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The field of osteoporosis has grown enormously over the last 
4 decades, with a focus upon the issues that relate to skeletal 
health in women. It was only about 15 years ago that the sci-
entific community began to acknowledge that osteoporosis 
in men is also important. The first edition of Osteoporosis in 
Men, published in 2001, was a seminal event in that it called 
attention to the problem in an organized series of articles on 
male skeletal health and bone loss. Now, with this second 
edition of Osteoporosis in Men, further progress in this area 
is emphasized with particular emphasis on new knowledge 
that has appeared during the last decade.

Osteoporosis in men is heterogeneous with many eti-
ologies to consider besides the well known roles of aging 
(Sections 1-4) and sex steroids (Sections 6-8). The roots of 
the problem in some individuals can be back dated to the 
pre-pubertal and pubertal growth periods that determine the 
acquisition of peak bone mass.

In addition, Osteoporosis in Men, second edition, deals 
exhaustively with important clinical issues. Nutritional con-
siderations, the clinical and economic burden of fragility 
fractures, and diagnostic approaches are particularly strong 
aspects of the text (Sections 5, 7, 9). These chapters tran-
scend, in part, the specific focus of the volume, making it a 
useful resource and a valuable reference for an audience not 
necessarily well-informed in bone and mineral disorders.

The last section of Osteoporosis in Men, second edition, 
highlights therapeutic approaches. Treatment options are less 
well defined in men than in women because virtually all of 
the clinical trials involving men have been much smaller and 

shorter in duration with surrogate, instead of fracture, end-
points. With this smaller database, it nevertheless appears 
that men respond to available pharmacological approaches 
to osteoporosis in a similar manner to women (Section 10). 
Available clinical data support the efficacy of these therapies 
in men with both primary and secondary osteoporosis.

Finally, Osteoporosis in Men, second edition provides 
a view of the future, underscoring a number of unresolved 
issues to be included in the agenda for future research in 
this area. These include discussions related to an appropriate 
BMD-based definition for male osteoporosis, a further under-
standing of the factors implicated in age-related bone loss and 
idiopathic osteoporosis in men, and randomized-controlled 
studies directly assessing fracture risk reduction, particularly 
for non vertebral fracture. In all these areas, more definitive 
information is needed.

This thorough and comprehensive book integrates new, 
accessible and informative material in the field. It will 
help investigators, as well as practitioners and students, to 
improve their understanding of male skeletal health and 
bone loss. The additional knowledge, assembled in such a 
readable manner, should help us achieve one of our ultimate 
goals-better care of men with osteoporosis.

Gerolamo Bianchi, MD
Department of Locomotor System

Division of Rheumatology
Azienda Sanitaria Genovese

Genova, Italy
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The first edition of Osteoporosis in Men was published 
in 1999, about 15 years after the earliest publications on the 
subject. Over the past decade, we have witnessed a surge 
of further interest in the subject of male osteoporosis. This 
second edition of Osteoporosis in Men is, thus, timely. 
In the second edition, we have made major additions to 
reflect increased areas of new knowledge, including genet-
ics and inherited disorders. Previous topics are updated and 
extended to make them timely also. New topics include:

l Important basic processes including bone biochemistry 
and remodeling

l Mechanical properties and structure
l Genetics and inherited disorders
l Growth and puberty
l Nutrition, including calcium, vitamin D, protein and 

other factors
l Sex steroids in muscle and bone
l Assessment of bone using DXA, CT, ultrasound, bio-

chemical markers
l Sarcopenia and frailty
l Diagnostic approaches
l Treatment approaches including bisphosphonates, parathy-

roid hormone, androgens and SARMS and newer agents.

A key element of the book continues to be sex differ-
ences in bone biology and pathophysiology that can inform 
our understanding of osteoporosis in both men and women.

The increased scope of the book is the result of contribu-
tions from prominent experts in the field, including many 
who contributed chapters to the first edition. New authors 
also have provided novel insights for the second edition. 
Editorial responsibilities were shared by the three of us.

As was the goal before, Osteoporosis in Men, Second 
Edition, is meant to be useful to a broad audience, including 
students of the field as well as those already knowledgeable. 
We have sought to summarize a compendium of informa-
tion intersecting general and specific areas of interest. This 
volume will make apparent that information available con-
cerning osteoporosis in men still lags behind what we know 
about osteoporosis in women. On the other hand, major 
advances in our understanding of the male skeleton in health 
and in disease are being translated into practical approaches 
to their clinical management. We hope this second edition 
provides a valuable reference source for you and that it also 
will serve to stimulate further advances in the field.

Eric Orwoll
Portland, Oregon

John Bilezikian
New York, New York

Dirk Vanderschueren
Leuven, Belgium

Preface to the Second Edition
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Chapter 1

IntroductIon

As detailed throughout this book, osteoporosis is charac-
terized by increased risk of fracture due to changes in the 
‘quality’ of bone [1]. To appreciate why bone becomes 
weaker or less resilient to fracture with age in both men 
and women and in individuals of different races, a gen-
eral knowledge of bone development and age-dependent 
changes is necessary. In line with the theme of this book, 
it is noted that there are both age- and sex-dependent dif-
ferences in bone properties and composition, some related 
to the rate at which bones develop in boys and girls, some 
related to the impact of genes on the X-chromosome which 
produce proteins important for bone development and/or 
metabolism and some due to the direct effect of sex ster-
oids on bone cells [2]. To appreciate the discrete differ-
ences between bone structure and composition in men and 
women this chapter reviews the basics of bone composi-
tion and organization and the mineralization process from 
the point of view of sexual dimorphism, where such differ-
ences between men and women are recognized. Emphasis 
is placed on those factors that contribute to bone strength; 
geometry, architecture, mineralization, the nature of the 
organic matrix and tissue heterogeneity.

Bone organIzatIon

Bone Heterogeneity

The structure of bone appears different depending on 
the scale at which it is examined. At the centimeter level, 
whole bone can be viewed as an organ, for example, the 

tubular (long and short) bones such as the femur and digits, 
 respectively, and the flat bones, such as the calvaria in the 
skull. Slightly better resolved, at the millimeter level, are the 
components of the bones, the cortices that surround the mar-
row cavity, the cancellous bone within the marrow cavity, 
the marrow cavity itself, the cartilaginous ends, etc. At the 
micrometer to millimeter level are the individual intercon-
necting struts of the trabeculae, the lamellae and the osteons 
that surround the vascular canals. The cells and the com-
posite matrices also can be visualized as part of this micro-
structure. Finally, at the nanometer level, bone consists of an 
organic matrix made mainly from collagen fibrils and non-
collagenous proteins, lipids, nanometer size mineral crystals 
(discussed below) and water. There is also heterogeneity 
in both the size of the collagen fibrils and the composition 
and sizes of the crystals deposited on this matrix [3, 4]. This 
heterogeneity is important for the mechanical competence 
of the tissue [5]. To understand the process of mineraliza-
tion, knowledge of the cells and the extracellular matrices 
of bone is required.

Bone cells

Within the bone matrix are the cells that are responsible 
for bone formation and bone turnover. Three key cells are 
of mesenchymal origin – chondrocytes, osteoblasts and 
osteocytes. The chondrocytes that form cartilage within the 
epiphysial growth plates produce a matrix that can be min-
eralized, regulate the flux of ions that facilitate the miner-
alization of that matrix and orchestrate the remodeling of 
that matrix and its replacement by bone [6]. The other mes-
enchymal derived bone cells are the osteoblasts and osteo-
cytes [7]. As seen in the electron micrograph in Figure 1.1, 

the Biochemistry of Bone: Composition 
and Organization
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osteoblasts line the surface of the mineralized bone. They 
synthesize new matrix and regulate the mineralization and 
turnover of that matrix. Once these osteoblasts become 
engulfed in mineral they become osteocytes and connect 
with one another by long processes (canaliculae) (see Figure 
1.1). The osteocytes are the cells that sense mechanical sig-
nals and then convey them through the matrix. Osteocytes 
produce many of the same proteins as osteoblasts, but the 
relative concentrations of these proteins are not the same 
and the ways in which these cells use regulatory pathways 
differ. As reviewed in detail elsewhere [8], the osteoblasts 
use the WNT/beta-catenin pathway [9] to regulate synthesis 
of new bone; the osteocytes use the WNT/beta-catenin path-
way to convey mechanical signals. Osteoblasts synthesize 
more alkaline phosphatase, more type I collagen and more 
bone sialoprotein than osteocytes, while osteocytes specifi-
cally produce sclerostin, a glycoprotein that is a WNT and 
BMP antagonist, and produce high levels of dentin matrix 
protein 1 [8]. Sclerostin, an osteocytes specific protein, 
inhibits osteoblast differentiation and, based on the sig-
nificant increase in bone mineral density in the sclerostin 
knockout mouse [10], is believed to be important in deter-
mining the high bone mass phenotype [11]. This increase in 
bone mass was noted to be comparable for both sexes [10]. 
There is sexual dimorphism in the density of osteocytes, as 
females gain osteoclast lacunar density with increasing age, 
while males show a decrease in this parameter [12]. This 
may explain why bone loss in women results in a decrease 

in trabecular number, while in males there is a thinning of 
trabeculae [13]. Some of the other functions of osteoblasts 
and osteocyte proteins will be discussed later.

The cells responsible for the turnover of bone, the osteo-
clasts, are of hematologic and macrophage origin [14]. As 
seen in the electron micrograph in Figure 1.2, these multi-
nucleated giant cells attach to the surface of the bone via a 
‘ruffled border’. They receive signals from osteoblasts that 
control bone remodeling and regulate the turnover of the 
mineralized matrix. They remove bone by producing acid 
and couple that with the transport of chloride out of the 
cell. The acid dissolves the mineral (see below) and, after 
the mineral is removed, release proteolytic enzymes that 
degrade the matrix. During the dissolution of the matrix, 
signaling molecules communicate with the osteoblasts and 
new bone formation is triggered. Androgens and estrogens 
inhibit osteoclast activity to different extents [15] explain-
ing some of the sexual dimorphism in osteoclast activity.

There are a number of other cells in bone, marrow stromal 
cells, pericytes, vascular endothelial cells, fibroblasts, etc that 
function as stem cells [16] but their properties are beyond the 
scope of this chapter and will not be discussed here.

Skeletal development

The shapes of male and female adult bones are different and, 
for archeologists, form the basis for the identification of sexes 
in skeletal remains [17]. The early development of the skel-
eton contributes markedly to these sexual differences. During 
development, bone structure changes in length and width and 
there is a concomitant alteration in tissue density, resulting in 
a bone that is optimally designed to bear the loads imposed 
on it [18]. In the long and short tubular bones, endochondral 

Osteoblast

0.5 µm Osteocyte

FIgure 1.1 Transmission electron micrograph showing oste-
oblasts lining the bone surface in an adult male Sprague-Dawley 
rat. Inside the bone are the osteocytes, connected to one another 
by canaliculae. The banded pattern of the collagen is also visible. 
Magnification is marked on the figure. Courtesy of Dr Stephen B. 
Doty, Hospital for Special Surgery, New York.

Osteoclasts

Bone

50 Microns

FIgure 1.2 Transmission electron micrograph of an osteoclast 
on the bone surface of a 70-year-old woman. The ruffled borders 
sealing the cell to the mineralized surface are indicated along with 
the magnification. Courtesy of Dr Stephen B. Doty, Hospital for 
Special Surgery, New York.
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ossification, in which a cartilage model becomes calcified 
and is replaced by bone, provides the basis for longitudinal 
growth, while widening of the bones takes place by apposi-
tion on already formed bone in the periosteum concurrent 
with removal of the inner (endosteal) surfaces.

Endochondral ossification starts during embryogenesis  
and continues throughout childhood and into adolescence, 
peaking during the ‘growth spurt’. The rate at which 
changes in bone geometry occur depends on genetics, the 
environment and hormonal signals [19, 20]. With the excep-
tion of individuals with rare genetic mutations, the process 
of endochondral ossification terminates during adolescence 
with the closing of the growth plate. This generally occurs 
in girls around age 13 and in boys around age 18 [21]. In 
contrast, there is a report of a man who had a bone age of 
15, based on bone mineral density (BMD), at age 28 and 
lacked closed epiphyses and had continued linear growth 
into adulthood due to a mutation in his estrogen-receptor 
alpha (ERalpha) gene [22]. His testosterone levels were 
reported as normal. Other related cases with abnormalities 
in the ability to synthesize estrogen (aromatase deficiency) 
had a similar phenotype, but longitudinal growth could be 
modulated with estrogen treatment [23].

During aging, at least in mice [24] and, most likely, in 
humans [25], there is a decrease of bone formation (osteo-
genesis) and an increase of fat cell formation (adipogenesis) 
in bone marrow. There is also a difference between aging pat-
terns in bones of men and women. In general, in both sexes, 
bone strength is maintained by the process of remodeling, 
removal of bone by osteoclasts and formation of new bone 
by osteoblasts. These coupled processes [26] are not equiva-
lent in men and women. Testosterone decreases this pathway 
in men [27], perhaps contributing to the delayed start of age-
dependent bone loss in males relative to females. In women, 
menopause-related estrogen deficiency leads to increased 
remodeling [28] and, with age, bone loss is accelerated and 
bone loss exceeds formation, causing cortices to being thin-
ner and more porous and trabeculae to become disconnected 
and thinner. In men, the changes in remodeling lead to bone 
loss occurring later in life [29]. Concurrent bone formation on 
the periosteal surface during aging occurs to a greater extent 
in men than in women, thus diminishing some of the bone 
loss [30]. In a cross-sectional study of older men and women 
[29], men had significantly larger cross-sectional bone sizes 
than women which, in turn, was associated with decreased 
compressive strength indices at the spine, femoral neck and 
trochanter and bending strength indices at the femoral neck.

Bone compoSItIon: tHe Bone 
compoSIte

Independent of age, state of development, race and sex, 
bone is a composite material consisting of mineral crystals 

deposited in an oriented fashion on an organic matrix. The 
organic matrix is predominately type I collagen, but there 
are also non-collagenous proteins and lipids present. The 
non-collagenous proteins account for a small percentage of 
the bone matrix, yet they are important for regulating cell–
matrix interactions, matrix structure, matrix turnover and 
the biomineralization process. Knowledge about the func-
tions and critical status of these proteins has come from 
studies of mutant animals (naturally occurring and those 
made by genetic manipulation), cell culture studies [31] and 
analyses of the proteins’ activity in the absence of cells.

the mineral

The mineral component of the bone composite is an ana-
logue of the naturally occurring mineral hydroxyapatite. 
Bone hydroxyapatite is comprised of nanometer sized  
crystals [32]. These crystals have the approximate chemical 
composition Ca5(PO4)3OH but are carbonate-substituted and 
calcium and hydroxide deficient [33]. The individual crys-
tals have a broad range of sizes, depending on the age of the 
bone and the health of the subject, but are always oriented 
parallel to the long fiber axis of the collagenous matrix 
(Figure 1.3). There is a broad distribution of the amount of 
mineral in the matrix, again varying with age, environment 
and disease. The average amount of mineral in the matrix 
can be measured by burning off the organic matrix (ash 
weight) or by radiographic measurement of density (bone 
mineral density or bone mineral content). There is some 
sexual dimorphism in the ash weight in bones of egg-laying  

1.5 µm

FIgure 1.3 Transmission electron micrograph of a section of 
bone from the tibia of an adult male mouse. The electron dense 
mineral crystals can be seen to lie parallel to the collagen fibril axis.  
Courtesy of Dr Stephen B Doty, Hospital for Special Surgery, 
New York.
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chicks, with males having, on average, a greater mineral 
content in any given bone than age matched female bones 
[34] but, in humans of the same race, the ash content of 
adult male and female bones is similar [35], perhaps because 
there is a well defined maximum amount of mineral that can 
fit into the bone matrix. Only in osteomalacia and related 
diseases is the mineral content reduced and that occurs in 
both sexes. Bone mineral density measured by computed 
tomography, tends to be higher in males than females at 
each stage of life, but differences are removed when cor-
rected for bone length and cortical thickness [29, 36, 37].

The composition of bone hydroxyapatite varies with 
age, diet and health due to the substitution of foreign ions 
and vacancies into the crystal lattice and to the absorption 
of these ions on the surface of the crystals. The substituted 
ions also have been reported to differ when male and female 
mouse bones are compared, although the number of such 
studies is limited. When attention is paid to the sex of the 
animal, compositional studies show differences in mineral 
content and composition [38]. The effects of sex steroids on 
bone development can explain many of these differences. 
For example, assessing the effects of sex hormones on bone 
composition Ornoy et al. [39] compared a variety of com-
positional parameters in gonadectomized mice treated with 
male and female sex steroids. While the investigators found 
that tibial mineral content (ash weight) was comparable in 
all the groups, Ca and P content increased after ovariectomy. 
Estradiol treatment increased mineral content and bone Ca 
and P in ovariectomized and in intact females and orchiect-
omized mice, while testosterone had smaller effects.

the extracellular matrix

Collagen provides the oriented template or scaffold upon 
which these mineral crystals are deposited. The collagen 
is predominately type I, a triple helical collagen, with the 
individual chains having the amino acid sequence (X-Y-
Gly)n, where X and Y are any amino acids, often proline 
and hydroxyproline, and glycine is the only amino acid 
small enough to fit in the center of the triple helix [40]. The 
importance of type I collagen for the proper mineralization 
of the matrix is seen in the different osteogenesis imperfecta 
diseases, a set of diseases, reviewed elsewhere [41], caused 
by mutations that lead to altered quantity or quality (com-
position) of type I collagen and result in brittle bones. There 
are also other collagen types in bone, including fibrillar type 
III collagen and non-fibrillar type V collagens [42]. No sex 
dependent differences in the distribution of collagen types 
have been reported, however, there are differences in the 
non-collagenous proteins that are found associated with the 
collagen matrix. In the next section, these non-collagenous 
proteins will be presented as families, with emphasis on 
their roles in mineral formation and turnover and other 
ways in which they might affect sexual dimorphism in bone 
strength.

the non-collagenous proteins: gla proteins

The most abundant non-collagenous protein in vertebrates 
is a small protein, osteocalcin, also known as bone gla pro-
tein [40]. This small (5.7 kDa) protein has three gamma-
carboxy-glutamic acid residues, with a high affinity for 
hydroxyapatite and calcium as demonstrated by its crys-
tal and nuclear magnetic resonance (NMR) structures  
[43, 44]. Osteocalcin is frequently used as a biomarker for 
bone formation [45], although it is also released from bone 
and hence can reflect remodeling rather than only forma-
tion. In studies where bone tissue osteocalcin levels and 
serum osteocalcin levels were compared as a function of 
age and sex, the levels in men exceeded those in women 
at all ages until age 60, when levels in women increased 
and then decreased, reflecting age-dependent increases in 
bone remodeling [46, 47]. This most likely is an estrogen-
 determined effect as, in the rat, estrogen treatment is associ-
ated with a decrease in osteocalcin [48].

Knockout mice lacking osteocalcin have thickened bones 
and, thus, it was initially suggested that osteocalcin was 
important for bone formation [49]. Further studies led to 
the suggestion that osteocalcin was important for osteoclast 
recruitment [50], a suggestion supported by in vitro and in 
vivo assays [40]. Most recently, Karsenty’s group has sug-
gested, from studies in wildtype as well as osteocalcin 
knockout mice, that the uncarboxylated form of osteocalcin 
acts as a hormone, regulating glucose levels in cultures of 
pancreatic cells and in the skeleton [51]. The role of osteo-
calcin in glucose metabolism is suggested by the observation 
that osteoblastic bone formation is negatively regulated by 
the hormone leptin. Leptin, secreted by fat cells (adipocytes), 
has multiple hormonal functions including, but not limited 
to: appetite suppression, initiation of puberty in girls and 
acceleration of longitudinal bone growth in mice, although 
the data on bone formation have suggested a bimodal pat-
tern [52]. In humans, a recent report showed postmenopausal 
women with type 2 diabetes had reduced osteocalcin levels 
[53]. In addition to the identification of osteocalcin as a hor-
mone with a postulated role in metabolic syndrome, readers 
are reminded that the osteocalcin knockout has a bone phe-
notype, there is some sex specificity to osteocalcin’s action 
in bone [48] and polymorphisms in the osteocalcin gene 
have been associated with osteoporosis [54–56].

The second gamma-carboxyglutamic acid containing pro-
tein in bone (predominantly in cartilage) and in soft tissues 
is matrix-gla protein (MGP). MGP is a hydrophobic protein 
[40] containing five gamma-carboxyglutamate residues that is 
important for inhibition of soft tissue calcification, as can be 
seen in the knockout mice where, when MGP is ablated, the 
animals have excessive cartilage calcification, denser bones 
and young animals succumb to calcification of the blood ves-
sels and esophagus [57, 58]. Both the full length protein and 
its component peptides can inhibit hydroxyapatite forma-
tion and growth in culture [59]. MGP is more abundant in 
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soft tissues than in bone, hence it is not surprising that poly-
morphisms in MGP are not associated with bone density or  
fracture risk [56].

non-collagenous proteins: Siblings

There is a family of proteins found in bone that have been 
named the SIBLING proteins (small integrin binding ligand 
N-glycosylated) [60]. These proteins are all located on the 
same chromosome, all have RGD-cell binding domains, all are 
anionic and all are subject to multiple post-translational modi-
fications including phosphorylation and dephosphorylation, 
cleavage and glycosylation [61]. Each is found in multiple tis-
sues in addition to bone and each has signaling functions in 
addition to interacting with hydroxyapatite and regulating min-
eralization (Table 1.1). The SIBLING proteins include osteo-
pontin (bone sialoprotein 1), dentin matrix protein 1 (DMP1), 
bone sialoprotein (BSP2), matrix extracellular phosphoglyco-
protein (MEPE) and the products of the dspp gene, dentin  
sialoprotein (DSP) and dentin phosphoprotein (DPP).

Osteopontin is the most abundant of the SIBLING pro-
teins and has the most widespread distribution. In solution 
[73, 74], in a variety of cell culture systems [75, 76], in ani-
mals in which gene expression has been ablated [71] and in 
models of pathologic calcifications [77], bone osteopontin 
is an inhibitor of mineralization. When this glycoprotein is 
highly phosphorylated it can promote hydroxyapatite forma-
tion, most likely due to small conformational changes occur-
ring on binding to the mineral surface [78]. Osteopontin is 
also involved in the recruitment of osteoclasts and in regu-
lating the immune response [79]. Bone specific conditional 
knockout of osteopontin results in impaired osteoclast activ-
ity at all ages [72], but sexual dimorphism was not noted.

Dentin matrix protein 1 is a synthetic product of growth 
plate chondrocytes and of osteocytes, although it was first 
cloned from dentin [40]. DMP1 is not usually found in an 
intact form but rather it is found as three smaller peptides, an 
N-terminal peptide, a C-terminal peptide and an N-terminal 
protein that has a glycosaminoglycan chain attached [65]. It 
is the only one of the SIBLING proteins to date that has been 

taBle 1.1 Bone non-collagenous matrix proteins* whose modification (deletion (KO) or  
overexpression (tG)) creates a bone phenotype

protein or gene genotype Bone phenotype proposed function

Biglycan [62] KO Decreased mineral content
Increased crystal size in young animals
Females less affected

Regulation of mineralization

Bone sialoprotein [63] KO Variable Initiation of mineralization
Signaling

Decorin [62] KO Weaker bones
Thinner collagen fibrils

Regulation of collagen 
fibrillogenesis

Dentin matrix protein-1  
[64, 65]

KO Impaired mineralization
Altered osteocyte function

Regulation of mineralization
Signaling response to load
Phosphate regulation

Dentin sialophosphoprotein  
gene (dspp) [66]

KO Increased collagen maturity and 
crystallinity in young male and female mice

Regulation of initial calcification

Matrix gla protein [57] KO Excessive vascular and cartilage 
calcification

Prevent excessive calcification

Matrix extracellular  
phosphoglycoprotein  
[67, 68]

KO Hypermineralization Regulation of PHEX activity

TG Hypomineralization Regulation of mineralization
Osteocalcin [49, 50] KO Thicker bones, smaller crystals suggest 

impaired turnover
Males/females differ

Regulation of bone turnover
Glucose regulation

Osteonectin [69, 70] KO Altered collagen maturity Regulation of collagen 
fibrillogenesis

Bone specific KO Decreased bone density, increased bone 
fragility

Regulation of bone formation

Osteopontin [71, 72] KO Increased bone density, larger crystals, 
resistant to turnover

Osteoclast recruitment
Inhibition of mineralization

Bone specific KO Increased bone density Osteoclast recruitment

*Enzymes, growth factors and cytokines that affect bone are excluded from this table.
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associated with a bone disease (autosomal hypophosphatemic 
rickets) [80]. The intact protein appears to inhibit mineraliza-
tion, as does the glycosylated N-terminal fragment, but the 
phosphorylated cleaved fragments can promote mineraliza-
tion [81, 82]. The knockout mouse has defective mineraliza-
tion, supporting a role for DMP1 as a nucleator [64], although 
it appears equally important as a signaling molecule [8].

Bone sialoprotein (BSP) is a specific product of bone 
forming cells. There are low levels in other mineralized 
tissues, such as calcified cartilage and dentin. In solution, 
BSP is a hydroxyapatite nucleator [83, 84], implying a role 
in in situ mineralization. In culture, BSP facilitates osteo-
blast differentiation and maturation [85] and thereby stimu-
lates mineralization. The BSP knockout is viable, but has 
a variable phenotype. In the youngest animals, the bones 
are shorter, narrower and less mineralized, supporting the 
in vitro findings. As the animals age, the mineralization 
normalizes, but the mice have impaired osteoclast activity, 
as they are resistant to bone loss by hind-limb suspension 
[63]. These data support the hypothesis that because min-
eralization is such an important process, it is crucial to have 
multiple pathways to support mineralization. BSP activ-
ity may be different in males and females as knockdown 
of the estrogen receptor alpha gene in a model of cartilage 
induced osteoarthritis resulted in decreased expression of 
BSP, implying some gender specificity to the expression 
of this protein [86] and studies in chick osteoblasts had 
previously demonstrated a response of BSP expression to 
 estrogen-like molecules [87].

Matrix extracellular phosphoglycoprotein (MEPE) is 
made in bone, dentin and also exists in serum as smaller 
peptides [67]. The MEPE peptides are effective inhibitors 
of hydroxyapatite formation and growth, while unpublished 
studies show the intact protein, in phosphorylated form, 
promotes hydroxyapatite formation. Following gene abla-
tion, the knockout animals have excessive mineralization 
while the transgenic animal, in which MEPE is overex-
pressed is hypomineralized [67]. This protein is one of the 
substrates for PHEX (phosphate regulating hormone with 
analogy to endopeptidase on the X-chromosome). PHEX is 
defective in hypophosphatemic rickets, presumably because 
where normally PHEX binds to MEPE and degrades its 
inhibitory peptides, in the mutant, this ability to degrade 
the peptides is absent and the inhibition persists [68]. Thus, 
MEPE is an important regulator of calcification. Because 
PHEX is on the X-chromosome, hypophosphatemic rickets 
is more prevalent and more severe in males than in females, 
although the female HYP mice have a bone phenotype, but 
it is less severe than that of the males [88].

Dentin sialophosphoprotein is expressed as a gene, dspp, 
but an intact protein has not yet been isolated. Its major 
components, dentin sialoprotein (DSP) and dentin phos-
phophoryn (DPP) are found mainly in dentin, but the gene 
is expressed in bone [61], and the dspp gene knockout has 
a detectable bone phenotype [66]. Both DSP and DPP can 

regulate mineralization in vitro, thus it is not surprising that 
the knockout has impaired mineralization both in bone and 
in dentin.

non-collagenous proteins: SlrpS

Small leucine rich proteoglycans (SLRPS) are the major bone 
glycoproteins [40]. While small amounts of large aggregating 
proteoglycans (such as aggrecan and epiphican) are resident 
in bone as part of residual calcified cartilage, the majority of 
the bone proteoglycans are smaller. These SLRPS include 
decorin (the major SLRP produced by osteoblasts), bigly-
can, osteoadherin, lumican, fibromodulin and mimecan [89]. 
Each of these proteins binds to collagen and regulates col-
lagen fibrillogenesis, thus they have an important effect on 
the bone composite and the mechanical strength of bone. In 
addition, biglycan and decorin are important for regulating 
cellular activity, perhaps due to the binding of growth factors, 
and decorin, biglycan and mimecan can regulate hydroxy-
apatite formation [90]. The properties and functions of these 
proteins in bone as adapted from these reviews are summa-
rized in Table 1.2, while Table 1.1 includes the properties of 
the knockouts that had bone phenotypes.

non-collagenous proteins: matricellular 
proteins

Another protein family whose members are found in bone 
are the so-called ‘matricellular proteins’, named so because 
they regulate the interactions between the cells and the 
extracellular matrix. The members of this family found 
in mineralized bone (as distinct from cartilage) include: 
osteonectin (SPARC), the matrillins, the thrombospondins, 
the tenascins, the galectins, periostin and osteopontin and 
BSP (SIBLINGs). Each of these proteins is expressed in 
higher amounts during development than in adult life, but 
they are all upregulated during wound repair (callus for-
mation) in the adult. As noted from studies of mice lack-
ing these proteins, or combinations thereof, matricellular 
proteins affect postnatal bone structure and turnover when 
animals are challenged by aging, ovariectomy, mechanical 
loading and fracture healing regeneration but do not have a 
visible phenotype during normal development [96].

non-collagenous proteins: other

In addition to the families of bone matrix proteins noted 
above, there are other extracellular matrix proteins that are 
found in glycosylated and phosphorylated form in bone. 
These include BAG-75 (which is found at the initial sites 
of mineralization in culture) [97], SPP24 (that regulates the 
formation of bone via inhibition of BMP-induced osteo-
blast differentiation) [98] and others proteins that serve as 
signaling molecules or have other functions that are still 
being investigated [40].
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other matrix components

Within the extracellular matrix are other proteins includ-
ing enzymes (Table 1.3), growth factors and other signaling 
molecules, as well as lipids that are important for regulat-
ing cell–cell communication and mineral deposition. The 
actions of lipids in bone are reviewed in detail elsewhere 
[40, 103, 104]. The importance of lipid rafts (caveolin) is 
seen in the caveolin knockout mouse that has increased 
bone density and matures more rapidly than control mice 
[105]. There have not yet been reports of sex-dependent 
differences in these mice, although lipid metabolism is  
different in men and women.

How BoneS cHange wItH age

A key event in the transition from the embryo to the adult 
is the development of mineralized structures. The cells 
that deposit the matrix, regulate the flux of ions and con-
trol the interaction between the matrix components orches-
trate these processes. As shown by Figure 1.3, the mineral 
in bone is deposited in an oriented fashion on the collagen 
matrix. It is widely recognized, as reviewed elsewhere 
[33, 40], that the collagen provides a template for mineral 
deposition, but the extracellular matrix proteins regulate 

the sites of initial mineral deposition and control the extent 
to which the crystals can grow in length and in width. The 
collagenous matrix is mineralized to a certain extent dur-
ing development (primary mineralization) and, as the indi-
vidual ages, the rest of the matrix becomes mineralized 
(secondary mineralization). A variety of signals, discussed 
elsewhere in this book, activate the osteoclast to remove 
bone and this removal exposes stimuli that activate osteo-
blasts to lay down a new bone matrix, with the matrix pro-
teins mentioned above regulating these processes. With age, 
the resorption process exceeds the formative one and this 
occurs earlier in women then in men.

Mouse models in which specific matrix proteins are 
ablated or inserted provide information both on the sex-
ual dimorphic responses of these proteins, but also on the 
age-related changes. Mice, in general, achieve their peak 
bone mass at 16–18 weeks of age, depending on the sex 
and background. Although the functions of many of these 
proteins are redundant, because they are so essential for 
the development of the animal, examining knockout and 
transgenic animals (see Table 1.1) and the phenotypic 
appearance of their bones provides clues into the activi-
ties of these proteins. The only knockouts that totally lack 
bone are the osterix [106] and the Runx2 knockouts [107], 
although the retinoblastoma tumor suppressor gene knock-
out has severely impaired osteogenesis [108]. The knockout 

taBle 1.2 Small leucine rich proteoglycans (SLrps) found in bone*

protein Structure proposed functions

Biglycan 2 GAG chains/protein core Binds and releases growth factors
Cell differentiation
Initiates mineralization
Expression depressed in patient’s with Turner’s syndrome

Decorin Generally 1 GAG chain/protein core Regulates collagen fibrillogenesis
Binds and releases growth factors

Osteoadherin [91] Keratan sulfate proteoglycan Facilitates osteoblast differentiation and maturation
Regulates HA proliferation

Fibromodulin 4 Keratan sulfate chains in its leucine  
rich domain

Regulation of collagen fibrillogenesis

Asporin [92] Possesses a unique stretch of aspartate 
residues at its N terminus

Negative regulator of osteoblast maturation and 
mineralization

Osteoglycin/mimecan Derived from bone tumor
Also called osteogenic factor

Induces osteogenesis
Regulation of collagen fibrillogenesis
Regulation of mineralization

Lumican Keratan sulfate proteoglycan Regulation of collagen fibrillogenesis
Regulation of mineralization

Osteomodulin [93] Keratan sulfate proteoglycan Regulates osteoblast maturation
Periostin (osteoblasts-specific 
factor 2) [94]

SLRP made in primary osteoblasts Regulates intramembranous bone formation
Regulates collagen fibrillogenesis

Tsukushin [95] 353 amino acid protein upregulated by 
estrogen – has phosphorylation sites

BMP inhibitor
Regulates mineralization

*Adapted from OMIM: On Line Mendelian Inheritance in Man: http://www.ncbi.nlm.nih.gov/sites/entrez/OMIM unless otherwise noted.

http://www.ncbi.nlm.nih.gov/sites/entrez/OMIM


Osteoporosis in Men10

and overexpression of other bone proteins and ‘critical’ 
signaling pathways have altered bone properties but none 
seem to be mandatory, most likely due to the redundancy 
of the function of these proteins. However, from the analy-
ses of the cell culture and altered phenotype in the animals 
having too little or too much of these proteins, the follow-
ing can be identified as important for the formation of the 
mineralized matrix: type I collagen, bone sialoprotein, 
dentin matrix protein1, BAG-75, osteopontin, PHEX and 
alkaline phosphatase. The sequence in which they act is not  
yet clear.
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taBle 1.3 Some key enzymes* involved in modifying bone structure in health and disease

enzyme Substrate/activity effect on bone properties

Bone specific alkaline phosphatase [99] Hydrolyzes phosphate esters Stimulates new bone formation
Bone morphogenetic protein 1/tolloid 
[100]

Cleaves matrix proteins including 
removing pro-peptides form fibrillar 
collagens

Modulates activity of matrix proteins – turning 
inhibitors into activators and vice versa preparing 
matrix for mineral deposition

Cathepsin K [101] Demineralized matrix Osteoclast enzyme – when defective results in 
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Cl-channel and ATPase [101] Transports Cl ions out of osteoclasts When blocked get osteopetrosis
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Tartrate resistant acid phosphatase 
[102]

Phosphoesters Marker of osteoclast activity

*Excludes enzymes involved in protein synthesis.
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Chapter 2

IntroductIon

Bone remodeling is a fundamental process by which the 
mammalian skeleton tissue is continuously renewed to 
maintain the structural, biochemical and biomechani-
cal integrity of bone and to support its role in mineral  
homeostasis. The process of bone remodeling is achieved 
by the cooperative and sequential work of groups of func-
tionally and morphologically distinct cells, termed basic 
multicellular units (BMUs) or bone remodeling units 
(BRUs). Changes in the population and/or activities in any 
component of the BMUs disrupts the harmony of the cellu-
lar efforts and leads to changes in bone mass and strength. 
The cellular activities of bone remodeling units vary within 
and among the different bones of the skeleton and this vari-
ation changes with age, underlying the mechanism of age-
related bone loss. This chapter reviews current concepts of 
bone remodeling with respect to its cellular mechanism, 
physiological functions and anatomic variation in cellular 
behavior.

cellular mechanIsm of bone 
remodelIng

Bone remodeling takes place on bone surfaces and is 
achieved by multicellular units, BMUs [1, 2] or bone 
remodeling units, BRUs [3], the latter term being used 
here. The process of remodeling consists of four sequential 
and distinct phases of cellular events: activation, resorp-
tion, reversal and formation [2, 4, 5] (Figure 2.1A–E). The 
microanatomic basis of BRUs is osteonal units in intra-
cortical bone (Figure 2.1G) and discrete osteonal units or 
packets in endocortical and cancellous bone (Figure 2.1F), 

where removal of old bone is coupled in space and in time 
by replacement by new bone [6, 7].

activation

Activation is the term used to describe the process of con-
verting a resting bone surface into a remodeling surface. 
In the human adult skeleton, a new BRU is activated about 
every ten seconds [3]. Activation involves recruitment of 
mononuclear osteoclast precursors from hematopoietic ori-
gin, penetration by osteoclast precursors through gaps in the 
bone lining cell layer, fusion of the precursor cells to form 
multinucleated osteoclasts and functional osteoclasts adher-
ing to mineralized bone matrix [8, 9]. Two cytokines, recep-
tor activator of nuclear factor kappa B ligand (RANKL) and 
macrophage colony-stimulating factor (M-CSF), are essen-
tial and sufficient for osteoclastogenesis [10–12]. RANKL 
and M-CSF are produced by marrow stromal cells and their 
derivative osteoblasts in response to pro-resorption stimuli, 
such as parathyroid hormone (PTH), 1,25(OH)2D, interleukin-1  
(IL-1) and interleukin-6 (IL-6), and play a crucial role in 
the formation, activation, activity and life span of osteo-
clasts (Figure 2.2). The activation of sites on the bone 
surface is either targeted or random. Selective remodeling 
targets specific sites where the osteocytes have sensed a 
change in mechanical strain or matrix damage in the form 
of microcracks and have conveyed signals to the surface 
to initiate targeted remodeling. However, most remodeling 
sites are likely to be random [13, 14].

resorption

Osteoclasts affix themselves to the bone matrix through 
integrins such as 3 [15, 16]. The adherence to bone 
induces ruffled membrane formation and creates an annular 
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fIgure 2.1 Light photomicrographs of the principal phases of the remodeling cycle in cancellous bone of human iliac crest biopsy 
specimens. (A) Resorption. Several multinucleated osteoclasts are seen in excavating a Howship’s lacuna. (B) Reversal. The Howship’s 
lacuna contains no osteoclasts but small mononucleated cells in contact with the scalloped surface. (C) Formation. A sheet of plump osteo-
blasts is seen depositing osteoid (O) on top of mineralized bone (MB). Note the reversal line (L) and osteocyte lacunae (arrowheads) in the 
mineralized matrix. (D) A later stage of formation where the osteoblasts have become flattened lining cells. Matrix production has ceased, 
but a thin layer of osteoid still remains to be mineralized. (E) Resting. No remodeling activity is in progress but a layer of attenuated 
cells lines the surface. Cross-sectional diagrams of BRUs in cancellous bone (F) and cortical bone (G). The arrows indicate the direction 
of movement through space. Note that the cancellous BRU is essentially one half of the cortical BRU. (A–E, from Dempster DW. Bone 
remodeling. In Disorders of bone and mineral metabolism. 2nd edn, (eds) Coe F, Favus MJ, pp 315–343, 2002. Lippincott Williams & 
Wilkins, Philadelphia: with permission. F,G, from Seibel MJ, Robins SP, Bilezikian JP. (eds) Dynamics of bone and cartilage metabolism, 
2nd edn, pp 377–389, 2006. Academic Press, New York with permission).
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sealing zone, forming a hemivacuole between the osteoclast 
itself and the bone matrix and isolated from the surround-
ing extracellular space (Figure 2.3A, B). By means of 
membrane-bound proton pumps and chloride channels, 
the osteoclast secretes hydrochloric acid, as well as acidic 
proteases such as cathepsin K, TRACP, MMP9, MMP13 
and gelatinase into the hemivacuole (see Figure 2.3A, B) 
[17, 18]. The acidified solution in the resorbing compart-
ment mobilizes the mineralized component of the matrix 
and the proteolytic enzymes, which are most active at low 
pH, degrade the organic constituents of the matrix. This pro-
cess creates the crescent-shaped resorption cavities called 
Howship’s lacunae on the cancellous bone surface (see 
Figure 2.1A and F) and the cutting cones of the evolving 
Haversian systems within cortical bone (see Figure 2.1G). 
Generally, the resorption is accomplished by multinucleated 
osteoclasts, but both in vivo and in vitro evidence suggests 
that mononucleated cells are also capable of excavating bone 
and forming resorption cavities and cutting cones [19, 20]. 
The fate of the osteoclast at the conclusion of the resorption 
phase is unclear, but at least some undergo apoptosis [21].

reversal

During this phase, the resorption lacuna is occupied by 
mononuclear cells, including monocytes, osteocytes that 

were liberated from bone by osteoclasts and pre-osteoblasts 
that are being recruited to couple the resorption phase 
with the formation phase (see Figure 2.1B, F, G) [22]. The 
mechanism of osteoblast coupling and the exact nature of 
the coupling signals are currently undefined, but there are 
a number of interesting hypotheses. One plausible theory 
is that osteoclastic bone resorption liberates growth factors 
from the bone matrix and that these factors serve as chemo-
attractants for osteoblast precursors and then enhance 
osteoblast proliferation and differentiation. Bone matrix-
derived growth factors, such as transforming growth factor-  
(TGF-), insulin-like growth factors I and II (IGF-I and 
II), bone morphogenetic proteins (BMPs), platelet-derived 
growth factors (PDGF) and fibroblast growth factor 
(FGF) are all possible contenders for such coupling fac-
tors [23–27]. Another attractive premise is that the cou-
pling of bone formation to resorption is a strain-regulated 
phenomenon [28]. As bone remodeling units penetrate 
through cortical bone, strain levels are reduced in front of 
the osteoclasts, but are increased behind them. Similarly, in 
cancellous bone, strain is posited to be higher at the base of 
the Howship’s lacunae and lower in the surrounding bone. 
It is argued that this gradient of strain leads to sequential 
activation of osteoclasts and osteoblasts, with osteoclasts 
being activated by reduced strain and osteoblasts, in turn, 
by increased strain. This hypothesis may account for align-
ment of osteons along the dominant loading direction of the 
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fIgure 2.2 Role of cytokines, peptide and steroid hormones and prostaglandins in the osteoclast formation and activation. 
Hematopoietic stem cells (HSCs) express c-Fms (receptor for M-CSF) and RANK (receptor for RANKL) and differentiate to osteoclasts. 
Marrow mesenchymal cells respond to a range of stimuli by secreting a mixture of pro- and anti-osteoclastogenic factors, the latter con-
sisting primarily of OPG. (From Ross FP. Osteoclast biology and bone resorption. In Primer on the metabolic bone diseases and disorders 
of mineral metabolism, 6th edn, (ed.) Favus MJ, pp 30–35, 2006. American Society for Bone and Mineral Research, Washington, with 
permission).
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bone [29, 30]. Furthermore, osteoclast to osteoblast forward 
and reverse signaling has recently been implicated in the 
coupling mechanism [31, 32].

formation

Osteoblasts are recruited and differentiate from mesenchy-
mal precursors. There is a gradient of differentiation as the 
osteoblastic precursors reach the bone surface to refill the 
resorption cavity and the osteoblast phenotype becomes 
fully expressed (Figure 2.4A) [33]. Bone matrix formation 
is a two-stage process in which osteoblasts initially synthe-
size the organic matrix, called osteoid, and then regulate its 
mineralization (Figure 2.4B). Osteoid consists of collagenous 
proteins, predominantly type I collagen, accounting for 90% 
of the organic matrix, with non-collagenous proteins mak-
ing up the remaining 10%, including glycoproteins (i.e. 
alkaline phosphatase and osteonectin), Gla-containing 
proteins (i.e. osteocalcin and matrix Gla protein) and oth-
ers (e.g., proteolipids) [34]. Osteoid is deposited on the bone 
surface in curved sheets called osteoid lamellae, following 
the contours of the underlying mineralized bone (see Figure 
2.4B). Once the collagenous organic matrix is synthesized, 
osteoblasts trigger the mineralization process, which occurs 
after a delay of about 20 days, called the mineralization lag 
time. This is accomplished by the release of small, membrane-
bound matrix vesicles that establish suitable conditions for 
initial mineral deposition by concentrating calcium and 
phosphate ions and enzymatically degrading inhibitors of 
mineralization, such as pyrophosphate and proteoglycans 
that are present in the extracellular matrix [35]. During 
this period, the osteoid undergoes a variety of biochemical 
changes that render it mineralizeable. The mineral content 
of the matrix increases rapidly to 75% of the final mineral 
content over the first few days, called primary mineraliza-
tion, but it may take as long as a year for the matrix to reach 
its maximum mineral content, called secondary mineraliza-
tion [36]. The mineral crystals within bone are analogous 
to the naturally occurring geologic mineral, hydroxyapatite 
(Ca10[PO4]6[OH]2), including numerous ions which are 
not found in pure hydroxyapatite, such as HPO4

2, CO3
2, 

Mg2, Na, F and citrate, adsorbed to the hydroxyapatite 
crystals [34].

As bone formation continues, osteoblasts that have 
reached the end of their synthetic activity embed them-
selves in the matrix, becoming osteocytes (see Figure 
2.4A). Osteocytes are regularly dispersed throughout the 
mineralized matrix and maintain intimate contact with each 
other, as well as to the cells on the bone surface, through 
gap junctions between their slender, cytoplasmic processes 
or dendrites, which pass through the bone in small canals 
called canaliculi (Figure 2.5). Osteocytes function as an 
extensive 3-dimensional network of sensor cells, or ‘syn-
cytium’, which can detect a change in mechanical strain 
in bone and respond by transmitting signals to the lining 

fIgure 2.3 (A) Transmission electron microphotograph of a 
multinucleated osteoclast in rat bone. Note the extensive ruffled 
border, sealing zones and the partially degraded matrix between 
the sealing zones. (B) Diagram illustrating the primary mecha-
nisms of osteoclastic bone resorption. (From Ross FP. Osteoclast 
biology and bone resorption. In Primer on the metabolic bone dis-
eases and disorders of mineral metabolism, 6th edn, (ed.) Favus 
MJ, pp 30–35, 2006. American Society for Bone and Mineral 
Research, Washington, with permission).
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cells on the bone surface to initiate targeted remodeling or 
to regulate resorption and formation in the newly initiated 
bone remodeling cycle [37]. Osteocytes die by apoptosis, 
which occurs with aging, immobilization, microdamage, 
lack of estrogen, glucocorticoid excess and in association 
with pathological conditions, such as osteoporosis and  
osteoarthritis [38]. Osteocyte apoptosis has also been sug-
gested to play an important role in targeting bone remod-
eling following the observation that osteocyte apoptosis 
occurs in association with areas of microdamage and that 
this is followed by osteoclastic resorption to begin the 
replacement of the mechanically challenged bone [39].

Osteoblasts suffer one of three fates during and at the 
end of the bone formation phase of the remodeling cycle: 
many become incorporated into the matrix they formed 
and differentiate into osteocytes; some convert into lining  

cells on the bone surface at the termination of formation; 
and the remainder die by apoptosis. Bone lining cells were 
once thought to serve primarily to regulate the flow of ions 
into and out of the bone extracellular fluid serving as the 
blood–bone barrier. It has recently been appreciated that, 
under certain circumstances, for example, stimulation by 
PTH or mechanical force, bone lining cells can revert back 
to functional osteoblasts [40, 41]. Another recently dis-
covered important function of the lining cells is to create 
specialized compartments in cancellous and cortical bone 
where bone remodeling takes place [42] (Figure 2.6).

The end result of a completed remodeling cycle by a 
BRU is the production of a new osteon (Figure 2.7A, B). The 
remodeling process is similar in cancellous and cortical bone 
with the remodeling unit in cancellous bone being equivalent 
to half of a cortical remodeling unit [43] (see Figure 2.1F, G).  

(B)(A)
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fIgure 2.4 (A) Light photomicrograph of a human bone biopsy stained with Goldner’s trichrome. Osteoblastic lineage in a gradient dif-
ferentiation: osteoblastic precursors (pOB) reach the bone surface → mature osteoblasts (OB) filling in a resorption cavity → pre-osteocytes 
(pOCY) become incorporated into osteoid (OS) matrix → osteocytes (OCY) embedded within the mineralized bone (MB). (B) Fluorescent 
photomicrograph of dog bone. Two steps of bone formation: osteoid matrix forming on bone surface (OS), mineralizing surface (MS) and 
mineralized bone (MB). (See color plate section).

(A) (B)

fIgure 2.5 (A) Transmission and (B) scanning electron micrographs showing osteocyte processes communicating with cells on 
the bone surface. (From Marotti G. et al. The structure of bone tissues and the cellular control of their deposition. Ital J Anat Embryol 
1996;101:25-79, with permission).
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The difference between the volume of bone removed by 
osteoclasts and replaced by osteoblasts during BRU remod-
eling cycle is termed ‘bone balance’. As will be discussed 
later, the bone balance varies with the anatomical location of 
the bone surface as well as with gender, age and disease.

PhysIologIcal functIons of bone 
remodelIng

The primary functions of bone remodeling are presumed to 
be maintenance of the mechanical competence of bone by 
continuously replacing fatigued bone with new, mechanically 
sound bone and to preserve mineral homeostasis by continu-
ously mobilizing the skeletal stores of calcium and phosphorus  

to the circulation. It has also been suggested that there must 
be other, as yet known functions or reasons why the human 
skeleton undergoes such extensive remodeling [44].

Like all load-bearing structural materials, the skeleton is 
subjected to fatigue damage as it ages and undergoes repeti-
tive mechanical challenges. Older bone displays increased 
mineralization density as secondary mineralization con-
tinues and the water content diminishes, which causes the 
matrix to become more brittle [45]. In addition, aging is 
associated with biochemical changes in the bone matrix 
constituents, such as accumulation of non-enzymatic glyca-
tion end products [46] and increased cross-linking of col-
lagen [47]. These changes render the bone more susceptible 
to mechanical damage and fracture. It has also been dem-
onstrated that osteocytes that have undergone apoptosis 
leave empty lacuna that may become occluded by miner-
alized debris [48] and that fatigue microcracks increase in 
number with bone age and are spatially associated with 
missing osteocytes [49]. Moreover, the fact that resorption 
cavities are frequently located close to bone microcracks 
[50, 51] provides compelling evidence that targeted remod-
eling is activated in response to the appearance of such 
microcracks.

The skeleton is the greatest repository of mineral ions, 
such as Ca, Mg and P, in the human body and plays an 
important role in mineral homeostasis by coordinated 
interplay with the intestine, the site of net ionic absorp-
tion, and the kidney, the site of net ionic excretion. Long-
term mineral homeostasis is achieved by the BRUs, which 
mobilize skeletal mineral to blood during bone resorption 
and return the mineral back to the skeleton during bone for-
mation. However, at least two other mechanisms allow the 
skeleton to participate in mineral homeostasis: the blood–
bone barrier maintained by the bone lining cells and the 
percolation of bone extracellular fluid through osteocyte 
lacuno-canalicular network.

OC

fIgure 2.6 Light photomicrograph of a human bone biopsy 
stained with toluidine blue. An osteoclast (OC) is resorbing bone 
within a specialized compartment formed by a dome-shaped layer 
of lining cells (arrows). (See color plate section).

(A) (B)

fIgure 2.7 (A) Completed basic structural units in cancellous bone and (B) cortical bone. The arrowheads delineate reversal lines. 
(From Dempster DW. Bone remodeling. In Osteoporosis: etiology, diagnosis, and management, 2nd edn, (eds) Riggs BL, Melton LJ, 
pp 67–91, 1995. Raven Press, New York, with permission.) (See color plate section).
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