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As with any publishing venture and especially one of this magnitude, one must first ask, “Why?” The Associate Editors and
I were motivated primarily to collect in one set of volumes the most up-to-date and comprehensive knowledge in our field.
Nothing comparable has been attempted in the area of gastrointestinal physiology during the past fourteen years. During this
time, there has been a rapid expansion of knowledge and many new areas of investigation have been initiated.

More than fifty leading scientists—physiologists, clinical specialists, morphologists, pharmacologists, immunologists, and
biochemists—have contributed chapters on their various areas of expertise for these volumes. Our original goal was to review
the entire field of gastrointestinal physiology in one work. After examining all of the chapters, however, it was apparent that
the final product encompassed more than physiology. The chapters reflect the backgrounds of the authors and the approaches
of their different disciplines. As such, these volumes contain information for not only the investigator working in these fields
but for the clinician or graduate student interested in the function of the gastrointestinal tract. Anyone involved in teaching
gastrointestinal physiology of pathophysiology can readily find the latest and most pertinent information on any area in the
discipline.

This work is divided into five sections. The first consists of topics such as growth, the enteric nervous system, and gastro-
intestinal peptides, each of which relates to all areas of the gastrointestinal tract. The second section contains material describ-
ing smooth muscle physiology and gastrointestinal motility. The third section presents treatment of the functions of the stomach
and pancreas. The fourth series of chapters treats the entire field of digestion and absorption. These chapters vary from basic
electrophysiology and membrane transport to reviews of mechanisms leading to clinical conditions of malabsorption. The final
section contains chapters on areas peripheral to physiology (such as immunology, parasitology, and prostaglandins) yet neces-
sary for a comprehensive understanding of the subject.

No one person can presume to organize and edit a scientific work of this scope. I was fortunate to enlist the aid of four
preeminent scientists whose expertises cover the entire field. James Christensen was primarily responsible for the chapters on
smooth muscle and motility. Eugene D. Jacobson solicited and edited most of the chapters dealing with secretory mechanisms
as well as those covering many of the general topics. Chapters relating to regulation were primarily handled by Morton I.
Grossman, and those covering aspects of digestion and absorption were organized and reviewed by Stanley G. Schultz. I am
exceedingly grateful to these four men without whom this work would not have been possible.

L.R.J.

Preface to the First Edition
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This fourth edition of Physiology of the Gastrointestinal Tract follows 12 years after the third edition. The delay was mainly
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1

With the completion of the human genome sequencing
project at the dawn of the third modern millennium, we have
come to appreciate that we are only at the start of a new 
era of genomic enlightenment. Perhaps the most important
piece of information that we have learned is that the clues 
to our genetic destiny are contained in more than just the
primary sequence of DNA. Apparently, what distinguishes
humans from other life-forms, and most interestingly, other
mammals, lies in the complex modifications and function 
of the 20,000 to 30,000 genes. Not only are these 25,000 
or so genes alternatively spliced, but these products are
chemically modified to change their function. Therefore, as
opposed to our genetic template being composed of a mere
25,000 genetic units, we are actually controlled by 25,000 to
the nth power. The latter value has yet to be determined, but
likely results in an enormous combination of genetic events.

This chapter reviews what has led us to reformulate our
notions of gene expression in the postgenomic era.

OVERVIEW OF GENE ORGANIZATION

Gene Composition

The molecular definition of a eukaryotic gene is complex,
but in the simplest terms, it is a nucleic acid sequence that
encodes one polypeptide or messenger ribonucleic acid
(mRNA) molecule (1). Genes are composed of two inter-
twining polymers of DNA that are noncovalently attached 
to a variety of proteins, including histones and specialized
proteins (e.g., polymerases and various accessory proteins).
The association of DNA, histones, and specialized nuclear
proteins collectively is called chromatin. Chromosomes are
composed of continuous strands of chromatin that have been
compacted by supercoiling and looping to fit into the
nucleus. Most importantly, they are the basic heritable unit
in the mammalian cell. In humans, there are 46 chro-
mosomes, or 23 pairs. The smallest unit of the DNA poly-
mer is a nucleotide, a base attached to the first carbon 
of a five-carbon sugar phosphorylated at its fifth carbon 
(Fig. 1-1). Nucleosides do not contain phosphates; thus, they
differ from nucleotides, which contain one, two, or three
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phosphate groups. The four nucleotides are distinguished 
by the type of base that they contain: adenine (A), thymine
(T), cytosine (C), or guanine (G). DNA contains the sugar
deoxyribose, whereas RNA contains the sugar ribose and the
base uracil (U) instead of thymine.

Polymers of nucleotides or nucleic acids (also called nucle-
oside monophosphates, diphosphates, or triphosphates) are
formed when the free phosphate group attached to the 
fifth carbon of an adjacent nucleotide of the pentose sugar
condenses with the hydroxyl group on the third pentose
carbon to produce two ester bonds and water (phosphodi-
ester bond). Accordingly, the proximal end of each DNA
strand (5′ end) contains a phosphate group in the 5 position
of the deoxyribose sugar residue. The terminal nucleic acid
at the 3′ end of each DNA strand contains a free hydroxyl
group in the 3 position of the deoxyribose ring. By conven-
tion, nucleotide sequences are written from 5′ to 3′, reading
from left to right, with the sense strand presented as the
upper strand. The antisense strand, written on the bottom, is
antiparallel and complementary to the sense strand so that
the 5′ to 3′ direction proceeds from right to left. Each
nucleotide within the polymer is base paired with a particu-
lar nucleotide on the opposing strand by hydrogen bonds;
adenine pairs with thymine, and guanine pairs with cytosine.
The DNA strand containing the same sequence as the mRNA
is designated the sense strand, and the strand that it pairs
with is designated the antisense strand. The antisense strand
becomes the template sequence that will be transcribed by
RNA polymerase II (Pol II) into mRNA and subsequently
translated into amino acids.

Most studies on transcriptional control focus on genes
transcribed by the seven-subunit enzyme Pol II, and thus are
designated as class II genes (2). It is Pol II that is responsi-
ble for transcribing gene sequences into protein-encoding
mRNA. Only 4% of the total RNA in the cell is mRNA.
Many of these initial primary transcripts (heterogeneous
nuclear RNA [hnRNA]) are further processed as discussed
later. Nine percent of cellular RNA is hnRNA, the bulk of
which are small nuclear RNA (snRNA; e.g., U2 involved in
RNA splicing, 4%) and small nucleolar RNA (e.g., U22
snoRNA comprising 1%). The other 4% of hnRNA is mRNA.
An additional 1% of total cell RNA is called guide RNA,
which edits mature mRNA transcripts (3). RNA polymerase
I (Pol I) transcribes all of the ribosomal genes except for the
5S gene. Ribosomal RNA represents about 75% of the RNA
in the cell. RNA polymerase III (Pol III) transcribes the 
5S ribosomal gene and the genes encoding transfer RNA.
Transfer RNA represents about 15% of the total RNA in the
cell. Pol I and III transcribe genes that will not be further
translated into peptides, although their primary transcripts
are also processed before reaching the cytoplasm. Because
Pol II transcribes genes encoding proteins and peptides, Pol
II–regulated genes are the primary focus of this chapter.

One may conceive of a gene as being analogous to a long
sentence read from left to right and composed of letters
organized into words separated by spaces and marks of punc-
tuation. Specific DNA sequences “punctuate” the gene with
important start and stop signals for transcription and trans-
lation. One gene may comprise several hundred to several
thousand DNA base pairs. These base pairs (the alphabet)
are organized into functional groups (phrases) based on
whether a particular sequence is untranscribed, only tran-
scribed, or both transcribed and translated (Fig. 1-2). Exons
are DNA sequences that are transcribed into mRNA by Pol
II and exit the nucleus. Within the cytoplasm, exons may or
may not be translated into peptides. Those exons that are
transcribed and translated form the coding sequences (coding
exon). In general, the term intron is used to describe the
intervening DNA sequence that is transcribed but is removed
from the primary transcript by RNA splicing (RNA process-
ing) before it exits the nucleus as a mature transcript (see
Posttranscriptional Processing later in this chapter and also
Chapter 2). DNA sequences or elements that regulate tran-
scription and are not transcribed into mRNA usually reside
in the 5′ portion of a gene upstream (to the left of) of the
promoter. The promoter is a group of DNA sequences that
binds Pol II in concert with accessory proteins to initiate the
synthesis of mRNA. Accessory proteins control the accu-
racy and rate of polymerase binding. The first nucleotide
transcribed into mRNA is assigned the number 1 with subse-
quent nucleotides (downstream or to the right of the promoter)
assigned positive numbers as transcription proceeds toward
the 3′ end. Nucleotides preceding the promoter (upstream 
or 5′) are assigned negative numbers. DNA sequences that
encode a polypeptide (open reading frame) begin with the
translational start site codon ATG (encoding methionine) and
end with one of the three stop codons: TAA, TAG, or TGA.
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(The translational start and stop codons, respectively, are
transcribed into mRNA as AUG, UAA, UAG, and UGA.)
Because one amino acid is encoded by three nucleotides or
a triplet (codon), two or three peptides may be encoded by
overlapping codons simply by shifting the reading frame by
one or two nucleotides. Regulatory sequences that are tran-
scribed but not translated reside at both the 5′ and 3′ ends 
of the mature RNA transcript. Both 5′ and 3′ untranslated
regulatory sequences, which range from 10 to several thou-
sand nucleotides, are thought to participate in the fidelity 
of translation and mRNA stabilization or destabilization.

RNA molecules that encode proteins (except most histone
proteins) are distinguished from ribosomal and transfer RNA
by the series of adenosines added to the 3′ end of the mole-
cule (poly(A) RNA; see Fig. 1-2). This feature is a useful
means to isolate mRNA from other, more abundant RNA
species (transfer and ribosomal RNA) and also designates
the functional termination of the protein-encoding portion
of the gene. During transcription, the primary RNA tran-
script is cleaved 20 bp downstream of the AAUAAA site at
the 3′ end, and ~150 to 200 adenine nucleotides are added 
to form the poly(A) tail (4–6). The 5′ end of the mRNA tran-
script receives a protective “cap” after synthesis of the first
30 nucleotides, which consists of a guanylate residue methy-
lated at the 7 position and linked to the first nucleotide of
RNA by three phosphates. The RNA cap is a high-affinity
binding site for ribosomes (7,8). Notably, the element

AATAA that signals the site of the poly(A) tail is not neces-
sarily the functional end of the gene. Rather, the 3′ untrans-
lated region (3′UTR) and 3′ untranscribed regions may 
still contain regulatory elements that can modulate gene
expression. Therefore, just as the 5′ end of a gene must be
determined empirically, so must the 3′ end of the gene.

The 5′ border of a gene is identified by the promoter
region (functionally determined) and structurally by the first
nucleotide transcribed into mRNA (cap site) as determined
by various reverse transcriptase methods—for example, primer
extension analysis or anchored polymerase chain reaction
(PCR) (9). These techniques use reverse transcriptase to
synthesize complementary or copy DNA (cDNA; Fig. 1-3).
Radiolabeled primers complementary to the 5′ end of the
DNA sequence to be copied are allowed to anneal to mRNA.
Reverse transcriptase then adds deoxynucleotides to the
primer in the 3′ to 5′ direction. Synthesis of the cDNA will
terminate when the 5′ end of the mRNA is reached. Template
mRNA molecules are removed by ribonucleases (RNases),
and the synthesis of a double-stranded cDNA is completed
through the action of DNA polymerase. Because the newly
synthesized cDNA is radiolabeled at the 5′ end, the length of
the cDNA (and hence the transcriptional start site) is deter-
mined by resolving the fragments on a denaturing poly-
acrylamide gel and comparing the length observed in base
pairs to the known cDNA sequence. cDNA is also a useful
tool for making probes to detect complementary nucleotide
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sequences and for making cDNA libraries that reflect the
spectrum and relative abundance of specific mRNA within
a given cell. These cDNA libraries must be contrasted with
genomic phage libraries in which the DNA sequences in the
phage heads reflect the number of times that a particular
gene sequence is represented in the host genome, which is
usually once.

The 5′ sequences flanking the gene are defined func-
tionally by various methods other than simple structural
information. These sequences direct the developmental,
tissue-specific, and inducible expression of the gene and 
can range from a few hundred to several thousand base 
pairs (10). It is possible to identify the sequences conferring
these regulated gene activities by using methods such as
DNA transfer into cell lines (11,12) and transgenic mouse
models (13,14). For example, the expression of gastrin in the
adult occurs in the antrum of the stomach and in the first
portion of the duodenum (15–17). However, gastrin is never
expressed in skin or kidney. Thus, if 1000 bp of 5′ flanking
sequence permits the expression of gastrin in a fibroblast or
kidney cell line, but 20,000 bp do not, it may be concluded
that the untranscribed sequences between −1000 and 
−20,000 bp from the promoter are important in shutting off
expression of gastrin in skin and kidney, sites where gastrin
is never expressed in vivo. Thus, the 5′ regulatory sequences
important in normal expression of the gastrin gene may
extend as far upstream as −20,000 bp from the start site 

of transcription. Alternatively, the 5′ or even 3′ borders may
extend even further if functional data indicate that a larger
sequence is required for the appropriate tissue and temporal
expression to be observed with the native gene. Recently, it
has been found that there are specific DNA elements called
Insulator elements that mark the boundary of genes (18).
These elements, originally identified on the globin gene,
bind a transcription factor called CTCF and are capable of
preventing the spread of histone acetylation between adja-
cent genes (19). Specific examples of tissue-specific elements
have been reported within the promoters of several gastro-
intestinal (GI) peptides (e.g., gastrin and secretin), as well 
as for specific intestinal proteins (e.g., sucrase-isomaltase)
(20–26).

Similar experiments may also be performed in transgenic
mice with constructs containing various lengths of 5′ flank-
ing sequences regulating reporter gene expression. Instead
of transferring these reporter constructs into cell lines, they
are injected into fertilized eggs and reimplanted into ovulat-
ing female mice to be expressed in the mouse germ line
(13,14). The expression of these constructs in the offspring
is analyzed by cytochemical detection of reporter gene prod-
ucts in various organs or in response to physiologic induc-
ers (27). The transgenic approach to gene expression, like the
experiments described earlier, permits anatomic, environmen-
tal, and developmental analysis in the whole animal (28,29).
This approach is particularly valuable in understanding the
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regulatory sequences important for the tissue-specific expres-
sion of the genes in different cell types of the same organ
such as the small intestine (30,31). Given the requirement
for larger and larger pieces of DNA to recapitulate native
expression in transgenic mouse models, techniques have been
developed to clone and manipulate large pieces of DNA
(more than 50 kilobases; e.g., yeast artificial chromosomes
[YACs] and bacterial artificial chromosomes [BACs]) (32,33).
Recombineering is a powerful technique performed in bacte-
ria that permits introduction of foreign DNA or point muta-
tions into these large plasmids that are eventually introduced
into transgenic mice (34–37).

EPIGENETIC INFLUENCES

Epigenetics literally means “outside of or beyond genet-
ics,” and it refers to the “study of genetic modifications that
are mitotically and/or meiotically heritable yet do not change
the DNA sequence” (38). Thus, mutations or deletions alter
the character or length of the sequence that, in turn, alters the
primary sequence of the protein. By contrast, epigenetic
influences chemically modify the nucleotide or amino acid
structure that, in turn, changes how that particular residue 
is recognized by nuclear proteins, without changing the
sequence itself. Although it is now clear from the completed
sequence of the human genome that there are only about
20,000 to 30,000 gene loci, the complexity of the genetic
information encoded in human chromosomes must enlist
other features of chromatin (39). The epigenetic influences
on chromatin appear to be one of the critical features that
enhance genomic complexity. Major targets of epigenetic
changes are histones, basic proteins coating the naked DNA
double helix. The N-terminal tails of histones (H1, H2A,
H2B, H3, H4) are positively charged because of the basic
amino acid lysine. The positively charged histones attach to
DNA because of the negatively charged phosphate backbone
of DNA. The ionic interaction is reduced if the positive
charge on the lysines is removed. Specific enzymes called
histone acetyltransferases (HATs) acetylate the lysine side
group, effectively eliminating the positive charge (Fig. 1-4).
The loss of the ionic interaction between the histones and
phosphate groups on DNA permit greater access to the DNA
helix by accessory proteins such as polymerases, trans-
cription factors, and coactivators or repressors. DNA in the
form of chromatin becomes open, accessible, and readily
transcribed. By contrast, there are enzymes that will “close”
chromatin by removing the acetyl groups from the lysines at
the N-terminal tails of histone proteins. These enzymes are
called histone deacetylases (HDACs). Removal of the acetyl
group restores the positive charge to the histones allow-
ing the ionic interaction between histones and DNA to be
restored. The nonhistone proteins such as polymerases and
transcription factors become excluded from DNA, transcrip-
tion is silenced, and chromatin is inactive.

Collectively, the histones and accessory proteins associ-
ated noncovalently with DNA are what forms chromatin.

Chromatin exists in two forms: euchromatin and heterochro-
matin (40). Euchromatin contains the actively transcribed
genes and becomes decondensed during DNA replication.
Euchromatin is also centrally located in the nucleus. By
contrast, heterochromatin contains transcriptionally silent
genes that remain condensed at the periphery of the nucleus.
The DNA sequences within heterochromatin are repetitive,
and only 15% of nuclear chromatin is heterochromatin. The
major forms of epigenetic modifications in mammalian cells
occur on DNA and histones and include such covalent modi-
fications as acetylation and methylation, but also via the
addition of other organic residues. These epigenetic changes
affect such events as chromatin folding, gene expression, 
X-chromosome inactivation, and genomic imprinting (41).
Epigenetic events are essential for development and differ-
entiation, during which clusters of genes must be activated
or silenced at precisely timed intervals to allow for the
organism’s growth and maturation.

Histone Modifications

The basic repeating unit of chromatin is the nucleosome.
Each nucleosome is composed of 147 bp of DNA wrapped
twice around a histone protein octamer consisting of 2 mole-
cules of each of the 4 core histones (H2A, H2B, H3, and H4).
The linker histone H1 sits alone between each core nucleo-
some, facilitating further compaction (42). Each histone
contains a structured globular domain with a histone-fold
motif important for nucleosome assembly and a highly
charged unstructured amino-terminal tail of 25 to 40 residues,
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which protrudes from the body of the nucleosome to latch
onto the phosphate backbone. The amino termini are the
major sites for histone modifications (43). Histones can 
be modified by acetylation, methylation, phosphorylation,
adenosine diphosphate (ADP)-ribosylation, ubiquitination,
and sumoylation (44). The mixture of these covalent modi-
fications creates a “code” on the surface of the histone
molecule that is subsequently recognized by bromo and
chromo domain–containing proteins mediating chromatin
compaction, transcription, and DNA repair (45). Acetylation,
methylation, ubiquitination, and sumoylation occur on the
lysine residues, whereas methylation also occurs on arginine
residues. Phosphorylation occurs on serines and threonines,
and ADP-ribosylation occurs on glutamic acids. Most of
these modifications, particularly acetylation, alter the charge
distribution on the amino terminus and also alter nucleo-
some structure, which may, in turn, regulate chromatin struc-
ture (46,47). Some covalent modifications act as molecular
switches, enabling or disabling subsequent covalent modi-
fications, which explains the functional complexity of
epigenetic modifications (48). Therefore, each modification
correlates with a specific physical status of chromatin.

Histone Acetylation

Acetylation of histones occurs at the ε-amino side group 
of specific lysines within the N termini of histones. HATs
transfer an acetyl group from acetyl-coenzyme A as a donor
to the histone terminal lysines (49). In hypoacetylated chro-
matin, the positive charges on unacetylated lysines are
attracted to the negatively charged DNA, producing compact,
closed chromatin thereby repressing transcription (50). In
contrast, acetylation of the lysines removes their positive
charges, resulting in a less compact, open chromatin struc-
ture, which facilitates gene transcription. Therefore, HAT
activity, and subsequently histone acetylation, is linked mainly
to transcriptional activation (51) (see Fig. 1-4). Removal of
the acetyl group (deacetylation) by HDACs restores the posi-
tive charge on lysines, and chromatin becomes compacted
and less accessible to regulatory proteins required for tran-
scription. Thus, HDACs and deacetylation are primarily
associated with transcriptional repression (see Fig. 1-4).

HATs are divided into five families. These include the
p300/CBP (cyclic 3′,5′-adenosine monophosphate [cAMP]
response element binding [CREB] protein) HATs (p300 and
CBP), Gcn5-related acetyltransferases (GNATs; including
Gcn5, p300/CBP-associated factor [PCAF], etc.), MOZ,
Ybf2, Sas2, and Tip60 (MYST) (monocytic leukemia zinc
finger protein [MOZ], Ybf2/Sas3, Sas2, and Tip60)-related
HATs, the general transcription factor (GTF) HATs (TFIID
subunit TAF250 and TFIIIC), and the nuclear hormone-
related HATs (SRC1 and ACTR) (52). The most consistent
functional characteristic of the HATs is that they are tran-
scriptional coactivators. These proteins are components of
large multisubunit complexes that do not bind DNA directly,
but instead form protein–protein interactions with DNA-
binding transcription factors (53).

The more numerous mammalian HDACs have been
grouped into three protein classes (54). Class I includes
HDACs 1, 2, 3, and 8. Class II includes HDACs 4, 5, 6, 7, 9,
and 10. The class III HDAC family consists of the conserved
nicotinamide adenine dinucleotide (NAD)–dependent Sir2
family of deacetylases. Like HATs, HDACs do not bind
directly to DNA but rather are recruited by large multi-
subunit complexes to function primarily as corepressors of
transcription (55).

The function of HATs and HDACs are of particular
relevance in the GI tract because of the effect of butyrate, 
a by-product of colonic bacterial fermentation, on histone
acetylation (see Fig. 1-4). Epidemiologic studies uniformly
concur that a diet high in fiber is protective against colon
cancer (56). The short-chain fatty acid butyrate is one of
several fiber-derived fermentation products capable of
maintaining epithelial cell differentiation (57). The differen-
tiation effects were initially demonstrated after treatment 
of erythroleukemic cells with butyrate (58). Subsequently, 
it was discovered that the induction of differentiation by
butyrate correlated with histone hyperacetylation (59–61)
due to suppression of HDACs (62–66). Thus, the HDAC
effects of butyrate and resulting histone hyperacetylation
may, in fact, be one mechanism by which dietary fiber exerts
its anticancer effects (67).

Reviews support the viewpoint that butyrate is a potent
anticancer agent (68–70). Collectively, early studies empha-
sized the global effects of butyrate on chromatin remodel-
ing, but the molecular basis for the gene-specific effects of
butyrate remains poorly defined. HDAC inhibitors regulate
less than 10% of actively transcribed genes. Most of those
are up-regulated through GC-rich sites (71,72). In addition
to histone acetylation, it is now known that DNA-binding
proteins can become acetylated (52). Thus, a possible mech-
anism by which hyperacetylation induced by butyrate might
target specific genes is through acetylation of specific tran-
scription factors. The proposed function of acetylated tran-
scription factors varies and includes increased or decreased
DNA binding, as well as protein stability (73). In many
instances, the genetic targets of butyrate are GC-rich
sequences that bind Sp1 and Sp3. Gamma glutamyl trans-
ferase (74), insulin-like growth factor (IGF) binding protein
3 (75), G α(i2) (76), galectin (77), Cox1 (78), and intestinal
alkaline phosphatase (79) are all up-regulated by butyrate
through Sp1 sites. Sp1 binding sites are also implicated 
in the butyrate induction of p21WAF1 gene expression (80).
HAT p300, recruited to the p21WAF1 promoter, cooperates
with Sp1 and Sp3 to mediate the effects of butyrate (81).
However, Sp1 does not cooperate directly with p300, but
instead binds HDAC1 (82,83). The Sp1-HDAC1 complex,
in turn, forms complexes with other corepressors such as
Sin3A (84). Thus, Sp1 appears to be the factor that confers
p21WAF1 promoter repression by recruiting HDACs and core-
pressor complexes.

HDACs can have opposing functions, especially in
cancer. HDACs can prevent the activation of tumor suppres-
sor genes and block the ability of a cancer cell to undergo
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apoptosis (85). However, HDAC2 silencing can trigger
apoptosis (86). Another important feature of HDACs is their
interaction with DNA methylation. HDACs cooperate with
DNA methyltransferases (DNMTs) by removing the acetyl
groups that would otherwise block methylation targets on
histones or DNA (87,88).

Histone Methylation

There are two types of histone methylation, targeting either
lysine or arginine residues. Histone methyltransferases
perform these modifications using S-adenosyl-methionine
as the methyl group donor. Lysine methylation is implicated
in changes in chromatin structure and gene regulation,
whereas arginine methylation correlates with the active state
of transcription, such as acetylation (89).

Histone Methylation at Lysines

Methylation of lysines residues (K) occurs on histone H3
primarily at K4, K9, and K27 and on H4 at K20 (Fig. 1-5).
The lysine residues can be monomethylated, dimethylated,
or trimethylated at the ε-amino group. The methylation of
H3 is associated with an open chromatin configuration and
gene activation (90,91). In contrast, the methylation of H3 at
K9 is associated with condensed, repressed chromatin (92).

In general, there are at least four families of lysine
methyltransferases. All of the lysine methyltransferases are
distinguished by the presence of Su(var)3-9, Enhancer of
Zeste, and Trithorax (SET) domains. The fourth family of
these methyltransferases contains other protein domains aside
from the SET domain. SET protein domains are approxi-
mately 130 residues homologous to amino acid segments in
SET, three Drosophila proteins with intrinsic methyltrans-
ferase activity (93,94). The mammalian form of Su(var)3-9
is SUV39H and is involved in stabilizing heterochromatin
by trimethylation of histone H3 at lysine K9. The trimethyl

group creates an atomic feature or imprint on H3 that, in turn, 
is recognized by HP1, a chromatin organization modifier
(chromo domain proteins) (95). The methylated or acety-
lated imprints on DNA or histones are recognized by two
classes of proteins: those with chromo domains that recog-
nize methyl group imprints and those with bromo domains
that recognize acetyl group imprints. Transcriptional coacti-
vators such as CBP, p300, and PCAF are HATs that contain
bromo domains. They acetylate histones and other nuclear
proteins; thus, not surprisingly, they also recognize an acetyl
group imprint. These proteins are discussed in greater detail
later in this chapter in Chromatin-Binding Proteins.

Histone Methylation at Arginines

Methylation at arginines occurs within the tails of histones
H3 (R2, R17, and R26) and H4 (R3) and is catalyzed by
coactivator-associated arginine methyltransferase 1 (CARM1)
and protein arginine N-methyltransferase 1 (PRMT1), respec-
tively, in mammalian cells (see Fig. 1-5). Like lysines,
arginines can be either monomethylated or dimethylated
(asymmetric or symmetric) on the guanidino nitrogen, and
this process is antagonized by human peptidylarginine deim-
inase 4 (PADI4), which converts methyl-Arg to citrulline
(96,97). Less is known about the fate of histones methylated
at arginines. However, initial studies indicate that the methyl-
ated arginines create an imprint recognized by coregula-
tory molecules, for example, p300 and switching/sucrose
nonfermenting (SWI/SNF) (98,99).

Histone Phosphorylation

Histone phosphorylation occurs on all four core histones:
H2A (S1), H2B (S14), H3 (S10 and S28), and H4 (S1) 
(see Fig. 1-5). The phosphorylation of S10 in H3 is associ-
ated with transcriptional activation (100) and chromosome
condensation during mitosis (101). In addition, phosphoryla-
tion of S10 in H3 is also associated with the transduction of
external signals to chromatin, leading to the transient expres-
sion of immediate early genes (102,103). The phosphorylation
of H3 is mediated by several specific kinases, activated by
distinct pathways. For example, mammalian mitotic H3 phos-
phorylation is associated with Aurora B kinases (104,105),
H3 phosphorylation by IKKα is important for the activation
of nuclear factor (NF)-κB (106), and the immediate early
gene response is mediated mainly by mitogen and stress-
activated kinases MSK1 and MSK2 (107). Histone H2B
phosphorylation condenses the chromatin and is involved in
apoptosis (108,109). The downstream effects of phosphory-
lation of H2A and H4 are unknown.

Of the histone modifications, acetylation and phosphor-
ylation are reversible. Consequently, if the presence of a
modification influences transcription in a particular way, its
removal may have the opposing effect. In this way the cell
could effectively respond to changes in environmental cues.
Different histone modifications may be linked mechanis-
tically. For example, phosphorylation of S10 on H3 enhances
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histone acetylation by Gcn5 (110,111), whereas H3 K9
methylation inhibits phosphorylation at H3 S10 (93). Given
the number of sites and the variety of possible modifica-
tions, the combinatorial possibilities are extremely large.
The combinatorial pattern of N-terminal modifications results
in a heterogeneous identity for each nucleosome that the cell
interprets as a readable code from the genome to the cellu-
lar machinery directing various processes to occur. This
concept is commonly referred to as the “histone code hypoth-
esis” (45). The precise modification status of a given histone
tail on a given gene can also change during the process of
transcriptional regulation and each of these different constel-
lations of histone modifications may elicit distinct down-
stream transcriptional signals (45).

DNA Methylation

DNA methylation is a postsynthesis modification that
normal DNA goes through after each replication. This
modification is catalyzed by DNMTs and occurs on the C-5
position of cytosine residues within CpG dinucleotides
located primarily in the promoter of a gene. There are three
major DNMTs (DNMT1, DNMT3a, and DNMT3b). Each
DNMT plays a distinct and critical role in cells. Murine
knockouts of DNMT1 and DNMT3b exhibit embryonic
lethality (112). The DNMT3a homozygous knockout mouse
appeared normal at birth but died by aged 4 weeks (112,
113). In humans, mutations of DNMT3b are linked to ICF
syndrome (immunodeficiency, centromere instability, facial
anomalies) (112,114). Sixty percent of human genes contain
a CpG island (115). Although methylation can also occur in
other parts of the gene, CpG dinucleotides tend to be under-
represented in the genome, and when they are found, they
appear in clusters ranging from 0.5 to several kilobases with
a GC content greater than 55% (116). These clusters are
known as CpG islands (117). Methylation of CpG islands is
a late evolutionary development and functions to maintain
genome stability by repressing transposons and repetitive
DNA elements (118).

DNA methylation is an important player in many processes,
including transcriptional repression, X-chromosome inacti-
vation, and genomic imprinting. CpG islands located in the
promoter region of genes are normally hypomethylated
about 40% of the time (116). Their hypermethylation causes
stable heritable transcriptional silencing. As observed with
HDACs and deacetylation, the methylation status in cancers
may seem contradictory. Aberrant de novo hypermethyla-
tion of CpG islands is a hallmark of some human cancers
and is found early during carcinogenesis (119–121). Tumor
suppressor genes are locally hypermethylated in some
cancers to silence their expression, whereas oncogenes may
be hypomethylated (116). Tumor cells globally demonstrate
an overall hypomethylation of DNA, a process that has more
recently been linked to nutrition (122). S-adenosylmethionine
is the primary methyl donor in the cell and is reduced in
conditions predisposed to cancer (123).

Genomic imprinting occurs in gametogenesis and is neces-
sary for development. One of the X chromosomes in female
individuals is not expressed because of the heavy methyla-
tion of the inactive X chromosome. The epigenetic phenom-
enon whereby expression of a gene depends on whether it is
inherited from the mother or the father is called imprinting,
and is caused by differential methylation of specific cytosine
bases on the maternal versus the paternal genes.

Chromatin-Binding Proteins

The remaining histone methyltransferases also recognize
methyl groups on other regulatory proteins; therefore, they
are discussed here. The second family of SET domain proteins
is related to the Drosophila protein Enhancer of Zeste, with
the prototypical mammalian protein named EZH2. EZH2 
is part of a complex of proteins called the Polycomb group
(PcG). Two variants of these complexes have been designated
Polycomb repression complexes 1 (PRC1) and 2 (PRC2).
EZH2 belongs to the PRC2 complex that also includes EED
and SUZ12; whereas PRC1 includes the proteins RNF2,
HPC, EDR, and BMI1. BMI1 has received increased atten-
tion because it is an important marker of normal and cancer-
ous hematopoietic stem cells (124–126). The Polycomb group
of proteins with their SET domains not only participates in
histone lysine methylation, but the complexes that they form
(PRC1, PRC2) are also important in recognizing the methy-
lated protein imprint.

A human homolog of Drosophila Trithorax is the mixed
leukemia gene 1 (MLL1). There are four human MLL
homologs. MLL1 has been shown to be a specific methyl-
transferase for H3 at K4 (127). In turn, it forms protein–
protein interactions with coactivators, for example, CBP and
corepressors chromatin remodelers (e.g., SWI/SNF) (128,129).
Other Trithorax homologs (e.g., Ash1, Trx) form complexes
with different coregulatory complexes. Collectively, members
of the Trithorax group (TrG) of proteins can either activate
or repress transcription depending on the coregulator with
which they associate.

Retinoblastoma protein-interacting zinc finger protein
(RIZ), SMYD3, and MDS-EVI1 form a fourth family of
SET domain proteins because they have two isoforms that
exhibit opposing functions. The isoform containing the SET
domain has tumor suppressor function, whereas the isoform
missing the SET domain is cancer promoting. This “yin-
yang” theory put forth by Huang (123) is especially true for
RIZ and MDS-EVI1, in which by an unclear mechanism, the
cancer disturbs the normal ratio between the two isoforms.
The SMYD3 protein contains another DNA-binding domain
called MYND, in addition to a SET domain, and is overex-
pressed in colorectal and hepatocellular carcinomas (130).

Cross talk between DNA methylation and the histone
modifications exists. These interactions were shown by the
observation that HDAC1 forms a complex with DNMT1 and
5-methyl-cytosine binding protein (MBP) on a methylated
promoter to silence gene expression (131). Similar cross talk
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occurs between the HDACs SUV39 and HP1, the HDACs
PRC2 and PRC1, and the HATs MLL1 and BRM (47).

Epigenetics and Development

The epigenetic control of gene expression is a fundamental
feature of mammalian development, as indicated by the occur-
rence of developmental arrest or abnormalities in mutants
deficient in methylation or acetylation. X-chromosome inac-
tivation is an example of sequence-identical alleles being
maintained stably in different functional states. In humans,
X-linked inactivation serves to normalize the level of expres-
sion of X-linked genes in female (XX) and male (XY) indi-
viduals. Mutations in genes that affect global epigenetic
profiles can cause human diseases. For example, the Fragile
X syndrome results when a CGG repeat in the Fragile X
Mental Retardation gene 1 (FMR1) 5′ regulatory region
expands and becomes methylated de novo, causing the gene
to be silenced and creating a visible “fragile” site on the X
chromosome under certain conditions (132). On a more
global level, mutations in the DNMT3b gene (which regu-
lates the DNA methylation) lead to ICF syndrome (112,114),
and CBP (with acetyltransferases activity) mutations cause
Rubinstei–Taybi syndrome (133).

Epigenetics and Cancer

Epigenetic changes play an important role in tumorigenesis.
The major epigenetic changes that take place during the devel-
opment of cancer are generally the aberrant DNA methyla-
tion of tumor suppressor genes and histones. Chapter 17
covers in greater detail the role of epigenetic influences in
cancer, but a few highlights are mentioned here to conclude
this section.

Genomic methylation patterns are frequently altered in
tumor cells, with global hypomethylation accompanying
region-specific hypermethylation events. When hypermethy-
lation events occur within the promoter of a tumor suppres-
sor gene, this can silence expression of the associated gene
and provide the cell with a growth advantage in a manner
similar to deletions or mutations. Although cancer cells are
hypomethylated in the genome compared with normal tissues,
many tumor-suppressor genes are silenced in tumor cells
because of hypermethylation. This aberrant methylation
occurs early in tumor development and increases progres-
sively, eventually leading to the malignant phenotype. For
example, a high percentage of patients with sporadic colorec-
tal cancers with a microsatellite instability phenotype show
methylation and silencing of the gene encoding MutL
protein homolog 1 (MLH1) (134). Other methylated tumor
suppressors include p16CDKN2A, p14ARF, Rb, E-cadherin,
and breast cancer gene-1 (BRCA1). Deregulation of genomic
imprinting can also play a role in cancer development, as
exemplified by loss of imprinting of the IGF2 gene in
Wilms’ tumor (135).

Chromatin remodeling also plays an important role during
tumorigenesis. Loss or misdirection of HATs has been
linked to embryonic aberrations in mice (136,137) and to
human cancers (138,139). Misdirection of HAT activities as
a result of chromosomal translocations is associated with
multiple human leukemias (140–142). In acute promyelo-
cytic leukemia, the oncogenic fusion protein promyelocytic
leukemia-retinoic acid receptor-α (PML-RARα) recruits 
an HDAC to repress genes essential for the differentiation 
of hematopoietic cells (143). Similarly, in acute myeloid
leukemia (AML), AML1-eight-twenty-one (ETO) fusions
recruit the repressive N-CoR-Sin3-HDAC1 complex that, in
turn, inhibits normal myeloid development (144).

That many human diseases, including cancer, have an
epigenetic cause has encouraged the development of a new
therapeutic option called “epigenetic therapy” (145). Many
agents have been discovered that alter methylation patterns
on DNA or the modification of histones, and several of these
agents currently are being tested in clinical trials.

ANATOMY OF THE PROMOTER

DNA Elements

RNA Pol II and its accessory factors bind to a DNA
sequence called the promoter, which is located upstream of
protein-coding sequences to direct RNA transcription (146).
Without the promoter, the genetic sequences that encode the
information to make a functional peptide product will not be
transcribed. Other 5′ flanking sequences or DNA elements
that participate in transcription are sequence-specific bind-
ing sites for proteins that regulate the fidelity, rate, and timing
of Pol II binding, formation of the preinitiation complex
(PIC), and initiation of transcript elongation under basal and
regulated conditions (147–149). These sequences are defined
as cis-acting elements because they are a part of the same
(cis) gene (150–153). DNA elements are categorized accord-
ing to their ability to regulate transcription as a function of
their distance and orientation from the promoter. Sequences
that are contained within the first 30 to 100 bp of the promoter
and operate in one orientation are considered promoter-
dependent, cis-acting elements. If they are positive-acting
elements and increase the rate of transcription, they are
considered activating DNA elements, whereas if they are
negative-acting DNA elements and decrease or repress the
rate of transcription, they are repressor elements (154–156).

The structure of the promoter includes several critical
elements that include the TATA element, which lies upstream
of the transcription start site, the initiator sequence (Inr) that
spans the start site, upstream regulatory elements that bind
either transcriptional activators or repressors, and finally
downstream poly(dA-dT) elements (157). The TATA element,
or “TATA box,” is an element with a DNA sequence that is
TATA or variants thereof (151,158–161). This sequence
resides at a fixed distance 25 to 30 bp upstream from the
transcriptional start site in many Pol II promoters, and its
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location relative to the start site is dependent on position and
distance (162–164). However, it became apparent that many
genes did not have TATA sequences. These “TATA-less
promoters” still remain dependent on assembly of the TATA-
binding protein (TBP) at the promoter to form the PIC, but
the recruitment of TBP is not rate limiting (165).

Inr elements, although initially identified at the “TATA-
less promoters” (166,167), have subsequently been found in
both TATA-containing and TATA-less promoters. Their role
appears to be in directing the accuracy of Pol II initiation
(168). These Inr elements reside within the first 60 bp of the
transcriptional start site and directly overlap the start site
itself, but they do not have a clearly defined consensus
sequence (169). Many of the genes encoding GI peptides (e.g.,
gastrin, somatostatin, cholecystokinin [CCK], glucagons,
and secretin) contain TATA elements (170–174); however,
the gene encoding the growth factor, transforming growth
factor-alpha (TGF-α), does not (175).

Regulatory elements are generally sequence-specific DNA
elements that bind transcription factors. In the case of tran-
scriptional activators, there are two variations, upstream
activating sequences (UASs) and enhancers. Both elements
are orientation and distance independent. However, UAS
elements do not function downstream of the TATA box.
Thus, their function is restricted by their location relative 
to the TATA box (176,177). UAS elements, which bind
transcription factors, facilitate assembly of the PIC directly
by forming protein–protein interactions with GTFs, or indi-
rectly by complexing with coactivators. Upstream repressor
sequences (URSs) use several approaches to disrupt forma-
tion of the PIC. They can interfere with the activation domain
of the activator complex, disrupt interaction with the core
promoter factors, or recruit corepressors (e.g., Sin3-Rpd3,
HDACs). Homopolymeric dA-dT sequences are required for
normal levels of transcription. The repetitive dA-dT sequence
has intrinsic structural ability to impair nucleosome assem-
bly or stability (178,179).

Models describing the formation of the Pol II initiation
complex are constantly evolving and essentially involve the
convergence of information gathered from biochemistry,
structural biology, and genetics, particularly yeast genetics
(148,180,181). Elucidation of the three-dimensional crystal
structure of the TBP has advanced our understanding of
preinitiation assembly complexes (182,183). Protein folding
of TBP into a β-sheet forms a “saddle-shaped” concave
surface of sufficient size to contact helical DNA (Fig. 1-6A).
On the opposing convex surface are potential binding sites
for various regulatory proteins, for example, TBP-associated
factors (TAFs), GTFs, and Pol II (see Fig. 1-6A). At least 
10 to 14 different human TAFs have been identified from
HeLa cells, with their molecular weights ranging from 18 to
250 kDa (167,184,185). TAFs are multiple subunit proteins
that associate with TBP to form the essential transcription
factor TFIID. The proteins are conserved from yeast to
humans with the bulk of our understanding of these factors
coming from experiments in yeast and Drosophila. An inter-
esting finding is that TAFs are not universally required for

transcription, but each one is required for only a subset of
genes. Thus, for example, one TAF is required for transcrip-
tion of 8% of genes, whereas three different TAFs are
required for 60% of transcribed genes. In addition, TAFs are
found in protein complexes other than with TBP. In fact,
some TAFs have HAT activity, whereas others are similar to
histones. Still other TAFs (e.g., TAFII250) have numerous
enzymatic features including ubiquitin-conjugating activity
(186). The conclusion from these studies is that TAFs are
involved in promoter selection through yet to be defined
mechanisms (185).

TBP is not specific to Pol II promoters, but also forms
PICs at the start site of Pol I and III promoters, as well as Inr
promoters that do not contain TATA elements (167,187,188)
(see Fig. 1-6B). For example, in Pol I promoters, TBP does
not bind DNA directly in a sequence-specific manner, but
instead forms protein–protein interactions with the selectiv-
ity factor complex (SL1) and the upstream binding factor
(UBF) (189). In Pol III promoters, TBP complexes with TFIIIB
and TFIIIC (190). In TATA-dependent and -independent Pol
II promoters, TBP forms protein–protein interactions with
spatially constrained upstream activators that bind DNA; for
example, CCAAT-enhancer binding protein (C/EBP) and Sp1.
Thus, TBP forms the core of the PIC through both DNA–
protein and protein–protein contacts in TATA-dependent
promoters but primarily protein–protein interactions in non-
TATA promoters (see Fig. 1-6). Apparently, the selection of a
promoter by TBP preceding the assembly of the PIC is deter-
mined by the type of accessory factors recruited (TAFs, SL1,
Sp1, TFIIIC) (188,190,191). Moreover, this recruitment may
be regulated by temporal and tissue-specific influences.
Inhibition of transcription (repression) may occur simply by
preventing one of these general TAFs from participating in
the assembly of the PIC (182,187). Like Pol II itself, many
TAFs and GTFs are composed of multiple subunits. Thus,
there is an enormously complex pattern of assembly of
proteins (TBP + TAFs = TFIID, other GTFs, and upstream
activators) on specific DNA elements at the promoter (e.g.,
TATA, INR, UAS) that results in the initiation and elonga-
tion of mRNA (182,188,192).

Other GTFs besides the TFIID complex include TFIIA,
TFIIB, TFIIE, TFIIF, TFIIG, TFIIH, TFIII, TFIIJ, and TFIIK
(160,167,193–195). There appears to be a strict requirement
for these factors to assemble at the promoter in a specific
order (181,182,192). TFIID binds to the TATA elements
first, followed by protein–protein interactions of TFIID with
TFIIA and TFIIB. The 12-subunit Pol II binds next. TFIIF 
is then recruited to the TFII-diaminobenzidine complex 
and facilitates binding of other general (basal) transcription
factors E, J, H, and K. Many of these basal factors do not
bind DNA directly (e.g., TFIIB, TFIIE, TFIIF), but instead
form bridging complexes between the general Pol II tran-
scriptional machinery and TAFs with specific upstream
regulators. GTFs are required for the basal activity of the
promoter, whereas UAS enhancers are dispensable.

Specific functions of some of the GTFs have been eluci-
dated. For example, the larger subunit of TFIIF (Rap74)
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functions as an ATPase-dependent helicase to unwind DNA
ahead of the transcription complex (196). TFIIF appears to
play a role in promoter stability rather than selectivity. TFIII,
a helix-loop-helix (HLH) protein, binds preferentially to Inr
promoter with or without TATA elements and cooperates
with upstream regulatory factors and the general transcrip-
tion complex (197). TFIIH is one of several C-terminal
domain (CTD) kinases that phosphorylates the CTD of 
Pol II to signal elongation of the nascent mRNA chain
(192,194). Other kinases are now known to phosphorylate
CTD (198).

Certainly, all genes are not transcribed concurrently; thus,
the cell must have various mechanisms for silencing genes
either permanently or in response to extracellular cues. The
mechanisms for repressing genes may be general (e.g., DNA
methylation [199,200]; see also #1375 in Bird [201]) or
sequence-specific (202). Alternatively, loss of the ability to
inhibit transcription of a gene (derepression) may permit
certain cellular functions to proceed unchecked. Examples
of the interaction between positive and negative regulators
occur during cellular proliferation and differentiation (203).
During fetal development, most cells are in the process 
of rapid proliferation. This period is followed by one of
regulated differentiation during which the genes control-
ling proliferation are repressed. However, proliferative path-
ways may be derepressed (reactivated) during periods of
organ repair or during neoplastic transformation (203,204).
Examples include the reexpression of fetal proteins during
liver regeneration and neoplasia (e.g., α-fetoprotein) or 
GI mucosal neoplasia (e.g., carcinoembryonic antigen)
(205–207). Negative promoter elements or repressors may
serve as the binding sites for proteins that sterically hinder
the binding of GTFs (e.g., TFIID) or upstream activators
(e.g., Sp1) critical in the formation of the Pol II transcription 
PICs (DNA–protein interactions). Alternatively, proteins

responsible for gene repression may act by preventing the
recruitment of required general or accessory factors (e.g.,
TFIIB or TAFs) to the bound PIC (protein–protein interac-
tions) (202).

The DNA elements CCAAT and GGGCGG, which bind
the nuclear proteins C/EBP and Sp1, respectively, are exam-
ples of promoter-activating elements that are distinct from
the TATA box (151). These upstream promoter elements are
distinguished from the TATA element in that mutation or
removal of these UASs reduces basal promoter activity with-
out completely eliminating it, whereas mutation or elimina-
tion of the TATA sequence completely abolishes transcription.
DNA elements that function independently of their position
on the gene or their orientation (3′ to 5′ or 5′ to 3′) are called
enhancers if they bind nuclear proteins that activate tran-
scription and silencers if they bind nuclear proteins that
inhibit transcription (208–210). Many of these enhancer and
silencer elements occur far upstream within the 5′ flank, but
they may also occur within introns, exons, or 5′ or 3′ untrans-
lated sequences.

To identify cis-acting enhancer elements, constructs are
made by ligating the regulatory elements to be studied in
front of a functional promoter expressing a gene encoding a
protein or enzyme that is easily assayed. Typical reporter
genes encode proteins that are not normally expressed by 
the transfected cell. By systematically deleting portions 
of 5′ flanking sequence, the transcriptional activity of the
promoter under various conditions is altered and the regu-
latory elements of interest are identified. DNA elements
responsible for tissue specificity can be identified by trans-
fecting (transferring DNA into eukaryotic cell lines) cell
lines derived from different tissues. Transcriptional initia-
tion from a promoter that requires a particular cis-acting
sequence for expression in a specific cell type is dimin-
ished or abolished if this sequence is eliminated or mutated.
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Cis-acting sequences conferring inducible responses are
also identified by this method. Alternatively, elements that
are only active during development must be identified in
eukaryotic systems in which differentiation of a cell line can
be controlled, or in transgenic animal models.

DNA-Binding Proteins

DNA-binding proteins are also referred to as trans-acting
factors by virtue of their ability to bind to the 5′ flanking
regions of genes in a sequence-specific manner and regu-
late transcription (211–213). The term trans was coined to
acknowledge that the protein product of one gene regulates
the transcription of a different gene. With the genes for several
hundred trans-acting factors now cloned, the study of their
primary and secondary amino acid structures has demon-
strated characteristic protein domains (214,215). In general,
these proteins contain specific DNA-binding, transacti-
vation, and oligomerization domains (Fig. 1-7). The amount
of a transcription factor binding to a particular sequence
initially is considered to be the primary mechanism of control.
However, it is now clear that the proteins themselves are
regulated by a variety of mechanisms in addition to control-
ling their levels in the nucleus and include activation or inac-
tivation by proteolysis (e.g., NF-κB), covalent modification
(e.g., phosphorylation, acetylation), and ligand binding (e.g.,
steroid receptors), in addition to regulating translocation 

to and from the nucleus and transcriptional induction or
repression of the trans-acting factor (216).

The DNA-binding domain is the portion of the protein
that contacts DNA in a sequence-specific manner. However,
flanking amino acids may also influence DNA-binding
through noncovalent interactions. Examples of four major
designs for DNA-binding domains are proteins with a 
helix-turn-helix domain, “zinc finger” domains, amphipathic
helices (e.g., basic-zipper [bZip], HLH), and β-ribbon
(prokaryotic proteins) (215) (Fig. 1-8). Most of the protein-
DNA contacts occur in the major groove through noncova-
lent interactions (e.g., hydrogen bonds, hydrophobic
interactions, and van der Waals interactions). An α-helical
structure appears to be a common motif used in the forma-
tion of the DNA-binding domain.

The helix-turn-helix motif was initially identified in
prokaryotic DNA-binding proteins, but similar motifs have
now been identified in the homeodomains of eukaryotic
transcription factors (217–219) (see Fig. 1-8). Homeobox
factors are a class of DNA-binding proteins that predomi-
nantly play a role in the developmental expression of genes.
Their discovery arose from the idea that developmental
regulation involves control of gene expression by a few regu-
latory transcription factors called “master switch genes” (220).
These DNA regulatory proteins initially were identified in
simpler organisms such as the roundworm Caenorhabditis
elegans (C. elegans) or Drosophila, in which the genetic devel-
opment from the single-cell stage to maturity is well defined.
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Through site-directed mutagenesis studies, a specific protein
domain required to effect developmental progression of
these organisms was identified. This domain shared signifi-
cant homology with a region within proteins controlling cell
lineage in the pituitary (Pit-1) and immune system (B-cell
octamer proteins, Oct-1 and -2) (221–225). These proteins
also shared significant homology with the C. elegans
“homeotic gene,” unc-86. Thus, the ~60- to 75-amino-acid
region of shared homology was renamed the “POU” domain
after the three proteins Pit-1, Oct-1, and unc-86. Initially, the
POU domain was named without knowledge of function 
or the ability to form specific secondary protein structure.
Although some bind similar AT-rich consensus DNA-binding
sites (octamer proteins bind an eight-nucleotide sequence
ATTTGCAT; Pit-1 [also called GHF-1] binds a nine-nucleotide
consensus site T

A
T

ATATNCAT), others do not (Drosophila
eve protein recognizes TCAGCACCG) (217). Mouse homeo-
box genes have nomenclature based on their similarity to

Drosophila homeobox genes (e.g., caudal, forkhead) and have
been associated with control of gut development (226–228).

In fact, homeobox genes have emerged as critical regu-
latory factors in the development of both the luminal GI
tract and pancreas (229,230). Homeobox genes in the luminal
GI tract are related to the 39-member Hox gene family of
transcriptional regulators that control anterior-posterior
patterning, and they are related structurally to the Drosophila
Antennapaedia gene (229). Hox genes are so strongly
conserved in evolution that this cluster of genes has been
repeated four times in mammals on different chromosomes
(231). Collectively, the replicated genes are called Hox
clusters and are expressed primarily in either the mesoderm
or ectoderm (e.g., skin, muscle, neural tissue), but not in
endodermal tissues. Rather, an evolutionarily related cluster
of homeotic genes call the Para-Hox genes appear to play
the more important role in endodermal tissue, and therefore
gut patterning (232). These genes include Pdx1, which is
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essential to the correct development of the pancreas and
duodenum (233,234), and the genes related to the Drosophila
caudal gene, Cdx1, Cdx2, and Cdx4 (229,235). Cdx2 is not
only relevant to development of the luminal gut, but it also
is an indicator of neoplastic transformation, especially in the
upper GI tract (236,237). The forkhead family of homeotic
genes is another group of transcriptional regulators with
important implications in the gut because of their role in GI
cancers (238,239). There are at least 43 members of the fork-
head family spread over three chromosomes. The “winged
helix” motif of the forkhead DNA-binding proteins is a variant
of the 60-amino-acid homeodomain helix-turn-helix because
it has additional peptide domains that have been described as
“wings” (240). The forkhead transcription factors are down-
stream targets of the hedgehog pathway, which is an impor-
tant developmental signaling cascade originally described in
Drosophila (see Chapter 9 for a more detailed discussion).

The zinc finger motif is distinguished by the occurrence
of cysteine and histidine resides tetrahedrally coordinating 
a zinc ion (241–243) (see Fig. 1-8F). Two subcategories of
zinc finger proteins have been identified: those regulatory
proteins in which only cysteine contacts the zinc ion (e.g.,
the steroid receptor family, GAL4 [244,245]), and those 
in which both cysteine and histidine residues are involved
(e.g., Sp1 and Zif 268 [245,246]). The X-ray crystallographic
structures of several zinc finger and helix-turn-helix proteins
have now been identified, with identification of more struc-
tures still to follow (247–253). Through crystallographic
studies and computer modeling, investigators have been 
able to identify which amino acids within the DNA-binding
domain contact particular nucleotides within the DNA
element. It is anticipated that most of these interactions will
be defined sufficiently well to predict protein–DNA contacts
at the molecular level for other trans-acting factors. In the
future, this will facilitate the targeting of specific tran-
scription factors (natural or synthetic) to specific promoter
sequences (248,254–257).

Landschulz and coworkers (258) originally described the
bZip/coiled-coiled DNA-binding motif as a dimerization
domain (see Fig. 1-8). However, this motif, which consists
of 55 to 65 amino acid residues, actually forms two domains:
one for dimerization and a second for DNA binding (259).
Seven repeating leucine residues forming an α-helical coil
compose the dimerization domain (Zip domain) (see Fig. 1-8).
Immediately adjacent to the Zip domain, toward the amino
terminus, lies the basic/hydrophobic domain (b domain) (215).
Thus, the bZip family of proteins, the first of the amphi-
pathic helices to be described, must dimerize to form a
complete DNA-binding domain (260,261). Other transcrip-
tional regulatory proteins containing the same heptad repeat
are able to dimerize with each other to form a “coiled coil”
(262). For stable binding to DNA to occur, some bZip
proteins prefer that each dimerization partner be the same
(e.g., CREB, C/EBP, or general control of amino acid
synthesis 4 [GCN4] homodimers [see #564 in Pu (260);
263,264]), whereas other bZip proteins form more stable
complexes as heterodimers (e.g., Fos/Jun), although lower

affinity binding is also possible as homodimers (e.g.,
Jun/Jun) (265). The first report of a crystal structure for a
bZip protein, the yeast transcription factor GCN4, confirmed
the predicted model of two α-helical coils, which merge into
diverging b domains that straddle and grip the major groove
of DNA like “forceps” (266).

Other amphipathic helices, which combine a dimeriza-
tion domain with a basic DNA-binding domain, have been
described; however, less is known about their three-
dimensional structure. The helical domains contain hydropho-
bic amino acid residues arrayed in an α helix so that they 
are clustered on one face of the helix, whereas hydrophilic
residues reside on the opposing face (see Fig. 1-8). Accord-
ing to thermodynamic principles, the hydrophobic face is
sequestered away from the aqueous environment by nonco-
valent interactions when they dimerize with similar domains
on other proteins. In addition to the bZip model described
earlier, the HLH and helix-span-helix (HSH) motifs were
coined to describe other subclasses of amphipathic helices,
albeit with longer linker sequences between the two α helices
(267–269) (see Fig. 1-8). In the case of the leucine zipper, the
hydrophobic face is formed by a series of leucine residues
spaced seven amino acids apart (258). In contrast, the HLH
and HSH proteins use a variety of different hydrophobic amino
acids in addition to leucine to form two amphipathic α helices
separated by a stretch of amino acids (“loop or span”) that do
not form a helix. Like the bZip family, HLH and HSH regu-
latory proteins bind DNA through an adjacent basic domain.

Thus, bZip proteins (e.g., CREB, activator protein 1 [AP1],
activating transcription factor [ATF], Fos, Jun) are potentially
interchangeable partners within homodimeric or heterodi-
meric complexes with the corresponding ability to recognize
a greater repertoire of DNA-binding elements (270–272).
For example, the Fos/Jun-binding site differs from the CREB/
ATF-binding site by 1 bp: CREB/ATF binds TGACGTCA,
whereas Fos/Jun binds TGAGTCA. Likewise, the bHLH
proteins that recognize the CANNTG consensus binding site
are also able to complex with each other (273). Currently,
there are three family members of the transcription factor
AP2, which are the only members of the bHSH family (269,
274,275). An HLH protein without the basic DNA-binding
domain called Id was cloned (276). This protein has been
shown to combine with three bHLH proteins (MyoD, E12,
and E47) and to prevent the formation of normal homod-
imers or heterodimers, thereby functioning as a dominant
negative mutant. Similar types of negative regulatory
proteins have been identified for bZip proteins (277,278).
Therefore, the combinatorial ability of transcription factors
permits flexibility in responding to extracellular signals at
the level of DNA–protein and protein–protein interactions.

The transactivation domains of regulatory proteins consist
of predominantly acidic, basic (glutamine), or proline residues
(152,279). These non-DNA-binding surfaces interface with
signal transduction pathways and other proteins, but their
specific function is not completely understood. Domains
with a high degree of acidic charges are thought to represent
important contact points for interaction with the Pol II PIC
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(e.g., Gal 4, VP16). Ptashne (280) coined the phrase acidic
blobs to describe such negatively charged trans-activating
domains. Glutamine-rich (Sp1) and proline-rich (C/EBP,
CTF) domains also presumably cooperate with the trans-
criptional machinery through protein–protein interactions
(160,184,281–284). However, it has more recently been
confirmed that transcription factors form protein–protein
interactions with other transcription factors not within the
same DNA-binding domain family. The most common tran-
scription factor exhibiting this property is Sp1. Sp1 can
interact directly with other transcription factors, for exam-
ple, YY1, Smads, or Jun family members (285,286). A func-
tional interaction between cJun and Sp1 has been shown to
mediate epidermal growth factor activation of lipoxygenase
gene expression (287). Presumably, the “acidic blob” in the
transactivation domain of Sp1 creates a “sticky” surface on
which new partnerships are formed at various promoters in
response to a variety of extracellular signals. Likewise, Smad
proteins, which mediate TGF-β signaling, are also promis-
cuous in their ability to partner with other transcription factor
family members (288,289). Although at one time undetected,
protein–protein interactions among transcription factors 
are now recognized as common occurrences, particularly
because there are convenient means to identify the interac-
tions genetically through two-hybrid cloning methods, or
biochemically using affinity chromatography, immunoblot
assays, and mass spectroscopy.

Many of the mechanisms involving transactivation of
transcription factors involve protein phosphorylation and
dephosphorylation (290). Phosphorylation by protein kinases
occurs at serine, threonine, or tyrosine amino acid residues.
Several classes of protein kinases exist within the cell;
however, the best studied are the protein kinase A (PKA) 
and C (PKC) pathways. PKA is activated indirectly by the
catalytic subunit of adenylate cyclase. Signals that increase
intracellular cAMP will activate PKA (291,292). In contrast,
PKC is activated by calcium released from intracellular stores
and by the phospholipid diacylglycerol (293). Phospholipase
Cγ catalyzes the hydrolysis of phosphatidylinositol to 
diacylglycerol. The tumor promoter 12-0-tetra-decanoyl
phorbol-13-acetate (TPA) is a lipid-soluble compound that
mimics diacylglycerol and directly activates PKC. Hundreds
of additional protein kinases within both the cytoplasm and 
the nucleus exist that may be implicated in the specific
phosphorylation of transcription factors (294). Ligand bind-
ing triggers a variety of different activation pathways that
appear to result in the direct phosphorylation of transcrip-
tion factors by protein kinases other than PKC and PKA; for
example, casein kinase II (CKII), glycogen synthase kinase
III, and several DNA-dependent protein kinases (295–297).
Direct phosphorylation of the DNA-binding protein may
result in a conformational change that enhances its ability 
to induce transcriptional activation (e.g., CREB, cJun, C/
EBP-β) or inhibition (e.g., yeast protein A[298]DRI) (290).
Alternatively, phosphorylation of an inhibitory subunit may
release the transcription factor from an inactive state (e.g.,
NF–κB) (299–303). Phosphorylation can also regulate the

ability of a protein to dimerize, thereby broadening or
narrowing the repertoire of DNA sequences that are recog-
nized (e.g., signal transducer and activator of transcription
[STAT] and Fos/Jun family) (304,305).

The removal of phosphate groups by sequence-specific
phosphatases is an additional mechanism by which the tran-
scriptional activity of DNA-binding proteins may be altered
(290,306,307). Interestingly, dephosphorylation appears to
be a more common mechanism for regulating transact-
ing factor binding than is kinase-mediated phosphorylation
(295). Binding of the Jun family (bZip class), homeodomain
proteins, and cMyb to DNA is regulated by dephosphory-
lation. Phosphorylation of sites within or adjacent to the
DNA-binding domain of these proteins inhibits DNA binding,
whereas removal of phosphates enhances binding. In contrast,
activation of DNA binding by phosphorylation has fewer
documented examples. One example is the serum-response
factor (SRF) that binds to and activates the cFos promoter
(308,309). SRF appears to be activated by phosphorylation
at sites adjacent to the DNA-binding domain by CKII. This
observation is supported by studies involving both muta-
tional analysis of these phosphorylation sites and increasing
cellular CKII kinase activity through microinjection of the
enzyme into cells (310,311).

Although glycosylated proteins are usually observed on
the plasma membrane of cells or in the lumen of intracellu-
lar organelles, nuclear proteins have been shown to contain 
O-linked glycosylated residues as well (312). Sp1 represents
the prototypical glycosylated transcription factor, the activ-
ity of which is enhanced by the presence of carbohydrate
residues (312–315). Other eukaryotic transcription factors
such as CTF, AP1, and AP4 are also known to be glycosy-
lated, but the effect of the carbohydrate residues on their
transcriptional activity is unknown. Glycosylation may regu-
late the transcriptional activity of individual transcription
factors, perhaps by increasing their resistance to proteolysis,
by targeting them to the nucleus, by blocking potential phos-
phorylation sites, or by facilitating their interaction with
coactivators (316).

Coregulatory Proteins

By the mid 1990s, it became clear that DNA-binding factors
were working in a combinatorial manner, not only with other
DNA-binding factors, but with non-DNA-binding proteins
that were closely linked to chromatin structure and the PIC.
These large molecular weight proteins were initially iden-
tified as factors interacting with the steroid hormone
receptors, which are DNA-binding proteins that translocate
to the nucleus after binding hydrophobic ligands in the
cytoplasm (317–319). At about the same time, it was discov-
ered that phosphorylation of the cAMP-activated transcrip-
tion factor CREB induced its interaction with a 300-kDa
coactivator protein called CBP. Subsequent to the discovery
of CREB, the homologous transcriptional coactivator desig-
nated p300 was also identified (320). Coactivators were
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found to facilitate transcriptional activation through intrinsic
HAT activity, resulting in an “open” chromatin state at the
start site of transcription. There are now several of this class
of proteins that include PCAF and GCN5 (321). Conversely,
the protein complexes that inhibited transcription were
multiprotein complexes that recruited histone deacetylators,
which, in turn, deacetylate histones returning chromatin to
its closed, inactive state (322). The prototype corepressors
were identified because of their ability to suppress activation
by the retinoid and thyroid hormones (SMRT/N-CoR) (216).
It is now known that there are transcriptional corepressors of
a variety of signal transduction pathways, including Sin3A,
a corepressor of the cMyc bHLH transcription factor family,
and PIAS/SUMO, a corepressor of the STAT signaling path-
way (323–328).

Collectively, these proteins are considered to be coregula-
tory factors because they do not contact DNA directly as
transcription factors do, but rather form protein bridges
between the sequence-specific DNA-binding proteins and
the Pol II assembly apparatus, bringing with them enzymatic
activity, for example, acetylase and deacetylase activity
involved in remodeling chromatin (329–331). Currently, there
are three broad categories of coactivators (332). p300 and
CBP are the prototypes of the HAT class of coactivators. The
TRAP/DRIP/Mediator/ARC complex compose the second
class and are proteins that bind transcription factors and
recruit RNA Pol II without having intrinsic histone modi-
fication capabilities. The third class comprises the yeast
SWI/SNF and their mammalian homologues BRG1/BRM.
This third class of coactivators contains intrinsic ATP-
dependent DNA-unwinding activity required for efficient 
in vivo transcription. Coactivators increase the transcrip-
tional activation of a promoter through its interaction with a
sequence-specific DNA-binding protein, but it is not yet
clear how the coactivator selects one group of promoters
over another. Two concepts have been considered (332). For
example, a promoter might need a “threshold level” of posi-
tive signals to be activated. Alternatively, some promoters
might have a greater requirement for the presence of one
coactivator than another.

The precise mechanisms of transcriptional activation
continue to evolve, and certain themes are emerging. In rare
instances, positive or negative enhancer activity is depen-
dent on a single DNA-binding protein that functions as a
master switch to activate a family of related genes, for exam-
ple, the myogenin MyoD family in muscle differentiation
(333). However, further scrutiny of this model has indicated
a large network of transcription factors that interact with
non-DNA-binding complexes involved in chromatin remod-
eling, for example, histone acetyltransferase proteins p300
and CBP (334–337). Therefore, the more common mecha-
nism implies that most cells respond to their environment by
recruiting subsets of ubiquitous and promoter-specific tran-
scription factors that combinatorially produce the desired
cellular phenotype (204,338-341). Corepressors SMRT and
N-CoR both recruit HDACs, yet they mediate activation
downstream of different kinase cascades (342). In addition
to the recruitment of classic HDAC-associated corepressors

(e.g., mSin3A and Groucho) (343–345), the runt-related tran-
scription factor (RUNX) proteins exert gene silencing by
associating with histone methyltransferases (e.g., SUV39H1)
(346). Bifunctional attributes of transcription factors have
been attributed to their regulated association with either
coactivators or corepressors.

METHODOLOGY

This section summarizes some of the molecular tech-
niques used to study transcriptional control of genes. These
methods are used to study either genetic structure or func-
tion. Three systems have been used to study function: recon-
stituted cell-free transcription assays, cell culture models,
and whole-animal studies. Methods that analyze structural
interactions include those techniques that assess DNA–
protein interactions and those that assess protein–protein
interactions.

Functional Methods

Reconstituted Transcription Systems

The most basic approach to the functional study of a gene is
an in vitro transcription system in which the minimal compo-
nents required for transcription are isolated and recon-
stituted to produce the gene product (347,348). mRNA is
transcribed from cloned cDNA in the presence of radiola-
beled nucleotides, RNA polymerase, and accessory factors
isolated from nuclear extracts. The radiolabeled RNA synthe-
sized in vitro is resolved by gel electrophoresis after extrac-
tion from the cell. Changes in basal levels of transcription
are measured by quantifying the amount of newly synthe-
sized RNA transcripts produced in the presence or absence
of cloned or purified gene-specific DNA-binding proteins
(349). In this way, differences in gene expression attributable
to the activity of a purified transcription factor or enriched
nuclear fraction may then be studied under tightly controlled
assay conditions.

Cell Culture Models

The study of transcriptional regulation has been advanced
greatly by the use of cell lines derived from the same tissues
as the endogenous gene of interest. These cell lines have
become the vehicles in which the study of gene expression
is performed. Two major advantages of using cell lines are
that they are homogeneous populations and they continue to
divide in minimal culture conditions. However, in many situ-
ations, the cell lines are derived from neoplastic tissues,
which may have lost the normal regulatory mechanisms that
maintain the differentiated state. In a dedifferentiated state,
cells tend to express a variety of genes outside of the reper-
toire expressed by their normal counterparts. Therefore, stud-
ies with cell lines always carry the caveat that they may not
reflect activities of native cells.
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The use of cell lines permits the direct study of regulators
of endogenous gene expression, avoiding the confounding
effects of contaminating cell types. However, this approach
does not permit alteration of the regulatory domains of genes
to assess their contribution to transcription. Therefore, tech-
niques have been developed to insert altered genetic mate-
rial into cells by chemical, electrical, or viral mechanisms.
In this way, specific elements controlling transcription can
be isolated and studied. To tag the inserted gene, the promoter
from which transcription will be initiated is ligated upstream
of the coding sequences for a reporter gene, for example,
chloramphenicol acetyltransferase, β-galactosidase, growth
hormone, green fluorescent protein, or luciferase (9,350–353).
The products of the reporter gene are easily measured, and
spurious detection of reporter gene activity is kept to a mini-
mum because their products are not normally expressed by
most mammalian cells. Regulatory sequences to be analyzed
are ligated upstream of a promoter with basal transcriptional
activity in the test cell line. Taking advantage of various
restriction sites, sequentially shorter 5′ flanking sequences
are created, and each resulting construct is then tested by
assaying the reporter gene product as an indicator of gene
expression.

Whole-Animal Models

Whole-animal studies have been useful in assessing the
contribution of transcriptional control to the regulation of
several GI peptides, including gastrin, CCK, and somato-
statin (354–356). Brand and Stone (357) showed that gastrin
mRNA levels in the antrum increase under conditions of
chemical or surgical achlorhydria and coincide with a recip-
rocal decrease in somatostatin mRNA. These observations
are correlated with prior observations that gastrin plasma
levels increase under conditions of achlorhydria (354,
358). Furthermore, infusion of the somatostatin analogue
octreotide blocks the increase in gastrin mRNA (357). Walsh
and coworkers (359,360) found that gastrin mRNA levels
are predictably regulated by cycles of fasting and refeed-
ing. Recently, infusion of the proinflammatory cytokine
interferon-γ into mice has been used to recapitulate the
effect of Helicobacter pylori infection on gastrin and
somatostatin (361). Similarly, studies on the dietary control
of CCK gene expression have been reported (355). Although
such studies permit the linkage of transcriptional regulation 
to physiologic events, they do not allow dissection of the
responsible regulatory elements.

Transgenic Animals

Through transgenic animals it is possible to introduce
genetic information into the mouse genome such that there 
is permanent alteration of the genetic makeup in both the
founder line and successive generations (13,14). Transgenic
studies afford the opportunity to study the importance of
specific genetic sequences in cell, organ, and whole-animal
function. By breeding mice with different transgenic line-
ages, the interaction between these artificially produced

genotypes on the overall phenotype may be amplified or
abolished. In many situations, these alterations reproduce
clinically relevant pathologic states (362–366). Chapter 53
provides specific details on transgenic technology including
the powerful technique of homologous recombination.

Cell-Based Knockout Strategies

Once a genetic target is identified, whether DNA, RNA, 
or protein, the next step is to determine the significance of
the molecule in a particular signaling, developmental, or
neoplastic cascade. This usually is done by blocking, reduc-
ing, or removing the gene product at the cellular level before
applying the extracellular signal. A change in the expected
phenotype would confirm that the gene product makes a
significant contribution. At the cellular level, the traditional
approach has been to use small molecules, for example,
pharmaceutical inhibitors. Once DNA vectors were devel-
oped in the early 1980s, antisense and dominant negative
approaches to inhibit gene expression came into vogue (367).
With the emergence of transgenic technology, it became
apparent that one could remove the gene product through
genetic manipulation specifically by homologous recom-
bination to disrupt the gene in mice (362,368). With the
discovery of snRNA molecules that interfere with either
transcriptional initiation or translation, the commercial
availability of synthetic “interfering” RNA molecules has
emerged (369,370). High-throughput methods using RNA
silencing are now being used to complement the gene
discovery methods of DNA microarray technologies (371).
Nevertheless, RNA interference technology, although rela-
tively easy to use, does not eliminate the gene product as
effectively as direct gene targeting. Therefore, genetic meth-
ods must be used to generate a complete null cell line. Cell
lines are either created from a null mouse model (e.g.,
embryonic fibroblasts), or somatic cell gene targeting can be
performed in the cell line of choice (372,373). The advan-
tage of creating the null cell line from a mouse is that the
cells will be from normal tissue and not a tumor cell line.
However, unless molecules are introduced to immortalize
the cells, the lines are not permanent. Gene targeting in a
somatic cell line has not been as widely used because of the
difficulty in performing the technique, but it is a powerful
approach that permits the study of a null locus without
incurring the expense of mice.

Structural Methods

Once functional regulatory DNA elements have been
identified, assays that assess DNA–protein interactions are
performed (374). Indeed, in circumstances where a long
sequence (>50 bp) must be analyzed, it is simpler to identify
DNA–protein interactions first, and then determine whether
these DNA elements are involved in transcriptional regula-
tion. DNase I footprinting assays are used to identify DNA-
binding elements that interact with crude or purified nuclear
proteins by protecting them from chemical or enzymatic
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cleavage (375,376). Such assays are particularly well suited
for studying cooperative interactions among proteins bound
to adjacent DNA elements. The technique can be performed
in vivo or in vitro (9). However, in vivo footprinting has been
superseded by chromatin immunoprecipitation (ChIP) assays
(see the next section). Electrophoretic gel mobility shift
assays (EMSAs; gel shift, gel delay, or band-shift assays)
permit a more detailed analysis of the following: (1) the type
of protein complexes that bind to individual DNA elements,
and (2) the specificity of the protein interaction with a specific
base pair (377–379) (Fig. 1-9). This assay system is also
rapid and easier to use than footprinting assays. Methylation
interference assays extend the power of the gel shift assay by
identifying specific nucleotide contacts that are required for
DNA binding (380). DNA affinity precipitation is a DNA–
protein interaction assay that uses the biotinylated DNA
binding site to identify the proteins that are recruited to the
element (381). The assay uses the DNA element to isolate
the protein factors, coupled with immunoblots to identify
the proteins that form both the protein–DNA and protein–
protein interactions. Southwestern blot analysis takes advan-
tage of specific DNA elements that are used to detect nuclear
proteins separated on a denaturing gel and transferred to
nitrocellulose or produced by a phage expression library
(382–384).

Chromatin Immunoprecipitation Assays

ChIP analysis is now the most effective method to docu-
ment an in vivo interaction at DNA (385–387). First, a fixa-
tive, usually formaldehyde, is used to cross-link proteins 
to DNA. Then antibodies are used to immunoprecipitate 
the DNA-binding proteins. After a series of extractions to
remove the protein from DNA, specific primers are used to
PCR amplify the DNA-binding element precipitated with
the protein and antibody. Variations of this method are used
to identify the in vivo preferred binding sites of known
DNA-binding proteins. Alternatively, the immunoprecipitate
is resolved on a sodium dodecyl sulfate gel, and mass spec-
troscopy can be used to identify the proteins that coprecipi-
tate and are likely involved in protein–protein interactions
with the DNA-binding proteins. The technique completely
depends on the quality of the antibodies, the quantity and
quality of genomic DNA precipitated, and primer specificity.
ChIP assays complement in vitro DNA–protein interaction
assays such as EMSAs or footprinting. Expression vectors
or cell-based knockout strategies using dominant negative
constructs, antisense technology, or RNA interference may
be used to demonstrate functional significance (388). These
approaches are rapid and useful to perform before using
transgenic mouse approaches.
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Competitor 1 is related to the probe sequence, whereas Competitor 2 is unrelated to the probe
sequence.



Microarray Technology

The latest method to comprehensively analyze gene
expression is by microarray technology. At the transcription
level, DNA array technology increases by several orders of
magnitude the number of genes that can be examined simul-
taneously under different conditions (389–391). The number
of genes that are either stimulated or inhibited under various
conditions can be studied simultaneously with the limitations
being the number of genomic sequences that are spotted on
the glass slide. A glass slide is able to hold the genomic
sequences of 25,000 to 30,000 genes, which is the current
estimate of the total number of genes in the human genome.
Two types of arrays are available: EST/cDNA and oligonu-
cleotide (Affymetrix, [Santa Clara, CA]) based. The EST
microarray chips use expressed sequence tags that are frag-
ments of DNA corresponding to segments of the genome that
encode mRNA. The Affymetrix gene chips spot commer-
cially designed oligonucleotide sequences. These DNA frag-
ments are subsequently “arrayed” onto glass slides. In most
instances, several regions of the genomic sequence unique to
that gene are spotted in multiple copies to ensure repro-
ducibility. Different genetic domains are plated because of
differences in hybridization affinity. RNA is isolated from
cells or tissue after treatment with an extracellular molecule
or from cells at different stages of development or transfor-
mation. cDNA are then generated and tagged fluorescently,
then hybridized under stringent conditions to the DNA
arrayed on the glass slide followed by analysis by a special
plate reader. Computer-generated algorithms are required to
interpret the fluorescent signals and rank the degree of
change from baseline fluorescence. The technology is being
used to study the gene expression pattern found in various
tissues at designated stages, for example, developmental or
transformation stages (392–394). The significance of the
findings must be confirmed by alternative methods includ-
ing Northern blot analysis or quantitative PCR.

Proteomics

Analogous high-throughput approaches have been devel-
oped to study protein modifications (395). However, the
techniques used to detect protein posttranslational modifica-
tions are more complex and use more labor-intensive tech-
nology. Protein is extracted from the cell or organelle of
interest and resolved by two-dimensional gel electrophore-
sis, in which proteins are separated by both size and ionic
charge (along a pH gradient). The proteins are visualized
with a dye either directly on the gel or after transfer to a
paper substrate. Both substrates (gel or paper) can be used
for further analysis. However, proteins transferred to a 
paper substrate permit several options for analysis. Resolved
proteins that are transferred to paper can be submitted for
analysis with an antibody (immunoblot) that might recog-
nize phosphorylated or acetylated peptides. Differences 
in the size of the spot corresponding to the amount of a
particular protein version (phosphorylated, acetylated) can be

quantified by computer. Proteins that cannot be identified by
antibody can be analyzed by mass spectroscopy. Therefore,
proteomic studies allow the monitoring of regulatory changes
that occur because of posttranslational modifications and
quantification for large numbers of proteins simultaneously.
Taking advantage of the technology used to develop DNA
arrays, companies are now developing protein arrays that
will be applied to new drug discovery (396).

TRANSCRIPTIONAL CONTROL OF
GASTROINTESTINAL PEPTIDES

Although knowledge in the transcriptional control of GI
peptides has accelerated over the last several years, the field
is still hampered by the paucity of gut-derived cell lines that
express regulatory peptides. The problem has been circum-
vented somewhat through the use of neural and endocrine-
derived hormone-producing cell lines, but application of
data obtained with these models to the gut requires assump-
tions that may not be accurate. Future work in this field will
be assisted greatly by the application of high-throughput and
transgenic technologies and the development of immortal-
ized and transformed cell lines using in vitro DNA transfer
techniques. An overview of what has been accomplished
with respect to specific GI peptides can be found primarily
in Chapters 4 through 6. Nevertheless, a few peptides deserve
brief mention. To date, most studies of the transcriptional
control of peptide hormones have focused on somatostatin
and vasoactive intestinal peptide because they are expressed
in islet or neural-derived cell lines (397–400). The downside
of this is that little is known about how somatostatin is regu-
lated in gut-derived tissues; for this reason, the peptide
should become a priority for future transcriptional control
studies in the GI tract. Studies on the transcriptional control
of gastrin have been slow for similar reasons and have been
reviewed recently (401). Information on the transcriptional
control of secretin and CCK has increased because of the
use of transgenic mouse models (25,402–404).

POSTTRANSCRIPTIONAL PROCESSING

Polyadenylation

Three major events occur at the end of transcription: 
(1) The poly(A) tail is added, (2) adenine bases are methy-
lated, and (3) hnRNA is processed by removing introns
before exiting the nucleus (see Fig. 1-2) (405). All mRNA,
except those encoding most histone proteins, have poly(A)
tails. The length of the poly(A) tail that is added ranges from
200 to 250 bp and is quite uniform among eukaryotic organ-
isms. Once the transcript reaches the cytoplasm, the length
of the poly(A) sequence decreases with the age of the tran-
script (406). Thus, polyadenylation contributes to mRNA
stability and translational activation, processes that also
involve a synergistic interaction with the cap site (407–409).
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Because there is no poly (dT) sequence within DNA, addition
of the poly(A) tail represents a posttranscriptional modifica-
tion of the newly synthesized mRNA. The AATAAA site in
DNA is transcribed as AAUAAA and signals endonuclease
cleavage of hnRNA ~20 bp after this RNA element (410).
Several factors are required for specific recognition of the
AAUAAA element before the addition of adenylate residues
by poly(A) polymerase (411,412). Polyadenylation occurs in
two phases: (1) an AAUAAA-dependent phase marked by
addition of the first 10 residues, and (2) an AAUAAA-inde-
pendent phase marked by rapid elongation and catalyzed by
a poly(A)-binding protein (413). In addition, endonuclease
cleavage of polyadenylated histone H1 transcripts have also
been shown to require the presence of small nuclear ribonu-
cleoproteins (U7 snRNP, pronounced “snurp”), which are
trans-acting factors that participate in RNA splicing reac-
tions (414). Transcription can proceed for up to 2 kb past the
polyadenylation site and may terminate prematurely 30% of
the time. Adenylate residues within exons are methylated at
the sixth nitrogen and are thought to serve a protective role
for those sequences that will eventually be translated (415).
It is now known that formation of the PIC is linked to the
assembly of factors involved in polyadenylation (416).

RNA Splicing

The Spliceosome

Soon after the termination of transcription, most verte-
brate hnRNA (pre-mRNA) will be posttranscriptionally
processed after exiting the nucleus into a form that can be
translated (see Fig. 1-2). This involves removing intervening
sequences that in some transcripts contain transcriptional
regulatory signals (cis-acting elements). Splice sites are
identified by comparing the genomic sequence with the
cDNA prepared from an RNA template. The cis-acting
elements within the intron that regulate RNA splicing are
GU (GT in the genomic sequence) at the 5′ splice border,
AG at the 3′ splice border, and a pyrimidine-rich element
that defines the area of the branch point 20 bp upstream
from the 3′ splice junction (Fig. 1-10). The branch point lies
just upstream of the pyrimidine-rich region (PyPy)n and is a
highly conserved sequence in yeast (UACUAAC) but much
less so in vertebrates.

Five snRNA-U1, U2, U5, U4, and U6-combine with
subsets of about 10 different proteins to form small nuclear
ribonucleoproteins (snRNPs) (417,418). The snRNA, rang-
ing in size from 56 to 217 nucleotides, are quite abundant 
in the nucleoplasm and contain a trimethylguanylate cap.
Some proteins are components of all five major snRNPs,
whereas others are unique to one snRNP. The U7 snRNP,
which is present in low concentrations, participates in the 3′
posttranscriptional processing of hnRNA [poly(A)] (419).
The five major snRNPs assemble into large multicomponent
complexes called spliceosomes to perform the splicing reac-
tions (420). There reactions occur in three steps: cleavage 

at the 5′ exon-intron border with formation of a branch point,
excision of the branch point as a lariat, and joining of the
exons. Splice site selection can be influenced by subtle
changes in flanking exon sequences (421–423).

The basic steps in RNA processing illustrated in Figure 1-10
are as follows (419): U1 snRNP binds in a sequence-specific
manner to the 5′ exon-intron junction of capped pre-mRNA
(424). An U2 snRNP accessory factor (U2AF) then binds to
the pyrimidine-rich element before sequence-specific recog-
nition of the branch point element by U2 snRNP (425,426).
The 5′ exon is released by cleavage of the 5′ exon junction.
This allows the freed 5′ guanylate residue to form a phos-
phodiester bond at the 2′ site of an adenylate residue within
the branch point. U4 and U6 snRNPs are paired together by
complementary bases and function as a single snRNP
complex (427). The recruitment of the U4/U6 snRNPs to the
spliceosome is essential to the last excision step and final
removal of the intron from the pre-mRNA. U4/U6 snRNP
cooperates with the U2 branch point complex without direct
contact with RNA (428). U5 snRNP binds just upstream of
the 3′ splice junction to initiate cleavage of the 3′ intron
border. Finally, the intron is removed as a lariat and the two
exons are joined. More recent evidence indicates that small
RNA catalyze the splicing reactions without the presence of
specific enzymes (429,430). As observed for polyadenyla-
tion, the splicing events coincide with transcriptional events
(431). It is therefore somewhat surprising that the events
involved in splicing are not better understood. Nevertheless,
with the understanding that the complexity of the human
genome lies beyond the DNA sequence and at the level of
epigenetics and alternative splice products, the next decade
will likely witness heightened attention to this additional
nuclear process (431,432).

Alternative Splicing

Eukaryotic cells have applied the mechanics of RNA
splicing to generate the protein diversity necessary to meet
their multiple demands. Thus, in contrast with the original
definition of a gene in which only one transcript is produced,
complex genes can generate multiple protein isoforms from
multiple RNA transcripts through alternative splicing (433).
This can be achieved by altering which introns and exons are
included in or excluded from the mature mRNA transcript
that is used as the template for peptide chain elongation.
Accordingly, the definition of introns and exons for each
gene is actually a fluid concept because an intron for one
gene product may become an exon within another transcript.
Alternative splicing is a mechanism used by many protein
classes, including muscle-related genes, hormones, and tran-
scription factors (434–438).

Regulated Posttranscriptional Mechanisms

In addition to cis-acting DNA elements, the cis and trans
models of regulation also occur at the posttranscriptional
level (439). Ferritin and the transferrin receptor (TfR),
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which regulate the storage and uptake of iron, are the best
known examples of regulated posttranscriptional control
(440). Cis-acting RNA elements, responsible for conferring
iron regulation on both proteins (iron-response elements
[IREs]), reside in the 5′ UTR and 3′ UTR of ferritin and TfR
mRNA transcripts, respectively. The same iron-binding
protein (IRE-BP) that binds to the IRE in the 5′ UTR of
ferritin to block translation can also bind to the 3′ UTR of
TfR to block mRNA degradation (439,441,442). Therefore,
regulation of iron homeostasis ultimately depends on post-
transcriptional mechanisms that either block translation or
increase mRNA stability.

TRANSPORT ACROSS THE NUCLEAR
MEMBRANE

As noted earlier, RNA is synthesized initially as a much
larger primary transcript molecule that in many instances
undergoes posttranscriptional modification (e.g., splicing,

degradation). However, for any mature RNA transcript to 
be translated, it must be transported from the nucleus to 
the cytoplasm. In contrast, nuclear regulatory proteins are
translated in the cytoplasm and are eventually returned to
the nucleus, either immediately after synthesis or after a
dormant state from which they are activated in response to
signals (443). This bidirectional shuttling of macromole-
cules between the cytoplasm and the nucleus occurs through
the nuclear pore complex, a specialized compartment of 
the nuclear membrane regulated by a group of transport
receptors called karyopherins. Both import and export
processes through the nucleus require energy in the form of
the Ras-related GTPase Ran and specific targeting signals on
the cargo to be transported (nuclear localization and export
signals) (444). The three-dimensional structure of the nuclear
pore complex shows a doughnut-shaped structure comprising
eight subunits (445). From the eight subunits emanate spoke-
like structures that radiate inward to form a central plug (446,
447). The cytoplasmic surface of the nuclear pore complex
(NPC) is closely associated with ribosomes. Its nuclear
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surface is thought to participate in the organization of the
genome by binding to specific DNA sequences within tran-
scribed genes with products that may be destined for export
from the nucleus (gene-gating hypothesis) (448).

CONCLUSION

With the dawn of the postgenomic era on us, our next
challenge is to apply the volumes of available genetic,
molecular, and cell biological information to tackle ques-
tions of GI physiology and development. To accomplish this
task and make optimal use of past, ongoing, and future
discoveries, physiologists will need to acquire the basic
vocabulary of several disciplines including bioinformatics.
It is our hope that this chapter has laid the initial foundation
necessary to understand those aspects of physiology that
pertain to transcriptional control.
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TRANSLATION

Translation is the complex process by which a sequence
of codons of messenger ribonucleic acid (mRNA) directs the
synthesis of a polypeptide chain. Beyond the sequence of
codons, the mRNA contains untranslated regions (UTRs)
with structural and regulatory sequences that determine its
translational fate. Translation involves hundreds of mole-
cules including mRNA, transfer RNA (tRNA), ribosomal
RNA, activation enzymes, and many RNA-binding proteins,

as well as energy in the form of guanosine triphosphate
(GTP) and adenosine triphosphate (ATP).

To be translated into protein, mRNA must contain, in
addition to a string of codons, information that specifies
nuclear export, translation, and stability. Much of this infor-
mation is communicated by specific RNA-binding proteins.
These proteins first associate with pre-mRNA (primary
transcripts of genomic DNA-containing exons and introns)
cotranscriptionally and undergo a dynamic series of
rearrangements involving the binding and dissociation of
numerous proteins throughout the life of mRNA. The mRNA
nucleoprotein complex (mRNP) communicates information
to the cytoplasm about the structure of the gene from which
the mRNA was formed and the processing steps experi-
enced by the mRNA. The mRNP therefore carries signifi-
cantly greater information than the sequence of the mRNA
itself (1).
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Initiation

Translation requires the positioning of an elongation-
competent 80S ribosome at the initiation codon (AUG).
Binding of the small (40S) ribosomal subunit at the 5′ end of
the mRNA is rate limiting and requires energy in the form of
ATP. It then forms a 43S preinitiation complex with eukary-
otic initiation factors (eIFs) 3, 1, 1A, and 5, and a ternary
complex including the methionine-loaded initiator tRNA that
will recognize the AUG codon and eIF2 that is coupled to
GTP. The preinitiation complex recognizes the mRNA by the
binding of eIF3 to the eIF4 protein complex associated with
the 5′ cap structure (eIF4F) (2). The eIF4F protein complex
contains an enzyme (eIF4A) that unwinds RNA duplexes,
allowing the 43S complex to bind and scan the mRNA, and
a scaffold protein (eIF4G) that serves as a platform for the
assembly of other proteins and interacts with the poly(A)-
binding protein. This interaction is thought to loop the mRNA
and bring the 3′ UTR in close proximity to the 5′ end of the
mRNA (3). This provides a means by which sequences in the
3′ UTR can regulate translation initiation. Most known trans-
lational regulatory sequences are found within the 3′ UTR.

The 43S complex recognizes the initiation codon through
the formation of base pairs (bp) between the initiator tRNA
and the start codon. Subsequently, eIF2-bound GTP undergoes
hydrolysis, a reaction that is necessary for the 60S ribosomal
subunit to join the initiation complex. This appears to release
most of the initiation factors from the small ribosomal subunit,
leaving the initiator tRNA associated with the ribosome (in the
P site). Formation of the 80S initiation complex capable of
catalyzing the formation of a peptide bond occurs with the
hydrolysis of a second molecule of GTP on eIF5B (Fig. 2-1A).

Regulation of Initiation

Although the specific translational regulatory mecha-
nisms active in peptide hormone synthesis are not yet clear,
translation is generally controlled at the initiation step where
regulation may be global or mRNA specific. Global control
of mRNA translation generally occurs through changes in
the phosphorylation state of initiation factors or regulators
that interact with them. Proteolytic cleavage of translation
factors can also reduce translation of all mRNA species
within the cell. mRNA-specific regulation of translation can
be achieved by steric blockage, interference with the eIF4F
complex, and cap-independent inhibition of the early initia-
tion steps. Steric blockage refers to the binding of regulatory
proteins to message-specific response elements that results
in insufficient space for the binding of critical initiation
complex proteins (4–7). Interference with the eIF4F complex
is achieved by mRNA-specific binding proteins that block
eIF4E recognition by eIF4G (8–11). Cap-independent inhi-
bition of translation refers to proteins that bind to specific
sites in both the 5′ and 3′ UTRs and recruit corepressors to
the 3′ UTR. This affects stable association of the small ribo-
somal subunit with the mRNA (12–14).

Translation can also be controlled later in the initiation
process. RNA-binding proteins have been described that
prevent the binding of the 60S ribosomal subunit to the 40S
subunit at the initiation codon, apparently through interfer-
ence with initiation factors (15). The existence of more than
one open reading frame on an mRNA and the sequence
distance between the open reading frames can also play a
significant role in determining the likelihood of translation.
For example, amino acid deprivation reduces global protein
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FIG. 2-1. Translation of messenger RNA (mRNA) into protein, highly simplified. Some translation-initiation factors are omitted
(see Preiss and Hentze [526], Ramakrishnan [527], and Hershey [528] for more complete descriptions). (A) Cap-mediated initi-
ation: The methionine-containing ternary complex (methionine-loaded transfer RNA [tRNA], eIF2, and GTP) binds to the 40S
ribosomal subunit and other initiation factors (eukaryotic initiation factor-1 [eIF1], 1A, 3, and 5) to form the 43S preinitiation
complex. The preinitiation complex recognizes the mRNA through the binding of eIF3 to eIF4 in the cap-binding complex.
The cap-binding complex contains eIF4A, an RNA helicase that unwinds the secondary structure of the mRNA during the subse-
quent scanning step. The cap-binding complex also contains eIF4G, which contacts the poly(A)-binding protein (PABP). This
contact is thought to bring the 3′ region of the mRNA in close proximity to the 5′ cap. The 43S preinitiation complex scans the
mRNA from 5′ to 3′ until the initiation codon, AUG, is encountered. Stable binding of the preinitiation complex to the AUG codon
yields the initiation complex. Subsequent joining of the 60S ribosomal subunit results in the formation of the 80S initiation
complex. AUG recognition and the joining of the 60S ribosomal subunit both trigger GTP hydrolysis. The 80S complex contains
an aminoacylated initiator tRNA in the P site of the ribosome and an empty A site. It now is competent to catalyze the forma-
tion of the first peptide bond. (B) Elongation: A ternary complex containing aminoacylated tRNA and the correct anticodon 
is brought into the A site of the ribosome. Codon–anticodon recognition leads to guanosine triphosphate (GTP) hydrolysis.
This allows for conformational changes within the tRNA and the ribosome. Peptide bond formation (deacylation of the P site
tRNA and the transfer of the peptide chain to the A site tRNA) then occurs. Translocation of the tRNA and the mRNA is facili-
tated by a GTPase, eukaryotic elongation factor-2 (eEF2). The ribosome is then ready for the next round of elongation, with a
deacylated tRNA in the E site, peptidyl tRNA in the P site, and an empty A site. (C) Termination: When a stop codon on the
mRNA is encountered in the A site, eukaryotic release factor-1 (eRF1) binds to the ribosome A site and triggers the release of
the peptide chain from the tRNA in the P site. eRF3 then binds GTP and promotes dissociation of eRF1 from the ribosome.
Hydrolysis of GTP is required for subsequent release of eRF3. The ribosome is then left with mRNA and a deacylated tRNA in
the P site. The ribosomal releasing factor, together with eEF2 and GTP, is required to disassemble the complex and prepare the
ribosome for a new round of protein synthesis. Much of the mechanism of mRNA, translation factor, and subunit release after
peptide chain termination remain to be determined. GDP, guanosine diphosphate.
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synthesis by phosphorylation of eIF2a, which blocks GDP-
GTP exchange and reconstitution of the functional ternary
complex. Paradoxically, the same modification increases the
translation of some mRNA that have upstream open reading
frames. It appears that the 60S ribosomal subunit dissociates
at the stop codon of the first open reading frame and the 40S
subunits remain associated with the mRNA and resumes
scanning. The 40S subunit must acquire an active ternary
complex during scanning to translate downstream open read-
ing frames. The probability of translating the most 3′ open
reading frame therefore depends on the distance (scanning
time) between the open reading frames and the availability
of amino acids within the cell (16).

Internal ribosome entry sites (IRESs) mediate translation
initiation independent of the cap structure by recruiting the
ribosome directly to an internal position of the mRNA (17).
Both structural features and short-sequence elements appear
to be involved in ribosome recruitment in eukaryotic IRESs.
Exactly how these motifs combine to promote internal initi-
ation remains to be determined. The IRES appears to be a
complex RNA scaffold that contains multiple sites for inter-
action with components of the translational apparatus.
Structural domains have been identified that interact with
the initiation factors eIF4G and eIF4B (18,19), with eIF3
(20,21), or directly with the 40S ribosome subunit at multi-
ple sites. An IRES is also described that can assemble an
80S ribosome at its initiation codon without the aid of any
initiation factors or an initiator tRNA (22). A growing body
of evidence exists to support the hypothesis that cellular
IRESs are involved in the regulation of gene expression
under physiologic conditions during which the efficiency of
cap-dependent protein synthesis is greatly reduced. IRESs
enable cells to respond to these conditions against the back-
ground of a general reduction in protein synthesis.

Elongation

Each ribosomal subunit has three binding sites for tRNA:
designated the A (aminoacyl) site, which accepts the incom-
ing aminoacylated tRNA; P (peptidyl) site, which holds the
tRNA with the nascent peptide chain; and E (exit) site,
which holds the deacylated tRNA before it leaves the ribo-
some. The end of the initiation process leaves an aminoacy-
lated initiator tRNA in the P site of the ribosome and an
empty A site, which serves to start the elongation process.
Aminoacylated tRNA is brought into the A site as a ternary
complex with eukaryotic elongation factor-1A (eEF1A) and
GTP. Correct codon-anticodon interactions result in confor-
mational changes in the ribosome that stabilize tRNA bind-
ing and trigger GTP hydrolysis by eEF1A. This leads to the
release of the aminoacyl end of the A site tRNA by eEF1A;
the tRNA then swings into the peptidyl transferase site of
the large subunit in a process called accommodation. The
peptide bond is formed through deacylation of the P site
tRNA and the transfer of the peptide chain to the A site
tRNA. The ribosome then has a deacylated tRNA in the 

P site and peptidyl tRNA in the A site. Translocation of tRNA
and mRNA is facilitated by eEF2, which is also a GTPase.
The ribosome is then ready for the next round of elongation,
with deacylated tRNA in the E site, peptidyl tRNA in the 
P site, and an empty A site ready to receive the next cognate
ternary complex (see Fig. 2-1B).

Termination

Termination begins when a stop codon (UAA, UGA, or
UAG) is encountered in the A site mRNA. Stop codons are
recognized by eukaryotic release factor-1 (eRF1). The
GTPase eRF3 then binds the complex of eRF1 bound to the
ribosome. Binding of eRF1 to the ribosome at the stop
codon A site triggers the hydrolysis and release of the
peptide chain from the tRNA in the P site. Hydrolysis of
peptidyl tRNA by eRF1 is required for binding of GTP to
eRF3 on the ribosome. This, in turn, leads to a conforma-
tional change in eRF3 that has high affinity for ribosomes
and the dissociation of eRF1 from the ribosome. Hydrolysis
of GTP is required for subsequent dissociation of eRF3 from
the ribosome (see Fig. 2-1C) (23,24).

Localized Translation Regulation

In addition to regulation of the initiation process, mRNA-
specific translation regulation also occurs regionally in
polarized cells. This is clearly demonstrated in neural tissues
where stimulation of synapses induce the polyadenylation
and translation of cytoplasmic polyadenylation element-
containing, but not cytoplasmic polyadenylation element-
lacking, mRNA stored in dendrites (25). This allows the
generation of protein gradients emanating from particular
positions in cells or the restriction of protein expression to 
a specific region and is a potential mechanism by which 
a cell may modulate its response to repeated, directional
stimuli.

RNA Silencing

Small RNA molecules regulate mRNA-specific transla-
tion either by translational repression, in the case of
microRNA (miRNA) (26–28), or by mediating the degrada-
tion of the target mRNA, in the case of small interfering
RNA (siRNA) (29,30). The functional difference between
miRNA and siRNA (both about ~22 nucleotides in length)
depends on the degree of complementation between the
small RNA molecule and the mRNA target (31,32). miRNA
hybridize by incomplete base paring, usually to several sites
in the 3′ UTR of target mRNA. siRNA show perfect comple-
mentation to the target mRNA. miRNA and siRNA have
distinctly different origins within the nucleus, but they have
common RNA-binding proteins (33). It is unclear whether a
single type of small RNA-protein complex can mediate both
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target mRNA cleavage and translational inhibition (see
review by Sontheimer [34]).

Other Regulators of Messenger RNA Stability

Regulation of the rate of decay is an important control
point in determining the abundance of an mRNA species,
and decay rates of individual mRNA differ widely and can 
be differentially affected by environmental cues. Several
sequence elements can regulate the rate of turnover of a tran-
script by attracting specific binding proteins that can either
destabilize or stabilize the transcript. The strength of the
association of these binding proteins can be modified by
changes in the cellular environment. The principal mRNA-
degradation pathway begins with removal of the 3′ poly(A)
tail. Interaction of the cap proteins and the poly(A)-binding
proteins with the translational machinery likely protects the
5′ and the 3′ end of the mRNA from attack by deadenylases
and decapping enzymes (35,36). This means that translation
and mRNA decay are linked. Support for this comes from
studies demonstrating that inhibition of translation initiation
destabilized mRNA (37) and inhibition of translation elon-
gation (with cycloheximide) promotes mRNA stability (38).
The nonsense-mediated decay pathway further links transla-
tion to mRNA turnover. This pathway ensures that mRNA
with premature stop codons are not translated. To be recog-
nized as premature, a termination codon must lie upstream
of the last intron (39–43). Exon-exon junctional complex
proteins, which mark the position of exon-exon junctions in
the mature mRNA, may play an important role in surveil-
lance for potentially deleterious nonsense mutations (44).

POSTTRANSLATIONAL PROCESSING

Although it would appear that the translation of polypep-
tide hormones is similar to that of other eukaryotic proteins, 
the posttranslational processing of prohormones is unique.
Since the initial discovery of proinsulin (45), it has been
evident that the synthesis of polypeptide hormones of the
gut involves a series of modification steps after the initial
translation of the gene product that are distinct from the
biosynthesis of other cellular proteins. These modifications,
achieved via a variety of posttranslational processing reac-
tions, may enlarge or diminish the size of the peptide precur-
sor, but, in general, they result in the formation of biologically
active and physiologically relevant products. Efforts to deter-
mine the nature and mechanisms of peptide hormone post-
translational processing reactions were greatly facilitated by
the development of molecular biological techniques that
permitted the deduction of peptide precursor sequences.
Information on precursor structure has led to the develop-
ment of molecular probes that can be used to characterize
individual processing reactions, as well as patterns of process-
ing reactions for groups of related peptides. Application 
of these probes to ultrastructural studies has provided 

information on the cellular compartments in which process-
ing reactions take place. In vitro reconstitution experiments
have led to the elucidation of some of the mechanisms
responsible for the transport of peptide precursors between
cellular compartments. Development of techniques to
isolate and culture functionally intact peptide-secreting cells
has permitted physiologists to examine the sequence and
dynamics of the complete posttranslational modification
and activation process for given peptides. Many of the
enzymes responsible for prohormone processing have now
been isolated. Coexpression or deletion, or both, of these
enzymes within cells has allowed for elucidation of their
activities for multiple prohormone substrates.

Previously, it was thought that proteins exited from cells
via two distinct pathways: the constitutive or the regulated
secretory pathways (46,47). As has been the case with other
biological systems, more recent evidence suggests that there
might be overlap between these pathways (48). Generally,
however, the constitutive pathway is reserved for those
secreted proteins that are not stored in the cell and usually
do not undergo extensive posttranslational processing, as seen
with the products of fibroblasts and hepatocytes. Proteins
secreted constitutively exit the cell soon after synthesis on
the ribosome. Polypeptide hormones, however, enter the
regulated pathway of secretion in most neuroendocrine cells.
These cells are capable of storing secretory products for
hours or days in electron-dense secretory vesicles and releas-
ing them on stimulation. The intracellular pathways and
organelles involved in this pathway were first defined in
studies (49) in the exocrine pancreas demonstrating that
polypeptides are initially synthesized on the rough endoplas-
mic reticulum (ER), transported to the Golgi apparatus, and
finally placed into secretory granules (Fig. 2-2). On cell
stimulation, these secretory granules or vesicles fuse in a
calcium-dependent manner with the cell membrane to release
their contents into the extracellular milieu. This chapter
reviews the enormous progress made in recent years in eluci-
dating the mechanisms for posttranslational processing 
of gastrointestinal peptide hormones, and then presents a
detailed analysis of one hormone, gastrin.

TRANSPORT INTO THE ENDOPLASMIC
RETICULUM

Polypeptide hormones are synthesized ribosomally from
the amino-terminal end and enter the secretory pathway via
translocation into the ER. This process is of critical impor-
tance to both prokaryotes and eukaryotes. Thus, it has been
thoroughly examined by several notable scientists including
Gunther Blobel, who won a Noble Prize for his work in 
this area (50). In summary, the first few amino acids of the
preprohormone, translated from the leader sequence of the
specific mRNA, are called the signal peptide (Fig. 2-3) (51).
This peptide (designated as the presequence in prepro-
hormones) is not secreted under normal circumstances but
serves as a means of translocating the newly synthesized and
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gradually elongating polypeptide chain into the ER (52–54).
After emerging from the ribosome, the signal peptide binds
to the signal recognition particle (SRP) in the cytoplasm
after chain elongation has produced a preprohormone of
approximately 50 to 60 amino acids (55–57). This binding
results in an arrest of translation, and the SRP initiates the
translocation of the nascent polypeptide by binding to the
SRP receptor or docking protein located on the cytosolic
side of the ER (58–60). The SRP is then released, and the
translocation of the peptide continues through a protein
channel across the ER membrane (53,59,61–63). The signal
peptide is later cleaved by a specific enzyme (signal pepti-
dase) located on the inner membrane of the ER (64). The
individual components of these ER translocation events are
described in more detail in the next section.

Signal Peptides

The signal peptide, or presequence, constituted by the
amino-terminal 20 to 30 amino acids of a newly synthesized
polypeptide chain, directs the translocation of the polypep-
tide into the ER lumen. There seems to be little primary
amino acid homology in the signal peptides of the known
gastrointestinal hormone precursors. However, three general

characteristics are shared: (1) a positively charged amino-
terminal region of 1 to 10 amino acids, (2) a central
hydrophobic region of 7 to 17 amino acids, and (3) a more
polar region that often contains an α helix breaking proline
or glycine residue, as well as uncharged residues that deter-
mine the cleavage site and complex pattern of amino acids
adjacent to the site of cleavage between the signal peptide
and the prohormone (65,66). The secondary structure of
these peptides can assume several different conformations
including α helices and β-pleated sheets, depending on the
environment (67). Recently, analysis of the new, extensive
protein databases has allowed investigators to accurately
predict signal peptides (68). The positively charged amino
terminus appears to be important in the release of the SRP
once docking of the nascent peptide to the ER has occurred.
Mutations in this area that result in a net negative charge
interfere with both export and synthesis of secretory
proteins in prokaryotes (69), although this does not appear
to be the case in eukaryotic systems (70). Mutations that
substitute polar or charged amino acids for the amino acids
present in the hydrophobic region of the signal peptide result
in impaired binding of the nascent peptide chain to the SRP
(57). Thus, translation is complete, but export of newly
synthesized protein is inhibited (71). Initially, it was thought
that conservative substitutions of one hydrophobic amino
acid for another (e.g., glycine for valine) did not alter the
recognition between the SRP and the signal peptide (72).
More recently, others have noted that even small changes in
the central hydrophobic core can alter SRP binding (73,74).
However, in these cases, translocation across the ER
membrane still occurs through an unknown mechanism.
SRP binding is not dependent on the presence of a net posi-
tive charge at the amino terminus or on any identifiable
features at the carboxyl terminus (75,76). There do not
appear to be any specific structural requirements for the site
of signal peptide cleavage, although the carboxyl-terminal
amino acid of the signal peptide usually has a small
uncharged side chain such as alanine (65,77) (see Signal
Peptidase later in this chapter).

After translocation through the ER membrane pore, the
signal peptide can loop back through the membrane. The signal
peptide is then cleaved at its c terminus by signal peptidase.
However, recent studies have shown that the signal peptide
can be cleaved further by a signal peptide peptidase to release
the amino terminal fragment into the cytosol (78). In the case
of prolactin, this fragment then binds to calmodulin in a
calcium-dependent manner (79). Currently, the full biological
implications of this finding are unknown. In addition, it is not
known if this applies to multiple other peptide hormones.

Signal Recognition Particle

SRP has three known functions: signal peptide recognition,
elongation arrest, and promotion of translocation (55,56,
80–83). This particle consists of six polypeptide components
with molecular weights of 72, 68, 54, 19, 14, and 9 kDa, 
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as well as a 7SL RNA (80,84). Each component is held
together in a defined tertiary structure by Mg2+ ions and is
essential for the functions of the SRP. The 19- and 54-kDa
proteins exist as monomers, but heterodimers of the 9- and
14-kDa proteins and the 68- and 72-kDa proteins are formed
(85). The 54-kDa protein contains a series of amphipathic
helices with methionine residues, located predominantly on
one face, that appear to be important for the binding to the
hydrophobic region of the signal peptide (83,86–88).
Interestingly, SRP will not bind to signal peptides that are
not tethered to a ribosome, although the peptide region
responsible for the SRP–ribosome interaction is not known.
It appears that the 54-kDa protein binds to the 7SL RNA
through the 19-kDa protein that binds directly to the middle
of the RNA strand (88). In addition, the 7SL RNA contains
5′ and 3′ Alu-like elements that bind to each other and the
9/14-kDa protein heterodimer (89–91). The 9/14-kDa
protein heterodimer mediates elongation arrest of transla-
tion, but plays no role in the translocation process (91,92).
The 68/72-kDa heterodimer binds to the middle segment of
RNA close to the 19-kDa binding site and appears to medi-
ate the binding of SRP to its receptor (93,94). Thus, the
68/72-kDa heterodimer is not involved in elongation arrest
but serves to aid in translocation.

The 54-kDa protein binds GTP in concert with binding 
to the signal peptide (80,82,95–97). An additional GTP is
required on binding of the SRP to the SRP receptor (96).

When the SRP/SRP receptor complex associates with the
ER membrane or translocon there is a subsequent release of
GDP (98). The hydrolysis of GTP releases the SRP from the
signal peptide and allows translation to proceed.

Signal Recognition Particle Receptor

The SRP receptor is located on the cytosolic side of the
ER and binds to the SRP–ribosome complex, but not to free
SRP as noted earlier. The SRP receptor plays an important
role in termination of the elongation arrest and in the translo-
cation of polypeptides into the ER lumen (59). The SRP
receptor is a heterodimeric protein consisting of a 30-kDa
integral membrane protein (β subunit) and 72-kDa α subunit
that possesses domains that are homologous to GTP-binding
proteins and the GTP-binding region of the 54-kDa SRP
protein (88,95,99–104). The 72-kDa α subunit of the SRP
receptor binds to SRP, and GTP is necessary to release 
SRP from the signal peptide–ribosome complex (95,105).

Endoplasmic Reticulum Membrane Protein Channel 
or Translocon

There have been numerous theories about whether the
nascent polypeptide chain is transported directly across the
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lipid bilayer or in the aqueous environment of a protein
channel. Although the initial thought was that the hydropho-
bic core of the signal peptide would allow for direct translo-
cation across the membrane, there is a large transmembrane
channel that is opened by the presence of signal peptides
(106–108). The eukaryotic ER translocon is a heterotrimer
(Sec61α, Sec62β, and Sec61γ) estimated to have a diameter
of about 30 Å (109–111). The size of the pore is too small
for folded proteins, thus ensuring that only nascent,
unfolded proteins can enter the ER lumen. The lumenal side
of the translocon is sealed by a protein, BiP, that aids in
protein folding after passage through the membrane (112).
On binding of the ribosome to the translocon, the SRP and
its receptor disassociate from the complex, allowing
resumption of translation (113). This process also seals the
pore on the cytosolic side of the ER membrane, releasing
BiP from the lumenal side.

PROCESSING IN THE ENDOPLASMIC
RETICULUM

Signal Peptidase

During translocation, the signal peptide is cleaved from the
propeptide by signal peptidase, an integral membrane protein
complex on the lumenal surface of the ER. Signal peptidase
has been purified from the dog pancreas as a complex of 
5 polypeptides with molecular weights of 12, 18, 21, 22/23,
and 25 kDa (114,115). The enzyme in the hen oviduct has
only 2 subunits of 19 and 22/23kDa (116). The canine and
hen 22/23-kDa proteins are glycosylated, and their amino
acid sequences are 90% identical (117,118). cDNA encod-
ing the canine 18 (119) and 21 kDa (120) are homologous to
2 yeast SEC11 proteins (121) that are components of the
yeast signal peptidase, which contains 4 proteins in total
(with molecular weights of 13, 18, 21, and 25 kDa). The 21-
kDa protein is absolutely required for enzymatic function in
yeast (122,123), raising the question of the exact function of
the other proteins. As is the case with processing enzymes,
there are great similarities between the yeast and mammalian
enzymes (124). Although it appears that the structure of
eukaryotic signal peptidases are phylogenetically conserved,
the Escherichia coli signal peptidase consists of only a
single subunit of 323 amino acids (125). Nevertheless, there
is some sequence homology between bacterial signal pepti-
dases and subunits of the eukaryotic enzyme. Furthermore,
the substrate specificity of the eukaryotic and prokaryotic
signal peptidases is similar (126). Eukaryotic signal pepti-
dase has a broad pH optimum and requires phosphatidyl
choline as a cofactor (127,128).

Determination of the amino acid sequences that define
the substrate specificity of signal peptidase has been diffi-
cult because of the enormous structural diversity of signal
peptides (129,130). However, there is clearly a hierarchy of
preferred substrates for amino acids located at the carboxyl
terminus of the signal peptide as follows: Ala>Cys>Gly>

Ser>>Thr>Pro>Asn>>Val, Ile, Leu, Tyr, His, Arg, Asp
(65,131). Mutations of the signal peptide that increase the
number of amino acids between the end of the central
hydrophobic domain and the site of cleavage and mutations
in the positively charged amino-terminal domain inhibit the
cleavage reaction (132–134).

Disulfide Bond Formation

After peptide prohormones are translocated into the ER
lumen, they can undergo intermolecular or intramolecular
disulfide bond formation (e.g., proinsulin) (Fig. 2-4). In the
case of proinsulin, disulfide bonds are formed before cleav-
age of proinsulin into its component A and B fragments by
removal of the C peptide. Thus, the disulfide bonds that are
intramolecular on the prohormone are subsequently converted
to intermolecular linkages that cannot be recreated easily
after they are reduced. Although spontaneous formation of
disulfide bonds of peptides such as somatostatin can occur
in vitro over a few hours under optimal conditions, in vivo,
the process occurs either cotranslationally or within seconds
after translocation (135). The rapidity of this process suggests
that it is catalyzed by an enzyme, the prime candidate being
protein disulfide isomerase (PDI) (136–138). In solution,
PDI exists as a homodimer (2 × 57 kDa) with a highly acidic
isoelectric point (pI) (139). PDI has a broad substrate specificity
encompassing relatively small proteins such as insulin, as
well as large multidomain proteins such as immunoglobulins
(137). PDI also forms the β subunit of a tetrameric enzyme
(α2β2) denoted as prolyl-4-hydroxylase, which is responsible
for hydroxylation of proline in the formation of procollagen
(140). In tissues requiring both PDI and prolyl-4-hydroxylase
activities, it appears that the β subunits of prolyl-4-hydroxylase
are synthesized in large excess with a fraction being recruited
into the prolyl-4-hydroxylase tetramers and the remainder as
functional PDI homodimers (140).

Previously, it was thought that glutathione provided 
the oxidizing equivalents for PDI (141,142). More recently,
investigators have identified an ER membrane protein 
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(Ero 1p) in yeast (143,144) that serves this function. Indeed,
Ero 1p directly oxidizes PDI through disulfide exchange
(141,145). The reoxidation of Ero 1 involves flavin adenine
dinucleotide (FAD) (145).

Asparagine-Linked N-glycosylation

There are few examples of gastrointestinal peptides with 
N-linked glycosylation. The primary amino acid sequence 
of -Asn-X-Thr/Ser, where X can be any amino acid except
proline, is obligatory for N-glycosylation of asparagine
(146). The anterior pituitary glycoprotein hormone family
(thyroid-stimulating hormone, follicle-stimulating hormone,
and leuteinizing hormone) is the best example of glycosy-
lated hormones. These are dimeric proteins with a common
β subunit and different but homologous β subunits that
confer specific biological activities. The glycosylation 
of both subunits is important for their correct assembly 
into dimers (147). Proopiomelanocortin (POMC) (148) and
proenkephalin A (149) are also glycosylated, although the
functional significance of this modification is unknown in
these peptides. Secretogranin I (also known as chromo-
granin B) has a single glycosylation site, but it is uncertain
whether it is glycosylated in vivo (150).

Protein N-myristoylation

Protein N-myristoylation refers to the cotranslational link-
age of myristic acid (C14:0) to the amino-terminal glycine
of proteins; protein N-myristoylation is reviewed elsewhere
(151). There are no known examples of myristoylated prohor-
mones; however, this modification may play a role in the regu-
lation of a variety of cellular events including posttranslational
processing. Examples of N-myristoylated proteins include
GTP-binding proteins and the catalytic subunit of cyclic 3′,5′-
adenosine monophosphate-dependent protein kinase A.

Protein Folding

Polypeptides must be folded into a conformation that is
compatible with exit from the ER (109,152). Misfolded
proteins are tightly but noncovalently bound to a heavy
chain binding protein or BiP and retained in the ER (153)
until folding is complete and the polypeptide is released on
hydrolysis of ATP (154,155). BiP, a member of the heat
shock family of proteins (HSP70), binds newly translated
and translocated aliphatic single polypeptides and prevents
them from folding prematurely (156,157). It is currently
unknown whether BiP or other folding proteins (158) are
involved in the posttranslational processing of mammalian
gastrointestinal prohormones, although BiP is clearly
important in the translocation and folding of the yeast
prohormone, pro-α factor in the ER (159). Another impor-
tant folding chaperone is calnexin, but it interacts only with

N-glycosylated proteins (158). Because few prohormones
are glycosylated, it is hypothesized that this pathway is not
involved in prohormone processing. An important factor
that should not be forgotten is the role that disulfide bond
formation plays in maintaining the folded nature of many
polypeptides such as proinsulin.

TRANSPORT FROM THE ENDOPLASMIC
RETICULUM AND THROUGH THE GOLGI

The mechanisms responsible for protein sorting beyond
the ER have been the subject of much investigation. Unlike 
the well-defined sorting of prohormones to the ER lumen
through a signal peptide, there is no single unifying mecha-
nism of prohormone transport from the ER and through the
Golgi. Two types of sorting mechanisms have been hypoth-
esized. The first is that prohormones are transported in the
nonspecific “bulk flow” of contents from the ER to the
Golgi in transport vesicles. An alternative hypothesis is that
there is some signal contained in the prohormone structure
that specifically directs their sorting through the intracellu-
lar compartments. This latter hypothesis is the case for resi-
dent soluble ER proteins such as BiP and PDI. Investigators
noted in the structures of BiP and PDI a carboxyl-terminal
consensus sequence KDEL (LysAspGluLeu) (160). Truncated
forms of BiP lacking the KDEL sequence are not retained in
the ER, but rather are secreted constitutively. In analogous
fashion, prohormones destined for secretion but tagged with
KDEL are retained in the ER in an unprocessed form (161).
The homologous tetrapeptides DKEL, RDEL, and KNEL
are all capable of directing ER retention in mammalian cells,
whereas the HDEL sequence is used primarily in yeast
(162,163). Although the KDEL-tagged proteins could be
retained by a KDEL receptor in the ER membrane, it
appears that these proteins initially exit the ER and are then
recaptured in a salvage compartment at or near the cis-Golgi
and returned to the ER (164). A mutant strain of yeast ERD2
(for ER retention defective) has been shown to have a defect
in the KDEL/HDEL receptor (165). The structure of the
ERD2 gene was then used to aid in the search for a
mammalian homologue (166). This powerful technique of
identifying genes of fundamental importance to the sorting
of proteins in yeast and then using the yeast model to iden-
tify a mammalian homologue has been a fruitful approach 
in the study of peptide hormone processing. The ERD2
gene encodes a protein of 26 kDa that contains 7 membrane-
spanning regions and is highly homologous to a putative
human ERD2-like gene (167). The mammalian KDEL recep-
tor cycles from the ER to the Golgi and back to the ER, thus
retaining lumenal ER proteins within that compartment (168).

Prohormones proceed from the ER to the Golgi stack
where they undergo further posttranslation modification.
Prohormone movement through the Golgi stack is by bulk
flow (169,170) rather than a process mediated by a sorting
signal. Bulk transport of soluble ER proteins to the Golgi
and through the various Golgi compartments (cis, stack, and
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trans-Golgi network [TGN]) was once thought to occur
through transport vesicles (171). In this model, the Golgi
was a series of stable, disconnected stacks through which
proteins were progressively sorted, modified, or “distilled”
toward their final destination. Although this model was
attractively simple, it now appears that the Golgi is a much
more fluid organelle (171–174).

Although the transport vesicle model was indeed attractive,
the described vesicles were too small (70 nm in diameter) to
transport many secreted proteins. An alternative model is that
newly synthesized proteins move from the ER to the cis-Golgi
cisternae located near the ER. This newly formed cisternae
progresses through the Golgi stack from the ER to the trans-
Golgi (175). The transport vesicles in this case merely shuttle
enzymes that characterize the various layers of the Golgi back
through the cisternae (176–179). Thus, prohormones are trans-
ported from the ER to the cis-Golgi and are not transported out
of this compartment, but rather are carried forward to the trans
side as newer enzymes and proteins are added to the cis-Golgi.

The nature of the ER to Golgi transport has been studied
extensively (173). The ER membrane has a fixed number of
exit sites from which proteins leave the lumen (180). The ER
membranes cause buds that eventually become coated on 
their outer cytoplasmic surface with dispersed cytoplasmic
proteins (coatamers, coat promoter, or COPs) (181–184).
The budding ER vesicle is coated with COPII and traps
prohormones together with other ER proteins (185–187).
The COPII-coated vesicles then uncoat and fuse into a larger
vesicular tubular complex (VTC) (185). It appears that the
VTC is not continuous with the ER membrane. Eventually,
the VTC combines with COPI (188). After fusing with the
Golgi membrane (in a GTP-dependent manner) (189–191),
the COPI-associated VTCs return ER proteins for recycling.
Thus, nonhydrolyzable analogues of GTP such as GTP-γ-s
interfere with fusion and block transport through the stack
(192). VTCs move from the ER to the Golgi along a micro-
tubular network that is powered by the dynein–dynactin
motor (190,193). The fungal metabolite Brefeldin A, which
is known to block protein transport through the Golgi stack,
blocks the binding of the coatamer complex to budding
Golgi membranes (194–197). The finding that Brefeldin A
interferes with the posttranslational processing of progastrin
suggests that this pathway is involved in the sorting of
prohormones, as well as other soluble secretory proteins
(198,199).

Proteins secreted via either the constitutive or regulated
secretory pathways share a common trail from the ER
through the Golgi stack, but they diverge in the TGN where
proteins are sorted according to their final destination
(169,200–202). The sorting signal for enzymes destined for
lysosomes involves a glycosylation reaction that occurs in
the Golgi stack to attach mannose-6-phosphate residue
proteins. A receptor protein in the TGN specifically binds
mannose-6-phosphate–modified proteins (203,204) and
directs their sorting to lysosomes. To date, searches for a
common sequence (KDEL-like) or posttranslational modi-
fications (mannose-6-phosphate–like) in the structure of

prohormones that might direct sorting to secretory vesicles
in the TGN have not been successful.

Although investigators have long sought to elucidate “the”
Golgi sorting signal in neuroendocrine cells, none has been
entirely successful. Indeed, it appears that three different
mechanisms may be responsible for prohormone sorting to
secretory vesicles. These include sorting signal motifs, aggre-
gation, and membrane or lipid raft binding (205). Initially, the
search for a sorting signal was pursued vigorously. In a fash-
ion akin to the signal peptide (“pre” region of preprohor-
mones), investigators sought sequences in the “pro” region of
prohormones that, although lacking homology in their primary
amino acid sequence, still contain sufficient structural infor-
mation to direct sorting in the TGN. An α-helical motif with
three leucine residues occupying one side of the helix was
proposed as such a signal, but this hypothesis was not proved
(206). In other studies, a chimeric protein containing the
“prepro” region of somatostatin at the amino terminus and a
constitutively secreted protein such as γ-globulin at the
carboxyl terminus were sorted and processed in the secretory
pathway (207). Studies with POMC and somatostatin precur-
sors containing deletions in the “pro” region indicate the pres-
ence of sorting information at these sites, as well as in other
portions of the peptide (208,209). In contrast, deletion of the
“pro” sequence from trypsinogen and renin did not disrupt the
routing of these proteins into the secretory pathway (210,211).
A study expressed neuropeptide Y (NPY) fragments tagged
with green fluorescent protein (GFP). GFP, a jellyfish protein
not normally secreted, was correctly sorted, stored, and
released from neuroendocrine cells when fused to half of the
prepro-NPY sequence or only the signal sequence alone of
pre-NPY (212). Thus, it appears that some prohormones are
likely sorted by a specific signal found in their “pro” regions,
but this does not appear to be a universal finding.

A second sorting hypothesis is selective aggregation
(213–215) of prohormones into acidic clathrin-coated secre-
tory vesicles in the presence of high concentrations of diva-
lent cations such as Zn2+ or Ca2+. Support for this hypothesis
comes from observations that specific mutations in the struc-
ture of proinsulin that result in inhibition of hexamer forma-
tion with zinc also impede processing (48,216). Furthermore,
in vitro studies have demonstrated that intravesicular condi-
tions (pH 5.2 and 10 mM Ca2+) can result in selective precip-
itation of peptides that exit the cell through the regulated
pathology of secretion. This applies to secreted proteins 
such as secretogranin II but not proteins that are constitu-
tively secreted such as immunoglobulins (217). A hetero-
dimeric protein in adrenal chromaffin granules, termed
glycoprotein III, can selectively aggregate with two prohor-
mone-processing enzymes carboxypeptidase E (CPE) and a
dibasic endoprotease (218). Evidence contradictory to the
selective aggregation hypothesis can be found in studies
with guinea pig proinsulin, which does not form hexamers
with zinc and yet is sorted and processed with high effi-
ciency (219). In addition, in the marine mollusk Aplysia, the
egg-laying hormone precursor is processed into two distinct
mature hormone products that are sorted into different
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