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v

 Seven years have passed since the last edition of  Auditory and Vestibular Research, Methods 
and Protocols . During this period of time, technological advances and research fi ndings in 
the fi eld continued at a rapid pace. Thus, no single edition could encompass all the different 
types of experiments and protocols conducted in the auditory and vestibular fi elds. With 
this, the second edition of  Auditory and Vestibular Research ,  Methods and Protocols , we 
expand the previous volume from three to seven major sections. Here, we introduce new 
protocols that encompass cell culture, tissue engineering, nanotechnology, high-through-
put screening, and physiology. The section on physiology alone covers techniques that 
include optical coherence tomography, patch clamping, and photostimulation of caged 
neurotransmitters. While the fi rst edition explored the nuances of DNA/RNA and protein 
protocols, the second edition further expounds on these techniques with new chapters and 
updates. The imaging section in this edition elucidates traditional areas of fl uorescence 
microscopy, including how to build your own fl uorescence microscope, but also contains 
newer techniques that allow the scanning of live stereocilia at nanoscale resolution and 
large-scale mapping of the brain using electron microscopy (EM). As in the fi rst edition, the 
present overview provides a perspective of basic research with both mammalian and non-
mammalian animal models. The chapters in Part I focus on RNA delivery and extraction, 
while those in Part II bring updates to protein protocols such as the yeast two-hybrid sys-
tem and plasmon resonance, while adding new chapters on protein stoichiometry and colo-
calization. Part III covers various microscopy techniques, including confocal fl uorescence, 
hopping probe ion conductance, and EM to study connectomics. Part IV describes culture 
protocols such as those used in organ culture, quantifying neurite behavior, and tissue engi-
neering using umbilical cord cells. Part V focuses on nanotechnology with a general over-
view of nanoparticle-based delivery in hearing disorders and, more specifi cally, 
nanotechnology in membrane electromechanics. Part VI entails a description of inner ear 
cell sorting techniques and high-throughput chemical screens. Finally, Part VII contains 
seven chapters describing physiological techniques that measure responses beginning with 
the basilar membrane, continuing with hair cells, their stereocilia, and spiral ganglion cells, 
and ending with central auditory circuits. The techniques described herein will be useful to 
scientists in other fi elds, especially where tissues are scarce and where a comparative approach 
is useful in discovering the causes of human disorders.  

  Tampa, FL, USA    Bernd Sokolowski    
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    Chapter 1   

 Helios ®  Gene Gun-Mediated Transfection 
of the Inner Ear Sensory Epithelium: Recent Updates                     

     Inna     A.     Belyantseva      

  Abstract 

   The transfection of vertebrate inner ear hair cells has proven to be challenging. Therefore, many laborato-
ries attempt to use and improve different transfection methods. Each method has its own advantages and 
disadvantages. A particular researcher’s skills in addition to available equipment and the type of experiment 
(in vivo or in vitro) likely determine the transfection method of choice. Biolistic delivery of exogenous 
DNA, mRNA, or siRNA, also known as Helios ®  Gene Gun-mediated transfection, uses the mechanical 
energy of compressed helium gas to bombard tissue with micron- or submicron-sized DNA or RNA-
coated gold particles, which can penetrate and transfect cells in vitro or in vivo. Helios ®  Gene Gun-
mediated transfection has several advantages: (1) it is simple enough to learn in a short time; (2) it is 
designed to overcome cell barriers even as tough as plant cell membrane or stratum corneum in the epi-
dermis; (3) it can transfect cells deep inside a tissue such as specifi c neurons within a brain slice; (4) it can 
accommodate mRNA, siRNA, or DNA practically of any size to be delivered; and (5) it works well with 
various cell types including non-dividing, terminally differentiated cells that are diffi cult to transfect, such 
as neurons or mammalian inner ear sensory hair cells. The latter advantage is particularly important for 
inner ear research. The disadvantages of this method are: (1) low effi ciency of transfection due to many 
variables that have to be adjusted and (2) potential mechanical damage of the tissue if the biolistic shot 
parameters are not optimal. This chapter provides a step-by-step protocol and critical evaluation of the 
Bio-Rad Helios ®  Gene Gun transfection method used to deliver green fl uorescent protein (GFP)-tagged 
full-length cDNAs of myosin 15a, whirlin, β-actin, and Clic5 into rodent hair cells of the postnatal inner 
ear sensory epithelia in culture.  

  Key words     Biolistic transfection  ,   Gene gun  ,   Inner ear  ,   Hair cell  ,   Stereocilia  ,   Myosin  ,   Whirlin  ,   Actin  , 
  Clic5  ,   Immunofl uorescence  ,   GFP  

1      Introduction 

 During the last few years, there are reports of successful transfec-
tions of inner ear hair cells using different methods. One new 
method, “injectoporation” is just at the beginning of its evaluation 
by different laboratories [ 1 ] and appears to be promising. The 
technique of  intrauterine   electroporation is effi cient for hair cell 
transfection, but is not commonly used, likely because of the 
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special skills required to perform survival surgery on small rodents 
[ 2 ]. Typically, local injections of non-viral and viral vectors into 
middle or inner ear is a method of choice for transfecting inner ear 
cells in vivo, to attempt restoring hearing function in mutant mice 
by gene therapy [ 3 – 7 ].  Electroporation   in vitro, of embryonic and 
early postnatal organ of Corti explants, is a method of choice in 
some laboratories [ 8 – 14 ], whereas others have used Helios  Gene 
Gun   transfection [ 15 – 25 ]. This chapter is an update on the Gene 
Gun transfection technique and its place in relation to other meth-
ods of transfection of the inner ear sensory epithelia. 

 Mammalian inner ear hair cells are terminally differentiated, non- 
dividing cells located within the sensory epithelia of the auditory 
(organ of Corti) and vestibular periphery (utricular macula, saccular 
macula, and three  cristae ampullares  ). Hair cells are polarized cells 
with a cylindrical or pear-like cell body and an apically positioned 
 cuticular plate  , which is composed of a dense meshwork of actin. 
Tight junctions interconnect the apical surfaces of hair cells with sur-
rounding  supporting cells  . These structural peculiarities of hair cells 
and their cellular environment may contribute to the ineffectiveness 
of  conventional transfection   techniques such as lipofection [ 26 ]. 

 An alternative is  electroporation  -mediated transfection, which 
is based on the application of an electric fi eld pulse that creates 
transient aqueous pathways in lipid bilayer membranes, allowing 
polar molecules to enter a cell [ 27 ,  28 ].  Electroporation   causes a 
brief increase in membrane permeability after which the membrane 
quickly reseals. This method is effective with a variety of  cell types   
and species and is used in many applications, including transfection 
in vivo of embryonic mouse brain [ 29 ] and transfection in vitro of 
immature hair cells from embryonic inner ear explants [ 13 ]. One 
disadvantage of this method is the exposure of the targeted and 
non-targeted cells to potentially damaging current and electrolysis-
generated changes of pH, which may activate stress responses in 
hair cells. Excessive cell damage and death was a long-standing 
concern [ 27 ] until  electroporation   devices were improved [ 28 ]. 

 A microinjection method of delivering  exogenous DNA   into a 
cell, although precise, is labor-intensive. A fully automated robotic 
system for microinjection was developed and used in zebrafi sh 
 embryos   [ 30 ]. Recently, an injectoporation method, combining 
microinjection of a solution into the sensory epithelium followed 
quickly  by   electroporation, was described for the transfection of the 
mouse organ of Corti [ 1 ]. This method of microinjection followed 
by  electroporation   was described previously for transfection of pla-
narians, insect larva, and adult insect brain in vivo [ 31 – 34 ]. Xiong 
and co-authors [ 1 ] adopted this method to transfect auditory hair 
cells in postnatal mouse organ of Corti explants from postnatal day 
0 to postnatal day 4. This method appeared to be effi cient, although 
effectiveness is decreased with the age of the postnatal mouse organ 
of Corti explant [ 1 ]. The injectoporation procedure requires micro-
injection skills under an upright microscope and seems well suited 

Inna A. Belyantseva



5

for electrophysiology laboratories that study functional responses of 
transfected cells. One drawback of this procedure is the use of  anti-
biotics   in the culture media. These drugs are essential to avoid 
contamination during the prolonged exposure of cultured explants 
to ambient air, while positioning electrodes and micropipettes 
within the petri dish fi lled with culture media and perform microin-
jection of tissue under the microscope. Another drawback is the 
potential damage by micropipettes of cell– cell junctions   during 
microinjections, which may affect Ca 2+  and other signals between 
hair cells and  supporting cells  . Avoiding such damage is essential, 
when studying hair cell innervation or hair cell and Deiters’  cell 
junctions  . 

 The Helios Gene Gun-mediated transfection method of DNA 
delivery with submicron-sized particles (microcarriers) accelerated 
to high velocity was developed in the late 1980s by Sanford, 
Johnston and colleagues [ 35 – 38 ]. This biolistic method was 
designed to circumvent diffi culties in transfecting plant cells with 
cell walls that prevent simple diffusion and/or internalization of 
material or vesicles from the cell surface [ 36 ]. Subsequently, this 
method was shown to be applicable to mammalian cells [ 37 ]. In 
the early 1990s, it was used to deliver  exogenous DNA   to the tis-
sue of a live mouse [ 38 – 40 ] .  Since then, biolistic devices were 
modifi ed for particular applications and used in vitro to transfect 
cultured cells and tissues, from yeast to mouse brain slices [ 35 ,  37 , 
 40 ,  41 ,  43 ], and in vivo for intradermal vaccination of human and 
animals using DNA and mRNA vaccines [ 44 ,  45 ]. In the  BioRad 
hand- held Helios ®  Gene Gun   delivery system (BioRad Laboratories, 
Inc., Hercules, CA),  DNA-coated gold particles   ( bullets)   are accel-
erated to high speed by pressurized helium and are able to over-
come physical barriers such as the stratum corneum in the epidermis 
[ 46 ] or the actin-rich  cuticular plate   of inner ear hair cells [ 15 ]. 
This method is suitable for the delivery of mRNA,  siRNA  , or 
cDNA to terminally differentiated cells that are diffi cult to trans-
fect such as neurons, inner ear  sensory cells  , or cells from internal 
cellular layers [ 44 ,  47 ,  48 ]. It works well with postnatal inner ear 
sensory epithelial explants [ 15 – 18 ]. This method can be used to 
co-transfect two or more different plasmids on the same  bullets   
[ 18 ]. It is also suitable for delivery of large cDNAs that do not fi t 
in the limited space of a viral vector, for example. Recently, Helios 
Gene Gun transfection was combined with live cell imaging, to 
examine whether or  not   F-actin core treadmills in hair cell stereo-
cilia [ 49 ], as proposed previously [ 15 ,  17 ]. Consistent with the 
results of a study that shows slow protein turnover in hair cell ste-
reocilia using multi-isotope imaging mass spectrometry [ 50 ], the 
study of gene gun- transfected live hair cells of postnatal mouse 
utricle reveals stable fi lamentous actin cores with turnover and 
elongation restricted to stereociliary tips [ 49 ]. 

 Over the last 10 years, we successfully transfected hair cells 
with cDNA expression constructs of GFP-tagged full-length 
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myosin Ic, myosin VI, myosin VIIa, myosin 15a, whirlin,  espin  ,    γ- 
and  β-actin  , and  Clic5   using the Helios ®  Gene Gun [ 15 ,  16 ,  18 , 
 19 ,  51  and unpublished data]. Some of the data from these papers 
will be used in this  chapter to illustrate the versatility of the Gene 
Gun transfection method. Our data show that Helios ®  Gene Gun-
mediated transfection is a valuable tool to elucidate the function of 
“ deafness  ” genes and their encoded proteins, when utilized in 
combination with  fl uorescence immunostaining   as well as genetic 
and phenotype analyses of mouse models of human deafness. 

 Various  cell types   populating inner ear sensory epithelia have 
apical surfaces with different physical properties. Directly under-
neath the  apical plasma membrane   of sensory hair cells of the organ 
of Corti is a dense  actin meshwork   referred to as  the   cuticular plate. 
The rootlet of each stereocilium extends into the  cuticular plate  , 
which provides a support for the stereociliary bundle [ 52 ,  53 ]. 
Each auditory stereociliary bundle in mammals is composed of two 
to three rows of stereocilia, which are mechanosensory microvilli-
like projections indispensable for normal hearing function. 

 Stereocilia may be damaged by the pulse of helium pressure as 
well as by gold particle bombardment. On the other hand, the 
 dense   cuticular plate is an obstacle to the introduction of gold par-
ticles into sensory hair cells, which requires a substantial pressure 
pulse. These factors require careful consideration of the many 
parameters and settings needed for using the Gene Gun to trans-
fect cDNA into sensory hair cells. The variables to be considered 
include: (1) the distance between the cartridge  with   bullets and the 
targeted tissue, (2) the angle at  which   bullets strike the cells, (3) 
the helium pressure applied to propel  the   bullets toward the tissue, 
(4) the thickness of the residual liquid layer that covers the tissue 
during bombardment, (5) the density of bombarding gold parti-
cles over the surface area of targeted cells, (6) the purity and con-
centration of DNA, (7) and the general quality of the cartridges 
 and   bullets ( see  Subheading  3  and  Note 1 ). The details of the 
experimental protocol described in this chapter include: (1) prepa-
ration of organotypic cultures of the sensory epithelia of the inner 
ear from postnatal mice and rats, (2) coating microcarriers with 
plasmid DNA, (3) cartridge preparation, and (4) bombarding tis-
sues with these  DNA-coated gold particles   accelerated by a pulse 
pressure of helium gas ( see   Note 2 ).  

2    Materials 

       1.    Experimental animals. Mouse or rat pups of postnatal days 0–4 
( see   Note 3 ).   

   2.    Dissection tools and microscope ( see   Note 4 ).   
   3.    Sterile 60 × 15 mm polystyrene tissue culture dishes (Becton 

Dickinson and Co., Franklin Lakes, NJ).   

2.1  Preparation 
of the Inner Ear 
Sensory Epithelial 
Explants

Inna A. Belyantseva
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   4.    Leibowitz’s L-15 medium without phenol red (Invitrogen, 
Carlsbad, CA). Store at 4 °C.   

   5.    Sterile  MatTek glass bottom Petri dishes   (MatTek Corp, 
Ashland, MA) ( see   Note 5  and Fig.  1 )

       6.    2.18 mg/mL Cell-Tak cell and tissue adhesive (BD Biosciences, 
San Jose, CA). Store at 4 °C.   

   7.    Tissue culture grade water (Invitrogen).   
   8.    Dulbecco’s Modifi ed Eagle’s Medium (DMEM) with high glucose 

content (4.5 g/L) and 25 mM HEPES buffer (Invitrogen) supple-
mented with 7 % (v/v) fetal bovine serum. Store at 4 °C ( see   Note 6 ).   

   9.    Sterile microdissecting curette, 12.7 cm, size 3, 2.5 mm 
(Biomedical Research Instruments, Rockville, MD) ( see   Note 7 ).   

   10.    Tissue culture incubator set at 37 °C and 5 % CO 2  ( see   Note 8 ).      

  Fig. 1    Bio-Rad Helios ®  Gene Gun and Tubing Prep Station. ( a ) Tubing Prep Station with Tefzel tubing inserted 
into the tubing support cylinder ( black arrow ). The right end (~15 cm) of the Tefzel tubing is sticking out and is 
connected to the 10 cc syringe with adaptor tubing ( white arrow ). ( b ) An assembled Gene Gun with a  diffusion 
screen   inserted into the  barrel  . The insert shows close view of a  barrel   with a  diffusion screen   ( white arrow ). 
Next to the Gene Gun, there is a MatTek glass bottom Petri dish containing the attached sensory epithelium 
explant in DMEM. ( c ) Correct placement of the Gene Gun while transfecting inner ear sensory epithelium cul-
tured in a MatTek Petri dish. The plastic ring at the end of the  barrel   ( black arrow ) is positioned so that the 
explant appears in the center of the ring. DMEM was removed in preparation for fi ring       
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           1.    50 μg of plasmid DNA at 1 mg/mL ( see   Note 9 ). Store at −20 °C.   
   2.     Fresh (unopened)  bottle   of 100 % ethyl alcohol. Store at room 

temperature in a cabinet for fl ammable reagents ( see   Note 10 ).   
   3.    1 M CaCl 2 : Dilute in the DNase, RNase-free molecular biology 

grade water from 2 M CaCl 2  molecular biology grade stock 
solution. Prepared or stock solutions can be purchased from sev-
eral vendors (e.g., Quality Biological, Inc., Gaithersburg, MD).   

   4.    1 μm gold microcarriers or tungsten microcarriers (Bio-Rad) 
( see   Note 11  [ 38 ]).   

   5.    20 mg/mL polyvinylpyrrolidone (PVP, Bio-Rad): weigh out 
20 mg of crystallized PVP, add 1 mL of 100 % ethanol and 
vortex. PVP becomes fully dissolved within 5–10 min at room 
temperature. Store at 4 °C and use within 1 month ( see   Note 12 ).   

   6.    0.05 M spermidine (Sigma-Aldrich Inc., St. Louis, MO) stock 
solution: dilute the content of one ampule (1 g) of spermidine 
in 13.6 mL of DNase, RNase-free molecular biology grade 
water to get a 0.5 M stock solution. Store this solution as sin-
gle-use aliquots at 20 °C for 1 month. For a working solution 
to use in bullet preparation, thaw one aliquot of stock solution, 
take 5 μL and add 45 μL of DNase, RNase-free molecular biol-
ogy grade water to obtain a fi nal concentration of 0.05 M. Use 
the same day ( see   Note 13 ).   

   7.    Two sterile 15 mL conical tubes and sterile 1.5 mL centrifuge 
tubes.   

   8.     Ultrasonic cleaner   (waterbath sonicator) (e.g., Model 50D, 
VWR International, Chesten, PA) ( see   Note 14 ).   

   9.    Tubing Prep Station (Fig.  1a ) (Bio-Rad). Clean by wiping with 
70 % (v/v) ethanol before each use.   

   10.     Nitrogen   gas tank, grade 4.8 or higher and nitrogen regulator 
(Bio- Rad). Also, see the Bio-Rad Helios ®  Gene Gun System 
instruction manual for nitrogen gas requirements.   

   11.    Tefzel tubing (Bio-Rad).   
   12.    Tubing cutter and disposable blades (Bio-Rad).   
   13.    10 cc syringe with ~12–15 cm of syringe adaptor tubing 

(Fig.  1a , white arrow) (Bio-Rad).   
   14.    20 mL disposable scintillation vials with caps (Kimble Glass 

Inc., Vineland, NJ) and desiccating capsules of  drycap dehy-
drators   type 11 (Ted Pella, Inc., Redding, CA).       

       1.    Helium gas tank grade 4.5 (99.995 %) or higher should be 
used and a helium pressure regulator (Bio-Rad).   

   2.    Helios Gene Gun System, 100/120 V (Fig.  1b ) (Bio-Rad).   
   3.    A  diffusion screen   (Fig.  1b , white arrow in the insert) 

(Bio-Rad) can be reused with the same DNA preparation 
( see   Note 15 ).   

2.2  Preparation 
of Bullets with 
DNA- Covered Gold 
Microcarriers

2.3  Helios ®  Gene 
Gun Transfection 
Procedure

Inna A. Belyantseva
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