity to tolerate up to 25% NaCl

can degrade BTEX in oil-contaminated soil. Similarly, studies have reported that halophilic archaea degrade phenol,

pyrene and naphthalene and produce biosurfactants [85]. Similarly, β-carotene from halophilic microalgae Dunaliella is

used as supplements in food products, pharmaceutical industries for colorant and antioxidant properties [86].

1.5 Molecular approaches like metagenomics and whole genome sequencing (WGS)
of extremophiles

In the present scenario, extremophiles are being considered as attractive candidates for studying their adaptations with

respect to physiological, biochemical and other fundamental cellular processes. As extremophiles are being adapted to

extreme environmental conditions, it becomes difficult to cultivate such organisms in laboratory conditions. Therefore,

molecular techniques like recombinant DNA technology for cloning and heterologous expression in a suitable host

either bacteria or cell lines using vectors provide easy way for genetic manipulation and successful commercialization

of gene products. Molecular approaches like ligation-independent cloning [87] and hybridization cloning [88] have also

been used to obtain recombinant proteins for studying structure-function relationship of proteins and other enzymes.

Omic based approaches such as comparative genomics, proteomics, transcriptomics, metallomics and secretomics

are preferred for understanding mechanisms underlying physiological, biochemical and structural adaptations of extre-

mophiles [89�94]. To obtain the adaptations of extremophilic microorganisms, it is imperative to obtain the complete

genome sequence of a particular microbe. Studies have reported biomass degrading genes in Bacillus cellulosilyticus

[95], Cellulomonas spp. [96], Dictyoglomus turgidum [97] and Fibrobacter succinogenes [98,99] by WGS. Similarly,

the genomes of halophilic strains belonging to Halomicrobium, Chromohalobacter, Haloferax, Haloarcula,

Halorubrum, Natronomonas and Haloquadratum have been reported for various metabolites profiling such as mem-

brane lipids, cell wall components and bacteriorhodopsin related to high salt concentrations from various habitats. The

whole genomes of these halophiles have been explored to identify the possible role of genes DNA polymerase, thiore-

doxin reductase, cytochrome oxidase, multiple TATA binding proteins (TBP), transcription factors involved in adapta-

tion to hyper saline environments [100]. Various studies on peizophilic bacteria Shewanella, Photobacterium

profundum, Moritella profunda and Saccharomyces cerevisiae have properties that can withstand high pressure. DNA

binding protein such as RecD and other proteins such as Hsp60, Hsp70, OmpH, RecA, F1F0 ATPases, Cct, Tat2 and

Ypr153w have important role in adaptations for tolerating high pressure [101]. Moreover, dihydrofolate reductase from

peizophilic Moritella profunda is involved in tolerance towards high pressure upto 50 MPa [63,102�104].

Psychrophilic organisms Exiguobacterium antarcticum, Pseudoalteromonas arctica, Pseudoalteromonas haloplanktis

and Aquaspillium arcticum contain enzymes such as β-glucosidase, protease, malate dehydrogenase, DNA repairing

enzymes which are adapted to stress conditions such as low temperature [105�109]. By obtaining the knowledge of

gene sequences in whole genomes, engineering of proteins and genes with precision for desired property can be done.

Similarly, microbial community’s analysis has been studied to evaluate their potential to produce different metabolites

and their interaction among extreme environments using metagenomic approaches. Molecular phylogenetic analysis such

as metagenomics provides athe total genetic pool and arrangement of genes of microbes in a culture-independent manner

among particular environments. Studies have revealed most predominating phyla across the extreme environments and

prediction of the role of genes responsible for various functional aspects. Metagenomic library from alkaline hot spring

revealed predominance of bacterial phyla Acidobacteria, Aquificae, Chloroflexi, Deinococcus-Thermus, Firmicutes and

Proteobacteria and presence of genes encoding for enzymes such as galactosidases, lipases proteases and xylanases with

biotechnological potential [110]. In similar studies, metagenomics has been reported for new and novel biocatalysts from

hypersalted biotopes, cold environments, hot springs and deep thermal vents with potential attributes for industries.
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Various enzymes like halophilic cellulases, proteases, xylanases and lipases have been reported from soil microbial con-

sortia with suitability in food, detergent and textile industrial processes [111].

Besides omic technologies, genome wide editing tools such as Clustered Regularly Interspaced Short Palindromic

Repeats and CRISPR-associated proteins (CRISPR-CAS) are becoming more significant as it includes an array of short

palindromic repeats (CRISPR) and CRISPR associated genes (Cas) initially discovered for its role in bacterial immunity

acts together to protect against foreign attacking agents [112]. The CRISPR-CAS uses a combination Cas systems and

CRISPR to edit genome/gene (s). This technique includes improve or modify the properties of target gene products

which can be more efficiently applied to biotechnological, industrial and agricultural applications.

1.6 Conclusion

Microorganisms are ubiquitously distributed in extremes of environment with respect to high or low temperature, acidic

or alkaline pH, high or low pressure and radiation and metals. Various studies have revealed abundance of microbes

residing in these extremes. But these extremophilic microbes are hidden repository and their metabolic potential is still

under explored. In the post-genomics era, the advances in genomics, transcriptomics and metagenomics tools have

enabled us to explore and characterize the microbial diversity and metabolic potential of microbial diversity residing in

extreme environmental environments. Presently, a large number of whole genomes are available in the database for pre-

diction and annotation but to completely understand the adaptations underlying survival of extremophiles both protein

structure and biochemical properties need to be studied.

In this book, different chapters have covered the physiological, biochemical and molecular aspects of different clas-

ses including, halophiles, thermophiles, psychrophiles and peizophiles.
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