Drug Delivery Across Physiological Barriers

edited by Silvia Muro

Drug Delivery Across Physiological Barriers

This page intentionally left blank

Drug Delivery Across Physiological Barriers

edited by Silvia Muro

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20160406

International Standard Book Number-13: 978-981-4669-41-2 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

Preface

1	Stru	cture a	nd Function of Epithelial and Endothelial Barriers	3		
	Micl	hael Ko	val			
	1.1	Introd	luction	4		
	1.2	Measu	uring Barrier Function	6		
	1.3	Epith	elial Polarity	7		
	1.4	Adhei	rens Junctions	11		
	1.5	Tight	Junction Composition	12		
		1.5.1	Claudins	13		
		1.5.2	Tight Junction Scaffold Proteins	16		
		1.5.3	Marvel Domain Containing Proteins	19		
		1.5.4	Junctional Adhesion Molecule A	20		
	1.6	Trans	cellular Transport	21		
		1.6.1	Plasma Membrane Channels	21		
		1.6.2	Vesicle-Mediated Transport	22		
	1.7	Uniqu	e Features of Endothelial Barriers	22		
	1.8	Targe	ting Junction Proteins	24		
		1.8.1	Virus Coat Proteins	24		
			Clostridium Perfringens Enterotoxin	25		
		1.8.3	Claudin Extracellular Loop Peptides	26		
	1.9	Concl	usions and Perspectives	27		
2			mbrane as a Semipermeable Barrier	41		
	00.00	lo Li Vo		42		
	2.2	Memb	orane Permeability and Transport	43		

xiii

	2.3	Ion ar	nd Molecule Channels		
		2.3.1	Ligand-Gated Ion Chani	nels	46
		2.3.2	Voltage-Gated Ion Chan	nels (i_V^{\pm})	47
		2.3.3	Mechanosensitive Ion C	hannels	48
		2.3.4	Phosphorylation-Gated	Ion Channels	48
		2.3.5	Light-Gated Ion Channe	ls	49
		-	orium and Diffusion Pote		49
	2.5	Memb	rane and Action Potentia	als	51
		2.5.1	Membrane Potential		51
		2.5.2	Action Potential		53
	2.6		ytosis and Exocytosis		54
		2.6.1	Endocytosis		54
			2.6.1.1 Receptor-medi		55
			2.6.1.2 Non-clathrin a	nd non-caveolar	
			endocytosis		57
			Exocytosis		58
	2.7	Concl	isions and Perspectives		59
3	Biol	ogv an	Regulation of Protein Sc	orting and Vesicular	
3			Regulation of Protein Sc	orting and Vesicular	65
3	Tran	ogy and Isport H. Matl	-	orting and Vesicular	65
3	Tran Ian I	i sport H. Matl	-	orting and Vesicular	65 66
3	Tran Ian I 3.1	isport H. Matl Major	er		
3	Tran Ian I 3.1	Sport H. Matl Major Form	er Traffic Routes	sicles	66
3	Tran Ian I 3.1	Asport H. Math Major Form 3.2.1	er Traffic Routes tion and Targeting of Ve Formation of Cargo-Fill	sicles ed Transport Vesicles	66 67
3	Tran Ian I 3.1	H. Math Major Forma 3.2.1 3.2.2	er Traffic Routes tion and Targeting of Ve	sicles ed Transport Vesicles 'ethering	66 67 67
3	Tran Ian I 3.1	Asport <i>H. Matl</i> Major Forma 3.2.1 3.2.2 3.2.3	er Traffic Routes tion and Targeting of Ve Formation of Cargo-Fill Vesicle Transport and T	sicles ed Transport Vesicles ethering ceptor Compartment	66 67 67 68
3	Tran Ian I 3.1	H. Math Major Form 3.2.1 3.2.2 3.2.3 3.2.3 3.2.4	er Traffic Routes tion and Targeting of Ve Formation of Cargo-Fill Vesicle Transport and T Vesicle Fusion at the Ac	sicles ed Transport Vesicles ethering ceptor Compartment	66 67 67 68 69
3	Tran Ian I 3.1	Sport H. Math Major Form 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	er Traffic Routes tion and Targeting of Ve Formation of Cargo-Fill Vesicle Transport and T Vesicle Fusion at the Ac Traffic Control by Rab C	sicles ed Transport Vesicles ethering ceptor Compartment	66 67 67 68 69 70
3	Tran <i>Ian I</i> 3.1 3.2	Sport H. Math Major Sorm 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Secre	er Traffic Routes tion and Targeting of Ve Formation of Cargo-Fill Vesicle Transport and T Vesicle Fusion at the Ac Traffic Control by Rab C Vesicles or Tubules?	sicles ed Transport Vesicles ethering ceptor Compartment TPases	66 67 67 68 69 70 71
3	Tran <i>Ian I</i> 3.1 3.2	Isport H. Math Major Form 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Secre 3.3.1	er Traffic Routes tion and Targeting of Ve Formation of Cargo-Fill Vesicle Transport and T Vesicle Fusion at the Ac Traffic Control by Rab C Vesicles or Tubules? ory Pathway	sicles ed Transport Vesicles ethering ceptor Compartment TPases	66 67 68 69 70 71 72
3	Tran <i>Ian I</i> 3.1 3.2	Isport <i>H. Math</i> Major Forma 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Secre 3.3.1 3.3.2	er Traffic Routes tion and Targeting of Ve Formation of Cargo-Fill Vesicle Transport and T Vesicle Fusion at the Ac Traffic Control by Rab C Vesicles or Tubules? ory Pathway Endoplasmic Reticulum	sicles ed Transport Vesicles ethering ceptor Compartment TPases	66 67 68 69 70 71 72 72
3	Tran <i>Ian I</i> 3.1 3.2	Isport H. Math Major Forma 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Secre 3.3.1 3.3.2 3.3.3	er Traffic Routes tion and Targeting of Ve Formation of Cargo-Fill Vesicle Transport and T Vesicle Fusion at the Ac Traffic Control by Rab C Vesicles or Tubules? ory Pathway Endoplasmic Reticulum ER-Golgi Interface	sicles ed Transport Vesicles ethering ceptor Compartment TPases	66 67 68 69 70 71 72 72 72
3	Tran <i>Ian I</i> 3.1 3.2	sport H. Math Major Form 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Secre 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	er Traffic Routes tion and Targeting of Ve Formation of Cargo-Fill Vesicle Transport and T Vesicle Fusion at the Ac Traffic Control by Rab C Vesicles or Tubules? ory Pathway Endoplasmic Reticulum ER-Golgi Interface Traffic through Golgi Co	sicles ed Transport Vesicles ethering ceptor Compartment TPases	66 67 68 69 70 71 72 72 77 83

4	Intra	acellular Transport: Learning from Pathogens	97			
	Lali K. Medina-Kauwe					
	4.1	4.1 Introduction				
	4.2	Pathogens Clash with the Classic Route	101			
		4.2.1 Adenovirus	102			
		4.2.2 Listeria	106			
	4.3	Retrograde Trafficking: Toxins Going Retro	107			
	4.4	Caveolae Cave in to SV40	110			
	4.5	Conclusions and Perspectives	112			
		SECTION B STRATEGIES FOR DRUG PENETRATION ACROSS				
		TISSUE COMPARTMENTS				
5	Dru	g Transport across Skin	131			
	Ren	ata Vidor Contri, Tatiele Katzer, Silvia S. Guterres,				
	and Adriana R. Pohlmann					
		Introduction	132			
		Factors Influencing Transport Across Skin	134			
		Determining Drug Transport Across Skin	137			
	5.4	Modifying Drug Transport Across Skin	138			
		5.4.1 Penetration Enhancers	139 141			
		5.4.2 Physical Methods				
		5.4.3 Composite Nanoparticles Based on Lipids				
		and/or Polymers	144			
		5.4.3.1 Lipid nanoparticles and				
		nanoemulsions	144			
		5.4.3.2 Polymeric and hybrid nanoparticles	146			
	5.5	Conclusions and Perspectives	148			
6	Mud	cosal Barriers	155			
	Micl	Michelle R. Dawson and Deepraj Ghosh				
	6.1	6.1 Introduction				
	6.2	5.2 Mucus Structure				
	6.3	.3 Mucus Viscoelasticity				
	6.4	Particle Transport in Mucus	164			
		6.4.1 Multiple Particle Tracking in Mucus				
	6.5 Mucoadhesive Particles 1					

	6.6 6.7 6.8	Muco	lytic Age	ating Nanoparticles nts nd Perspectives	169 172 173
7		-	-	eutics across Gastrointestinal Epithelium	181
			-	l Emilie Roger	
	7.1		luction		182
	7.2	-	•	Features of GI Tract Related to Drug	
		Absor	•		183
		7.2.1		al Barriers to Drug Absorption	183
				pH, solubility, and absorption	183
			7.2.1.2	Enzymes and other chemical	100
		7 0 0	DI .	interactions in small intestine	186
		7.2.2	5	l Barriers to Drug Absorption: Mucus	187
		7.2.3	0	cal Barriers to Drug Absorption	188
			7.2.3.1	Transport across cell membrane	188
			1.2.3.2	Efflux pumps as a barrier to intestinal absorption	189
	7.3	Drug	Dolivoru	Solutions for Drug Bioavailability	109
	7.5		ncement	Solutions for Drug Bloavanability	191
		7.3.1		elivery Solutions to Improve Drug	171
		7.5.1	Solubili		191
			7.3.1.1		171
			/.3.1.1	form, amorphous form, prodrug	193
			7.3.1.2		175
			/ 101112	particles size reduction	194
			7313	Solid dispersion	195
				Cyclodextrin complexes	196
				Lipid formulations	197
		7.3.2		elivery Solutions to Improve Drug	
			Permea		199
			7.3.2.1	-	
				stability	200
			7.3.2.2	Drug delivery systems to diffuse	
				across mucus	200
			7.3.2.3	Drug delivery systems to improve	
				intestinal permeability	201
	7.4	Concl	usions ai	nd Perspectives	203

8	Cros	sing th	e Endoth	elial Barrier	209
	Bhawani Aryasomayajula, Shravan Kumar Sriraman,				
			ir P. Torcl	hilin	
		1 Introduction			
	8.2			ructural Elements	211
			Glycoca		212
			Cytoske		213
				elial Junctions	214
	8.3	Endot	thelial Pe	ermeability and Transport of	
		Subst	ances Ac	ross the Barrier	215
		8.3.1	Paracel	lular Pathway	216
			8.3.1.1	Mediators affecting endothelial	
				permeability	217
			8.3.1.2	Mediators that enhance endothelial	
				barriers	218
		8.3.2	Transce	ellular Pathway	219
			8.3.2.1	Role of caveolae in transcytosis	220
			8.3.2.2	Role of clathrin in endocytosis	220
			8.3.2.3	Role of vesiculo-vacuolar organelles	
				in transcytosis	221
	8.4	Recen	nt Advand	ces in Drug Delivery with a Focus on	
		Overc	oming th	e Challenges in Crossing the	
		Endot	thelial Ba	arrier	221
		8.4.1	Formula	ation-Based Approaches	223
				rary Disruption of the Barrier	224
		8.4.3	•	ogy-Based Approaches	225
			8.4.3.1	Receptor-mediated transcytosis	225
				Adsorptive-mediated transcytosis	226
				Transporter-facilitated transport	226
	8.5	What		t in the Coming Years: Challenges	
			xpectatio		227
9	Nan	onartic	le-Based	Drug Delivery to Solid Tumors	239
2		-		and Yoon Yeo	235
	9.1		duction		239
	9.2				107
			ery Syste		241
				-	

		9.2.1	Biocompa	atibility	241
		9.2.2	Particle S	ize	242
		9.2.3	Particle S	hape	243
		9.2.4	Particle S	urface Charge	244
		9.2.5	Circulatio	on Half-Life	244
		9.2.6	Tumor Re	etention and Cellular Uptake	245
		9.2.7	Drug Rele	ease	246
	9.3	Remair	ning Challe	nges in NP Development	246
		9.3.1	Tumor Pl	nysiology	246
		9.3.2	Formulat	ion Challenges	249
			9.3.2.1	PEG dilemma	249
			9.3.2.2	Maintaining particle size	250
			9.3.2.3	Controlling drug release	251
	9.4	Conclu	sions and I	Perspectives	254
		SECTION (NSPORT INTO CELLS AND SUBSEQUENT	
			INTRA	CELLULAR TRAFFICKING	
10	Membrane Lipids and Drug Transport				
	Vinoa	Labhase	etwar		
	10.1	Introdu	uction		271
			ane Lipids		272
	10.3			Biophysical Interaction Studies	273
			ipid Intera		274
	10.5	Signific	cance of Bi	ophysical Interactions with	
			aterials		277
		10.5.1		Size and Charge of Nanoparticles	
				ysical Interactions	278
		10.5.2		Molecular Structure of Cationic	
				t on Biophysical Interactions of	
				Iodified Nanoparticles	279
		10.5.3	-	Modified Nanoparticles and	
			Biophysic	cal Interactions with Model	
			Membrar		280
	10.6	•		physical Interactions with	
				orane Lipids versus Normal	
		Cell Lip			282
	10.7	Conclu	sions and l	Perspectives	283

11	Drug	Delivery	Systems that Fuse with Plasmalemma	291		
	Muriel Blanzat, Marie-Pierre Rols, and Justin Teissié					
	11.1	Introdu	iction	291		
	11.2	Physica	al Description of Bilayer Fusion	292		
		11.2.1	Contact of Membranes	293		
		11.2.2	Merging of Membranes	294		
	11.3	Biologi	cal Vectors that Fuse with Plasmalemma	297		
		11.3.1	Fusion Occurring during Viral Infection	297		
		11.3.2	Fusion Occurring during Intracellular			
			Events	298		
		11.3.3	Application to Controlled Delivery	299		
	11.4	Membr	ane Fusion Induced by Physical Methods	300		
		11.4.1	Ultrasound	300		
		11.4.2	Osmotic Shock	300		
		11.4.3	Laser Light Processes	301		
		11.4.4	Electrical Methods	301		
	11.5	Synthe	tic Vectors that Fuse with Plasmalemma	302		
		11.5.1	Membrane Fusion Induced by Fusogenic			
			Agents	302		
		11.5.2	Drug Delivery Systems that Undergo			
			Spontaneous Membrane Fusion	303		
			11.5.2.1 pH-sensitive vesicles	304		
			11.5.2.2 Cationic/catanionic vesicles	304		
			11.5.2.3 Programmable fusogenic vesicles	305		
	11.6	Conclu	sions and Perspectives	306		
12	Endo	cvtosis a	nd the Endolysosomal Route in Drug Delivery	313		
		-	t, Iason Papademetriou, and Silvia Muro			
	12.1	Introdu	iction	314		
	12.2	Endocy	rtosis	316		
	12.3	Endosc	omes and Lysosomes as Obstacles or			
			ages to Drug Delivery	320		
	12.4	Manipı	llating Endocytosis and Intracellular			
		Trafficl	king	322		
		12.4.1	The Targeting Moiety	322		
		12.4.2	Valency	323		
		12.4.3	Receptor Epitope	325		
		12.4.4	Geometry and Other Physical Parameters	325		

		12.4.5 Pharmacological Agents	326
	12.5	Lysosomes as Therapeutic Targets	327
	12.6	Conclusions and Perspectives	331
13	Endo	lysosomal Escape into Cytosol	341
	-	u Saraswathy and David Oupický	
	13.1	Introduction	341
		Importance of Endosomal Escape of Nanocarriers	342
	13.3	Endosomal Escape Strategies	343
		13.3.1 Proton Sponge Effect	344
		13.3.2 Photochemical Disruption of Endosomal	
		Membrane	347
		13.3.3 Temperature-Triggered Endosomal Escape	349
		13.3.4 Endosomal Escape by Membrane-Active	
		Peptides	350
		13.3.5 Endosomal Escape by Lipid-Mediated	
		Mechanisms	354
	13.4	Conclusions and Perspectives	357
14	Intrac	cellular Transport to Mitochondria and Other	
	Orgar	nelles	367
	Gerar	d G. M. D'Souza, Paul H. Nguyen, and Volkmar Weissig	
	14.1	Introduction	367
	14.2	Major Concepts of Subcellular Drug Transport	369
		14.2.1 Partition/Charge-Mediated Passive	
		Mechanisms	370
		14.2.2 Chaperone/Transporter-Mediated Active	
		Mechanisms	371
	14.3	Major Concepts of Organelle-Specific Drug Delivery	372
		14.3.1 Direct Molecular Modification	372
		14.3.2 Carrier-Mediated Delivery	375
	14.4	Conclusions and Perspectives	380

Preface

Optimal drug delivery in the body is paramount to maximizing the therapeutic efficiency of pharmaceutical compounds while minimizing their potential toxicity. In this regard, numerous advances in the last decades have rendered considerable improvement in drug delivery strategies, thereby increasing the bioavailability of therapeutic agents. These systems help solubilize pharmaceutical drugs, protect them from premature degradation, control their circulation, target them to sites of disease, and optimize their release rate. In addition, for most therapeutics, access to their targets of intervention requires penetration across body compartments, extracellular matrices, cellular linings, and/or different intracellular environments. Therefore, the design of strategies capable of improving transport of pharmaceuticals through these physiological barriers has become an imperative yet a challenging need in the quest for better therapeutics. This book aims at providing an overview of current advances in the field of drug delivery from the perspective of transport across the said physiological barriers. This is pursued by discussing fundamental knowledge pertaining to the biological function and natural mechanisms regulating these barriers, as well as by focusing on drug delivery strategies that facilitate transport of drugs and their carriers at the tissue, cell, and subcell levels.

With this in mind, the book has been divided into three independent yet complementary sections. **Section A** covers the background biological information regarding the structure, function, and regulation of constituents of the said physiological barriers, offering the reader an overview of the challenges and opportunities they pose. Within this section **Chapter 1** introduces the concept of cellular barriers or linings, which arise as a result of the physiological need to develop selective compartments within the body. They are established by epithelial or endothelial cells, which strongly adhere to each other, forming polarized linings that separate apical and basolateral compartments, such as those which coat hollow organs, glands, blood vessels, etc. These cellular linings most often act as barriers to passive transport of substances between the compartments they separate, regulating passage in a minutely controlled manner. From a drug delivery perspective, they regulate absorption or penetration of therapeutics across the inner layers of the skin, the gastrointestinal wall, passage from the bloodstream into subjacent tissues, etc., which pertains to drug access from the administration point to the intended body compartment. Subsequently, **Chapter 2** covers fundamental aspects of the cellular plasma membrane. This is important because, once in the appropriate body compartment, penetration into cells of the affected tissues requires passage through the plasmalemma that separates and permits communication between the intracellular environment and the extracellular milieu. The composition and regulation of this semipermeable barrier are described, including passive and active mechanisms of transport involving diffusion, ion and molecule channels, endocytosis, or exocytosis. Further, Chapter 3 touches upon subcellular organization and offers a detailed overview of the biological mechanisms by which macromolecules (e.g., proteins, lipids, etc.) are naturally sorted and trafficked to their final subcellular destinations with exquisite precision. The cellular machinery, signaling cascades, and pathways employed in these events are finding valuable translational applications in the field of drug delivery. To end this section, Chapter 4 discusses how pathogens have evolved remarkable means to overcome all these physiological barriers in order to infect their hosts. A main focus is paid to how such invasive bacteria and viruses gain access inside cells of the body, for example, by recognition and binding to particular cell-surface markers leading to endocytic uptake, disruption of the plasmalemma or the membrane of endolysosomal vesicles, hijacking the cytoskeleton and molecular elements promoting vesicular fusion or fission, etc. Mimicking such strategies and pathways established by nature is becoming a main practice in order to advance drug delivery.