Clinical Anatomy
To my wife, Wendy, and my late parents
 H. E.

To my wife, Neila, and my late parents
 V. M.
Clinical Anatomy
Applied Anatomy for Students and Junior Doctors

HAROLD ELLIS
CBE, MA, DM, MCh, FRCS, FRCP, FRCOG, FACS (Hon)
Clinical Anatomist, Guy’s, King’s and St Thomas’ School of Biomedical Sciences;
Emeritus Professor of Surgery, Charing Cross
and Westminster Medical School, London;
Formerly Examiner in Anatomy, Primary FRCS (Eng)

VISHY MAHADEVAN
MBBS, PhD, FRCSEd, FDSRCSEng (Hon), FRCS
Barbers’ Company Professor of Anatomy & Professor of Surgical Anatomy
The Royal College of Surgeons of England
Lincoln’s Inn Fields
Contents

Preface to the Fourteenth Edition, xiii
Preface to the First Edition, xv
Acknowledgements to the Fourteenth Edition, xvii
Acknowledgements to the First Edition, xix
About the Companion Website, xx

Part 1: The Thorax

Introduction, 3

Surface anatomy and surface markings, 3
 The trachea, 4
 The pleura, 4
 The lungs, 6
 The heart, 6

The thoracic cage, 7
 The thoracic vertebrae, 7
 The ribs, 8
 The costal cartilages, 11
 The sternum, 11
 The intercostal spaces, 12
 The diaphragm, 14
 The pleurae, 20

The lower respiratory tract, 20
 The trachea, 20
 The bronchi, 25
 The lungs, 25

The mediastinum, 30
 The pericardium, 30
 The heart, 31
 The superior mediastinum, 46
 The thymus, 46
 The oesophagus, 46
 The thoracic duct, 50
 The thoracic sympathetic trunk, 52

On the examination of a chest radiograph, 54
 Radiographic appearance of the heart, 55
Part 2: The Abdomen and Pelvis

Surface anatomy and surface markings, 59
Vertebral levels, 59
Surface markings of individual viscera, 61

The fasciae and muscles of the abdominal wall, 62
Fasciae of the abdominal wall, 62
The muscles of the anterior abdominal wall, 63
The anatomy of abdominal incisions, 65
The inguinal canal, 67

Peritoneal cavity, 70
Intraperitoneal fossae, 73
The subphrenic spaces, 73

The gastrointestinal tract, 75
The stomach, 75
The duodenum, 80
Small intestine, 82
Large intestine, 83
The appendix, 84
The rectum, 86
Arterial supply of the intestine, 90
The portal system of veins, 91
Lymphatic drainage of the intestine, 93
The structure of the alimentary canal, 93
The development of the intestine and its congenital abnormalities, 94

The gastrointestinal adnexae: liver, gall bladder and its ducts, pancreas and spleen, 97
The liver, 97
The biliary system, 102
The gall bladder, 103
The pancreas, 106
The spleen, 108

The urinary tract, 110
The kidneys, 110
The ureter, 113
The embryology and congenital abnormalities of the kidney and ureter, 115
The bladder, 117
The urethra, 119

The male genital organs, 121
The prostate, 121
The scrotum, 124
Contents

Testis and epididymis, 124
Vas deferens (ductus deferens), 129
The seminal vesicles, 129

The bony and ligamentous pelvis, 129
The os innominatum, 129
The sacrum, 130
The coccyx, 131
The functions of the pelvis, 132
Joints and ligamentous connections of the pelvis, 132
Differences between the male and female pelvis, 133
Obstetrical pelvic measurements, 134
Variations of the pelvic shape, 135
Sacral (caudal) anaesthesia, 137

The muscles of the pelvic floor and perineum, 138
The anterior (urogenital) perineum, 139
The posterior (anal) perineum, 141

The female genital organs, 142
The vulva, 142
The vagina, 143
The uterus, 144
The fallopian tubes, 149
The ovary, 150
The endopelvic fascia and the pelvic ligaments, 152
Vaginal examination, 153
Embryology of the fallopian tubes, uterus and vagina, 154

The posterior abdominal wall, 155
The suprarenal glands, 157
Abdominal aorta, 157
Inferior vena cava, 159
Lumbar sympathetic chain, 160

Computed axial tomography, 161

Part 3: The Upper Limb

Surface anatomy and surface markings of the upper limb, 165
Bones and joints, 165
Muscles and tendons, 166
Vessels, 166
Nerves, 168
The bones and joints of the upper limb, 170
- The scapula, 170
- The clavicle, 170
- The humerus, 172
- The radius and ulna, 174
- The bones of the hand, 176
- The shoulder joint, 178
- The elbow joint, 183
- The wrist joint, 185
- The joints of the hand, 186

Three important zones of the upper limb: the axilla, the cubital fossa and the carpal tunnel, 189
- The axilla, 189
- The cubital fossa, 190
- The carpal tunnel, 191

The arteries of the upper limb, 192
- The axillary artery, 192
- The brachial artery, 192
- The radial artery, 193
- The ulnar artery, 193

The brachial plexus, 193
- The segmental cutaneous supply of the upper limb, 197

The course and distribution of the principal nerves of the upper limb, 197
- The axillary nerve, 197
- The radial nerve, 197
- The musculocutaneous nerve, 199
- The ulnar nerve, 199
- The median nerve, 201

Compartments of the upper limb, 201
- Compartments in the segments of the upper limb, 202
- Compartment syndrome, 202

The female breast, 202
- Structure, 203
- Blood supply, 203
- Lymphatic drainage, 203
- Development, 205

The anatomy of upper limb deformities, 206

The spaces of the hand, 210
- The superficial pulp space of the fingers, 210
- The ulnar and radial bursae and the synovial tendon sheaths of the fingers, 211
Part 4: The Lower Limb

Surface anatomy and surface markings of the lower limb, 217
 Bones and joints, 217
 Bursae of the lower limb, 218
 Mensuration in the lower limb, 218
 Muscles and tendons, 221
 Vessels, 222
 Nerves, 225

The bones and joints of the lower limb, 227
 The os innominatum, 227
 The femur, 227
 The patella, 232
 The tibia, 234
 The fibula, 236
 A note on growing ends and nutrient foramina in the long bones, 236
 The bones of the foot, 237
 The hip joint, 237
 The knee joint, 242
 The tibiofibular joints, 246
 The ankle joint, 246
 The joints of the foot, 248
 The arches of the foot, 249
 The anatomy of walking, 251

Three important zones of the lower limb: the femoral triangle, adductor canal and popliteal fossa, 251
 The femoral triangle, 251
 The adductor canal (of Hunter) or subsartorial canal, 256
 The popliteal fossa, 257

The arteries of the lower limb, 258
 Femoral artery, 258
 Popliteal artery, 260
 Posterior tibial artery, 260
 Anterior tibial artery, 261

The veins of the lower limb, 261

The course and distribution of the principal nerves of the lower limb, 264
 The lumbar plexus, 264
 The sacral plexus, 266
 The sciatic nerve, 268
 The tibial nerve, 269
 The common peroneal (fibular) nerve, 270
 Segmental cutaneous supply of the lower limb, 271
Compartments of the lower limb, 271
 Compartments in the segments of the lower limb, 272
 Compartment syndrome, 273

Part 5: The Head and Neck

Surface anatomy of the neck, 277
 Introduction, 277
 The fascial compartments of the neck, 279
 Tissue planes and fascial layers in the anterior part of the neck, 279

The thyroid gland, 282

The parathyroid glands, 286

The palate, 288
 The development of the face, lips and palate with special reference to their congenital deformities, 289

The tongue and floor of the mouth, 291
 The tongue, 291
 The floor of the mouth, 295

The pharynx, 296
 The nasopharynx, 296
 The oropharynx, 298
 The palatine tonsils, 298
 The laryngopharynx, 300
 The mechanism of deglutition, 301

The larynx, 303

The salivary glands, 309
 The parotid gland, 309
 The submandibular gland, 312
 The sublingual gland, 313

The major arteries of the head and neck, 313
 The common carotid arteries, 313
 The external carotid artery, 314
 The internal carotid artery, 315
 The subclavian arteries, 318

The veins of the head and neck, 321
 The cerebral venous system, 321
 The intracranial dural venous sinuses, 321
 The internal jugular vein, 324
 The subclavian vein, 325
The lymph nodes of the neck, 327

The cervical sympathetic trunk, 329

The branchial system and its derivatives, 330
 Branchial cyst and fistula, 331

Surface anatomy and surface markings of the head, 331

The scalp, 333

The skull, 334
 Floor of the cranial cavity, 337
 Development, 339

The paranasal sinuses (accessory nasal sinuses), 340
 The frontal sinuses, 341
 The maxillary sinus (antrum of Highmore), 341
 The ethmoid sinuses, 343
 The sphenoidal sinuses, 344

The mandible, 344
 The temporomandibular joint, 345
 The teeth, 346

The vertebral column, 347
 The cervical vertebrae \((n = 7)\), 347
 The thoracic vertebrae \((n = 12)\), 350
 The lumbar vertebrae \((n = 5)\), 350
 The sacrum (comprising 5 fused vertebrae), 351
 The coccyx (comprising 3, 4 or 5 fused vertebrae), 351
 The intervertebral joints, 351

Part 6: The Nervous System

Introduction, 357

The brain, 357
 The brainstem, 357
 The cerebellum, 360
 The diencephalon, 362
 The pituitary gland (hypophysis cerebri), 364
 The cerebral hemispheres, 365
 The membranes of the brain and spinal cord (the meninges), 376
 The ventricular system and the cerebrospinal fluid circulation, 377
The spinal cord, 381
Age differences, 384
The membranes of the cord (the meninges), 385

The cranial nerves, 388
The olfactory nerve (I), 388
The optic nerve (II) and the visual pathway, 389
The oculomotor nerve (III), 391
The trochlear nerve (IV), 392
The trigeminal nerve (V), 393
The abducent nerve (VI), 398
The facial nerve (VII), 398
The auditory (vestibulocochlear) nerve (VIII), 401
The glossopharyngeal nerve (IX), 402
The vagus nerve (X), 403
The accessory nerve (XI), 404
The hypoglossal nerve (XII), 405

The special senses, 406
The nose, 406
The ear, 408
The eye and associated structures, 411

The autonomic nervous system, 417
The sympathetic system, 420
The sympathetic trunk, 421
The parasympathetic system, 424

Glossary of eponyms, 427

Index, 433
Preface to the Fourteenth Edition

As a teacher of medical students and surgical trainees, I know that much of clinical examination and diagnosis depends on an adequate knowledge of anatomy. No matter how good the doctors are at communication skills and patient empathy, unless they know what lies beneath their examining fingers or under the bell of their stethoscopes, they will have great difficulty in the interpretation of clinical signs. Understanding and interpreting the exquisite details of modern radiological imaging also requires a good knowledge of the structure of the human body.

This was true over 55 years ago when I wrote the first edition of this book, and is perhaps even more so today, when the content of anatomical knowledge in the medical student’s curriculum has been greatly reduced.

Over these many years, during which time I have taught students and postgraduates in five medical schools, and examined them in eight countries and sixteen universities, my belief in the importance of an adequate knowledge of anatomy as an adjunct to clinical training has been strongly reinforced.

In the preparation of the 12th edition (Golden Jubilee edition) and the subsequent two editions (including this one), I have been fortunate indeed in having been able to recruit Professor Vishy Mahadevan, the Barbers’ Company Professor of Anatomy at the Royal College of Surgeons of England, as co-author. He is a renowned and revered teacher of surgical trainees as well as being a current examiner in the MRCS and in overseas medical schools. Together, in this new edition, we have carried out a careful revision and updating of the text and diagrams.

We hope that this book will continue to help our students and postgraduate trainees throughout the English-speaking world.

Harold Ellis
July 2018
Experience of teaching clinical students at three medical schools has convinced me that there is still an unfortunate hiatus between the anatomy which the student learns in his pre-clinical years and that which he later encounters in the wards and operating theatres.

This book attempts to bridge this gap. It does so by highlighting those features of anatomy which are of clinical importance, in medicine and midwifery as well as in surgery. It presents the facts which a student might reasonably be expected to carry with him during his years on the wards, through final examinations and into his post-graduate years; it is designed for the clinical student.

Anatomy is a vast subject and therefore, in order to achieve this goal, I have deliberately carried out a rigorous selection of material so as to cover only those of its thousands of facts which I consider form the necessary anatomical scaffolding for the clinician. Wherever possible practical applications are indicated throughout the text – they cannot, within the limitations of a book of this size, be exhaustive, but I hope that they will act as signposts to the student and indicate how many clinical phenomena can be understood and remembered on simple anatomical grounds.

Harold Ellis
Oxford, 1960
Acknowledgements to the Fourteenth Edition

We wish to thank the many students, undergraduates and postgraduates who have taken the trouble to send us constructive suggestions, many of which have been incorporated into this new edition.

Our thanks to Jane Fallows whose skilfully produced illustrations we continue to use in this edition.

CT and MRI scans were provided by Dr Sheila Rankin and Dr Jeremy Rabouhans of the Department of Radiology at Guy’s Hospital, and Professor Adrian Dixon of Cambridge. Our thanks to all three.

Our gratitude to Ruth Swan for her diligent scrutiny and editing of the text in the latter stages of the production of this volume, and for her invalu-able editorial advice and help.

We are grateful to the following authors for permission to reproduce illustrations:

The late Lord Brock for Figs 20 and 21 (from Lung Abscess); and
Professor R. G. Harrison for Figs 12, 32 and 67 (from A Textbook of Human Embryology).

Finally, we wish to express our profound debt and profuse gratitude to Nick Morgan, James Watson, Jennifer Seward, Loan Nguyen and the staff of Wiley Blackwell for their generous and unfailing help, guidance and support.

Harold Ellis
Vishy Mahadevan
July 2018
Acknowledgements to the First Edition

I wish to thank Dr Max Cowan of the Department of Anatomy, Oxford, who has given freely of advice and criticism in the production of this book.

My colleagues – the registrars and house surgeons at the Radcliffe Infirmary – have kindly perused and commented on the text and have given valuable help in proof-reading.

The majority of the illustrations are by Miss Margaret McLarty and Miss Audrey Arnott; I must thank them sincerely for all their care.

I am grateful to the following authors for permission to reproduce illustrations:

Sir Russell Brock for Fig. 15 (from Lung Abscess); Professor R. G. Harrison for Figs 10, 23, 53, 67 and 155 (from A Textbook of Human Embryology); Professor David Sinclair for Figs 69, 92, 95, 97, 100–1, 105, 107, 114, 126, 132, 137, 139, 177 and 181 (from An Introduction to Functional Anatomy); and Professor Sheila Sherlock for Fig. 55 (from Diseases of the Liver and Biliary System).

The illustrations for an anatomical textbook are inevitably a costly item, yet I was anxious that this book should be within the budget of the students for whom it is primarily intended. It is therefore a pleasure to acknowledge here the generosity of Upjohn of England Ltd in contributing towards the cost of the blocks: their gesture will be widely appreciated.

To my sister, Mrs L. Witte, go my grateful thanks for invaluable secretarial assistance. Finally, I wish to express my debt to Mr Per Saugman and staff at Blackwell Scientific Publications for guiding the hesitant steps of the beginner.

Harold Ellis
About the Companion Website

Clinical Anatomy has its own resources website:

www.ellisclinicalanatomy.co.uk/14edition

with digital flashcards of the images from the book for easy revision.
Part 1

The Thorax
Introduction

The clinical anatomy of the thorax, together with the anatomy of radiological and other imaging techniques of the thorax are in daily use in clinical practice. The routine clinical examination of the patient’s chest is little more than an exercise in relating the deep structures of the thorax to the chest wall. Moreover, several commonly undertaken procedures – chest aspiration, insertion of a chest drain or of a subclavian line, placement of a cardiac pacemaker, for example – have their basis, and their safe performance, in sound anatomical knowledge.

Surface anatomy and surface markings

Much of the working life of an experienced clinician is spent in relating the patient’s surface anatomy to underlying deep structures (Fig. 1; see also Figs 11, 22).

The following bony prominences can usually be palpated in the living subject (corresponding vertebral levels are given in brackets):

- superior angle of the scapula (T2);
- upper border of the manubrium sterni, the suprasternal notch (T2/3);
- spine of the scapula (T3);
- sternal angle (of Louis) – the transverse ridge at the manubriosternal junction (T4/5);
- inferior angle of the scapula (T8); it also overlies the 7th rib;
- xiphisternal joint (T9);
- lowest part of the costal margin – 10th rib (the subcostal line passes through L3).

Note from Fig. 1 that the manubrium sterni corresponds to the 3rd and 4th thoracic vertebrae and overlies the aortic arch, and that the body of the sternum corresponds to the 5th–8th vertebrae and neatly overlies the heart.

Since the 1st and 12th ribs are difficult to feel, the ribs should be enumerated from the 2nd costal cartilage, which articulates with the sternum at the angle of Louis.

The spinous processes of all the thoracic vertebrae can be palpated in the midline posteriorly, but it should be remembered that the first spinous process that can be felt is that of C7 (the vertebra prominens).

The position of the nipple varies considerably in the female, but in the male it usually overlies the 4th intercostal space approximately 10cm (4 in) from the midline. The apex beat, which marks the lowest and outermost point at which the cardiac impulse can be palpated, is normally in the 5th intercostal space 9cm (3.5 in) from the midline and within the midclavicular line. (This corresponds to just below and medial to the nipple in the male, but it is always preferable to use bony rather than soft-tissue points of reference.)
The trachea is palpable in the suprasternal notch midway between the heads of the two clavicles.

The trachea (Figs 1, 2)

The trachea commences in the neck at the level of the lower border of the cricoid cartilage (C6) and runs vertically downwards to end below the level of the sternal angle of Louis (T4/5), just to the right of the midline, by dividing to form the right and left main bronchi. In the erect position and in full inspiration the level of bifurcation is at T6.

The pleura (Figs 2, 3)

The cervical pleura can be marked out on the surface by a curved line drawn from the sternoclavicular joint to the junction of the medial and middle thirds of the clavicle; the apex of the pleura is approximately 2.5 cm (1 in) above the clavicle. This fact is easily explained by the oblique slope of the first rib. It is important because the pleura can be wounded (with consequent pneumothorax) by a stab wound – and this includes the surgeon’s knife and the anaesthetist’s needle – above the clavicle, or, in an attempted subclavian vein catheterization, below the clavicle. The lines of pleural reflexion pass from behind the sternoclavicular joint on each side to meet in the midline at the 2nd costal cartilage (the angle of Louis). The right
pleural edge then passes vertically downwards to the 6th costal cartilage and then crosses:
• the 8th rib in the midclavicular line;
• the 10th rib in the midaxillary line;
• the 12th rib at the lateral border of the erector spinae.

On the left side the pleural edge arches laterally at the 4th costal cartilage and descends lateral to the border of the sternum, owing, of course, to its lateral displacement by the heart; apart from this, its relationships are those of the right side.

Fig. 2 The surface markings of the lungs and pleura – anterior view.

Fig. 3 The surface markings of the lungs and pleura – posterior view.
The pleura actually descends just below the 12th rib margin at its medial extremity – or even below the edge of the 11th rib if the 12th is unusually short; obviously, in this situation, the pleura may be opened accidentally in making a loin incision to expose the kidney, perform an adrenalectomy or drain a subphrenic abscess.

The lungs (Figs 2, 3)

The surface projection of the lung is somewhat less extensive than that of the parietal pleura as outlined previously, and in addition it varies quite considerably with the phase of respiration. The apex of the lung closely follows the line of the cervical pleura and the surface marking of the **anterior border of the right lung** corresponds to that of the right mediastinal pleura. On the left side, however, the anterior border has a distinct notch (the cardiac notch) that passes behind the 5th and 6th costal cartilages. The **lower border** of the lung has an excursion of as much as 5–8 cm (2–3 in) in the extremes of respiration, but in the neutral position (midway between inspiration and expiration) it lies along a line which crosses the 6th rib in the midclavicular line, the 8th rib in the midaxillary line and reaches the 10th rib adjacent to the vertebral column posteriorly.

The **oblique fissure**, which divides the lung into upper and lower lobes, is indicated on the surface by a line drawn obliquely downwards and outwards from 2.5 cm (1 in) lateral to the spine of the 3rd thoracic vertebra along the 5th intercostal space to the 6th costal cartilage approximately 4 cm (1.5 in) from the midline. This can be represented approximately by abducting the shoulder to its full extent; the line of the oblique fissure then corresponds to the position of the medial border of the scapula.

The surface markings of the **transverse fissure** (separating the middle and upper lobes of the right lung) is a line drawn horizontally along the 4th costal cartilage and meeting the oblique fissure where the latter crosses the 5th rib.

The heart (Fig. 4)

The outline of the heart can be represented on the surface by an irregular quadrangle bounded by the following four points (Fig. 4):

1. the 2nd left costal cartilage 1.25 cm (0.5 in) from the edge of the sternum;
2. the 3rd right costal cartilage 1.25 cm (0.5 in) from the sternal edge;
3. the 6th right costal cartilage 1.25 cm (0.5 in) from the sternum;
4. the 5th left intercostal space 9 cm (3.5 in) from the midline (corresponding to the apex beat).

The **left border** of the heart (indicated by the curved line joining points 1 and 4) is formed almost entirely by the left ventricle (the auricular appendage of the left atrium peeping around this border superiorly); the **lower border** (the horizontal line joining points 3 and 4) corresponds to the right ventricle and the apical part of the left ventricle; the **right border** (marked by the line joining points 2 and 3) is formed by the right atrium (see Fig. 24a).
A good guide to the size and position of your own heart is given by placing your clenched right fist palmar surface inwards immediately inferior to the manubriosternal junction. Note that the heart is approximately the size of the subject’s fist, lies behind the body of the sternum (therefore anterior to thoracic vertebrae 5–8) and bulges over to the left side.

The surface markings of the vessels of the thoracic wall are of importance if these structures are to be avoided when performing aspiration of the chest. The internal thoracic (internal mammary) vessels run vertically downwards behind the costal cartilages 1.25 cm (0.5 in) from the lateral border of the sternum. The intercostal vessels lie immediately below their corresponding ribs (the vein above the artery) so that it is safe to pass a needle immediately above a rib, but hazardous to pass it immediately below (see Fig. 8).

The thoracic cage

The thoracic cage is formed by the vertebral column behind, the ribs and intercostal spaces on either side and the sternum and costal cartilages in front. Above, it communicates through the superior aperture of the thoracic cage with the root of the neck; below, it is separated from the abdominal cavity by the diaphragm (Fig. 1). Amusingly, the superior aperture of the thoracic cage is termed the ‘thoracic inlet’ by anatomists, while clinicians (especially vascular surgeons, neurosurgeons and radiologists) refer to the same aperture as the ‘thoracic outlet’.

The thoracic vertebrae

See ‘The vertebral column’, page 347. See also page 350 and Fig. 228.
The ribs

The greater part of the thoracic cage is formed by the twelve pairs of ribs. Of these, the first seven are connected anteriorly by way of their costal cartilages to the sternum, the cartilages of the 8th, 9th and 10th articulate each with the cartilage of the rib above and the last two ribs are free anteriorly (‘floating ribs’).

Each typical rib (Fig. 5) has a head bearing two articular facets, for articulation with the upper demifacet on the side of the body of the numerically corresponding thoracic vertebra and the lower demifacet of the vertebra above (see Fig. 228). Thus, the head of the third rib articulates with its own third vertebral body and the one above. The head continues as a stout neck, which gives attachment to the costotransverse ligaments, a tubercle with a rough non-articular portion and a smooth facet, for articulation with the transverse process of the corresponding vertebra, and a long shaft flattened from side to side and divided into two parts by the ‘angle’ of the rib. The angle demarcates the lateral limit of attachment of the erector spinae muscle.

The following are the significant features of the ‘atypical’ ribs.

The 1st rib (Fig. 6) is flattened from above downwards. It is not only the flattest but also the shortest and most highly curved of all the ribs. It has a prominent tubercle on the inner border of its upper surface for the insertion of scalenus anterior. In front of this tubercle, the subclavian vein crosses the rib; behind the tubercle is the subclavian groove, where the subclavian artery and lowest trunk of the brachial plexus lie in relation to the bone. This is one of the sites where the anaesthetist can infiltrate the plexus with local anaesthetic.

Crossing the front of the neck of the first rib vertically and lying from medial to lateral are the sympathetic trunk, the superior intercostal artery (from the costocervical trunk) and the large branch of the first thoracic nerve to the brachial plexus.

The 2nd rib is much less curved than the 1st and approximately twice as long.

![Fig. 5 A typical rib.](image)
The thoracic cage

The 10th rib has only one articular facet on the head.
The 11th and 12th ribs (the ‘floating ribs’) are short, have no tubercles and only a single facet on the head. The 11th rib has a slight angle and a shallow subcostal groove; the 12th has neither of these features.

Fig. 6 Structures crossing the first rib.

The 10th rib has only one articular facet on the head.
The 11th and 12th ribs (the ‘floating ribs’) are short, have no tubercles and only a single facet on the head. The 11th rib has a slight angle and a shallow subcostal groove; the 12th has neither of these features.

CLINICAL FEATURES

Rib fractures
The chest wall of the child is highly elastic and therefore fractures of the rib in children are rare. In adults, the ribs may be fractured by direct violence or indirectly by crushing injuries; in the latter, the rib tends to give way at its weakest part in the region of its angle. Not unnaturally, the upper two ribs, which are protected by the clavicle, and the lower two ribs, which are unattached anteriorly, and therefore swing free, are the least commonly injured.

In a severe crush injury to the chest several ribs may fracture in front and behind so that a whole segment of the thoracic cage becomes torn free (‘stove-in chest’). With each inspiration, this loose flap sucks in; with each expiration, it blows out; thus undergoing paradoxical respiratory movement. The associated swinging movements of the mediastinum produce severe shock, and this injury calls for urgent treatment by insertion of a chest drain with underwater seal, followed by endotracheal intubation, or tracheostomy, combined with positive pressure respiration.

Coarctation of the aorta (see Fig. 34b and page 44)
In coarctation of the aorta, the intercostal arteries derived from the aorta receive blood from the superior intercostals (from the costocervical trunk of the subclavian artery), from the anterior intercostal branches of the internal
thoracic artery (arising from the subclavian artery) and from the arteries anastomosing around the scapula. Together with the communication between the internal thoracic and inferior epigastric arteries, they provide the principal collaterals between the aorta above and below the block. In consequence, the intercostal arteries undergo dilatation and tortuosity and erode the lower borders of the corresponding ribs to give the characteristic irregular notching of the ribs, which is very useful in the radiographic confirmation of this lesion.

Cervical rib

A cervical rib (Fig. 7) occurs in 0.5% of subjects and is bilateral in half of these. It is attached to the transverse process of the 7th cervical vertebra and articulates with the 1st (thoracic) rib or, if short, has a free distal extremity which usually attaches by a fibrous strand to the (normal) first rib. Pressure of such a rib on the lowest trunk of the brachial plexus arching over it may produce paraesthesiae along the ulnar border of the forearm and wasting of the small muscles of the hand (T1). Less commonly vascular changes, even gangrene, may be caused by pressure of the rib on the overlying subclavian artery. This results in poststenotic dilatation of the vessel distal to the rib in which a thrombus forms, from which emboli are thrown off.
The costal cartilages

These bars of hyaline cartilage serve to connect the upper seven ribs directly to the side of the sternum and the 8th, 9th and 10th ribs to the cartilage immediately above. The cartilages of the 11th and 12th ribs merely join the tapered extremities of these ribs and end in the abdominal musculature.

CLINICAL FEATURES

1. The cartilage adds considerable resilience to the thoracic cage and protects the sternum and ribs from more frequent fracture.
2. In old age (and sometimes also in young adults) the costal cartilages undergo progressive ossification; they then become radio-opaque and may give rise to some confusion when examining a chest radiograph of an elderly patient.

The sternum

This dagger-shaped bone, which forms the anterior part of the thoracic cage, consists of three parts. The manubrium is roughly triangular in outline and provides articulation for the clavicles and for the first and upper part of the 2nd costal cartilages on either side. It is situated opposite the 3rd and 4th thoracic vertebrae. Opposite the disc between T4 and T5 it articulates at an oblique angle at the manubriosternal joint (the angle of Louis) with the body of the sternum (placed opposite T5–T8). This is composed of four parts or ‘sternebrae’, which fuse between puberty and 25 years of age. Its lateral border is notched to receive part of the 2nd and the 3rd to the 7th costal cartilages. The xiphoid process is the smallest part of the sternum and usually remains cartilaginous well into adult life. The cartilaginous manubriosternal joint and that between the xiphoid and the body of the sternum may also become ossified after the age of 30.

CLINICAL FEATURES

1. The attachment of the elastic costal cartilages largely protects the sternum from injury, but indirect violence accompanying fracture dislocation of the thoracic spine may be associated with a sternal fracture. Direct violence to the sternum may lead to displacement of the relatively mobile body of the sternum backwards from the relatively fixed manubrium.
2. In a sternal puncture a wide-bore needle is pushed through the thin layer of cortical bone covering the sternum into the highly vascular spongy bone beneath, and a specimen of bone marrow aspirated with a syringe.
3. In operations on the thymus gland, and occasionally for a retrosternal goitre, it is necessary to split the manubrium in the midline in order to gain access to the superior mediastinum. A complete vertical split of the whole sternum is one of the standard approaches to the heart and great vessels used in modern cardiac surgery.
The intercostal spaces

There are slight variations between the different intercostal spaces, but typically each space contains three muscles, comparable to those of the abdominal wall, and an associated neurovascular bundle (Fig. 8). The muscles are:

1. the external intercostal, the fibres of which pass downwards and forwards from the rib above to the rib below and reach from the vertebrae behind to the costochondral junction in front, where muscle is replaced by the anterior intercostal membrane;

Fig. 8 (a) The relationship of an intercostal space. (Note that a needle passed into the chest immediately above a rib will avoid the neurovascular bundle.)
(b) Steps in the insertion of a chest drain. (i) Local anaesthetic is infiltrated into an intercostal space. (ii) Incision followed by blunt dissection allows access to the pleura. (iii) A finger is passed through the incision to clear the lung away. (iv) A chest tube is passed into the pleural cavity.
2 the *internal intercostal*, which runs downwards and backwards from the sternum to the angles of the ribs where it becomes the *posterior intercostal membrane*;

3 the *innermost intercostal*, which is only incompletely separated from the internal intercostal muscle by the neurovascular bundle. The fibres of this sheet cross more than one intercostal space and it may be incomplete. Anteriorly it has a more distinct portion that is fan-like in shape, termed the *transversus thoracis* (or sternocostalis), which spreads upwards from the posterior aspect of the lower sternum to insert onto the inner surfaces of the 2nd to the 6th costal cartilages.

Just as in the abdomen, the nerves and vessels of the thoracic wall lie between the middle and innermost layers of muscles. This neurovascular bundle consists, from above downwards, of vein, artery and nerve, the vein lying in a groove on the undersurface of the corresponding rib (remember: v,a,n).

The vessels comprise the posterior and anterior intercostal arteries and veins.

The *posterior intercostal arteries* of the lower nine spaces are direct branches of the descending thoracic aorta, while the first two are derived from the superior intercostal branch of the costocervical trunk, the only branch of the second part of the subclavian artery. Each runs forward in the subcostal groove to anastomose with the anterior intercostal artery. Each has a number of branches to adjacent muscles, to the skin and to the spinal cord. The corresponding veins are mostly tributaries of the azygos and hemiazygos veins. The first posterior intercostal vein drains into the brachiocephalic or vertebral vein. On the left, the 2nd and 3rd veins often join to form a superior intercostal vein, which crosses the aortic arch to drain into the left brachiocephalic vein.

The *anterior intercostal arteries* are branches of the internal thoracic artery (1st–6th space) or of its musculophrenic branch (7th–9th spaces). The lowest two spaces have only posterior arteries. Perforating branches pierce the upper five or six intercostal spaces; those of the 2nd–4th spaces are large in the female and supply the breast.

The *intercostal nerves* are the anterior primary rami of the thoracic nerves, each of which gives off a collateral muscular branch and lateral and anterior cutaneous branches for the innervation of the thoracic and abdominal walls (Fig. 9).

CLINICAL FEATURES

1 Local irritation of the intercostal nerves by such conditions as Pott’s disease of the thoracic vertebrae (tuberculosis) may give rise to pain that is referred to the front of the chest or abdomen in the region of the peripheral termination of the nerves.

2 Local anaesthesia of an intercostal space is easily produced by infiltration around the intercostal nerve trunk and its collateral branch – a procedure known as intercostal nerve block.