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Series Editor Foreword

With its multilayered anatomy and complex physiology, the adrenal gland is one of 
the most important life-sustaining organs in the human body. Its development and 
hormone biochemistry are intricate, and its disorders are fascinating. Unlike dis-
eases of glucose metabolism or the thyroid gland, those of adrenal glands are rela-
tively uncommon. As a result, many physicians lack familiarity with the 
manifestations of adrenal gland dysfunction. It is therefore the responsibility of 
endocrinologists not only to understand, diagnose, and manage adrenal gland dis-
eases but also to educate physicians in other specialties about presentation of these 
conditions. The goal is to maintain appropriate level of clinical suspicion when a 
patient presents with a possible adrenal gland disorder.

The current volume is edited by Dr. Alice C. Levine (Professor of Medicine and 
the Co-Director of the Adrenal Center at the Icahn School of Medicine at Mount 
Sinai in New York City) with contributions by an internationally renowned group of 
authors. In my opinion, it represents an invaluable tool that will help to meet the 
above challenges. The book is logically divided into three parts: Part I addresses 
normal adrenal physiology; Part II deals with genetics and pathophysiology; and 
Part III describes the diagnosis and management of adrenal disorders. This mono-
graph will be immensely useful not only for practicing endocrinologists but also for 
endocrine fellows, medical residents, and medical students as they learn the intrica-
cies of adrenal gland genetics, development, structure, function, and dysfunction.

New York, NY, USA Leonid Poretsky, MD
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It is with great pleasure that I introduce this unique book on adrenal disorders. My 
mentor, Dr. J. Lester Gabrilove, coauthored the very first textbook on Adrenal 
Disorders over 50 years ago. That book was published just after the isolation and 
identification of a number of adrenal hormonal fractions as well as corticotropin. 
Since that time, the molecular era of steroidogenesis ensued with the cloning and 
functional characterization of steroid receptors, steroidogenic enzymes, adrenal 
transcription factors, and the determination of the molecular basis for adrenal dis-
eases. Over the past 5 years there has been an explosion of new insights into the 
factors controlling adrenal development and steroidogenesis, the genetic pathophys-
iology of adrenal tumors, and the diagnosis and treatment of adrenal disorders.

The book is divided into three major sections. The first section elucidates the 
factors that control normal adrenal zonation/development, adrenal steroidogenesis, 
and the pharmacology of glucocorticoids. The second section focuses on genetics 
and pathophysiology, specifically regarding autoimmune Addison disease, con-
genital adrenal hyperplasia, primary aldosteronism, adrenocortical tumors/hyper-
plasia, and pheochromocytomas/paragangliomas. Finally, the last section is 
clinically oriented, detailing the diagnosis and treatment of adrenal insufficiency, 
adrenal Cushing syndrome, primary aldosteronism, pheochromocytomas/paragan-
gliomas, and adrenal cortical carcinoma. The book is translational in nature and 
designed to provide a framework for both clinicians and basic scientists to better 
understand the cross-talk and opportunities in going from bench to bedside and 
back to the bench.

In order to accomplish this ambitious endeavor, I have recruited esteemed friends 
and colleagues from around the globe to share their expertise. I thank them for their 
time and effort that resulted in this comprehensive and important work.

The Preface to Dr. Gabrilove’s book ends with “This seems to be a good time to 
pause, take stock and incorporate the broad new knowledge into our thinking. There 
is, of course, a great deal still left undone and inadequately explored. The currently 
available background and the new technological advances in this and related fields 
should provide the impetus for another forward surge.” Fifty-six years later, we have 

Preface
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indeed surged ahead and improved the lives of patients with adrenal disorders to an 
extent that was unimaginable to previous generations. This book takes stock of that 
progress but ultimately, like the previous volume, is designed to inform and inspire 
future scientists and physicians to continue the charge.

Reference

1. Soffer LJ, Dorfman RI, Gabrilove JL. The human adrenal gland. Philadelphia: Lea & Febiger; 
1961.

New York, NY Alice C. Levine, MD

Preface
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Chapter 1
Adrenal Zonation and Development

Emanuele Pignatti, Sining Leng, Diana L. Carlone, and David T. Breault

 Introduction

The adrenal cortex is a major site of steroid hormone production. In adult mammals 
it is comprised of three concentric layers or zones of steroid-producing cells sur-
rounding the adrenal medulla [1, 2]. The outer layer of the cortex, the zona glomeru-
losa (zG), represents ~15% of the cortical mass and produces the mineralocorticoid 
aldosterone, which is essential for sodium retention, intravascular volume, and 
blood pressure regulation. Excess aldosterone production, as seen in primary 
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aldosteronism, is a major cause of hypertension and cardiovascular damage [3, 4]. 
The middle layer of the cortex, the zona fasciculata (zF), is ~8 times larger than the 
zG and produces the glucocorticoid corticosterone (in rodents) and cortisol (in 
humans), which impacts immunity, metabolism, development, and behavior. A third 
layer, the zona reticularis (zR), is present in humans, some nonhuman primates 
(e.g., rhesus macaques, marmosets), ferrets, and the spiny mouse. It lies between the 
zF and the medulla and produces androgens, such as dehydroepiandrosterone 
(DHEA) and its sulfated derivative DHEA-S [5]. While the mouse adrenal lacks a 
true zR, it does contain a transient X-zone (zX), which appears to be a remnant of 
the fetal adrenal cortex [6] and is thought to be involved in progesterone metabolism 
[7] (Fig. 1.1).

 Embryonic Adrenal Development

Adrenal embryonic development has been extensively studied [8]. In the mouse, 
development begins on embryonic day 9 (E9.0), or around 28 days post coitum (28 
dpc) in the human, when cells in the coelomic epithelium first express the master 
transcriptional regulator steroidogenic factor 1 (SF1, also known as NR5A1 and 
AD4BP), which results in the emergence of the adrenogonadal lineage. SF1+ cells 
then delaminate into the adjacent mesenchyme giving rise to the adrenogonadal 
primordium (AGP). AGP cells, marked by expression of the Sf1-fetal adrenal 
enhancer (FAdE), then give rise to the fetal adrenal anlagen around E10.5 (~33 dpc). 

Fig. 1.1 Concentric layers 
of the mouse adrenal 
gland. (a) Schematic of the 
various regions of the 
adrenal. (b) A 
representative H&E 
longitudinal mouse adrenal 
section. Zones are 
identified by white dashed 
lines. c capsule, zG zona 
glomerulosa, zF zona 
fasciculata, zX X-zone, m 
medulla

E. Pignatti et al.
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Next, cells from the neural crest invade the fetal adrenal ~E12.5 (~48 dpc), which 
go on to form the adrenal medulla. Subsequently, ~E14.5 (~56 dpc) the fetal cortex 
slowly begins to regress, while the definitive (adult) cortex emerges beneath the 
newly formed capsule, though distinct zones are not yet formed (Fig.  1.2). 
Establishing a connection between the definitive cortex and the fetal cortex, elegant 
lineage-tracing studies have demonstrated that the definitive cortex is indeed a 
direct descendent of the fetal cortex [9, 10].

 Postnatal Adrenal Development

In contrast to early embryonic development, the mechanisms underlying postnatal 
adrenal development, which lead to the formation and maintenance of the adrenal’s 
distinct zones, remain poorly understood. Detailed knowledge of how these mecha-
nisms mediate zonation has important implications for understanding normal homeo-
static functions as well as the pathological conditions that arise within the adrenal 
cortex. For example, it is known that control of steroidogenic output is dependent, in 
part, on proper maintenance of zonation over time [1]. Consistent with this, impaired 
zonation has been implicated in a range of conditions, including primary aldosteron-
ism, cortisol-producing adenomas, primary pigmented nodular adrenocortical disease 

Adrenogonadal Cells

Intermediate
Mesoderm

Coelomic cavity

Adrenogonadal
Primordium

(AGP)

Gonadal
Anlage

mouse
Postnatal

Postnatal
Zonation

Zona Glomerulosa

Zona Fasciculata Medulla

(human)

(28 dpc)

(33 dpc) (48 dpc)

(56 dpc)
E9.0 E14.5

E12.5E10.5

Adrenal
Anlage

Neural Crest Cells
Invade the Anlage

Adrenal Development

Emergence of the
Definitive CortexSomite

Aorta

Cells of the Adrenal Anlage
and Fetal Cortex

Neural Crest Cells

Cells of the Definitive Cortex

Cells of the Gonadal Anlage

Fig. 1.2 Embryonic adrenal development in the mouse. Schematic illustration of the cellular 
changes during mouse and human adrenal development. The adrenogonadal primordium (AGP) 
originates from a thickening of the coelomic epithelium designated by the red dashed circle around 
E9.0 (28 dpc). At E10.5 (33 dpc), the adrenal anlage separates from the AGP and is then invaded 
by neural crest cells, precursors of the medullary chromaffin cells around E12.5 (48 dpc). From 
E14.5 (56 dpc) onward, the fetal cortical cells are slowly replaced by the definitive cortex, which 
gives rise to functional zones around the time of birth. Once formed, the zones are maintained 
throughout life

1 Adrenal Zonation and Development
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(PPNAD), congenital adrenal hyper- and hypoplasia, and adrenocortical carcinoma 
[11]. While the precise mechanisms underlying each of these conditions remain to be 
fully characterized, recent advances in our understanding of the cellular and molecu-
lar mechanisms underlying normal tissue homeostasis have made it possible to begin 
to explore key structure/function relationships within this tissue.

 Adrenal Morphology

The adrenal cortex is an epithelial tissue circumscribed by a mesenchymal capsule 
(Fig.  1.1). The cells of the zG are organized in distinct morphological clusters, 
known as glomeruli, a highly conserved structure [12], which is surrounded by a 
basement membrane and a fenestrated capillary network [13]. zG cells are densely 
packed and contain scant cytoplasm, abundant rough endoplasmic reticulum, and a 
small number of lipid droplets and mitochondria [12, 14, 15]. In contrast, zF cells 
are arrayed in cord-like structures and exhibit distinctly different morphological 
features. zF cells are larger and more loosely packed than zG cells and contain 
extensive smooth endoplasmic reticulum, large gap junctions, numerous lipid drop-
lets, and mitochondria characterized by tubulovesicular cristae [12, 14]. Also, like in 
the zG, zF cells are surrounded by a basement membrane and a rich capillary net-
work. While the cells in the zR are morphologically similar to zF cells, they contain 
fewer lipid droplets with additional lysosomes and lipofuscin pigment granules 
[16]. In mice, X-zone cells are smaller than zF cells, contain an eosinophilic cyto-
plasm, and demonstrate a range of mitochondrial shapes with tubular cristae [6, 17].

 Signaling Pathways and Zonation

The presence of morphologically distinct, yet physically contiguous, adrenocortical 
zones suggests tight regulation of each zone’s identity, relative size, and overall 
function. Recent advances in our understanding of how angiotensin II (AngII), 
potassium ions (K+), and adrenocorticotropic hormone (ACTH) regulate adrenal 
homeostasis may ultimately provide key insights into the origins of adrenal zona-
tion and the dynamic regulation of these zones that occurs in response to physiolog-
ical cues [18–27]. It is likely that multiple signaling pathways also contribute to 
adrenal zonation. Considerable progress has been made regarding the role of the 
canonical Wnt/β-catenin signaling pathway and the role of the ACTH/cyclic ade-
nosine monophosphate (cAMP) pathway in setting the morphological and func-
tional boundaries between the zones [11, 18, 21, 25, 28–34].

The canonical Wnt signaling pathway is active in the outer region of the cortex, 
overlapping with the morphological zG, and drives a transcriptional program that 
facilitates the production of the mineralocorticoid aldosterone [11, 29, 32]. 
Consistent with this, in vitro and in vivo experiments demonstrate that constitutive 
activation of the canonical Wnt pathway leads to an upregulation of aldosterone 

E. Pignatti et al.
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biosynthesis and an expansion of the morphological zG, while inhibition of the 
pathway leads to inactivation of aldosterone biosynthesis and contraction of the zG 
[28–32, 34, 35]. In contrast, the ACTH/cAMP signaling pathway is dominant in the 
zF and mediates the downstream transcriptional effects of ACTH on the synthesis 
and secretion of glucocorticoids [36–38]. Additionally, recent evidence suggests a 
reciprocal inhibitory effect of these two pathways, whereby Wnt signaling main-
tains zG zonal identity and size and also serves to inhibit expression of the zF pro-
gram [30, 34]. Critical mediators of these effects include two key Wnt pathway 
ligands: Rspo3 (secreted from the capsule) and Wnt4 (expressed in the zG). 
Consistent with this, ectopic activation of Wnt signaling inactivates the zF steroido-
genic program [11, 29, 30]. On the other hand, stabilization of the ACTH/cAMP 
signaling pathway results in activation of the zF steroidogenic program and inhibi-
tion of the Wnt signaling pathway leading to contraction of the zG [30, 33].

The overall significance of these signaling pathways in the regulation of adrenal 
homeostasis and zonation is made clear by the effects of somatic gain-of-function 
mutations giving rise to (1) aldosterone-producing adenomas (APAs) (associated 
with aberrant activation of the Wnt pathway) and (2) PPNAD (arising from muta-
tions in PRKAR1A mutations, which leads to constitutive activation of ACTH/
cAMP-dependent signaling) [39, 40].

 Centripetal Migration and Cortical Renewal

Once established, the zG and the zF are continuously renewed throughout life and 
undergo dynamic hormonal feedback regulation. Despite the functional importance of 
these separate layers, surprisingly little is known about the cellular mechanisms that 
underlie their formation and ongoing maintenance. Recently, two members of the sonic 
hedgehog family, GLI1 and SHH, were identified as markers for adrenal progenitor 
cells that reside in the capsule and subcapsular regions (adjacent to the zG), respec-
tively [41]. Consistent with the classical model of centripetal migration [42], proposed 
more than 70 years ago, these progenitor cells give rise to terminally differentiated zG 
cells, which then migrate centripetally and are thought to undergo cell fate conversion 
into zF cells before undergoing apoptosis at the corticomedullary junction [43].

 Generation of Cyp11b2-Cre Mice

To define the molecular and cellular mechanisms underlying adrenal lineage develop-
ment, we recently targeted the Cyp11b2 (aldosterone synthase) locus in mice, to gen-
erate a knock-in/knock-out Cyp11b2-Cre allele (officially known as Cyp11b2tm1.1(cre)
Brit). Combined with other strains, these mice facilitate lineage- tracing, cell fate 
analysis and tissue-specific knock-out studies, specifically within zG cells [20]. 
CYP11B2 is required for the final steps of aldosterone synthesis, and its gene expres-
sion is restricted to terminally differentiated cells in the zG [43], making it a highly 

1 Adrenal Zonation and Development
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specific marker for zG cells. Although given the heterogeneous nature of Cyp11b2 
expression with the zG under normal conditions, it is not as sensitive as other vali-
dated zG markers (e.g., β-catenin, Dab2, Dlk1) [11, 44–47]. Importantly, mice het-
erozygous for the Cyp11b2-Cre allele maintain normal levels of aldosterone and 
plasma renin activity (PRA), essential components of the renin- angiotensin aldoste-
rone system (RAAS), indicating normal feedback regulation is maintained. In con-
trast, mice homozygous for the Cyp11b2-Cre allele are aldosterone deficient and 
demonstrate increase levels of PRA.

 Direct Cell Fate Conversion

To investigate whether zG cells undergo direct cell fate conversion to zF cells, 
lineage- tracing studies were performed by combining Cyp11b2-Cre mice with the 
Rosa26 lineage reporter strain, which expresses membrane-targeted Tomato at 
baseline and expresses membrane-targeted green fluorescent protein (GFP) follow-
ing Cre-mediated recombination (Fig. 1.3a) [20]. These studies revealed activation 
of the endogenous Cyp11b2 locus around the time of birth, and GFP-marked cells 
were entirely restricted to the zG.  During the first few weeks of postnatal 

2 Weeks

a

c

b

zG

zF

zG

zF

6 Weeks

G
F

P
D

A
P

I

Cyp11b2

R26R

R26R

mT

Cre

+ Cre

mG

mG

Fig. 1.3 zG cells give rise to zF cells through direct conversion. (a) Schematic illustration of the 
Cyp11b2-Cre and the Rosa26-mTmG allele (R26R) alleles before and after Cre-mediated LoxP 
recombination, which leads to deletion of mTomato and expression of mGFP. (b) Schematic illus-
tration showing centripetal migration of GFP+ cells from the zG to the zF. (c) Representative 
immunofluorescent images showing centripetal migration of GFP+ cells from the zG (left, 2 weeks 
of age) to the zF (right, 6 weeks of age) in female mice. Scale bar, 50 μm
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development, the zG was progressively marked by GFP expression (Fig.  1.3b), 
which subsequently gave rise to zF cells in a radial fashion, ultimately remodeling 
the entire zF by ~12 weeks of age (Fig. 1.3c) [20]. zG to zF cell fate conversion also 
functions during adrenal regeneration following dexamethasone suppression [20]. 
Together, these observations establish that differentiated zG cells give rise to zF 
cells through a process of direct cell fate conversion during postnatal adrenocortical 
zonation and regeneration, consistent with the model of centripetal migration.

 Role of SF1 in Cell Fate Conversion and zG Homeostasis

Understanding the mechani sms that regulate cell fate conversion has important 
implications for both normal and pathological states. The ability of one differenti-
ated cell to be converted into another differentiated cell type, without passing through 
an undifferentiated state, has been described following the overexpression of spe-
cific transcription factors. For example, fibroblasts can be converted into myoblasts 
following expression of MyoD [48], and embryonic and mesenchymal stem cells 
can be converted into steroid-producing cells following expression of SF1 [49, 50]. 
The observations that SF1 plays a critical role during steroidogenic development and 
is sufficient to activate a steroidogenic program raised the possibility that it may play 
a role in cell fate conversion. Consistent with this, we observed that deletion of SF1 
within zG cells prevented their conversion to zF cells (Fig. 1.4a) [20]. While the 
overall size of the zG remained essentially unchanged, detailed histological analysis 
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Fig. 1.4 Deletion of SF1 impairs zG-to-zF conversion and alters gene expression. (a) 
Representative immunofluorescent images of wild-type and SF1 KO adrenals demonstrating con-
tribution of GFP+ cells to the zF. Note the absence of GFP+ cells in the zF in SF1 KO adrenals. 
Both images are taken from 10-week-old female mice. Scale bar, 50 μm. (b) Heat map representa-
tion of differentially expressed genes from wild-type and SF1 KO whole adrenals. Dendrograms 
represent hierarchical clustering of genes and samples. (c) Select list of genes that are down- or 
up-regulated in SF1 KO whole adrenals compared to wild-type whole adrenals
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revealed that lineage-marked zG cells had a dramatically altered cell shape, raising 
the possibility that these cells had undergone dedifferentiation. In addition, func-
tional analysis revealed a state of compensated hypoaldosteronism, indicated by nor-
mal aldosterone levels and a nearly threefold increase in the levels of PRA.

To identify the mechanisms by which SF1 regulates cell fate conversion and zG 
homeostasis, we performed transcriptome analysis comparing total RNA from SF1 
KO and wild-type adrenals using Affymetrix microarray analysis. Of 35,556 probes 
analyzed, 240 expressed a greater than two-fold difference in expression level and 
105 of those contained unique genes (Fig.  1.4b). Among the genes showing the 
greatest fold changes were members of the Wnt/β-catenin signaling pathway and 
members of the clock gene family (Fig. 1.4c). Both of these pathways have been 
implicated in adrenal homeostasis, though what role they play in zG homeostasis 
and zonation remains largely unknown. Finally, these studies also revealed that zF 
cells were functionally normal, as evidenced by measurement of basal corticoste-
rone secretion, and indicate that an “alternate (zG-independent) pathway” can con-
tribute to zF formation. Exactly how this alternative pathway directs zF formation 
as well as whether it functions during normal adrenal homeostasis remains to be 
determined. One possibility is that when normal tissue homeostasis is severely dis-
rupted, such as in the case of zG-specific SF1 deletion, mesenchymal cells in the 
capsule harboring stem-/progenitor-like potential may become activated to directly 
replenish the zF. Changes in gene expression identified in the microarray analysis 
(Fig. 1.4b) may provide new insight into these mechanisms.

 Conclusions and Future Directions

In summary, the mechanisms underlying adrenocortical homeostasis and zonation 
during postnatal development remain largely unknown, though critical insights have 
recently been made. It is clear, for example, that direct conversion of zG cells into 
zF cells represents the major cellular mechanism by which the cortex is maintained 
under normal homeostatic conditions. However, it remains less clear as to the extent 
zG cells, alone, sustain long-term cortical renewal or to what degree zG cells rely on 
replenishment from the capsule, an important signaling center. Genetic lineage- 
tracing experiments performed by several laboratories have unequivocally demon-
strated that the mesenchymal capsule can serve as a source for cellular replenishment 
for all steroidogenic zones as well as non-steroidogenic stromal cells [9, 41, 51]. 
However, an important issue raised by these studies is that constant centripetal 
migration of cells appears to require a much higher cellular turnover rate than pro-
vided by capsular cell activity. Hence, it is possible that differentiated cortical cells, 
especially the more proliferative zG population, may, in fact, play a key role in sup-
porting the self-renewal of this tissue. Understanding which cells underlie adreno-
cortical self-renewal has important implications for (1) the development of future 
regenerative medicine strategies and for (2) understanding the pathogenesis of 
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adrenal neoplasms. Going forward, the ability to perform “pulse-chase” lineage-
tracing studies utilizing inducible mouse models will help to define the self-renew-
ing potential of mature zG cells and to better understand the mechanisms underlying 
adrenal homeostasis.
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Chapter 2
Regulation of Adrenal Steroidogenesis

Marjut Pihlajoki, Markku Heikinheimo, and David B. Wilson

 Introduction

The adrenal cortex is a major source of steroid hormones. Anatomically and func-
tionally distinct adrenocortical zones synthesize specific classes of steroids in 
response to various stimuli. Adrenal steroids impact a myriad of physiological pro-
cesses in the fetus and adult, including intrauterine homeostasis, organ maturation, 
salt/water balance, carbohydrate metabolism, and the response to stress. This chap-
ter highlights the regulation of steroidogenesis in the adrenal cortex. Diseases asso-
ciated with aberrant production of adrenal steroids are discussed.

 Overview of Adrenal Steroidogenesis

The principal steroid hormones produced by the human adrenal cortex are the min-
eralocorticoid aldosterone, the glucocorticoid cortisol, and the 19-carbon (C19) 
androgen precursor dehydroepiandrosterone (DHEA). Adrenal steroids are synthe-
sized from cholesterol through the sequential actions of a series of cytochrome P450 
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(CYP)-mixed function oxidases and hydroxysteroid dehydrogenases (HSDs) 
(Fig. 2.1) [1]. Steroid hormones are not stored in adrenocortical cells. Instead, adre-
nal steroid secretion relies on de novo synthesis, a process that requires a ready 
supply of cholesterol [2].

To initiate steroidogenesis, cholesterol undergoes facilitated transport from a 
replenishable pool in the outer mitochondrial membrane (OMM) to the inner 
mitochondrial membrane (IMM), where CYP11A1 (side-chain cleavage enzyme) 

Fig. 2.1 Steroid biosynthetic pathways in the human adrenal cortex. Shown are enzymes (underlined) 
and intermediates in the biosynthesis of adrenal steroid hormones. 17α-Hydroxypregnenolone is the 
preferred substrate for the 17,20-lyase reaction of CYP17A1. Consequently, the Δ5 pathway to DHEA 
is favored over the Δ4 pathway to androstenedione. The adrenal gland produces small quantities of 
other steroids not shown here. An expanded view of adrenal androgen production is presented later
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catalyzes the conversion of cholesterol to pregnenolone [1]. Transcription of the 
CYP11A1 gene is regulated in a hormonally-responsive manner and determines 
the net steroidogenic capacity of a cell [3]. Pregnenolone diffuses out of mito-
chondria and serves as the precursor for the ensuing steps of steroidogenesis, 
most of which take place in the endoplasmic reticulum (ER) (Fig. 2.2). The final 
steps of cortisol and aldosterone biosynthesis, catalyzed by the enzymes CYP11B1 
and CYP11B2, respectively, occur in mitochondria. Thus, intermediates in the 
corticoid biosynthetic pathway shuttle between mitochondria and the ER.  The 
electron donors for CYP enzymes in these two cellular compartments are sum-
marized in Table 2.1.

Fig. 2.2 Steroidogenic intermediates shuttle between mitochondria and the ER. The biosynthetic 
pathway for cortisol is shown; similar shuttling takes place during the synthesis of other adrenal 
steroid hormones. Enzymatic reactions that occur in mitochondria are shown in purple, whereas 
those that occur in the ER are in green. Dashed lines indicate passive diffusion across mitochon-
drial membranes. Prepared using image vectors from Servier Medical Art (www.servier.com), 
licensed under the Creative Commons Attribution 3.0 Unported License (http://creativecommons.
org/license/by/3.0/)
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 Zones of the Adrenal Cortex

In both the fetus and adult, the adrenal cortex is divided into concentric zones that 
produce different classes of steroid hormones [4, 5].

 Human Fetal Adrenal Cortex

At the eighth week of human gestation, the fetal adrenal cortex comprises two mor-
phologically distinct layers: an outer definitive zone (Dz) and an inner fetal zone 
(Fz) [6]. The Dz is thin and contains small basophilic cells, whereas the Fz is thick 
and contains large eosinophilic cells (Fig. 2.3). The Dz does not synthesize signifi-
cant amounts of steroid hormones, but the Fz produces large quantities of DHEA 
and its sulfated counterpart DHEA-S.  Cells of the Fz express CYP17A1, a dual 
function enzyme that catalyzes both a 17α-hydroxylation reaction and a 17,20-lyase 
reaction required for C19 steroid production [1]. The lyase reaction is selectively 
enhanced through allosteric interactions with cytochrome b5 (CYB5), a protein that 
is abundant in the Fz [1]. A third cortical zone, the transitional zone (Tz), develops 
shortly after the appearance of the Fz and Dz. The Tz secretes cortisol, a hormone 
that promotes maturation of the lungs and other organs [8].

C19 steroids secreted by the Fz are converted into estrogens through the actions 
of enzymes in the liver and/or placenta. The fetal pituitary, adrenal, liver, and pla-
centa constitute a functional entity known the feto-placental unit [9] (Fig. 2.4). The 
concentration of estrogens in maternal plasma increases abruptly mid-gestation, 
reflecting production by this unit [10]. Estrogens support pregnancy by promoting 
maternal breast development, blood volume expansion, and uterine growth/contrac-
tility, although intact fetal adrenocortical function is not a prerequisite for term ges-
tation or birth [11].

Adrenocorticotropic hormone (ACTH), a peptide secreted by the anterior pitu-
itary gland, is a major regulator of fetal adrenal growth and function. ACTH pro-
motes the production of both C19 steroids and cortisol in the fetal adrenal. Disruption 
of hypothalamic/pituitary function (e.g., in the anencephalic fetus) impairs Fz 
growth and decreases estrogen levels in the maternal circulation [8].

Another important regulator of steroidogenesis in the fetus is placenta-derived 
corticotropin-releasing hormone (CRH), a peptide that both directly and indirectly 

Table 2.1 Cytochrome P450 enzymes involved in adrenal steroidogenesis

CYP 
classification Location Enzyme Electron donor

Type I Mitochondria CYP11A1 NADPH via a flavoprotein (ferredoxin reductase) 
and an iron-sulfur protein (ferredoxin)CYP11B1

CYP11B2
Type II ER CYP17A1 NADPH via a flavoprotein [P450- oxidoreductase 

(POR)]CYP21A2

Each of these enzymes uses molecular oxygen and electrons from nicotinamide adenine dinucleo-
tide phosphate (NADPH) to metabolize substrates

M. Pihlajoki et al.
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Fig. 2.4 Steroid production by the feto-placental unit. Placental CRH and pituitary-derived ACTH 
promote cortisol and DHEA-S secretion by the fetal adrenal gland. DHEA-S is converted into 
estrogens (estradiol and estriol) by enzymes in the liver and placenta. The resultant estrogens sup-
port pregnancy, while cortisol promotes the maturation of the lungs and other organs in the fetus. 
ACTH adrenocorticotropic hormone, CRH corticotropin-releasing hormone, DHEA-S dehydroepi-
androsterone sulfate, 16OH-DHEA-S 16-hydroxydehydroepiandrosterone sulfate. Prepared using 
image vectors from Servier Medical Art (www.servier.com), licensed under the Creative Commons 
Attribution 3.0 Unported License (http://creativecommons.org/license/by/3.0/)

Fig. 2.3 Structure of the human fetal adrenal 
gland. The zones of the fetal cortex are the Dz, 
Tz, and Fz. The Tz and Fz produce cortisol and 
C19 androgen precursors, respectively. An early 
burst of cortisol production by the Tz during 
the 9th week of gestation, coinciding with a 
transient increase in expression of HSD3B2, is 
thought to safeguard female sexual 
development by limiting the production of 
androgen precursors by the Fz [7]. After birth 
the Dz differentiates into the functionally 
distinct zones of the adult cortex. Cap capsule, 
DHEA-S dehydroepiandrosterone sulfate, Dz 
definitive zone, Fz fetal zone, med medulla, Tz 
transitional zone
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