Levick's Introduction to Cardiovascular Physiology

Sixth Edition

Neil Herring and David J. Paterson

Levick's

Introduction to Cardiovascular Physiology

Sixth Edition

Levick's

Introduction to Cardiovascular Physiology

Sixth Edition

Neil Herring BM BCh MA DPhil (Oxon) MRCP FHRS Associate Professor and BHF Intermediate Fellow, University of Oxford, UK Tutor and Fellow, Keble College, Oxford, UK Consultant Cardiologist, Oxford University Hospital NHS Foundation Trust, UK

David J. Paterson MSc (WAust) MA DPhil (Oxon) DSc (WAust) FRSB FPhysiol Hon FRSNZ Professor of Cardiovascular Physiology & Hon. Director, Burdon Sanderson Cardiac Science Centre, Oxford, UK Head of Department of Physiology, Anatomy & Genetics, University of Oxford, UK Tutor and Fellow, Merton College, Oxford, UK

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-0-8153-6361-3 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

We dedicate this book to our pupils and teachers and the British Heart Foundation who have supported our research We shall not cease from exploration, and the end of all our exploring will be to arrive where we started and know the place for the first time.

T. S. Eliot

Contents

Foreword			xiii
Pre	eface		XV
An	ote o	n active and problem-based learning	xvii
		bbreviations	xix
1		view of the cardiovascular system	1
	1.1	Diffusion: its virtues and limitations	1
	1.2	Functions of the cardiovascular system	3
	1.3	The circulation of blood	3
	1.4	Cardiac output and its distribution	6
	1.5	Introducing 'hydraulics': flow, pressure and resistance	7
	1.6	Blood vessel structure	9
	1.7	Functional classes of vessel	10
	1.8	The plumbing of the circulation	12
	1.9	Control systems	13
2	The c	cardiac cycle	15
	2.1	The gross structure of the heart	15
	2.2	The ventricular cycle	17
	2.3	The atrial cycle and jugular venous pressure waves	20
	2.4	Altered phase durations when heart rate increases	21
	2.5	Heart sounds and valve abnormalities	21
	2.6	Clinical assessment of the cardiac cycle	23
3	The	cardiac myocyte: excitation and contraction	29
Ŭ	3.1	The importance of calcium	29
	3.2	Ultrastructure of a cardiac myocyte	30
	3.3	Mechanism of contraction	32
	3.4	Resting membrane potential	33
	3.5	Role of pumps and exchangers	37
	3.6	Cardiac action potentials	37
	3.7	Advanced aspects: structure-function relations of ion channels	40
	3.8	Physiological and pathological changes in action potential	43
	3.9	Excitation-contraction coupling and the calcium cycle	44
	3.10	Regulation of contractile force	47
	3.11	Store overload, afterdepolarization and arrhythmia	47
Λ	Initiat	ion and nonvous control of boartboat	40
4		ion and nervous control of heartbeat	49
	4.1	Organization of the pacemaker-conduction system	49
	4.2	Electrical activity of the pacemaker	51
	4.3	Transmission of excitation	54
	4.4	Regulation of heart rate	55
	4.5	Effects of sympathetic stimulation	58
	4.6	Effects of parasympathetic stimulation	60 61
	4.7	Local neuromodulators and autonomic co-transmitters	61

	4.8 4.9 4.10	Dangers of an altered ionic environment Pharmacological manipulation of cardiac currents Mechano-electrical feedback	62 63 63
5	Electi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	rocardiography and arrhythmias Principles of electrocardiography Relation of ECG waves to cardiac action potentials Standard ECG leads The cardiac dipole The excitation sequence Why the QRS complex is complex The electrical axis of the heart The inverse problem of electrocardiography and ECG imaging (ECG _i) ECG in ischaemic heart disease Arrhythmogenic mechanisms: a trigger, vulnerable window and substrate Arrhythmias	67 67 68 70 72 72 73 74 75 75 75 76 78
6	Contr 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14	rol of stroke volume and cardiac output Overview Contractile properties of isolated myocardium Mechanisms underlying the length-tension relation The Frank-Starling mechanism Stroke work and the pressure-volume loop Central venous pressure and cardiac filling Operation of the Frank-Starling mechanism in humans Laplace's law and dilated hearts Multiple effects of arterial pressure on the heart Sympathetic regulation of contractility Other positive inotropic influences Negative inotropism, ischaemia and arrhythmia Co-ordinated control of cardiac output Cardiac energetics and metabolism	87 87 88 99 91 94 95 97 98 99 101 104 105 107
7	Asse: 7.1 7.2 7.3 7.4 7.5	ssment of cardiac output and arterial pulse Fick's principle and pulmonary oxygen transport Indicator and thermal dilution methods Aortic flow by pulsed Doppler method Central arterial pulse and its relation to cardiac output Radionuclide ventriculography, 2-D echocardiography, cardiac magnetic resonance imaging and other methods	113 113 115 116 117 118
8	Haen 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12	hodynamics: flow, pressure and resistance Hydraulic principles: the laws of Darcy and Bernoulli Patterns of blood flow: laminar, turbulent, single-file Measurement of blood flow The arterial pressure pulse Mean arterial pressure and pressure measurement Pulsatile flow Peripheral resistance, Poiseuille's law and Laplace's wall mechanics Viscous properties of blood Pressure-flow relationships and autoregulation Venous pressure and volume Effects of gravity on the venous system Venous blood flow and the accessory pumps	121 123 125 126 131 135 135 139 141 141 143 145

Contents

23		
	3	
	2	0
		-6

9	Endothelium 9.1 Outline of endothelial functions	149 149
	9.2 Structure of endothelium	149
	9.3 Ion channels, calcium and endothelial function	155
	9.4 Nitric oxide production by endothelial cells	156
	9.5 Other vasoactive endothelial products: endothelium-derived hyperpolarization,	
	prostacyclin and endothelins9.6 Actions of endothelium on blood	159 160
	9.7 Endothelial permeability and its regulation	160
	9.8 Endothelium and the inflammatory response	161
	9.9 Endothelium and angiogenesis	163
	9.10 Endothelium and atheroma	164
	9.11 Endothelium, platelets and coagulation	165
10	The microcirculation and solute exchange	171
	10.1 Organization and perfusion of exchange vessels	171
	10.2 Three types of capillary10.3 Diffusion, convection and reflection across a porous membrane	173 174
	10.4 The concept of 'permeability'	177
	10.5 Lipid-soluble molecules diffuse extremely rapidly across the endothelium	177
	10.6 Small lipid-insoluble molecules permeate the small pore system	178
	10.7 Large lipid-insoluble molecules pass through a large pore system	180
	10.8 The blood–brain barrier and carrier-mediated transport	181
	10.9 Extraction and clearance in capillaries10.10 How blood flow affects solute transfer	182 184
	10.11 Physiological regulation of solute transfer	185
11	Circulation of fluid between plasma, interstitium and lymph	191
	11.1 The Starling principle of fluid exchange	191
	11.2 Capillary blood pressure (P_c) and its regulation	194
	11.3 Osmosis across capillaries: plasma colloid osmotic pressure (π_p)	196
	11.4 Magnitude and dynamics of extravascular COP (π_i , π_g)	198
	 11.5 Interstitial matrix and interstitial fluid pressure (<i>P_i</i>) 11.6 Tissue fluid balance: filtration versus absorption 	199 200
	11.7 Interstitial compliance and conductivity: effect of oedema	200
	11.8 Lymph and the lymphatic system	205
	11.9 Challenges to tissue fluid balance: orthostasis and exercise	210
	11.10 Oedema	211
	11.11 The swelling of inflammation	213
12	Vascular smooth muscle: excitation, contraction and relaxation	221
	12.1 Overview	221
	 12.2 Structure of a vascular myocyte 12.3 Contractile properties and role of Ca²⁺ 	223 224
	12.4 Vascular ion channels	224
	12.5 From sympathetic stimulation to contractile response	231
	12.6 Vasomotion (rhythmic contractions)	235
	12.7 Physiological vasodilator mechanisms	235
13		239
	13.1 Overview of vascular control and its roles	239
	13.2 Myogenic response to blood pressure changes	241
	13.3 Regulation by endothelium13.4 Regulation by metabolic vasoactive factors	242 244
	13.4 Regulation by metabolic vasoactive factors13.5 Regulation by autacoids	244 246
		240

	 13.6 Autoregulation of blood flow 13.7 Metabolic (functional) hyperae 13.8 Post-ischaemic (reactive) hype 13.9 Ischaemia-reperfusion injury 		247 249 252 252
14	 4 Control of blood vessels: extrinsic 14.1 Sympathetic vasoconstrictor n 14.2 Parasympathetic vasodilator nerve 14.3 Sympathetic vasodilator nerve 14.4 Nociceptive C-fibre-mediated 14.5 Hormonal control of the circula 14.6 Adrenaline and noradrenaline 14.7 Vasopressin (antidiuretic horm 14.8 Renin–angiotensin–aldosteron 14.9 Natriuretic peptides 14.10 Special features of venous cor 	nerves nerves es vasodilatation ation none) ne system	255 255 261 262 263 265 265 265 266 268 269 270
15	 5 Specialization in individual circulat 15.1 Coronary circulation 15.2 Skeletal muscle circulation 15.3 Cutaneous circulation 15.4 Cerebral circulation 15.5 Pulmonary circulation 	tions	275 275 282 285 290 295
16	 16.1 Arterial baroreceptors 16.2 The baroreflex 16.3 Receptors in the heart and pu 16.4 Reflexes from cardiac recepto 16.5 Long-term regulation of arteria 	Ilmonary arteries ors in humans al blood pressure: the kidney link k receptors, arterial chemoreceptors, lung stretch receptors medulla oblongata	303 304 306 309 311 312 314 317 319 320
17	 7 Co-ordinated cardiovascular response 17.1 Posture (orthostasis) 17.2 The Valsalva manoeuvre 17.3 Exercise 17.4 Physical training and performa 17.5 Feeding, digestion and the spl 17.6 The diving response 17.7 Ageing 17.8 Sleep and the alerting response 	ance Ianchnic circulation	325 326 327 328 333 335 335 335 336 338
18	 Cardiovascular responses in patho 18.1 Systemic hypoxaemia 18.2 Shock and haemorrhage 18.3 Transient loss of consciousnes 18.4 Hypertension 18.5 Chronic heart failure 		343 343 346 349 350 356
19	 9 Experimental models and measure 19.1 The experimental approach 19.2 Isolated cells 	rements to study cardiovascular physiology	369 369 370

Contents

19.3	Measurements in isolated cells	371
19.4	Multicellular preparations	374
19.5	Measurements in multicellular preparations	376
19.6	Animal studies in vivo	379
19.7	Measurements in animal studies in vivo	379
19.8	Computer modelling	381
20 Exp	erimental perturbations to investigate cardiovascular physiology	385
20.1	Physical manipulation	385
20.2	Chemical manipulation	387
20.3	Genetic manipulation	389
20.4	Human clinical studies	393
	cases for problem-based learning lix 1: Human cardiovascular parameters	397 407
Index		411

Foreword

The seventeenth century physician William Harvey is known for his treatise on the motion of the heart and blood which was published in *De Motu Cordis et Sanguinis* in 1628. Harvey's description of experiments on many species unequivocally dispelled the long-held Galenic dogma that blood passed from the right side of the heart to the left through invisible pores in the ventricular septum. Harvey, using the scientific method, proved there were no such pores and that blood had to move in a circular fashion. He showed that the amount of blood pumped by the heart per minute was many times the volume of blood. Harvey wrote

...I found the task so truly arduous... that I was almost tempted to think... that the movement of the heart was only to be comprehended by God. For I could neither rightly perceive at first when the systole and when the diastole took place by reason of the rapidity of the movement...

Anyone who has watched the heart beat, has placed a catheter in an artery or has recorded electrical activity of the heart cannot be anything other than awestruck by the power and complexity of the heart and circulation. It is, indeed, as Harvey wrote an almost spiritual experience. Interestingly, William Harvey was Warden of Merton College at Oxford University in 1645; the same institution where Professors Paterson and Herring now reside.

The publication of the sixth edition of *Introduction to Cardiovascular Physiology* continues a rich tradition of education in cardiovascular science at Oxford. This edition is more than just an introductory textbook. It is, in our opinion, one of the most well-written and well-organized cardiovascular textbooks ever published. It is comprehensive in its scope and at the same time elegant in its simplicity.

This book covers every aspect of the heart and circulatory system. Chapters build on the anatomical, biophysical, molecular and cellular underpinning of function, to the integrative nature of each component of cardiovascular regulation. Objectives are clearly laid out, experimental evidence is highlighted, technical advances are discussed and the clinical relevancy of each component is nicely woven into the fabric of the book. One of most outstanding aspects of this text are the figures, which are both drawn *de novo* and are modified from existing research and review publications. Figures are vibrant and well described. They help to bring the reader along a logical sequence in understanding the progression and complexity of each component.

Clearly, the book is not a novel by any means, but in reading this text, one wonders how it will end. The authors pull the physiological concepts presented in chapters 1–16 together with two additional chapters devoted to adaptive responses of the cardiovascular system to environmental stimuli, exercise, aging and pathological situations. Chapter 19 and 20 focus on the experimental approach and modern techniques in cardiovascular research. Importantly, the denouement of the scientific discussions is the section on clinical case scenarios and problem-based learning, an excellent way for medical students to utilize prior information to understand the scientific rationale underpinning diagnosis and therapeutics.

This book should be part of the library of every medical student and physiology graduate student, even if their major interest is not cardiovascular science. In our opinion, there is no better compendium of basic cardiovascular function than Levick's sixth edition. We are certain that this book will surely entice young readers and new entrants in the field to seriously consider a career in cardiovascular medicine and science!

Irving H. Zucker, PhD

Department of Cellular and Integrative Physiology University of Nebraska Medical Center Omaha, NE, USA

Kalyanam Shivkumar, MD, PhD

UCLA Cardiac Arrhythmia Center & Neurocardiolgy Research Program of Excellence Division of Cardiology Department of Medicine University of California Los Angeles Los Angeles, CA, USA

Preface

The first edition of *An Introduction to Cardiovascular Physiology* by Rodney Levick was published in 1990 and has been an invaluable textbook for generations of medical and biomedical science students. Over the years, we have used its many editions extensively and with great fondness as both students and teachers. We were therefore honoured to be asked to take this textbook forward into its sixth edition. Given Professor Levick's huge contribution to this work, we have renamed the sixth edition as *Levick's Introduction to Cardiovascular Physiology*.

One of the first things we did when embarking on this task, was to consult a broad group of peers and students about what they thought of the previous edition. The striking and consistent finding was that the textbook was much loved and required 'evolution rather than revolution'. Nevertheless, we have introduced several key changes. The content has been widely updated given recent advancements, particularly in chapters 4, 5, 9, 12, 13, 15, 16, 17 and 18, and the clinical cases. Although this is a textbook of cardiovascular physiology rather than pathology, it is hard to ignore the significant progress in the areas of arrhythmias, hypertension and heart failure, and we have highlighted how this has improved our understanding of the underlying physiology. We are very grateful to Dr Julian Ormerod, and Associate Professors Ian Le Grice, Keith Dorrington, Pawel Swietach, Paolo Tammaro, and Professors Kim Dora, Chris Garland, Jeff Ardell, Bruce Smaill Peter Kohl and David Eisner for their help in this regard, although any inaccuracies remain our own. We are also grateful to Dr Nikant Sabharwal, Dr Jim Newton, and

Associate Professors Oliver Rider and Rajesh Kharbanda for providing clinical images from the Oxford Heart Centre. We have updated the references for every chapter, and while the focus is on reviews from leading experts in the field, we have included classical original research papers throughout. References are now ordered with the most contemporary reviews and studies cited first. By popular demand, the figures and illustrations are now in full colour throughout the book.

The biggest change we have made is the addition of two substantial new chapters (19 and 20). There is a vast gulf to be bridged between reading a traditional textbook and reading original research papers, as required when undertaking a bachelor's degree in medical science, research dissertation or a higher research degree. It is overcoming this hurdle that students consistently find the most difficult aspect of their education. The aim of chapters 19 and 20 is to introduce students to the experimental approach and design, and simply describe the increasingly complex techniques that are used in cardiovascular research as well as their advantages and limitations. We hope that this will widen the book's use and audience, and build on the outstanding foundations it has provided in teaching cardiovascular physiology over the last 28 years.

> Neil Herring and David J. Paterson Burdon Sanderson Cardiac Science Centre Department of Physiology, Anatomy and Genetics University of Oxford February 2018

One may read a textbook and gain a primary level of understanding of its subject; however, to master the subject thoroughly *active, 'hands-on' engagement with the subject matter is essential.* In other words, *self-expression* is vital. One may think one knows the subject, but there is nothing like verbalizing and answering questions to promote learning. To this end, learning objectives are given at the start of each chapter, and five clinical cases, with questions and answers, are included at the end of the book.

USING THE LEARNING OBJECTIVES

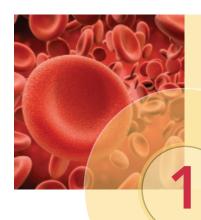
Active learning is traditionally promoted by essay writing and question and answer tutorials. The *learning objectives* at the start of each chapter can be used as short-notes questions (e.g. 'draw and explain a delayed afterdepolarization', Chapter 3). The sections containing the answers are cited after each learning objective. Another excellent way to learn actively is to write brief notes on each learning objective. The notes will prove invaluable when revising for examinations.

PROBLEM-BASED LEARNING

To encourage active learning and clinical relevance, medical schools increasingly base teaching on clinical cases, although this has serious drawbacks, as well as advantages, in the early years. Clinical cases are challenging, because they bring together many different topics and cut across many different chapters of the book. For example, heart failure (Case 1) involves altered cardiac excitation–contraction coupling (Chapters 3 and 18), the Frank–Starling law of the heart (Chapter 6), haemodynamics (Chapter 8), microvascular fluid exchange (Chapter 11) and extrinsic control of the circulation (Chapter 14). Clinical cases are therefore presented at the end of the book, with questions and answers linked to the main text.

20-HETE	20-hydroxyeicosatetraenoic acid
5HT	5-hydroxytryptamine
AAV	adeno-associated virus
ABP	arterial blood pressure
ABPI	ankle–brachial pressure index
ACE	angiotensin-converting enzyme
ACh	acetylcholine
ADH	antidiuretic hormone
ADP	adenosine diphosphate
AF	atrial fibrillation
AHN	anterior hypothalamic nucleus
Ang II	angiotensin II
ANP	atrial natriuretic peptide
ANS	autonomic nervous system
AP	arterial pressure
ARB	angiotensin receptor blocker
AT	atrial tachycardia
AT1R	angiotensin II receptor type 1
ATP	adenosine triphosphate
AV	atrioventricular
AVA	arteriovenous anastomosis
aVF	augmented Vector Foot
aVL	augmented Vector Left
AVNRT	atrioventricular nodal re-entry tachycardia
aVR	augmented Vector Right
AVRT	atrioventricular re-entry tachycardia
BK _{Ca}	large or big conductance Ca ²⁺ -dependent K ⁺
	channel
BNP	brain natriuretic peptide
BP	blood pressure
CaMKII	Ca ²⁺ -calmodulin-dependent protein kinase II
cAMP	cyclic adenosine monophosphate
Cas	CRISPR-associated system
CCP	critical closing pressure cerebellar blood flow
CeBF	
CFP	cyan fluorescent protein
cGMP CGRP	cyclic guanosine monophosphate
CICR	calcitonin gene-related peptide Ca²+-induced calcium release
CNP	C-type natriuretic peptide
CO	
COP	cardiac output colloid osmotic pressure
COP	cyclooxygenase
CRAC	Ca ²⁺ -release activated channel
CRISPR	clustered regularly interspaced short palindromic
	repeats
crRNA	CRISPR RNA
GITTINA	

CRTD	cardiac resynchronization defibrillator
CRTP	cardiac resynchronization therapy pacemaker
CSF	cerebrospinal fluid
СТ	computed tomography
CVLM	caudal ventrolateral medulla
CVP	central venous pressure
CVS	cardiovascular system
DAD	delayed afterdepolarization
DAG	diacylglycerol
DAPI	4',6-diamidino-2-phenylindole
DD	diastolic depolarization
DIC	differential interference contrast
DMNV	dorsal motor nucleus of the vagus
DRG	dorsal root ganglion
dsRNA	double-stranded RNA
EAD	early afterdepolarization
ECG	electrocardiogram
EDD	end-diastolic dimension
EDH	endothelium-dependent hyperpolarization
EDHF	endothelium-derived hyperpolarizing factor
EDP	end-diastolic pressure
EDV	end-diastolic volume
EET	epoxyeicosatrienoic acid
EJP	excitatory junction potential
ELISA	enzyme-linked immunosorbent assay
EMG	electromyogram
ENaC	epithelial Na+ channel
eNOS	endothelial nitric oxide synthase
EPAC1	exchange protein directly activated by cAMP 1
ESC	embryonic stem cell
ESD	end-systolic dimension
ESV	end-systolic volume
ET	endothelin
FOXC2	forkhead box protein C2
FRET	Förster resonance energy transfer
GA	general anaesthetic
GAG	glycosaminoglycan
GDP	guanosine diphosphate
GFP	green fluorescent protein
GI	gastrointestinal
Gi	inhibitory GTP-binding protein
GP	glycoprotein
GPCR	G protein-coupled receptor
gRNA	guide RNA
Gs	stimulatory guanosine triphosphate-binding
	protein
GTN	glyceryl trinitrate


GTP	guanosine triphosphate
HCN	hyperpolarization-activated cyclic
	nucleotide-gated
HCN4	hyperpolarization-activated cyclic nucleotide-
	gated 4
HDL	high-density lipoprotein
HEK 293	human embryonic kidney cells 293
HF-PEF	heart failure with preserved ejection fraction
HIF-1	hypoxia inducible factor 1
HIP	hydrostatic indifferent point
HIT	high-intensity training
HPV	hypoxic pulmonary vasoconstriction
HR	heart rate
HRE	HIF responsive element
IAP	intra-abdominal pressure
ICA	internal carotid artery
ICC	intercellular cleft
ICD	implantable cardioverter defibrillator
ICP	intracranial pressure
ICS	intercostal space
IK _{Ca}	intermediate-conductance K _{Ca}
IL-1 β	interleukin-1β
IML	intermediolateral nucleus
101	integrated optical intensity
IP ₃	inositol 1,4,5 trisphosphate
iPSC	induced pluripotent stem cell
ITP	intrathoracic pressure
JAM	junctional adhesion molecule
JGA	juxtaglomerular apparatus
K _{ATP}	ATP-dependent K ⁺ channel
Κ _{Ca}	Ca ²⁺ -activated K ⁺ channel
K _{ir}	inwardly rectifying K ⁺ channel
K _v	voltage-dependent K ⁺ channel
LA	left atrium
LCN	local circuit neuron
LD	lamina densa
LDH	lactic dehydrogenase
LHA	lateral hypothalamic nucleus
L-NMMA	L-N ^G -monomethylarginine
loxP	locus of X-over P1
LPBN	lateral parabrachial nucleus
LQTS	long- QT syndrome
LR	lamina rara
LV	left ventricle
LVEDP	left ventricular end-diastolic pressure
MAP	mean arterial pressure
MCA	middle cerebral artery
MCP	mean circulatory pressure
MHC	myosin heavy chain
MLC	myosin light chain
MLCK	myosin light chain kinase
MPI	myocardial perfusion imaging
MRI	magnetic resonance imaging
MSA	muscle sympathetic activity
MVC	maximal voluntary contraction
NA	nucleus ambiguus
	v

NAd	noradrenaline
NAME	nitroarginine methyl ester
NANC	non-adrenergic, non-cholinergic
NET1	norepinephrine transporter 1
NET2	norepinephrine transporter 2
NF	natriuretic factor
NO	nitric oxide
NOAC	novel oral anticoagulant
NOS	nitric oxide synthase
NOS1-AP	, i i
NP	natriuretic peptide
NPY	neuropeptide Y
NTS	nucleus tractus solitarius
NZGH	New Zealand genetically hypertensive (rat)
OVLT	organum vasculosum lamina terminalis
P _A	arterial pressure
PaCO ₂	partial pressure of CO ₂
PAF	platelet-activating factor
PAG	periaqueductal grey
PAH	para-aminohippuric acid
PaO ₂	partial pressure of O ₂
PAO ₂	arterial PaO ₂
Pc	capillary pressure
PCI	percutaneous coronary intervention
PCR	polymerase chain reaction
P_{d}	diastolic artery pressure
PDE2	phosphodiesterase 2
PDE5	phosphodiesterase 5
PDGF	platelet-derived growth factor
PDGF- β	platelet-derived growth factor subunit B
PE	phycoerythrin
PECAM	platelet endothelial cell adhesion molecule
PG	prostaglandin
	prostacyclin
Pi	internal pressure
Pl ₃	phosphatidyl inositol-3
P_iO_2	inspired partial pressure of O_2
PIP ₂	phosphatidyl inositol bisphosphate
PKA	protein kinase A
PKB	protein kinase B
PKC	protein kinase C
PLA ₂	phospholipase A ₂
PLB	phospholamban
PLC	phospholipase C
Po	external pressure
PP1	protein phosphatase 1
PP2	protein phosphatase 2
PROX1	prospero homeobox protein 1
PRU	peripheral resistance unit
P	venous pressure
pVHL	von Hippel–Lindau tumour suppressor
PVN	paraventricular nucleus
RA	right atrium
Rac1	Ras-related C3 botulinum toxin substrate 1
Rap1	Ras-related protein Rap-1A
RCT	randomized controlled trial
	randomized controlled that

REM RhoA	rapid eye movement Ras homolog gene family, member	TGF-β TNFα	transforming growth factor β tumour necrosis factor α
RNAi	interference RNA	tPA	tissue plasminogen activator
ROC	receptor-operated channel	TPR	total peripheral resistance
ROCK	Rho-associated protein kinase	TRE	Tet response element
RV	right ventricle	TRP	transient receptor potential
RVEDP	right ventricular end-diastolic pressure	TRPC	transient receptor potential channel
RVLM	rostral ventrolateral medulla	tTA	tetracycline transactivator
RVMM	rostroventral medial medulla	ттх	tetrodotoxin
RyR	ryanodine receptor	TXA ₂	thromboxane A ₂
SA	sino-atrial	US	ultrasound
SAC	stretch-activated channel	VCAM-1	vascular cell adhesion molecule 1
SERCA2a	sarcoplasmic/endoplasmic reticulum Ca ²⁺	VDCC	voltage-dependent Ca ²⁺ channels
	ATPase 2a	VE-cadherin	vascular endothelial cadherin
SFO	subfornical organ	VEGF	vascular endothelial growth factor
SGP	sialoglycoprotein	VEGFA	vascular endothelial growth factor A
SHR	spontaneously hypertensive rat	VEGFR-2	vascular endothelial growth factor receptor 2
siRNA	small interfering RNA	VEGFR-3	vascular endothelial growth factor receptor 3
SK _{Ca}	small-conductance K _{Ca}	VF	ventricular fibrillation
SNP	single nucleotide polymorphism	VIP	vasoactive intestinal polypeptide
SOC	store-operated channel	VSCC	voltage-sensitive Ca ²⁺ channel
SON	supraoptic nucleus	VSM	vascular smooth muscle
SP	substance P	VT	ventricular tachycardia
SPECT	single-photon emission computerized	vWF	von Willebrand factor
	tomography	WCT	wide complex tachycardia
SR	sarcoplasmic reticulum	XDH	xanthine dehydrogenase
SSA	skin sympathetic activity	XO	xanthine oxidase
SV	stroke volume	YFP	yellow fluorescent protein
SV40	simian vacuolating virus 40	ZO-1	zonula occludens-1
Tet	tetracycline		

Overview of the cardiovascular system

1

3

3

6

7

- 1.1 Diffusion: its virtues and limitations
- 1.2 Functions of the cardiovascular system
- 1.3 The circulation of blood
- 1.4 Cardiac output and its distribution
- 1.5 Introducing 'hydraulics': flow, pressure and resistance
- 1.6Blood vessel structure91.7Functional classes of vessel101.8The plumbing of the circulation121.9Control systems13• Summary13• Further reading14

LEARNING OBJECTIVES

After reading this chapter you should be able to:

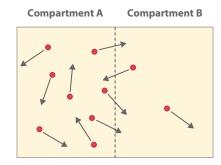
- outline the distance limitation of diffusive transport and the roles of diffusion versus convection in oxygen transport (1.1);
- list the differences between the pulmonary and systemic circulations (1.3);
- sketch out how blood pressure (BP), velocity and total cross-sectional area change from the aorta to the microcirculation and to the vena cava (Figure 1.10);
- write down the basic law of flow (1.5) and apply it to work out the main source of vascular resistance;
- sketch the structure of the blood vessel wall (Figure 1.11) and state the roles of the endothelium, elastin, collagen and vascular smooth muscle;
- name five main functional categories of blood vessel and state their roles (1.7);
- define a 'portal circulation' and explain its functional value (1.8).

The heart and blood vessels evolved to transport O_2 , nutrients, waste products and heat around the body rapidly. This is crucial for tissue viability, so the cardiovascular system (CVS) develops at an early stage in the embryo. However, very tiny organisms lack a circulatory system – their O_2 needs are satisfied by diffusion from the environment. Even large animals, such as humans, rely on diffusion for the transport of materials between the bloodstream and cells. Why, then, do we also need a CVS? The answer lies in the distance limitation of diffusive transport.

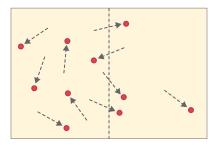
1.1 DIFFUSION: ITS VIRTUES AND LIMITATIONS

Diffusion is brought about by a molecular 'drunkard's walk'

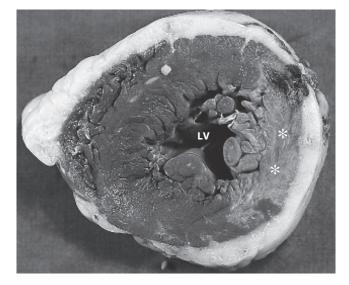
Diffusion is a 'passive' transport process, in the sense that it is driven by the rapid, random thermal motion of molecules, not by metabolic pumps. When a concentration gradient is present, the randomly directed step movements of individual solute molecules result in a net movement down the concentration gradient, i.e. a net diffusive transport (Figure 1.1).


Distance dramatically slows diffusion

The rate of diffusive transport is important because nutrient delivery must keep up with cellular demand. Fortunately, diffusive transport is very fast over short distances; for example, diffusion from a capillary to tissue cell, a distance of ~10 μ m, takes only ~50 ms. Unfortunately, as Einstein showed, the time *t* that randomly jumping particles take to move a distance *x*, in one specific direction, increases as the square of the distance:


$$t \propto x^2$$
 (1.1)

Thus, diffusion is incredibly slow over long distances (Table 1.1). Over 1 cm, which is the thickness of the human left ventricle wall, diffusion would take more than half a



Time 1 (before random jumps): concentration A = 8, concentration B = 2, concentration difference $\Delta C = 6$

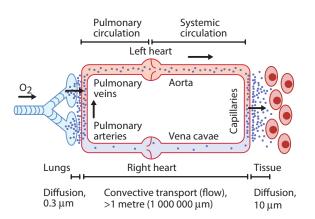
Time 2 (after random jumps): concentration A = 6, concentration B = 4, concentration difference $\Delta C = 2$

Figure 1.1 Spontaneous molecular steps in a random direction lead to a net movement of solute molecules (dots) down a concentration gradient. The probability of a randomly directed step from compartment A to B is greater than from B to A because there are more solute molecules in A than B, per unit volume. Note that an individual molecule, such as the top one in B, may move 'uphill', that is, into the more concentrated solution. Net diffusion is thus the result of unequal 'uphill' and 'downhill' fluxes.

Figure 1.2 Section of the human left ventricle after a coronary thrombosis; the myocardium has been stained for a muscle enzyme. The pale area (marked with two *) is an 'infarct', an area of muscle damaged or killed by lack of O_2 . The pallor is due to the escape of enzymes from the dying muscle. The infarct was caused by a coronary artery obstruction, which halted the convective delivery of O_2 . O_2 diffusion from blood in the main chamber (LV) is unaffected, yet only a thin rim of adjacent tissue (~1 mm) survived. (Courtesy of the late Professor M Davies, St George's Hospital Medical School, London.)

Table 1.1	Time taken for a glucose molecule to diffuse specified
distance in	one direction

Distance (x)	Time (t) ^a	Example in vivo
0.1 µm	0.000005 s	Neuromuscular gap
1.0 µm	0.0005 s	Capillary wall
10.0 µm	0.05 s	Capillary to cell
1 mm	9.26 min	Skin, artery wall
1 cm	15.4 h	Left ventricle wall


Source: Einstein A. Investigations on the Theory of the Brownian Movement (trans. by Fürth R, Cowper AD, 1956). New York: Dover Publications; 1905.

Einstein's equation states $t = x^2/2D$, where D is solute diffusion coefficient (glucose, 0.9×10^{-5} cm² s⁻¹ at 37° C; oxygen in water, 3×10^{-5} cm² s⁻¹, 37° C).

day. Sadly, nature often reminds us that Einstein's equation is correct. Figure 1.2 shows a section through a human heart after a coronary artery thrombus (clot) had blocked off the blood supply to the left ventricle wall. The pale area is cardiac muscle that died from lack of O_2 , even though the adjacent chamber is full of oxygenated blood. The patient died because just a few millimetres reduced the rate of diffusive O_2 transport to a level that was too low to support life.

Convection provides fast transport over long distances

For distances of >0.1 mm, a faster transport system is clearly needed. The CVS provides this (Figure 1.3). The CVS still relies on **diffusion** to transport O_2 across the short distance between gas and blood in the lungs; however, the absorbed O_2 is then washed rapidly along in a stream of pumped fluid, covering a large distance in seconds (~3 cm s⁻¹). This form of transport is called bulk flow or **convective transport**, and its energy source is the contraction of the heart. Convective transport carries O_2 a metre or more from the lungs to the smallest blood vessels of the human extremities in ~30 s, whereas diffusion would take more than 5 years! Nevertheless, diffusion takes over as the dominant transport process for the final 10–20 µm from blood to cell.

Figure 1.3 Overview of the human circulation, highlighting the relative roles of diffusion and convection in O_2 transport.