
Advances in Experimental Medicine and Biology 1006

Tomoaki Shirao
Yuko Sekino    Editors 

Drebrin
From Structure and Function to 
Physiological and Pathological Roles



Advances in Experimental Medicine  
and Biology

Series Editors
Irun R. Cohen
The Weizmann Institute of Science
Rehovot, Israel

Abel Lajtha
N.S. Kline Institute for Psychiatric Research
Orangeburg, NY, USA

John D. Lambris
University of Pennsylvania
Philadelphia, PA, USA

Rodolfo Paoletti
University of Milan
Milan, Italy



Advances in Experimental Medicine and Biology presents multidisciplinary and 
dynamic findings in the broad fields of experimental medicine and biology. The 
wide variety in topics it presents offers readers multiple perspectives on a variety of 
disciplines including neuroscience, microbiology, immunology, biochemistry, 
biomedical engineering and cancer research. Advances in Experimental Medicine 
and Biology has been publishing exceptional works in the field for over 30 years 
and is indexed in Medline, Scopus, EMBASE, BIOSIS, Biological Abstracts, CSA, 
Biological Sciences and Living Resources (ASFA-1), and Biological Sciences. The 
series also provides scientists with up to date information on emerging topics and 
techniques. 2015 Impact Factor: 1.953

More information about this series at http://www.springer.com/series/5584

http://www.springer.com/series/5584


B

D
A

nt
ig

en
 p

re
se

nt
in

g 
ce

lls

T
ig

ht
 ju

nc
tio

n

E
C

M

N
eu

ro
na

l
 S

yn
ap

se

La
m

el
lip

od
iu

m
I

A
dh

er
en

s 
ju

nc
tio

n

G
ap

 ju
nc

tio
n

E
nd

oc
yt

os
is

Im
m

un
ol

og
ic

al
S

yn
ap

se

P
re

sy
na

pt
ic

 te
rm

in
al

A

C
ili

um
E

ct
os

om
e

S
to

re
-o

pe
ra

te
d

C
a2+

 e
nt

ry

H

G
ol

gi
 c

om
pl

exF G
T

ra
ns

cr
ip

tio
n

N
uc

le
us

C
yt

op
la

smE

F
oc

al
 a

dh
es

io
ns

C

Ju
xt

an
uc

le
ar

 z
on

e

D
re

br
in

Lo
ng

 h
el

ic
al

 p
itc

h 
F

-a
ct

in

N
or

m
al

 h
el

ic
al

 p
itc

h 
F

-a
ct

in

cS
M

A
C

In
te

gr
in

V
in

cu
lin

S
pi

ka
r

B
T

C

H
om

er
P

S
D

 9
5

N
T

 r
ec

ep
to

r

E
B

3

A
rp

2/
3

C
X

C
R

4

M
ic

ro
tu

bu
le

H
IV

-1

C
la

ud
in

C
on

ne
xi

n

N
ec

tin

A
fa

di
n

T
R

P
 c

ha
nn

el

M
yo

si
n

D
N

A
dy

na
m

in

V
iro

lo
gi

ca
l

S
yn

ap
se

D
re

br
in

 f
or

m
s 

un
iq

ue
 s

ta
bl

e 
F-

ac
tin

 w
ith

 a
 lo

ng
 h

el
ic

al
 c

ro
ss

ov
er

 a
nd

 p
la

ys
 a

 p
iv

ot
al

 r
ol

e 
in

 in
te

rc
el

lu
la

r 
co

m
m

un
ic

at
io

n 
at

 n
eu

ro
na

l s
yn

ap
se

s,
 a

dh
er

en
s 

an
d 

ga
p 

ju
nc

tio
ns

, a
nd

 im
m

un
ol

og
ic

al
 a

nd
 v

ir
ol

og
ic

al
 s

yn
ap

se
s.

 A
dd

iti
on

al
ly

, d
re

br
in

 is
 in

vo
lv

ed
 in

 th
e 

ce
llu

la
r m

ec
ha

ni
sm

s 
of

 c
el

l m
ig

ra
tio

n,
 c

el
l p

ro
ce

ss
 fo

rm
at

io
n,

 c
an

ce
r 

m
et

as
ta

si
s,

 a
nd

 g
en

e 
tr

an
sc

ri
pt

io
n 

th
ro

ug
h 

a 
tr

an
sc

ri
pt

io
n 

co
-a

ct
iv

at
or

 s
pi

ka
r. 

D
re

br
in

 is
 a

ls
o 

fo
un

d 
on

 th
e 

G
ol

gi
 c

om
pl

ex
, a

t t
he

 ju
xt

an
uc

le
ar

 z
on

e,
 a

nd
 a

t a
 ti

p 
of

 c
ili

a



Tomoaki Shirao • Yuko Sekino
Editors

Drebrin

From Structure and Function to Physiological 
and Pathological Roles



ISSN 0065-2598     ISSN 2214-8019 (electronic)
Advances in Experimental Medicine and Biology
ISBN 978-4-431-56548-2    ISBN 978-4-431-56550-5 (eBook)
DOI 10.1007/978-4-431-56550-5

Library of Congress Control Number: 2017951869

© Springer Japan KK 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, express or implied, with respect to the material contained herein or for any errors 
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims 
in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Japan KK
The registered company address is: Chiyoda First Bldg. East, 3-8-1 Nishi-Kanda, Chiyoda-ku, 
Tokyo 101-0065, Japan

Editors
Tomoaki Shirao
Department of Neurobiology and Behavior
Gunma University Graduate School  
 of Medicine
Maebashi, Gunma
Japan

Yuko Sekino
Laboratory of Chemical Pharmacology
Graduate School of Pharmaceutical Sciences
The University of Tokyo, Tokyo
Japan



This book is dedicated to our mentor 
Dr. Kunihiko Obata whose wise counsel has 
led us to the discovery and a deeper 
understanding of drebrin.



ix

Preface  

This book consolidates drebrin studies that have accumulated over three decades, 
since the first identification of drebrin by our group in 1985. Although in the 1980s 
we could not envision exactly how the study of drebrin would develop, the progress 
reflected in the chapters presented here was beyond our wildest expectations. This 
book begins with a general introduction of drebrin from a historical perspective, and 
then the chapters in the second part provide the molecular characterization of dre-
brin and drebrin-decorated F-actin. The third and fourth parts discuss its function in 
the nervous and non-nervous system, respectively.

This review will appeal to researchers who are interested in synapse formation 
and synaptic plasticity, as well as subcellular local morphogenesis, such as cell pro-
trusion formation, cell migration, intercellular junction formation, and endocytosis. 
The book will also appeal to researchers who use drebrin as a tool, such as a marker 
of synaptic function or a disease marker. This book was kept as concise as possible, 
to be understood by readers from diverse scientific disciplines. Because of the clar-
ity of its presentations, it can also serve as a textbook in graduate courses.

We wish to express our gratitude to the authors who so willingly contributed to 
this book. We would also like to thank the staff of Springer Japan, in particular 
Ms. Momoko Asawa and Dr. Yasutaka Okazaki.

Maebashi, Japan Tomoaki Shirao 
Tokyo, Japan  Yuko Sekino
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Chapter 1
General Introduction to Drebrin

Tomoaki Shirao and Yuko Sekino

Abstract Drebrin was first discovered by our group as “developmentally regulated 
brain protein” from the chicken optic tectum. Drebrin is an actin-binding protein, which 
is classified into two major isoforms produced by alternative splicing from a single 
DBN1 gene. The isoform predominantly expressed in the adult brain (drebrin A) is neu-
ron specific, containing a neuron-specific sequence (Ins2) in the middle of the molecule. 
Drebrin A is highly concentrated in dendritic spines, and its accumulation level is regu-
lated by synaptic activity. In contrast, drebrin E, which lacks Ins2, is found in wide-
spread but not ubiquitous cell types in various tissues. The isoform conversion from 
drebrin E to drebrin A occurs in parallel with synaptogenesis. Drebrin decorating F-actin 
is found at the recipient side of cell-cell communication systems, such as gap junctions, 
adherens junctions, immunological synapses, and neuronal synapses. In addition, it is 
involved in the cellular mechanisms of cell migration, cell process formation, cancer 
metastasis, and spermatogenesis. Lack of drebrin leads to the dysfunction of cell-cell 
communication, resulting in aberrant migration of metastatic cancer cells, aberrant syn-
aptic function in dementia, and rupture of endothelial integrity. Because drebrin forms a 
unique F-actin with a longer helical crossover, drebrin may create an F-actin platform 
for molecular assembly and play a pivotal role in intercellular communication.

Keywords Alternative splicing • Cancer • Cell migration • Intercellular communi-
cation • Physical property of actin filament • Synaptogenesis • Synaptic plasticity

1.1  Introduction

Drebrin was first discovered by our group as “developmentally regulated brain pro-
tein” from the chicken optic tectum in 1985 (Shirao and Obata 1985). In the first 
15 years after the discovery, no other groups except us were interested in drebrin, 

T. Shirao (*) 
Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, 
Maebashi, Gunma 371-8511, Japan
e-mail: tshirao@gunma-u.ac.jp 

Y. Sekino 
Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, 
The University of Tokyo, Tokyo 113-0033, Japan
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which is expressed in the nervous tissue. During these years, we purified chicken and 
rat drebrins, raised polyclonal and monoclonal antibodies, and cloned DBN1 cDNAs. 
Consequently, we have identified major isoforms of drebrin in chicken, rodent, 
feline, and human expressed in the nervous tissue. We further clarified the genetic 
and biochemical properties of drebrin, such as actin-binding activity and phosphory-
lation. The expression of each isoform depends on the developmental stage. Because 
the isoform predominantly expressed in adult brain (drebrin A) is neuron specific, 
our later studies were mainly focused on drebrin A (Shirao et al. 2017).

In 1996, we found that drebrin A is highly concentrated in dendritic spines in 
adult rat brain, forms a complex with actin and myosin, and inhibits the actin- 
activated ATPase activity of myosin II (Hayashi et al. 1996). Thus, we proposed that 
drebrin may play a role in the structure-based plasticity of synapses through the 
actin-linked control of the actomyosin interaction in dendritic spines. In 1999, we 
successfully showed that exogenously expressed drebrin A specifically elongates 
dendritic spines of primary cultured neurons (Hayashi and Shirao 1999). This was 
the first report demonstrating that the manipulation of a single actin-binding protein 
in a neuron alters spine morphology. After these epoch-making findings, drebrin 
and the actin cytoskeleton in dendritic spines were thrown into the limelight. Since 
then we have shown the pivotal roles of drebrin in spine formation (Takahashi et al. 
2003; Aoki et al. 2005) and synaptic plasticity (Takahashi et al. 2006; Mizui et al. 
2014; Sekino et al. 2006). Nowadays, hundreds of spine-resident proteins have been 
found, but drebrin is still a key protein in modulating the actin cytoskeleton in den-
dritic spines (Sekino et al. 2007; Koganezawa et al. 2017).

Actin-binding proteins modulate the characteristics of the actin cytoskeleton and 
consequently regulate cell structures or produce the motile force of cells. Drebrin 
isoforms other than drebrin A are widely distributed in nonnervous tissues as well 
as the nervous tissue, not only in avian (Shirao and Obata 1986) and mammals 
(Shirao et al. 1994; Peitsch et al. 1999) but also in the soil amoebae (Luna et al. 
1997). Furthermore, drebrin has been found at the recipient side of various intercel-
lular communication systems, such as gap junctions, adherens junctions, immuno-
logical synapses, and neuronal synapses. This suggests the universal role of drebrin 
as an actin modulator.

How does drebrin change F-actin structures? Why does drebrin appear at the 
cell-cell communication sites? More generally, what is the physiological function of 
drebrin? This chapter will briefly introduce the key discoveries and proposals con-
tributing to elucidating the above questions.

1.2  Historical Orientation

1.2.1  Background of Drebrin Study

The development of the brain is achieved by a combination of several fundamental 
processes, such as the proliferation and migration of neurons, the directed extension 
of nerve fibers, and synapse formation. Before 1960 classic morphological 

T. Shirao and Y. Sekino
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techniques were used for the study of brain development, because morphological 
structures of the brain dramatically change when each process occurs. In the 1960s 
and 1970s, developmental studies were accelerated by the progression of new tech-
nologies such as the autoradiography using tritiated thymidine. These new methods 
disclosed in detail the birth date of each neuron, the layer formation, and subsequent 
maturation in mammalian cerebral and cerebellar cortices and in the chicken optic 
tectum. However, the molecular mechanism of each process was not yet clarified.

To disclose the molecular mechanism of the brain development, the identification 
of the master proteins that govern each fundamental process was eagerly pursued. 
One approach was to select a key function in each developmental process and to 
look for the protein(s) that mediates that function. Adopting this approach, Edelman 
and his collaborators developed a specific immunological assay for molecules 
involved in cell adhesion (Brackenbury et al. 1977) and discovered cell adhesion 
molecules (CAMs) as key molecules in brain development (Hoffman et al. 1982).

Another approach was based on the conjecture that the master proteins are 
expressed at limited developmental stages in a restricted region of the brain. Sperry 
hypothesized the presence of two orthogonal gradients of molecules on retinal gan-
glion neurons that determine specific connections between retinal and tectal neu-
rons (Sperry 1963), and Nirenberg’s group identified an antigen that is distributed in 
a dorsal-ventral topographic gradient in chick embryo retina by screening a library 
of monoclonal antibodies in 1981 (Trisler et al. 1981).

1.2.2  Discovery of Drebrin by Proteomics

In January 1982, we started seeking for yet-to-be-discovered master proteins in the 
developing brain. We surveyed the changes in the proteome of the developing brain 
using O’Farrell’s two-dimensional gel electrophoresis (2DGE) (O'Farrell 1975). 
The chicken optic tectum was chosen as the target region, because it is a uniform 
and regularly layered structure that develops correctly on a timetable, as revealed by 
Cowan and colleagues (LaVail and Cowan 1971a, b). After the electrophoresed gel 
was stained with Coomassie brilliant blue, 54 proteins were counted (Fig.  1.1). 
Most of them were found at the beginning (4-day embryo) and remained unchanged 
until adulthood. There were eight proteins that remarkably changed their staining 
intensities during embryonic development (Shirao and Obata 1985). These eight 
proteins were further classified into three groups. The first group was monotonically 
increasing proteins, including neurofilament proteins and drebrin A (adult-type iso-
form). The second group was monotonically decreasing proteins. The third group 
was intensely stained only at embryonic stages and was later named chicken drebrin 
E1 and E2 isoforms. Note that in mammals there is only one embryonic isoform 
named drebrin E, while chickens have two embryonic isoforms. The developmental 
changes in the amount of drebrins in the optic tectum are shown in Fig. 1.2. Drebrin 
isoforms were found with similar developmental changes in other brain regions. 
However, the time course of their changes varied from region to region. Even within 
the optic tectum, developmental changes in drebrin occur earlier in the rostral 

1 General Introduction to Drebrin
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portion than in the caudal portion, which corresponds to the rostro-caudal gradient 
of histological development (LaVail and Cowan 1971a). Together, these results sug-
gest that the changes in drebrin expression are paralleled with brain development, 
which are explained in detail in Part III of this book.

1.2.3  Purification of Drebrin

In 1985, we succeeded to purify drebrin E1 and E2 from embryonic day (ED) 11 
chicken brains (Shirao and Obata 1985). We used the 2DGE assay and found that all 
drebrins were recovered in the same fractions by various purification methods such 
as isoelectric precipitation, ammonium sulfate precipitation, and ion-exchange 

a b c d

Fig. 1.2 Developmental changes of drebrin isoforms in the chick optic tectum. Panels are regions 
of interest in two-dimensional gel electrophoresis. (a) Day 4. (b) Day 7. (c) Day 15. (d) Newly 
hatched chick. Coomassie Brilliant Blue staining
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Fig. 1.1 Two-dimensional patterns of proteins of optic tecta. (a) Seven-day chick embryo. (b) 
Newly hatched chicken. A drebrin A, E2 drebrin E2, E1 drebrin E1, T tubulin, Ac actin. Coomassie 
Brilliant Blue staining
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