The Aging Skeleton

Edited by Clifford J. Rosen Julie Glowacki John P. Bilezikian

ACADEMIC PRESS

The Aging Skeleton This Page Intentionally Left Blank

The Aging Skeleton

Edited by

Clifford J. Rosen

Maine Center for Osteoporosis Research & Education St. Joseph Hospital Bangor, Maine

Julie Glowacki

Department of Orthopedic Surgery Brigham and Women's Hospital and Massachusetts General Hospital Harvard Medical School and Harvard School of Dental Medicine Boston, Massachusetts

John P. Bilezikian

Department of Medicine Division of Endocrinology College of Physicians & Surgeons Columbia University New York, New York

Academic Press

San Diego New York Boston London Sydney Tokyo Toronto

This book is printed on acid-free paper. $\textcircled{\begin{subarray}{c} \end{subarray}}$

Copyright © 1999 by ACADEMIC PRESS

All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Academic Press

a division of Harcourt Brace & Company 525 B Street, Suite 1900, San Diego, California 92101-4495, USA http://www.apnet.com

Academic Press 24-28 Oval Road, London NW1 7DX, UK http://www.hbuk.co.uk/ap/

Library of Congress Catalog Card Number: 98-89311

International Standard Book Number: 0-12-098655-8

 PRINTED IN THE UNITED STATES OF AMERICA

 99
 00
 01
 02
 03
 04
 QW
 9
 8
 7
 6
 5
 4
 3
 2
 1

Contents

Contributors xiii Foreword xvii Preface xix

<u>Part I</u> GENERAL ASPECTS AND MODELS OF AGING

<u>Chapter 1</u>

Aging through the Ages
Dorothy A. Nelson and Mark L. Weiss
Introduction
Evolutionary Forces and Aging
Genetics and Longevity
Primates
Changing Demographics through the Ages
Low Bone Mass in Past Populations
Altering the Human Life Span
References

CHAPTER 2

Human Aging at the Millennium Sherry Sherman

Aging Is Highly Variable
Aging and Body Composition
Physiological and Functional Changes
Preventing Frailty and Promoting
Successful Aging
Population Aging
References

CHAPTER 3

Aging and Calcium Balance	19
Robert P. Heaney	
Introduction	19
The Calcium Requirement	20
The Calcium Economy	22
Summary	26
References	26

CHAPTER 4

3

Constraints of Experimental Paradigms	Used
to Model the Aging Skeleton	27
Janet Rubin, Harry Rubin, and Clinton Rubin	
Introduction: Bone as a Complex System	27
The Aging Human: Bone Mineral Density Is	
Only Part of Fracture Risk	28
The Aging Rat: Using Animal Models to Stu	dy
Aging in Humans	29
What Is an Aging Cell?	31
An Alternative Approach to Cellular Aging	32
Summary	33
References	34

CHAPTER 5

11	Animal Models of the Aging Skeleton	37
	Dike N. Kalu	
11	Characteristics of Human Skeletal Aging	37
12	The Animal Model Paradox	38
12	Characteristics of a Good Animal Model	38
	Why Animal Models of the Aging Skeleton	
15	Are Required	39
15	Candidate Animal Models of Aging Bone Loss	39
16	Other Animal Models of Bone Loss	45

Large Nonrodent Animal Models of Aging	
Bone Loss	
Summary	
References	

CHAPTER 6

Human Diseases as Models of Accelerated Aging

Axecolorated Axenig
Ionathan M. Weiner and Loren G. Lipson
The Aging Imperative
The Mechanism of Aging
Diseases That Can Accelerate the
Aging Process
Summary
References

CHAPTER 7

Cellular Models of Human Aging	59
Julie Glowacki	
Introduction	59
Replicative Senescence	59
Telomere Length	62
Gene Expression	64
Functional Senescence in Vitro	66
Cellular Aging in Progeria and	
Werner Syndromes	68
Summary	69
References	70

PART II

DETERMINANTS OF PEAK BONE MASS; MAINTENANCE OF PEAK BONE MASS

CHAPTER 8

Genetic Determinants of the Population Variance in Bone Mineral Density	77
Ego Seeman	•••
The Question	77
Is "BMD" a Suitable Phenotypic End Point?	78
Relative Growth in Bone Mass and Size	
Determines Volumetric BMD	78
Polymorphisms and Growth	80
Hip Axis Length and Genotypes	82
Issues in Study Design That May Partly	
Account for Discrepant Associations between	
BMD and Genotypes	83
Bone Loss and Genotypes	84
Vagaries of the Notion of Bone "Loss"	85
Calcium Absorption and Genotypes	85

and Genotunes	86
and Genotypes	00
BMD Responses to Intervention and Genotypes	80
Fracture Rates and Genotypes	86
Confounding	87
The Misleading Notion of Heritability	87
Genetic and Environmental Components of	
Variance in Areal BMD	88
Summary	91
References	92

Nutritional Determinants of Peak

Bone Mass

Tom Lloyd and Deborah Cardamone Cusatis	
Timing of Adolescent Bone Gain	95
Secular Trends in Diets of Young Women	95
Candidate Nutrient–Bone Relationships	96
Nutrient Intake Assessments	96
Relationships among Adolescent Bone Gain	
and Specific Nutrients	96
Total Body Bone Gain and Calcium Intake by	
Adolescent Females during Ages 12-18	97
Total Body Bone Gain and Hip Density as a	
Function of Sodium Intake	97
Total Body Bone Gain and Hip Density as a	
Function of the Calcium/Protein Ratio	98
Total Calories per Kilogram during Ages 12-18	
and Bone Gain	98
Discussion	99
Other Nutrients and Adolescent Bone Gain	100
Calcium Intakes, Absorbability, Retention,	
and Bone Accretion	100
References	101

CHAPTER 10

Mechanical Determinants of Peak

Bone Mass	105
Marjolein C. H. van der Meulen and Dennis R. Carter	
Introduction	105
Mechanical Mechanisms of Bone	
Mass Acquisition	106
Clinical Studies of Accretion of Bone Mass	110
Summary	112
References	112

CHAPTER 11

Hormonal Influences on the Establishment

of Peak Bone Mass	115
Michelle P. Warren	
Introduction	115
Formation of Bone Mass	115
Models Where Peak Bone Mass Is Altered	116

Summary	122
References	122
CHAPTER 12	
Racial Determinants of Peak	
Bone Mass	127
L. Lyndon Key and Norman H. Bell	
Introduction	127
African Americans	127
Asian Indians and Pakistanis	131
Other Races	131
Summary	132
References	132
<u>Chapter 13</u>	
Determinants of Maintenance of	
Bone Mass	137
Daniel T. Baran	
Introduction	137
Premenopausal Bone Loss	137
Dietary Calcium and Premenopausal	
Bone Loss	138
Exercise, Menstrual Status, and Premenopausal	

Bone Mass	137
Daniel T. Baran	
Introduction	137
Premenopausal Bone Loss	137
Dietary Calcium and Premenopausal	
Bone Loss	138
Exercise, Menstrual Status, and Premenopausal	
Bone Mass	139
Summary	140
References	140

PART III

MECHANISMS OF AGE-RELATED BONE LOSS

CHAPTER 14

Cellular Mechanisms of Age-Related Rone Loss

Bone Loss	145
Pamela Gehron Robey and Paolo Bianco	
Introduction	145
Bone Turnover and Aging	145
Osteoblastic Cells	146
Osteoclasts	152
Summary	154
References	154
0 15	

CHAPTER 15

Sex Steroids, Bone, and Aging

Meryl S. LeBoff and Julie Glowacki	
Introduction	159
Menopause	159
Andropause	163
Adrenopause	167
Summary	169
References	170

CHAPTER 16

Parathyroid Hormone

Shonni J. Silverberg and John P. Bilezikian	
Introduction	175
Parathyroid Hormone and Normal Aging	175
Parathyroid Hormone and Osteoporosis	177
Parathyroid Hormone and Estrogen	180
Summary	181
References	182

CHAPTER 17

Vitamin D	185
F. Michael Gloth, III	
Introduction	185
Consequences of Vitamin D Deficiency	186
Vitamin D Requirements in the Elderly	189
Summary	190
References	191

CHAPTER 18

Cytokines and Prostaglandins in the	
Aging Skeleton	195
Mark C. Horowitz and Lawrence G. Raisz	
Cytokines and the Aging Skeleton	195
Prostaglandins and the Aging Skeleton	200
References	202

CHAPTER 19

Role of Growth Hormone/Insulin-like

Growth Factor Axis	209
Subburaman Mohan and David J. Baylink	
Introduction	209
Role of GH/IGF Axis in the Regulation of	
Bone Formation	209
Age Changes in GH Secretion:	
Potential Mechanisms	212
Age Changes in IGF System Components:	
Potential Mechanisms	213
Model of Age Changes in the GH/IGF	
Axis and the Age-Related Impairment in	
Bone Formation	215
Summary	217
References	217

CHAPTER 20

159

Other Pharmacologic Agents Influencing

Bone Loss	221
Paula H. Stern and Peter Lakatos	
Introduction	221
General Pharmacokinetic Issues	221
Pharmacologic Agents	222
Summary	225
References	226

175

CHAPTER 21

Nutritional Mechanisms of Age-Related **Bone Loss**

Bone Loss	229
Iohn J. B. Anderson	
Introduction to Nutrient-Induced Osteopenia	229
Excessive Animal Protein Intake	229
Excessive Sodium Intake and Inadequate	
Potassium Intake	230
Inadequacies of Other Nutrients	230
Excessive Fluoride Ingestion	231
Bone-Related Food Issues of the Elderly in	
Technologically Advanced Nations	231
Intake Recommendations for Bone Health	232
Summary	233
References	234

PART IV **QUANTIFIABLE MANIFESTATIONS OF AGE-RELATED BONE LOSS**

CHAPTER 22

Racial/Ethnic Influences on Risk of Osteoporosis v:n athu A Mal D_{0}

Dorothy A. Nelson and Marie Luz Villa
Introduction
Factors Affecting Bone Mass
Bone Geometry
Ethnic Differences in Rates of Hip Fracture
Summary
References

CHAPTER 23

Histomorphometric Manifestations of	
Age-Related Bone Loss	251
Juliet Compston	
Introduction	251
Bone Remodeling and Turnover	251
Mechanisms of Bone Loss	252
Effects of Bone Loss on Bone Structure	252
Histomorphometric Assessment of Age-Rela	ited
Bone Loss in Humans	253
Techniques and Limitations of	
Bone Histomorphometry	253
Histomorphometric Assessment of	
Bone Turnover	254
Histomorphometric Assessment of	
Remodeling Balance	254
Histomorphometric Assessment	
of Mineralization	255

Assessment of Cancellous Bone Structure	255
Age-Related Changes in Cancellous and	
Cortical Bone	255
Age-Related Changes in Bone Turnover	255
Age-Related Changes in Mineralization	256
Age-Related Changes in Remodeling Balance	256
Age-Related Changes in Cancellous	
Bone Structure	257
Microfractures	259
Relationship of Primary Osteoporosis to	
Age-Related Bone Loss	259
References	259
CHAPTER 24	
Den side and a static Manifestations in Ago Dol	atad

Densitometric Manifestations in Age-Related

Bone Loss	263
Carlos A. Mautalen and Beatriz Oliveri	
Introduction	263
Effect of Aging on the Vertebral Skeleton	265
Effect of Aging on the Proximal Femur	266
Effect of Aging on Total Skeleton Bone	
Mineral Density	269
Effect of Age on Ultrasound Values	270
Effect of Aging on Bone Mineral Density	
by QCT	272
Summary	273
References	274

CHAPTER 25

237

237

238

243

243

245

245

277 **Biochemical Dynamics** Markus J. Seibel, Simon P. Robins, and Caren M. Gundberg 277 Introduction 278 **Biochemical Markers of Bone Formation** 281 **Biochemical Markers of Bone Resorption** Effects of Normal Aging on Bone Turnover 284 Biochemical Dynamics of Bone Turnover in Postmenopausal and Age-Related 285 Osteoporosis 291 Summary 291 References

CHAPTER 26

B

Biomechanical Measurements in	
Age-Related Bone Loss	301
David B. Burr and Charles H. Turner	
Introduction	301
Biomechanical Measurements and Concepts	301
Mechanical Strength of Bone Declines	
with Age	302
Quality of Bone Tissue Deteriorates	
with Age	304
Fracture Toughness of Human Bone	
Declines with Age	306

Fatigue Properties of Bone Decrease	
with Age	307
Age-Related Structural Compensations for	
Reduced Mechanical Strength	307
Summary	309
References	309

PART V

FRACTURES: A CONSEQUENCE OF THE AGING SKELETON

CHAPTER 27

Application of Biomechanics to the Aging **Human Skeleton** 315

Mary L. Bouxsein	
Introduction	315
Age-Related Changes in the Mechanical	
Properties of Bone as a Material	316
Age-Related Changes in Bone Geometry	318
Biomechanics of Hip Fractures	320
Biomechanics of Vertebral Fractures	324
Summary	326
References	327

CHAPTER 28

What Is a Fragility Fracture? 333 Richard D. Wasnich 333 Trauma Categorization 333 Bone Density Categorization 334 Fracture Classification Prognostic Implications of a Fragility Fracture 336 References 337

CHAPTER 29

Epidemiology and Consequences of Osteoporotic Fractures

Philip D. Ross, Arthur Santora, and A. John Yates
Health Care Costs of Osteoporotic Fractures
How Common Is Osteoporosis?
Mortality and Morbidity
Risk Factors for Bone Loss and Fractures
References

<u>**Chapter 30**</u>

Osteoporosis and Fragility Fractures in the Elderly Michael C. Nevitt

349
349

Frequency and Economic Cost of	
Osteoporotic Fractures	351
Lifetime Risk of Fracture	352
Heterogeneity in the Relationship of Different	
Types of Fractures to Gender, Age, and	
Bone Density	353
Possible Causes of Heterogeneity in	
Age-Related Fractures	354
Summary	355
References	356

CHAPTER 31

339

339

339 341

342

345

349

The Aging Maxillofacial Skeleton

Meredith August and Leonard B. Kaban	
Introduction	359
Skeletal Changes from Birth to Maturity	359
Skeletal Changes after Maturity Associated	
with Tooth Loss	361
Skeletal Changes after Maturity without	
Tooth Loss	362
Changes in the Temporomandibular Joint	
Associated with Aging	363
Changes in Bite Force and Chewing	
Efficiency with Age	364
Osteoporosis and Metabolic Bone Disease:	
Effects on the Maxilla and Mandible	365
Changes in Dentition with Aging	368
Summary	369
References	370

CHAPTER 32

Fractures: Effects on Quality of Life	373
Deborah T. Gold and Kenneth W. Lyles	
Introduction	373
Osteoporotic Fractures	373
Quality of Life: A Definition	374
Dimensions of Quality of Life	374
Future Directions	380
References	381

CHAPTER 33

General Orthopedic Principles	383
Leffrey D. Moffett and Thomas A. Finhorn	

Jejjrey D. Mojjen una Thomas A. Ennom	
Introduction	383
Fractures in the Aging Skeleton	383
Guidelines for the Management of	
Osteoporotic Fractures	384
Lower Extremity Fractures	384
Upper Extremity Fractures	392
Spine and Pelvis Fractures	395
Future Directions in the Treatment of	
Osteoporotic Fractures	396
-	

359

Summary	396
References	396

CHAPTER 34

Nutritional Approaches to Healing Fractures in the Elderly 399

René Rizzoli and Jean-Philippe Bonjour	
Introduction	399
Protein and Bone Mineral Mass Acquisition	399
Protein Malnutrition	400
Nutritional Control of Insulin-like Growth	
Factor-I and Bone Homeostasis	401
Outcome of Fracture of the Proximal Femur	403
Summary	405
References	405

CHAPTER 35

Analgesic Management411Peter Leong and Kathleen Forti-Gallant411Introduction411Fractures and Pain Assessment411Treatment Modalities412Summary417References417

Part VI Therapeutics

CHAPTER 36

Complications of Joint Replacement in	
the Elderly	421
Mitchell J. Winemaker and Thomas S. Thornhill	
Introduction	421
Results of Joint Replacement	421
Patient Considerations	422
Surgical Considerations	425
Summary	437
References	437

CHAPTER 37

Shape	and	Size	of	an	
Ostoo	oro	tic W	on	nan	

Osteoporotic Woman	441
Mehrsheed Sinaki	
Introduction	441
Musculoskeletal Consequences	
of Osteoporosis	441
Hyperkyphosis and Falls	445
Camouflaging Postural Disfiguration	447
Exercise and the Osteoporotic Spine	449
References	451

<u>Chapter 38</u>

Prevention of Falls 453

Douglas P. Kiel	
Introduction	453
Epidemiology of Falls	453
Etiology of Falls	454
Clinical Approach	457
Treatment and Prevention	459
Clinical Guidelines	463
Summary	464
References	464

CHAPTER 39

The Impact of Physical Activity on

Age-Related Bone Loss	467
Belinda Beck and Robert Marcus	
Introduction	467
The Nature of Age-Related Bone Loss	467
Skeletal Effects of Mechanical Loading	468
Effects of Physical Activity on Aging Bone	469
Impact of Physical Activity on Falling	
and Fracture	474
Therapeutic Recommendations	474
Summary	475
References	475

CHAPTER 40

The Rationale for Calcium

Supplementation in the Therapeutics of
Age-Related Osteoporosis479

R. L. Prince	
Calcium and the Aging Skeleton: Rationale	
for Increasing Dietary Calcium Intake	479
Calcium Balance: Extracellular Space versus	
Whole Body	479
Determinants of Gut Calcium Absorption	482
Role of the Kidney in Extracellular	
Calcium Balance	487
Clinical Data on the Effectiveness of Calcium	
Supplementation	489
References	491

<u>Chapter 41</u>

Estrogen	495
Robert Lindsay and Felicia Cosman	
Introduction	495
Estrogen and Growth	495
Premenopausal Women	496
Postmenopausal Women	496
Estrogen Replacement	498

Fracture Outcomes	499
Estrogens in Older Age	501
References	501

CHAPTER 42

Selective Estrogen Receptor Modulators 507

Ethel S. Siris, Debra H. Schussheim, andDouglas B. MuchmoreIntroduction507Concept of a SERM507Mechanism of Action of SERMs508Tamoxifen512Raloxifene514References518

CHAPTER 43

Androgens

Eric Orwoll	
Mechanisms of Androgen Action in Bone:	
The Androgen Receptor	521
Metabolism of Androgens in Bone:	
Aromatase and 5α -Reductase Activities	522
Effects of Androgens on the Cellular Biology	
of Bone	522
Androgen Effects on Bone: Animal Studies	523
Effects of Androgens on the Skeleton in Men	525
Influence of Androgens on Bone in Women	528
Androgen Therapy: Potentially Useful	
Androgen Effects	529
Androgen Replacement in Hypogonadal	
Adult Men	530
Androgen Therapy in Eugonadal Men	532
Androgen Replacement in Adolescence	532
Androgen Replacement in Aging Men	533
Androgen Therapy in Secondary Forms of	
Metabolic Bone Disease	533
Androgen Therapy in Women	534
Therapy with Other Androgens	535
Research Directions	535
References	535

<u>CHAPTER 44</u> Bionhamhanatac

Bisphosphonates	541
Socrates E. Papapoulos	
Introduction	541
Chemistry and Pharmacology	541
Bisphosphonates in Osteoporosis	544
Antifracture Efficacy of	
Bisphosphonate Treatment	544
Glucocorticoid-Induced Osteoporosis	545
Safety and Tolerability	546

Summary	547
References	547

CHAPTER 45

Calcitonin551Catherine E. Waud and John L. Stock551Introduction551Effects of Aging and Hormonal Status
on Calcitonin552Efficacy of Calcitonin in the Prevention and
Treatment of Postmenopausal Osteoporosis553Summary558References558

CHAPTER 46

Parathyroid Hormone

А.	B. Hodsman, L. J. Fraher, and P. H. Watson	
	Introduction	563
	Advantages of Anabolic Agents for Reversal	
	of Osteoporosis	563
	Potential Mechanisms of Anabolic Action	564
	Animal Models of PTH Effects on	
	Bone Metabolism	565
	Clinical Experience of PTH Therapy in	
	Osteoporotic Subjects	566
	Analysis of Concurrent Therapies Used with	
	PTH Protocols	572
	Pharmacokinetics of PTH Administration	573
	Immunological Responses to Exogenous PTH	574
	Side Effects during PTH Therapy	574
	Summary	574
	References	575

CHAPTER 47

Growth Hormone and Insulin-like GrowthFactor I as Therapeutic Modalities forAge-Related Osteoporosis579Leah Rae Donahue and Clifford J. Rosen570

Introduction	579
IGF-I and Its Regulatory Components	580
IGF-I and Age-Related Osteoporosis	580
GH or IGF-I as Therapeutic Options	
for Osteoporosis	582
GH/IGF-I as Short-Term Treatment of	
Catabolic States Associated	
with Osteoporosis	583
Disadvantages of rhGH or rhIGF-I Treatment	
for Age-Related Osteoporosis	584
Summary	584
References	584

Chapter 48	
Fluoride Therapy of	
Established Osteoporosis	:
KH. William Lau and David J. Baylink	
Introduction	
Anabolic Actions of Fluoride	
Fluoride Pharmacokinetics	
Therapeutic Serum Level of Fluoride	
Skeletal Response to Fluoride Therapy	
Side Effects of Fluoride Therapy	
Efficacy of Fluoride Therapy	
Strategies to Improve Fluoride Therapy	
Summary	
References	

<u>CHAPTER 49</u> Vitamin D

	Vitamin D	613
587	Murray J. Favus	
	Introduction	613
587	Evidence for Altered Vitamin D Metabolism	
587	in Aging	613
591	Vitamin D Efficacy in the Treatment	
593	of Osteoporosis	617
595	Summary	620
599	References	620
601		
604		
607		

Index

Contributors

John J. B. Anderson

Department of Nutrition, Schools of Public Health and Medicine, University of North Carolina, Chapel Hill, North Carolina 21599

Merredith August

Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114

Daniel T. Baran

Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical Center, Worcester, Massachusetts 01655

David J. Baylink

Departments of Medicine and Biochemistry, Jerry L. Pettis VA Medical Center, Loma Linda, California 92357

Belinda Beck

Geriatrics Research, Education and Clinical Center, Veterans Affairs Medical Center, Palo Alto; and Department of Medicine, Stanford University, Stanford, California 94304

Norman H. Bell

Department of Pediatrics, Medicine and Pharmacology, Medical University of South Carolina and Department of Veterans Affairs Medical Center, Charleston, South Carolina 29401

Paolo Bianco

Department of Experimental Medicine, University of Aquila, L'Aquila, Italy

John P. Bilezikian

Division of Endocrinology, Columbia University College of Physicians and Surgeons, New York, New York

Jean-Philippe Bonjour

Department of Internal Medicine, World Health Organization Collaborating Center for Osteoporosis and Bone Diseases, University Hospital, Geneva, Switzerland

Mary L. Bouxsein

Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215

David B. Burr

Departments of Anatomy and Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202

Dennis R. Carter

Biomechanical Engineering Division, Stanford University, Stanford, California 94305; and Rehabilitation R&D Center, Department of Veterans Affairs, Palo Alto, California 94304

Juliet Compston

School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom

Felicia Cosman

Clinical Research Center, Helen Hayes Hospital, West Haverstraw, New York

Deborah Cardamone Cusatis

Department of Health Evaluation Sciences, Hershey Medical Center, Penn State College of Medicine and University Hospitals, Hershey, Pennsylvania 17033

Leah Rae Donahue

The Jackson Laboratory, Bar Harbor, Maine

Thomas A. Einhorn

Department of Orthopedic Surgery, Boston University School of Medicine, Boston, Massachusetts 02118

Murray J. Favus

Bone Program, University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637

Kathleen Forti-Gallant

Pain Program, Penobscot Pain Management, Bangor, Maine 04402

L. J. Fraher

Department of Medicine and the Lawson Research Institute, St. Joseph's Health Centre, and the University of Western Ontario, London, Ontario, Canada N6A 4V2

F. Michael Gloth

Department of Geriatrics, Union Memorial Hospital and Johns Hopkins University School of Medicine, Baltimore, Maryland 21218

Julie Glowacki

Skeletal Biology Laboratory, Brigham and Women's Hospital and Massachusetts General Hospital, Boston, Massachusetts

Deborah T. Gold

Department of Psychiatry and Behavioral Sciences; Center for the Study of Aging and Human Development; and Department of Sociology, Duke University, Durham, North Carolina 27708

Caren M. Gundberg

Department of Orthopedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut 06520

Robert P. Heaney

Creighton University, Omaha, Nebraska 68131

A. B. Hodsman

Department of Medicine and the Lawson Research Institute, St. Joseph's Health Centre, and the University of Western Ontario, London, Ontario, Canada N6A 4V2

Mark C. Horowitz

Department of Orthopedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut 06510

Leonard B. Kaban

Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114

Dike N. Kalu

Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78284

L. Lyndon Key

Department of Pediatrics, Medicine and Pharmacology, Medical University of South Carolina and Department of Veterans Affairs Medical Center, Charleston, South Carolina 29401

Douglas P. Kiel

Harvard Medical School Division on Aging and Hebrew Rehabilitation Center for Aged Research and Training Institute, Boston Massachusetts 02131

Peter Lakatos

Department of Medicine, Semmelweis University Medical School, Budapest, Hungary

K.-H. William Lau

Departments of Medicine and Biochemistry, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California 92357

Meryl S. LeBoff

Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115

Peter Leong

Pain Program, Penobscot Pain Management, Bangor, Maine 04402

Robert Lindsay

Clinical Research Center, Helen Hayes Hospital, West Haverstraw, New York

Loren G. Lipson

Division of Geriatric Medicine, Department of Medicine, University of Southern California School of Medicine, Los Angeles, California

Tom Lloyd

Department of Health Evaluation Sciences, Hershey Medical Center, Penn State College of Medicine and University Hospitals, Hershey, Pennsylvania 17033

Kenneth W. Lyles

Duke University Medical Center, Durham, North Carolina; and GRECC, VA Medical Center, Durham, North Carolina 27705

Robert Marcus

Geriatrics Research, Education and Clinical Center, Veterans Affairs Medical Center, Palo Alto, and Department of Medicine, Stanford University, Stanford, California 94304

Carlos A. Mautalen

Clinical Hospital, University of Buenos Aires, Buenos Aires, Argentina

Jeffrey D. Moffett

Department of Orthopedic Surgery, Boston University School of Medicine, Boston, Massachusetts 02118

Subburaman Mohan

Jerry L. Pettis VA Medical Center, Loma Linda University, Loma Linda, California 92357

Douglas B. Muchmore

Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285

Dorothy A. Nelson

Department of Anthropology and Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201

Michael C. Nevitt

Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94105

Beatriz Oliveri

Clinical Hospital, University of Buenos Aires, Buenos Aires, Argentina

Eric Orwoll

Oregon Health Sciences University, Endocrinology and Metabolism, Portland VA Medical Center, Portland, Oregon 97207

Sacrates E. Papapoulos

Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, The Netherlands

R. L. Prince

University Department of Medicine, University of Western Australia and Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009

Lawrence G. Raisz

Department of Endocrinology, University of Connecticut Health Center, Farmington, Connecticut

René Rizzoli

Department of Internal Medicine, World Health Organization Collaborating Center for Osteoporosis and Bone Diseases, University Hospital, Geneva, Switzerland

Pamela Gehron Robey

National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892

Simon P. Robins

Rowett Research Institute, Bucksburn University, Aberdeen, Scotland

Clifford J. Rosen

Maine Center for Osteoporosis Research, Bangor, Maine 04401

Philip D. Ross

Scientific Publications Group, Merck & Co., Inc., Rahway, New Jersey

Clinton Rubin

Musculo-Skeletal Research Laboratory, Program in Biomedical Engineering, State University of New York-Stony Brook, Stony Brook, New York 11794

Harry Rubin

Department of Molecular and Cell Biology and Virus Laboratory, University of California, Berkeley, California 94720

Janet Rubin

Department of Medicine, Emory University School of Medicine and Veterans Affairs Medical Center, Atlanta, Georgia 30033

Arthur Santora

Scientific Publications Group, Merck & Co., Inc., Rahway, New Jersey

Debra H. Schussheim

Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032

Ego Seeman

Austin and Repatriation Medical Centre, University of Melbourne, Melbourne, Australia

Markus J. Seibel

Department of Medicine, College of Physicians and Surgeons, University of Heidelberg Medical School, Heidelberg, Germany

Sherry Sherman

Clinical Endocrinology and Osteoporosis Research, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892

Shonni J. Silverberg

Department of Medicine, Columbia University, New York, New York 10032

Mehrsheed Sinaki

Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota 55905

Ethel S. Siris

Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, and Toni Stabile Center for the Prevention and Treatment of Osteoporosis, Columbia-Presbyterian Medical Center, New York, New York 10032

Paula H. Stern

Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois

John L. Stock

The Medical Center of Central Massachusetts, University of Massachusetts Memorial Health Care, Worcester, Massachusetts

Thomas S. Thornhill

Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts

Charles H. Turner

Department of Orthopaedic Surgery and Mechanical Engineering, Biomechanics and Biomaterials Research Center, Indiana University School of Medicine, Indianapolis, Indiana 46202

Marjolein C. H. van der Meulen

Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853

Marie Luz Villa

Department of Medicine, University of Washington School of Medicine, Mercer Island, Washington 98040

Michelle P. Warren

Department of Obstetrics and Gynecology, College of Physicians and Surgeons, Columbia University, New York, New York 10032

Richard C. Wasnich

Hawaii Osteoporosis Center, Honolulu, Hawaii 96814

P. H. Watson

Department of Medicine and the Lawson Research Institute, St. Joseph's Health Centre, and the University of Western Ontario, London, Ontario, Canada N6A 4V2

Catherine E. Waud

The Medical Center of Central Massachusetts, University of Massachusetts Memorial Health Care, Worcester, Massachusetts

Jonathan M. Weiner

Division of Geriatric Medicine, Department of Medicine, University of Southern California School of Medicine, Los Angeles, California 90033

Mark L. Weiss

Department of Anthropology and Department of Internal Medicine, Wayne State University, Detroit, Michigan 48201

Mitchell J. Winemaker

Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115

A. John Yates

Scientific Publications Group, Merck & Co., Inc., Rahway, New Jersey

Foreword

This remarkably substantive textbook provides a clear testament to how much new knowledge has been gained over the past 15 years on the causes and treatments of osteoporosis and other bone diseases of the elderly. These advances have all come about by a converging development of expanding activities by several diverse, but complementary, organizational forces that support research: (1) scientific societies; (2) governmental agencies supporting biomedical research; (3) the pharmaceutical and biotechnology industries; and (4) new and vital voluntary health agencies. A generation ago, it was largely held that osteoporosis was, for the most part, the inevitable consequence of aging. Much excellent research on calcium metabolism had pointed to an imbalance. That osteoporosis was largely a disease of elderly women was ascribed to the menopause with its attendant estrogen loss.

It all started in the late 1970s. The "bone doctors" in the Endocrine Society formed their own new scientific association, the American Society for Bone and Mineral Research (ASBMR), recruiting relevant basic and clinical scientists to join them in their work. The growth of the ASBMR has been nothing less than spectacular, with even more abstracts of higher quality competing for presentation at annual scientific meetings, and the creation and success of its *Journal of Bone and Mineral Research*. Even more recently in the 1990s, the International Society for Clinical Densitometry was useful with similarly spectacular growth.

Several initiatives on bone biology and its diseases were launched by the National Institutes of Health (NIH). The NIDDK, NIAMD, and NIDR had been supporting excellent intramural programs of research on bone and bone diseases. In the 1980s other institutes developed new programs targeted to bone research. The new NIAMS (I was its first director) established a new extramural program on bone biology and bone diseases with superb new leadership and became the fastest growing extramural research program in the Institute. The National Institute of Aging (NIA) also formed new programs (e.g., on menopause, frailty, basic biology), as did other Institutes. In 1993, a Federal Working Group on Bone Diseases was formed, with 15 different agencies participating in information exchange and forging collaborative activities. One landmark was the 1984 NIH Consensus Development Conference on Osteoporosis, chaired with great expertise by Dr. William A. Peck; it was a broad-ranging conference that informed both the public and professionals on the importance of hormonal replacement therapy and sufficient calcium intake to combat bone loss and recommended many new directions for research. The NIH investment in research on bone and osteoporosis has grown sharply since that time. Important research advances have been achieved; most are very well documented in this text on the aging skeleton. Moreover, public interest has risen greatly. For example, as a result of the NIH Conference on Optimal Calcium Intake in 1994, so ably chaired by Dr. John Bilezikian, the elderly have responded by increasing their intake of both calcium and vitamin D.

The major contributions of the pharmaceutical industry to the prevention and treatment of osteoporosis deserve emphasis. This excellent textbook documents the research advances that have been made. To mention a few, let us note briefly the development of calcitonin, both by injection and by nasal spray, of bisphosphonates, and of estrogen analogues.

Major contributions have also been made by the biotechnology industry in terms of accurate and precise measures of bone density by dual energy X-ray absorptiometry (DXA) and ultrasound, and new useful biochemical measurements of bone turnover. Appropriately, an entire section of this textbook is devoted to the topic of quantifying the amount and dynamics of bone loss.

In addition, organizations were created to educate the public and professionals about the issues and new developments and to arouse public interest in supporting research on osteoporosis and other bone diseases. These organizations include The National Osteoporosis Foundation, The Paget's Disease Foundation, The Osteoporosis Imperfecta Foundation, and others. Older organizations such as The National Dairy Council renewed its efforts to educate the public in skeletal health. As a result of their dedication and drive, public interest and the number of publications in the various media in this field have soared.

This textbook has been organized in a very effective manner. In the first section, aging is discussed both generally and in terms of the aging skeleton, with separate chapters on cellular, animal, and human models. In the second section, the important concepts of achieving peak bone mass by the end of the third human decade are discussed in detail, with individual chapters on racial, genetic, nutritional, hormonal, and mechanical determinants of peak bone mass. The importance of making every effort to maintain bone mass after 30 years of age is introduced. The many different mechanisms that participate in age-related bone loss are discussed individually in the chapters contained in Section III. In addition to novel perspectives on the "standard topics" of sex steroids, parathyroid hormones, and nutrition, other chapters describe recent interest in cytokines, prostaglandins, growth hormones, and pharmacologic agents. Section IV describes several new methods that have been developed to measure quantitatively, often with great precision, bone mass. Perhaps primary among these has been the development and clinical application of bone densitometry with new technologies such as DXA and ultrasound. Bone densitometry now provides major, essential guideposts to the treatment and prevention of osteoporosis and other bone diseases in our senior citizens. A testament to the importance of these new methods is the creation of a new scientific publication, *The Journal of Clinical Densitometry*, edited by Dr. Clifford J. Rosen.

The final two sections cover the consequences to the patient of bone loss (fractures) and the many methods of treating (and preventing) bone loss and osteoporosis. The discussion of fractures is thorough, including a definition of frailty fractures (more challenging than one might expect); fractures at different anatomic sites; effects of fractures on quality of life; and management issues with respect to orthopedics, pain, and nutrition. Section VI, on therapeutics, is exceptionally comprehensive, reflecting the many scientific advances that have been accomplished in this field in recent years. The rationales for calcium supplementation and vitamin D are discussed individually, as are the important benefits of estrogen replacement. There are excellent chapters on bisphosphonates, calcitonin, and the "paradoxical" efficacy of parathyroid hormone treatment. Promising yet controversial therapeutic approachesfluorides, and rogens, and growth hormones and growthfactors-are also covered individually. Also discussed are the prevention of falls and the impacts of different types of physical activity on bone and bone loss. As a result of the many recent advances in treatment as described in the text, physicians now have at hand a strong armamentarium of agents with which to prevent, and with some agents to reverse, the bone loss of the aging skeleton.

And last, the editors of this textbook deserve to be congratulated on their success in recruiting such a high caliber of contributing authors (authorities) for this volume. They are virtually all national and international leaders, constituting a "Who's Who" in bone and mineral research and related topics.

LAWRENCE E. SHULMAN, M.D., PH.D.

BETHESDA, MARYLAND

Preface

Our understanding of the basic and clinical aspects of bone biology has advanced remarkably in the past decade. In part this advance has been driven by an astonishing increase in the prevalence of osteoporosis due to the "graying" of the world's population, as well as by a heightened awareness of the disease. Equally important, the medical, social, and economic impact of osteoporotic fractures has finally been confirmed. Although it is likely that osteoporosis has existed for centuries, we are now entering a new millennium not only with the hope of effectively managing the consequences of this disease but also with the promise of its potential eradication. This book summarizes and organizes our progress in defining the complex and multifactorial events that contribute to age-related bone disease. In addition, a third of this text is devoted to a comprehensive therapeutic approach for clinicians faced with the unique problems that elderly osteoporotic individuals face on a daily basis.

In retrospect, it is easy to see how this book was born. Yet, a decade ago it would have been inconceivable even to propose a comprehensive treatise about the aging skeleton. Although low bone mass and increased skeletal fragility characterized the aging process, little else was clear. A mere 10 years ago, many clinicians and most scientists viewed osteoporosis as a normal consequence of aging rather than as a disorder with distinct pathophysiological features. There were no therapeutic paradigms for those who had sustained disabling spine and hip fractures. Worse, few older women were ever considered for treatment. Preventive strategies in this age group were not even on the "radar screen." Also, efforts to discern pathogenic pathways on a molecular or cellular level were embryonic. Moreover, little was known about the physiology of skeletal remodeling in the elderly. Clearly, times have changed. In fact, large

longitudinal and cross-sectional studies of the elderly, along with newer tools to define bone remodeling, have pointed the way to a clearer understanding of the disease for all individuals. Thus, it is entirely fitting that we commit an entire textbook to delineating the mechanisms and consequences of skeletal aging.

This book is divided into six sections. Together they represent an integration of fundamental biology, epidemiology, and clinical medicine. This alignment matches the perspectives and expertise of the editors, who felt that a comprehensive review of the aging skeleton mandated this approach. In the first section, chapters focus on the general aspects of aging in higher organisms and the application of specific models of senescence to skeletal determinants such as calcium balance and remodeling. Use of *in vitro* and *in vivo* systems, with their strengths and limitations, provides an important backdrop for the next sections and introduces the reader to the rest of the book.

Bone mass is determined by the balance between peak acquisition during adolescence and maintenance throughout adult life. In the second and third sections, nutritional, heritable, environmental, mechanical, and hormonal influences are examined with respect to acquisition, maintenance, and loss of bone mass. Particular attention is given to cellular and tissue responses in the aging skeleton to perturbations of various hormones, growth factors, and cytokines. These sections are followed by an in-depth presentation of quantifiable measures of bone loss, including bone mineral density, histomorphometry, biochemical markers of bone turnover, and biomechanical determinants. In the fifth section, the biomechanical aspects of fractures and their socioeconomic and medical consequences are delineated. In the final section, a wide range of therapeutic interventions from fall prevention, to dietary recommendations, to pharmacological treatments are considered in depth. For each section, expert clinicians and scientists were selected on the basis of their investigative areas, their contributions to our current understanding of osteoporosis, and their "fit" within the overall perspective of the book. For each chapter individual themes are stressed, but all are written in a manner that is consistent with the principles and practices of both geriatric and skeletal medicine.

This textbook brings together experts in the field of bone biology and medicine to define the "aging" skeleton and to determine its implications for aging individuals. Ultimately, we hope this book will be used by students, basic and clinical scientists, geriatricians, orthopedic and oral surgeons, internists, endocrinologists, rheumatologists, gynecologists, and primary care physicians as they continue their quest for solutions to the enigmas that surround the aging process in bone. We hope that the multidisciplinary themes that emerge will stimulate further attempts to ameliorate and ultimately to prevent osteoporosis.

> Clifford J. Rosen Julie Glowacki John P. Bilezikian

General Aspects and Models of Aging

This Page Intentionally Left Blank

Aging through the Ages

DOROTHY A. NELSON Department of Internal Medicine, Wayne State University School of Medicine, and Department of Anthropology, Wayne State University, Detroit, Michigan 48201

MARK L. WEISS Department of Anthropology, Wayne State University, Detroit, Michigan 48201

The increasing longevity of modern populations explains much of the alarming increase in the rate of osteoporotic fractures. In many respects, osteoporosis, defined as low bone mass and an increased risk of fracture, can be considered to be a consequence of age-related degenerative effects on the skeleton and other organ systems. It is not clear whether age-related changes are genetically determined (programmed) from birth or whether they result from the lifelong accumulation of structural and functional errors at the cellular level. In either case, the modification of developmental changes over the life span, such that peak bone mass can be maximized or osteoporosis avoided, should be relatively difficult.

Studies of past populations indicate that low bone mass was not a problem in human populations until relatively recently in evolutionary terms. Diseases of aging, including osteoporosis, that we see today are the manifestation of millions of years of genetic and cultural change and adaption. It is difficult to explain the adaptive value of an increased life expectancy when many of the consequences of aging would seem to be maladaptive for the population as well as the individual. This is particularly true because natural selection, the primary force responsible for adaptation, presumably cannot affect biological characteristics that occur after the age of reproduction since it acts through differential reproductive success. Thus, increasing longevity and a rising prevalence of debilitating conditions in the elderly are difficult to explain with traditional evolutionary models of adaptation. It would appear that unless the genetics of bone biology underlying low bone mass with fragility fractures in the elderly can be modified, the prevalence of osteoporosis and its public health costs may unavoidably increase as human life expectancy lengthens.

INTRODUCTION

Members of industrialized societies today look forward to a long life expectancy. However, this is not true of many other human populations, both past and present, where an individual's lifetime may be relatively short. The increase in human longevity is a benefit of relatively recent improvements in health and nutrition, but it does come with costs. Degenerative changes and age-related diseases or conditions, associated with varying levels of morbidity and public health costs, have become more prevalent in modern society. In many respects, osteoporosis can be considered to be a consequence of age-related degenerative effects on the skeleton and other organ systems. There are, of course, welldocumented factors other than aging that can contribute to an individual's risk of osteoporosis (e.g., diseases, drug exposures), but the increasing longevity of human populations explains much of the alarming increase in the rate of osteoporotic fractures.

As Stanley Garn reported in his classic study [1], bone loss after middle age is a universal phenomenon in the human species, an observation that has been corroborated by numerous studies since then. This phenomenon appears to extend to nonhuman primates as well [2,3], suggesting that human ancestors might have faced the problem of osteoporosis if they had had longer life spans. However, studies of past populations indicate that low bone mass was not a problem in human populations until the transition from gathering-hunting to agriculture some 10-12,000 years ago [4]. Figure 1 depicts 200 million years of mammalian evolution on a 12-h clock in order to put into perspective how recently hominids (i.e., human ancestors) appeared and food production began in evolutionary time. Some evidence suggests that despite apparent bone loss in some prehistoric groups, bone quality may have been preserved, reducing the likelihood of fragility fractures that are now recognized as osteoporosis (see later) [5]. It is unclear whether the occurrence of low bone mass in such populations was due to longevity in some individuals or groups, to environmental factors, or to both, but osteoporosis per se does not appear to have been a major problem until recently.

THE AGING SKELETON

FIGURE 1 Representation of 200 million years of mammalian evolution on a 12-hr clock analog, with emphasis on recent appearance of earliest humans (hominids) and food production. From Nelson [32], copyright by European Foundation for Osteoporosis and the National Osteoporosis Foundation.

This chapter offers an anthropological perspective on aging in relation to bone health and osteoporosis. It explores some of the biocultural correlates of aging and increased longevity and their relationship to osteoporosis in an evolutionary context.

EVOLUTIONARY FORCES AND AGING

Evolution and Genetics

The primary forces of evolution are mutation and natural selection. Mutations are random alterations in the structure of genes and are the ultimate source of new genes. However, it is unlikely that a single mutation or set of mutations has resulted in the universality of age-related bone loss. Natural selection works via the differential reproductive success of the alternative genotypes to which mutation gives rise. As such it is an ordering force that increases the frequency of beneficial mutations while decreasing the frequency of deleterious ones. Benefit and detriment are relative terms and it is important to keep in mind that judging these qualities is dependent on many variables, including the species' genetic background and its ecological situation. The genetic background is determined, in part, by the effects of past evolutionary processes on other genetic traits. Viewed this way we can see that the current genetic structure of a species sets boundaries and channels of change for future possibilities. A species' history delimits a range of possibilities for future change. Adding to the complexity is the need for the coordination of gene actions affecting organisms at different times in their life cycles.

Advanced molecular and statistical techniques have allowed the identification of a number of structural candidate genes that may be involved in the etiology of osteoporosis [6-9]. However, diseases of aging, such as osteoporosis, may be influenced by regulatory loci operating at another level. Over the past several decades, molecular geneticists have elucidated several classes of genes that act as regulators of gene function; determining the timing of gene action, the polarity of the embryo, and other developmental phenomena [10,11]. Although a discussion of developmental pathways is beyond the scope of this chapter, it is important to realize that the genotype guides the development of an organism down a series of channels so as to establish the basic body plan of the individual. The body segmentation, for instance, that is seen in animals from fruit flies to humans, is affected by homeotic genes that have been highly conserved over enormous spans of evolution. The evolutionary conservation of the DNA sequence and number of these homeotic genes is a clear indication of their importance in proper development. The patterning of bone deposition and remodeling throughout the life cycle is also a fundamental developmental process. This developmental path is almost certainly affected by factors other than allelic variation for one or another protein. To the degree that the gain and loss of bone during an individual's lifetime reflects an evolved pattern of developmental rather than variation in the form of a few proteins, modification of this pattern such that peak bone mass can be maximized or osteoporosis avoided should be relatively difficult.

Aging in an Adaptive Framework

Universally encountered biological phenomena, such as age-related bone loss, have traditionally been viewed by physical anthropologists as having adaptive value, if not now, then in past populations living under difficult circumstances. In order to understand this perspective, one must appreciate the time depth over which evolution has occurred in the human species, as well as the complexity of human development over the life cycle of individuals. Both ontogeny and phylogeny are the result of interactions of genetic potential and environmental influences. These complex interrelationships have been acting on human biology over a tremendously long period, beginning with the first humans some 5 million years ago and extending back through the evolu-