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Preface

The book aims at providing an overview of the current theoretical approaches
available to model ocular fluid-dynamics in health and disease, along with the
outstanding questions in the related theoretical and clinical fields. The theoretical
modeling of ocular biophysics is a fast-growing research field that is attracting
more and more scientists from various disciplines. This book will serve as a
comprehensive reference for current and future scientists interested in this field,
who will find a broad picture of the state-of-the-art with respect to:

• main open questions, controversial issues, and conjectures related to fluid flow in
ophthalmology that pose major challenges for future advances in clinical research

• experimental and clinical technologies available to visualize and measure various
physical quantities related to ocular fluids

• mathematical and computational models that investigate various aspects of fluid
flow in the eye

This book stems from the idea that new answers to outstanding questions may
only come from the true interaction among scientists with different expertise,
including mathematics, engineering, physics, computer science, biology, chemistry,
physiology, ophthalmology, optometry, clinical science, and pharmacology. Since
each scientist looks at the same question from a different angle and describes the
question using a different language, this book aims at creating a hub where such
different perspectives can be explored with open minds and collaborative spirits,
thereby providing a genuinely interdisciplinary overview of this diverse research
field that will help guide new scientific investigations and spark new ideas.

This book focuses on five fluids, specifically blood, aqueous humor, vitreous
humor, tear film, and cerebrospinal fluid. Each fluid is examined individually in a
different part of the book, each part sharing the same structure based on four sections
summarizing:

• elements of anatomy and physiology pertaining to that fluid
• pathological consequences of alterations in that fluid

v



vi Preface

• imaging technologies currently available to measure and visualize information
pertaining to that fluid

• modeling approaches currently available to study the flow of that fluid in the eye

The book concludes with contributed chapters on future perspectives in the fields
of imaging and modeling with application to ophthalmology.

The book integrates contributions by experts who strived to utilize a language
accessible to scientists across disciplines, without compromising the accuracy of the
presentation. Importantly, the authors of the chapters in this book were the first to
read each other’s contributions, thereby giving this book the flavor of a monograph
rather than a mere collection of independent papers.

We believe that this book will foster an interdisciplinary approach to the study
of the eye that combines clinical and experimental methods, data-driven modeling
(e.g., based on statistics and machine learning), and physically based modeling
(e.g., based on physics and biochemistry). Each of these approaches has advantages
and limitations. Experimental and clinical methods provide invaluable data and
information on living systems, but it is very challenging to isolate and control all the
factors that influence the function of the system in vivo. Data-driven models allow
the identification of patterns and correlations within large datasets, but it is very
challenging to elucidate the cause-and-effect mechanisms that give rise to such pat-
terns and correlations. Physically based models provide virtual laboratories, where
the mechanistic contribution of specific factors on cardiovascular and lymphatic
physiology can be investigated theoretically, but it is very challenging to account
for all possible factors and their natural variability among individuals. In addition,
the relevance of theoretical predictions based on mathematical models is tightly
dependent on the quality of the data that was used to calibrate model parameters
and run the model simulations.

We hope that this book will serve as a catalyst for the integration of these
three approaches in a novel paradigm to address disease prevention, diagnosis, and
treatment in a precise and individualized manner, which represents the twenty-first
century view of ophthalmology, and, more generally, of medicine.

Columbia, MO, USA Giovanna Guidoboni
New York, NY, USA Alon Harris
Milano, Italy Riccardo Sacco
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Mathematical and Physical Modeling
Principles of Complex Biological Systems

Riccardo Sacco, Giovanna Guidoboni, and Aurelio Giancarlo Mauri

Abstract A model of a complex system is a facsimile that can be used to investigate
the problem at hand by simulating its behavior under specific conditions. Many
modeling approaches are used in the applied sciences, including physical, animal,
conceptual, and mathematical models. Specific examples will be provided in the
chapter to illustrate the synergistic application of modeling to the simulation of
biological fluid flow with relevance to ophthalmology.

1 Introduction

Problem complexity in Life Sciences and Engineering is becoming so prohibitive
that the classic trial-and-error technique customarily adopted for investigation,
design, and parametric optimization of a given system is no longer practicable
and effective. Let us make this important concept more concrete by means of two
specific examples, namely the pathology of open-angle glaucoma (OAG) and the
production of memory devices for data storage.

OAG is a neuropathology of the optic nerve head that, by the end of 2020, will
be the cause of blindness for almost 80 million individuals worldwide [28]. OAG is
a multifactorial disease in which alterations of intraocular pressure, hemodynamic
conditions, and metabolic functions, in conjunction with aging and epigenetic
effects, concur in a nontrivial manner to determine the very often asymptomatic
occurrence of the pathology and its progression. These multiple pathogenic factors
make the search of the causes of OAG a very complex task and prevent the clinical
scientist from the possibility of easily disentangling one specific factor from the

R. Sacco (�) · A. G. Mauri
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others and quantify its relative impact on the onset of the disease in each individual
patient.

Memory devices represent the most advanced level of Information and Com-
munication Technology (ICT) ever since the continuous increase of electronic
storage capabilities has initiated the so-called era of cloud computing [1]. The
ICT boom is however close to a stop because the shrinking of device dimensions,
main responsible of improvement of electronic component performance, has almost
reached its ultimate limit predicted by Moore’s law [22]. Such a negative perspective
is prompting scientists and device designers to search for new technological
solutions based on the joint adoption of new architectures and new materials. This
challenge is still far from a conclusive answer.

The two above-described examples are striking paradigms of modern problems
that must be faced nowadays in Life Sciences and Technology. As it is often the case,
difficult questions call for sophisticated answers, thereby requiring the synergistic
contribution of different competences and skills spanning from Mathematics to
Physics and Engineering. Modeling can play a fundamental role by facilitating the
integration of such multidisciplinary contributions to advance the understanding of
complex systems.

2 A Broad View of Modeling: Meaning, Aims,
and Approaches

Modeling means, in a broad sense, to create a sort of facsimile, henceforth
referred to as the model, that can be used to study the main features of the
system at hand and its behavior under specific conditions. Different approaches
are used for investigation in Biology and Applied Sciences, including physical,
animal, conceptual, and mathematical models. In the remainder of the chapter we
provide a description of each of these modeling methods with specific examples in
bioengineering.

2.1 Physical Models

Physical models are physical replicas of the system under consideration. Physical
models are utilized extensively in engineering, biochemistry, and architecture to
visualize important features of the design of an automobile, of the DNA structure,
or of a civil structure. With the rapid development of three-dimensional printing,
physical models provide medicine with powerful tools that facilitate education
and surgical planning, with many potential benefits for training, research, and
clinical interventions in ophthalmology [13]. Physical models may also be utilized
in biomedical applications to reproduce some of the main features of a living
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system and study them in a controlled experimental environment. For example, in
[7, 8] a mock circulatory flow loop is utilized to investigate the flow conditions
in the human abdominal aorta. Another example can be found in [20], where an
ultrasound imaging chamber incorporated in a cardiac flow loop allowed two- and
three-dimensional Doppler characterizations of both simple and complex models of
valvular regurgitation.

2.2 Animal Models

Animal models consist of replicating in an animal a disease or an injury similar
to a human condition. Animal species utilized for biomedical research include
mice, dogs, pigs, and monkeys, whereas conditions of interest may be inbred,
induced, or already existing in the animals. Animal models are very often the
key to groundbreaking discoveries in Medicine and Life Sciences. For example,
the research conducted on dogs by Frederick Banting showed that the isolates of
pancreatic secretion were successful in treating diabetes. This led to the discovery
of insulin in 1922, jointly with John Macleod and Charles Best [32]. Another
example is the study on rhesus monkeys conducted by Jonas Salk in the 1940s,
which led to the isolation of the polio virus and the creation of a polio vaccine
[4]. In ophthalmology, animal models are utilized for the investigation of many
pathological conditions, including glaucoma [5, 30], myopia [9, 24], and age-related
macular degeneration [25, 29].

2.3 Conceptual Models

Conceptual models provide a scheme of cause-effect relationships that govern the
behavior of a complex system. In biology, chemistry, and life sciences, conceptual
models are typically used to represent the chains of reactions and mechanisms reg-
ulating specific functions. The advantage of conceptual models is that visualization
of cause-effect relationships helps interpret the complex interactions existing among
them. The limitation of conceptual models is that they are not quantitative and,
consequently, they cannot predict how much and to what extent the system behavior
will be affected by alterations in specific mechanisms.

2.4 Mathematical Models

Mathematical models are constituted by sets of mathematical equations and formu-
las whose solutions describe the behavior of a complex system or the probability that
a specific event occurs. Thus, mathematical models can help translate conceptual
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models into a solvable problem, whose solution may provide a quantitative tool to
study the behavior of a complex system. Mathematical models can be classified into
two main categories, namely data-driven models and mechanism-driven models, as
described below.

2.4.1 Data-Driven Models and Statistical Viewpoint

Data-driven models aim at identifying patterns and trends within a given dataset by
employing techniques based on statistical methods. Data-driven models typically
consider very large datasets, which include data acquired by means of physical
models, animal models, and studies on human subjects. The main outcome of a
data-driven model is a set of correlations among relevant factors within the dataset.
Despite recent progress to infer causality beyond correlations [16, 31], it is still very
difficult to get information on the fundamental cause-effect relationships among
physical and biophysical mechanisms that ultimately determine system behavior.
An example of data-driven modeling applied to the study of glaucoma progression
can be found in chapter “Statistical Methods in Medicine: Application to the Study
of Glaucoma Progression”.

2.4.2 Mechanism-Driven Models and Biophysical Viewpoint

Mechanism-driven models aim at providing quantitative information on the mech-
anisms that give rise to a given set of data. Mechanism-driven models are the
mathematical translation of physical and biophysical principles, such as New-
ton’s laws of dynamics, conservation of mass, electric charge, momentum, and
energy. Mechanism-driven models are deterministic in nature, but can also include
stochastic effects, and may be constituted by very different mathematical structures,
such as algebraic relationships, ordinary differential equations, partial differential
equations, and stochastic differential equations. This book provides a review of
the mechanism-driven models currently available to investigate the flow of various
fluids in the eye, specifically blood (see Chapter “Mathematical Modeling of Blood
Flow in the Eye”), aqueous humor (see Chapter “Mathematical Models of Aqueous
Production, Flow and Drainage”), vitreous humor (see Chapter “Mathematical
Models of Vitreous Humour Dynamics and Retinal Detachment”), tear film (see
Chapter “Mathematical Models of the Tear Film”) and cerebrospinal fluid (see
Chapter “Mathematical Modeling of the Cerebrospinal Fluid Flow and Its Inter-
actions”).
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2.4.3 Synergy Between Statistical and Biophysical Viewpoints

Statistical and biophysical viewpoints are not in competition, rather, they are
complementary and synergistic in the quest for a deeper understanding of complex
systems. On the one hand, biophysical relationships identified via mechanism-
driven models can be used to “inform” the statistical analysis about the existence of
linear and/or nonlinear dependencies among covariates, which should be properly
taken into account by the statistical analysis to avoid incorrect interpretations of
trends in the data. On the other hand, stochastic variations of model parameters can
be included in the biophysical models to account for individual variabilities and/or
uncertainties in the measurements, whose influence on the biophysical outcomes
can be quantified via statistical methods within data-driven models.

Ultimately, the synergy between statistical and biophysical models leads to a
theoretical version of the complex system under investigation, which may serve as
a virtual laboratory to perform theoretical experiments at low cost and in a short
time, without the need of expensive equipment and resources. For example, a virtual
laboratory could be used to:

• simulate several alternative scenarios to produce a quantitative prediction of
system behavior, thereby allowing scientists to test and compare conjectures, as
well as to formulate new ones;

• compare outcomes of existing studies (e.g. measurements on human subjects
or physical and animal models) with simulations, thereby allowing scientists to
interpret real data based on conjectured physical and biophysical mechanisms;

• identify factors that have a major impact on the system behavior, thereby
providing a guide to the design of new experimental and clinical studies;

• explore levels of detail that current experimental techniques cannot reach due
to instrumental limitation, thereby allowing scientists to investigate microscopic
variables that may significantly affect the macroscopic function of the system.

3 Towards the Development of a Virtual Laboratory

The development of a virtual laboratory in Life Sciences is a highly nontrivial
process that calls for a multidisciplinary effort. Conceptually, this process consists
of five main tasks:

1. problem definition, where the main open questions in the applied field are
identified and a strategy to address them is outlined;

2. multiphysics/multiscale analysis, where the relevant biophysical processes are
identified and their spatial and temporal scales are characterized;

3. model selection, where the modeling approach is selected on the basis of its
suitability to address the questions of interest and a specific mathematical
problem is formalized;
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4. model solution, where analytical or numerical techniques are utilized to obtain
exact or approximated solutions to the specific mathematical problem;

5. model assessment, where the solutions of the specific mathematical problem are
validated against experimental and clinical data.

In the next sections, each task is described in detail with reference to specific cases
of interest in ophthalmology.

3.1 Problem Definition

The most stimulating, yet challenging, task of developing a virtual laboratory
consists in pinning down important questions of interest in the applied field and
devising a realistic strategy to address them. Oftentimes, this task is the most time-
consuming, since it requires a dynamic interaction among scientists with different
expertise, who often see the same problem from different viewpoints and utilize
different languages to express them. The path leading to the definition of specific
problems to be addressed through the use of a virtual laboratory is made of many
steps, where areas of interest are successively refined until a set of well-formulated
questions is shaped.

Let us make this concept more specific by means of an example in glaucoma
research. As mentioned in Sect. 1, glaucoma is a multifactorial disease for which
the only approved therapies aim at lowering the intraocular pressure (IOP), even
though overwhelming evidence shows that IOP is not the only factor contributing to
the disease [18, 19]. Thus, one of the main questions troubling ophthalmologists all
around the world is:

Question
Level 0

Why lowering intraocular pressure (IOP) is not enough to stop
glaucoma progression in all patients?

This question provides the starting point and the overall motivation of the
scientific investigation and, therefore, we refer to it as Level 0. This Level 0 question,
however, is still too broad to be addressed by means of biophysical models. A series
of more specific questions or conjectures is then compiled, such as the one below:

Each of the Level 1 questions listed above is further elaborated into specific
problems that can be studied by means of a virtual laboratory. For example, starting
from question (1a), we can define the following specific problems:
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Questions
Level 1

(1a) Does the same IOP level have the same
consequences on different individuals?

(1b) Are there other pathogenic factors, in addition
to the level of IOP, that make some patients progress
more than others?

(1c) Should glaucoma be understood as a family of
diseases sharing similar symptoms despite being
characterized by different pathogenic processes?

(1d) . . .

Questions
Level 1a

(1a.i) What is the effect of IOP level on ocular biomechanics,
including the distribution of stresses and strains in the tissues?

(1a.ii) What is the effect of IOP level on ocular hemodynamics,
including the distribution of pressures and velocities in the
blood vessels?

(1a.iii) What is the effect of IOP level on ocular oxygenation,
including the distribution of oxygen in the blood vessels and in
the tissues?

(1a.iv) What is the effect of IOP level on the functionality of
vascular regulation in the eye?

(1a.v) What is the effect of IOP level on the flow of aqueous
humor?

(1a.vi) . . .

Each of the Level 1a questions listed above can be the starting point for the
development of a specific mechanism-driven model that, as discussed in the sections
below, may require different mathematical and computational methods. However,
when working on a model addressing a specific problem, for example (1.a.ii), it
is important to keep in mind that we are working on a piece of a big mosaic
representing the big picture. In other words, the specific problem, say (1.a.ii), is
part of a bigger problem that ultimately aims at understanding why lowering IOP,
per se, does not always prevent progression to blindness (see question at Level 0).

3.2 Multiphysics/Multiscale Analysis

Once identified a specific problem to address by means of a virtual laboratory, an
interdisciplinary effort is required to identify the biophysical factors and processes
that are likely to play a role in determining system behavior. Considering again the
example of problem (1.a.ii), some of the most relevant factors and processes include
(being not limited to):

• systemic factors driving blood flow, such as blood pressure and vascular regula-
tion;
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• mechanical properties of blood vessels, such as stiffness and compliance;
• biochemical processes at the cellular levels, such as nitric oxide absorption and

myosin phosphorylation in the smooth muscle cells;
• intracellular chemical reactions, such as intracellular calcium uptake-release.

It is important to emphasize that, in the human body, all the factors and processes
listed above take place simultaneously, even though at very different scales in space
and time. Specifically, we can identify the following hierarchy of spatial scales:

• a macroscale (corresponding to the whole body) whose characteristic spatial
length is of the order of meters;

• a mesoscale (corresponding to a specific organ) whose characteristic spatial
length is of the order of centimeters;

• a microscale (corresponding to a single cell) whose characteristic spatial length
is of the order of micrometers;

• a nanoscale (corresponding to the cellular membrane) whose characteristic
spatial length is of the order of nanometers.

In addition, we can identify the following hierarchy of temporal scales:

• a macroscale (corresponding to a lifetime) whose characteristic temporal length
is of the order of years;

• a mesoscale (corresponding to a day) whose characteristic temporal length is of
the order of hours;

• a microscale (corresponding to the heartbeat) whose characteristic temporal
length is of the order of seconds;

• a nanoscale (corresponding to the cellular reactions) whose characteristic tem-
poral scale is of the order of microseconds (or even less).

Thus, spatial and temporal scales characterizing the biophysical processes within the
human body span over 9 orders of magnitude. It is therefore no surprise that account-
ing for such an enormously wide spectrum of scales within a single mathematical
model, despite theoretically possible, may be prohibitive and unaffordable even for
the most powerful existing computational facilities. However, the link between the
different scales is an essential part of life. For example, the onset and progression
of glaucoma occurs over decades as the result of subtle damage to the ocular tissues
occurring at every ion exchange within the heartbeat. Thus, the development of a
sound mechanism-driven model in the context of life science should account for the
multiscale and multiphysics nature of Life, while balancing between biophysical
accuracy and model complexity. How to effectively and accurately attain this
balance remains one of the biggest challenges in applied mathematics.
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3.3 Model Selection

Mathematical models can be divided into two main categories: lumped parameter
(LP) models and distributed parameter (DP) models. LP models mathematically
represent the biophysical problem at hand by the construction of an equivalence
with an electrical circuit. In this approach, the biophysical system is described
by means of a network of interconnected electrical equivalent elements typically
including resistors, capacitors, inductors, and current/voltage sources. The variables
determined by a LP model are usually the nodal values of the electric potential
and the branch currents in the network, which, in the electric analogy to fluid
flow, correspond to the fluid pressure and the flow rate, respectively. DP models
mathematically represent the biophysical problem at hand by means of a continuum-
based geometrical description of the medium in which phenomena and processes
take place. Phenomena are typically governed by fundamental laws of Physics and
Mechanics such as mass, charge, and momentum conservation principles. Unlike
LP models, the solution variables of a DP model are functions of position and
time, rather than nodal values and/or branch currents. LP and DP models have both
advantages and disadvantages. LP models provide a systemic view of the problem
dynamics at low computational costs, but do not allow a detailed description of local
spatially dependent phenomena. Conversely, DP models provide detailed spatial
descriptions of the system under investigation, typically at the price of a much higher
computational effort and allocation of memory resources. The decision of whether
to adopt a DP or LP model is not trivial and depends on numerous factors, including
the level of accuracy that is required to the model solution compared to the level
of accuracy in the knowledge of model parameters and input data. In the following,
we provide two examples for the applications of LP and DP models to the study of
different aspects of ocular biophysics, namely the interplaying role of IOP, blood
pressure and blood flow in the determination of retinal blood flow (see Sect. 3.3.1),
and the interplaying role of electrochemical and fluid dynamical mechanisms in the
production of aqueous humor by the ciliary processes (see Sect. 3.3.2).

3.3.1 Lumped Parameter Model of Blood Flow in the Retina

In this section we provide an example of the use of a lumped parameter model
in ophthalmology, referring to [12] and chapter “Mathematical Modeling of Blood
Flow in the Eye” for all the mathematical details, simulation results, and comments.
The main goal of the investigation is to utilize a mechanism-driven approach to
shed light on the complex interaction among risk factors in glaucoma. To this end, a
LP mathematical model is developed to simulate blood flow through the central
retinal artery (CRA), central retinal vein (CRV), and retinal microvasculature.
In this approach, variable resistances are used to describe active and passive
diameter changes due to vascular regulation and intraocular pressure (IOP). In the
mechanistic description, blood flow is:
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Fig. 1 Schematic representation of a mechanism-driven, lumped parameter model to study
the relationship between IOP, blood pressure, and blood flow in the retina (figure reproduced
from [12])

• driven by the difference between input and output pressures (denoted by Pin and
Pout , respectively);

• impeded by the combined action of IOP and retrolaminar tissue pressure (RLTp);
• modulated by vascular regulation.

A schematic of the model is reported in Fig. 1. In the LP description of blood
flow throughout the retinal microvasculature, the nodal pressures Pi are functions
of the sole time variable in such a way that, at each time instant, their value
biophysically represents the spatial average of blood pressure in the considered
vascular compartment. For example, referring to the scheme of Fig. 1, the nodal
pressure P1 is the spatial average of the blood pressure in the CRA, P2 in the
arterioles, P4 in the venules, and P5 in the CRV. The mathematical formulation
emanating from the electrical equivalent circuit of Fig. 1 consists of the solution of a
system of nonlinearly coupled ordinary differential equations for the nodal pressures
Pi , with i = 1, 2, 4, 5.

The proposed lumped parameter model is used to simulate retinal blood flow
for three theoretical patients with high, normal, and low blood pressure. The
model predicts that patients with high and normal blood pressure can regulate
retinal blood flow as IOP varies between 15 and 23 mm Hg and between 23 and
29 mm Hg, respectively, whereas patients with low blood pressure do not adequately
regulate blood flow if IOP is 15 mm Hg or higher. Thus, hemodynamic alterations
are predicted to impact patients’ health conditions only if IOP changes occur
out of the regulating range, which, most importantly, depend on blood pressure.
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These theoretical predictions have been recently confirmed by the population-based
study conducted in [33] over nearly 10,000 individuals (nearly 20,000 eyes), in
which it has been found that patients with the highest probability of the occur-
rence of glaucoma are those exhibiting a combination of low blood pressure and
elevated IOP.

3.3.2 Distributed Parameter Model of Aqueous Humor
Production in the Ciliary Process

In this section we provide an example of the use of a DP model in ophthalmology,
referring to [21] for all the mathematical details, simulation results, and comments.
The main goal of the investigation is to utilize a mechanism-driven approach to
shed light on the role of bicarbonate ion on the active secretion of aqueous humor
across the membrane of the nonpigmented epithelial cells of the ciliary process.
To this end, a distributed parameter mathematical model is developed to simulate
the coupled interaction between ion electrodynamics and aqueous humor flow into
the basolateral space adjacent to the nonpigmented epithelial (NPE) cells. In the
mechanistic description, ion electrodynamics is driven by the balance between:

• a gradient in ion concentration across the membrane;
• an electric field generated by the transepithelial potential difference across the

membrane and by the ions in motion throughout the membrane;
• the translational velocity of the aqueous humor flowing across the membrane.

In the mechanistic description, active secretion of aqueous humor is driven by the
balance between:

• a fluid pressure gradient across the membrane;
• a shear stress between fluid elements moving with different velocity;
• an electric pressure due to the ions flowing inside the aqueous humor fluid.

A mathematically simplified cylindrical three-dimensional geometry of the trans-
membrane channel that has been used in numerical simulations is reported in Fig. 2.

Fig. 2 Geometry of a NPE transmembrane channel. Side A represents the intracellular NPE
region, Side B represents the extracellular region in the basolateral space. The thickness of the
channel is 5 nm (figure reproduced from [21])
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In the DP description, unlike the case of the LP description, the dependent variables
of the problem are also functions of the spatial position, mathematically represented
by a three-dimensional vector x = (x, y, z), where z is the cylinder axial coordinate,
whereas x and y are the coordinates in the plane orthogonal to the z axis. Thus,
the mathematical formulation consists of the solution of a system of nonlinearly
coupled partial differential equations for the electric potential, the ion concentrations
of bicarbonate, sodium, potassium, and chloride, the aqueous humor pressure and
velocity, which depend both on temporal and spatial coordinates.

The proposed DP model is used to disentangle the contribution of bicarbonate
from that of the other ions, which is very difficult to investigate experimentally, in
the formation of the transmembrane epithelial potential difference Vm and in the
secretion of aqueous humor into the basolateral space. Model predictions indicate
that Vm is close to baseline experimental measurements only if bicarbonate is
included in the simulation. Model simulations of the sodium-potassium (Na/K)
pump indicate an efflux of sodium and an influx of potassium, in accordance
with pump physiology. The simulated Na/K ratio is 1.53, which is in very good
agreement with the theoretical stoichiometric ratio of 1.5. The above theoretical
model predictions suggest that bicarbonate inhibition may prevent physiological
baseline values of the nonpigmented transepithelial potential difference and Na/K
ATPase function, thus providing useful indication in the design of medications to
decrease active secretion of aqueous humor.

3.4 Model Solution

The two examples illustrated in Sect. 3.3 demonstrate that the use of LP and DP
models for the simulation of complex biophysical problems leads to sophisticated
systems of differential equations. Finding the exact solution of such equations
is impossible unless drastic simplifications are introduced in the mathematical
formulation, such as, for instance, in the electric equivalent circuit of Fig. 1,
transforming the nonlinearly varying resistors into linear resistors. This approach
has the advantage of making the analysis treatable at the price, however, of
neglecting significant biophysical features of the system under investigation. In
order to cope with the mathematical model in its more general integrity, it is
therefore mandatory to resort to numerical approximation techniques. We refer to
[2, 17] for the numerical treatment of ordinary differential equations and to [15, 27]
for the numerical treatment of partial differential equations. In the following,
we give a very short introduction to the concept of numerical approximation
of a mathematical problem and to the notion of approximation error, which is
the difference between the exact solution of the mathematical problem and the
solution of its approximation. In addition, we shortly address the issue of the actual
implementation of a numerical method into a computing machine environment, with
special emphasis on the notion of finite arithmetics and machine precision.
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3.4.1 The Mathematical Problem

Let us denote by D the space of admissible data and by d ∈ D a given value of
the data. Let also denote by V a vector space. Typically (but not necessarily) V has
infinite dimension. The abstract formulation of a mathematical problem is:

Given d ∈ D, find x ∈ V such that

F(x, d) = 0 (1)

where F is the functional relation between x (the solution of (1)) and d (the input
data of (1)). In general, it is not guaranteed that (1) admits a unique solution or that
it is even solvable. In what follows we assume that (1) is well-posed, meaning that it
admits a unique solution and that such solution depends with continuity on the data
(see for further details [26, Chap. 2]).

3.4.2 The Numerical Problem

As previously anticipated, solving (1) exactly is, in general, very difficult or even
impossible. Thus, we associate with problem (1) the following family of numerical
problems:

Given dh ∈ Dh, find xh ∈ Vh such that

Fh(xh, dh) = 0 (2)

where Dh and Vh are finite dimensional subspaces of D and V , respectively,
whereas dh and xh are the approximation of the input data d and of the exact solution
x in Dh and Vh, respectively. The quantity h is a positive number usually referred
to as discretization parameter. Referring to the examples illustrated in Sect. 3.3, we
may think at h as the incremental time step and/or the spatial grid size. As in the
case of problem (1), also (2) is assumed to be well-posed. The main, fundamental,
difference between (1) and (2) is that xh is sought for in a finite-dimensional space so
that the solution of (2) is computable whereas the solution of (1) is, in general, not.

3.4.3 Approximation Error and Convergence

In general, xh and x obviously do not coincide. Therefore, we define the approxi-
mation error intrinsically associated with (1) and (2) as

eh := x − xh . (3)

The requirement for (2) to be a good approximation of (1) is the convergence of xh

to x, which is mathematically stated by the following limit
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lim
h→0

eh = 0 . (4)

Thus, as intuitively understandable, we expect xh to get increasingly close to x as
the discretization parameter becomes increasingly fine. At the same time, we also
expect dh to converge to d as h becomes small, so that, should xh converge to x, the
following property is satisfied

lim
h→0

Fh(xh, dh) = F(x, d) . (5)

This latter relation means that the approximate and the exact problem tend to
coincide when we have convergence of both data and solution.

3.4.4 Computer Implementation

Even if the solution of the numerical problem (2) is computationally affordable, this
does not necessarily mean that it is also computationally easy to achieve. In other
words, we need in general to implement the actual computation of xh within an
algorithm that is then to be run on a computer machine. In the hardware, any real
number y is replaced by a machine representation called floating-point number and
denoted by f l(y). It is important to emphasize that f l(y) is NOT, in general, equal
to y; rather, there is an intrinsic error that adds to the discretization error introduced
in (3). This additional source of error is called round-off error, and can be estimated
as follows

f l(y) = y(1 + δ) (6)

where δ is small quantity of the order of 10−16. From (6) we see that any input datum
in a computer machine may, in general, be affected by a “native” error. This error is a
very small quantity and is the result of the finite precision of the computer hardware
in storing any number in the memory. This is the reason why δ is also referred to
as machine precision unit. The fact that the machine precision unit is a very small
quantity is, of course, good news. However, it is very important to keep in mind
that the effect introduced by machine precision on numerical computations may
not always be negligible, as it happens, for example, to the error due to numerical
cancellation of significant digits that is introduced by the finite arithmetic of the
computer (see [26, Sect. 2.4]).

3.4.5 The Issue of Stability

The principal objective in the design of a numerical problem is to ensure the con-
vergence of xh to x, as stated by relation (4). It can be shown (see [26, Sect. 2.2.1])
that a necessary condition for (4) to hold is that the numerical problem (2) is stable.
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Stability is strictly related to the mathematical notion of continuous dependence on
data. To better explain this latter concept, let us consider a perturbation δdh in the
data dh such that the modified data is ˜dh = dh + δdh and assume that ˜dh ∈ Dh as it
was for the unperturbed data dh. Correspondingly, consider the perturbed numerical
problem:

Given ˜dh ∈ Dh, find x̃h = (xh + δxh) ∈ Vh such that

Fh(̃xh,˜dh) = 0. (7)

The numerical model enjoys the property of continuous dependence on data
(equivalently, it is stable), if the perturbation in the solution δxh is small when the
perturbation in the data δdh is small too. To quantify this concept, we associate with
the numerical problem (2) the condition number K ≥ 1. This number provides
an estimate of the amplification that may be introduced to δdh by problem (2). If
K is not much larger than 1, then the perturbation δxh will be not much larger
than δdh, so that we can conclude that problem (2) is well-conditioned and the
computed solution xh is reliable. Conversely, if K � 1, then the perturbation
δxh may be much larger than δdh, so that we can conclude that problem (2) is ill-
conditioned and needs to be handled with particular care in order to obtain a reliable
numerical approximation. Oftentimes, ill-conditioning is addressed by means of a
suitable stabilization of (2). Examples of this latter method are represented by the
regularization techniques that allow to transform an ill-conditioned problem into a
well-conditioned problem (see [23]) or the stabilized finite element formulations
for the numerical approximations of partial differential equations proposed in
[6, 10, 14].

3.5 Model Assessment

It is extremely important to keep in mind that the numerical solution of a mathe-
matical model does not conclude the process of model development. As a matter
of fact, once the problem has been defined and the corresponding mathematical
model has been solved, as discussed in Sects. 3.4.1–3.4.4, we obtain as a result some
predictions of the behavior of the investigated system. These predicted results must
be compared with experimental data that can assess the validity of the assumptions
that were made to derive the model in the first place. Depending on whether or not
the model results are capable of capturing the essential features of the biophysical
system, it may become necessary to revisit the whole definition of the mathematical
problem and to modify certain assumptions that proved to be overly simplistic.

An example of the importance of model assessment is provided in Sect. 2.1.2 of
chapter “Mathematical Modeling of Blood Flow in the Eye”, where the mathemat-
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ical modeling of venous collapsibility in the retina is discussed. When modeling
venules as compliant tubes, thereby adopting the renown Laplace law, the model
depicted in Fig. 1 predicts that retinal venules do not collapse even in the case when
IOP is higher than their intraluminal pressure. This model prediction is clearly
in contrast with the experimental observations on cats reported by Glucksberg
and Dunn [11] and Attariwala et al. [3], where open retinal venules, i.e., not
collapsed, were seen only for IOP values lower than their intraluminal pressure. This
inconsistency between model predictions and experimental observations demanded
a reassessment of the model assumptions. In particular, by representing the venules
as collapsible tubes, thereby substituting the Laplace law with the law for collapsible
tubes (Starling resistors), the model predictions demonstrated to be consistent
with the experimental findings. A comparison between the intraluminal pressures
computed when adopting the Laplace law and the law for collapsible tubes is
reported in Fig. 13 of chapter “Mathematical Modeling of Blood Flow in the Eye”.

We would like to emphasize that this example also illustrates the importance
of gathering reliable experimental data, which, in addition, should be correctly
interpreted and utilized when developing the mathematical model. Thus, the
construction of a mathematical model for the study of a biophysical system is
a truly interdisciplinary endeavor that calls for team work across disciplines and
competencies.

4 Conclusions and Perspectives

Problem complexity requires new tools for achieving a satisfactory solution and
producing significant advances in knowledge and technology. In this perspective, the
adoption of mathematical modeling can be a valuable approach, especially when it is
based on physical principles and calibrated against a set of real data. In this chapter,
we provided a short introduction to the paradigm of modeling and to the rationale
that leads from the phase of problem definition to the phase of model assessment.
Specific examples have been included to illustrate the use of mathematical modeling
in the study of different aspects of ocular biophysics, namely the interplaying role
of IOP, blood pressure and blood flow in the determination of retinal blood flow,
and the interplaying role of electrochemical and fluid dynamical mechanisms in the
production of aqueous humor by the ciliary processes.

The fascinating conclusion that can be drawn from the content of this chapter
is that mathematical modeling is a very general and powerful technique to address
the solution of a complex problem in Engineering and Biology. A particular feature,
which makes it unique and versatile, is the ability to develop an abstract picture
(the model), which relates the specific problem (for example, the blood flow in
the retina) to a general framework by means of connections and analogies (for
example, the electric analogy to fluid flow depicted in the circuit of Fig. 1). The
benefits of drawing this abstract picture are twofold. On the one hand, the model
user can take advantage of existing algorithms, possibly developed for other types
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of applications and yet sharing the same structure. On the other hand, the model
developers may discover new theoretical and computational challenges that call
for new methodologies to be devised. Thus, the development and utilization of
mathematical models as virtual laboratories is a genuine interdisciplinary endeavor
that has significant impacts across disciplines, from engineering to medicine.
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Abstract This chapter provides an overview of the main structural and functional
properties of the ocular vasculature. Four major circulatory systems within the
eye are considered, namely those nourishing the retina, the optic nerve head, the
choroid, and the anterior segment. Some aspects related to vascular regulation and
innervation are also discussed, along with outstanding questions that remain a matter
of debate.

1 Introduction

Blood circulation in the eye is structured in a very complex way in order to nourish
the tissues without interfering with visual function. Interestingly, some components
are extremely rich in blood, such as the choroid, whereas others are completely
avascular, such as the vitreous humor, lens, and central regions of the cornea and
fovea. Some of the most relevant ocular components are schematized in Fig. 1.
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