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   Foreword 

  It   is a great honor to write the foreword for the sev-
enth edition of  Nunn’s Applied Respiratory Physiology . 
Since publication of the fi rst edition in 1969,  Nunn’s 
Applied Respiratory Physiology  has been the classic 
textbook on this critical subject. The challenge for 
any textbook on respiratory physiology has been to 
present the information in a manner which provides 
for the changing needs of the reader throughout his 
or her career. The beginning student often learns res-
piratory physiology from the mathematical analy-
sis of gas exchange; the more advanced student 
may be interested in the underlying cellular and 
molecular mechanisms; and the clinician needs to 
understand the impact of altered respiratory physio-
logy on specifi c disease states. The ideal textbook 
therefore has the daunting challenge of providing 
a comprehensive but easily understood approach 
for all three readers. Despite the rapid evolution of 
knowledge in this fi eld, Nunn’s  Applied Respiratory 
Physiolog y has accomplished this task throughout 
the past four decades. In this age of multi-authored 
contributions, it is a tribute to Andrew Lumb that 
he has been the sole author for the past three edi-
tions (with the exception of the fi rst chapter on 
the atmosphere which continues to be written by 
Dr. Nunn). The cohesion inherent in a single-
authored textbook allows for internal consistency so 
that interrelated concepts can be readily appreciated 
by the reader. In addition, a single-authored textbook 
avoids duplication of material, so that a vast topic is 
comprehensively covered in just over 500 pages. 

 This   seventh edition maintains the tradition of 
presenting respiratory physiology in a manner 
which can be readily understood by students, cli-
nicians and investigators. The book continues the 
three part approach which was fi rst adopted in 
the fi fth edition. The fi rst section on basic princi-
ples covers anatomy, mechanics, control of breath-
ing, ventilation, circulation, ventilation-perfusion 
matching, diffusion, carbon dioxide, oxygen, and 
non-respiratory functions of the lung. Although 
the basic concepts have not changed, the con-
tent has been updated with recent advances such 
as alternative models to explain lung recoil and 
expanded sections on tissue oxygen and on airway 
lining fl uid and cilial activity. The second section 
on applied physiology discusses the effects of preg-
nancy, exercise, sleep, altitude, pressure, drown-
ing, smoking, anesthesia, hypocapnia, hypercarbia, 
hypoxia, hyperoxia, and anemia. The third part on 
physiology of pulmonary disease discusses spe-
cifi c clinical disorders (ventilatory failure, airways 
disease, pulmonary vascular disease, parenchymal 
lung disease, acute lung injury), ventilatory sup-
port, and pulmonary surgery. These chapters have 
been extensively updated as new information has 
entered the literature in areas such as pulmonary 
hypertension and management of patients with 
acute respiratory failure. Valuable changes which 
were made in the last edition have been continued, 
including double column pages, color fi gures, and 
the key points section of each chapter. 



Forewordx

  For   more than four decades,  Nunn’s Applied 
Respiratory Physiology  has been the standard text for 
understanding this challenging but critical subject. 
I congratulate Dr. Lumb on continuing this tradi-
tion with a superb seventh edition which deserves 

its place on the bookshelves of students, research-
ers, and clinicians interested in understanding nor-
mal respiratory physiology and in treating patients 
with respiratory disorders. 

 Ronald   G Pearl 
 Stanford   

 2010     
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   Preface to the seventh edition 

  Over   the past 41 years  Nunn’s Applied Respiratory 
Physiology  has developed into a renowned textbook 
on respiration, providing both physiologists and 
clinicians with a unique fusion of underlying prin-
ciples and their applications. With Dr John Nunn’s 
retirement in 1991 a new author was required, and, 
as Dr Nunn’s fi nal research fellow in the Clinical 
Research Centre in Harrow, I was honoured to be 
chosen as his successor. As a practising clinician 
with a fascination for physiology and an interest in 
medical education, the seventh edition has again 
focussed on combining a clear, logical and compre-
hensive account of basic respiratory physiology with 
a wide range of applications, both physiological and 
clinical. This approach acknowledges the popular-
ity of the book among doctors from many medi-
cal specialties and will hopefully provide readers 
with a scientifi c background with an even greater 
insight into the applications of respiratory physiol-
ogy. Clinical chapters in Part 3 of the book are not 
intended to be comprehensive reviews of the pul-
monary diseases considered, but in each case they 
provide a detailed description of the physiological 
changes that occur, accompanied by a brief account 
of the clinical features and treatment of the disease. 

 Key   references are identifi ed by an asterisk in 
the reference list following each chapter. These ref-
erences are highlighted because they either pro-
vide outstanding recent reviews of their subject or 
describe research that has had a major impact on 
the topic under consideration. 

 Advances   in respiratory physiology since the last 
edition are too numerous to mention individually. 
Clarifi cation of some fundamental concepts has been 
provided, e.g. the defi nitions of oxygen saturation 

and haemoglobin oxygen carrying capacity (Hufners 
constant). Other new topics include the contribution 
of airway lining fl uid to lung defence mechanisms, 
the biphasic nature of hypoxic pulmonary vasocon-
striction, and a new look at tissue oxygen diffusion 
patterns based on work done by Krogh more than 
100 years ago that identifi es tissue regions where 
hypoxia is most likely to occur, referred to as the 
 ‘ lethal corner ’ . 

 New   topics for Part 3 of the seventh edition 
include pleural diseases and lung cancer. Pneumo-
thorax and pleural effusions occur in many different 
clinical specialties, and the physiology and patho-
physiology of the pleural space is now included 
in Chapter 30. Whilst many, sometimes rare, lung 
diseases have been covered in Part 3 for years, lung 
cancer has been a signifi cant omission. Lung cancer 
remains common, is mostly preventable by avoid-
ing tobacco smoke and environmental radon, and, 
relative to many other cancers, remains diffi cult to 
treat due to its usually late presentation. A detailed 
description of how lung cancer develops from a 
molecular level to its clinical presentation is now 
included in Chapter 30, along with a brief account 
of its treatment. 

  Pulmonary   surgery  (Chapter 33) is new for the 
seventh edition. Although surgery of the lungs and 
pleura is only performed in specialised hospitals, 
the prevalence of smoking worldwide means that 
these operations, a majority of which are for cancer 
treatment, will remain common for some decades 
yet. Thoracic surgery procedures are also evolving, 
with less invasive techniques for accessing the lungs 
and pleura slowly replacing the trauma of a thora-
cotomy. Safe and successful use of these techniques 
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 relies on all staff involved having a thorough under-
standing of the physiological changes that occur. 

 I   wish to personally thank the many people 
who have helped with the preparation of the book, 
including the numerous colleagues who have 
encouraged and assisted my acquisition of knowl-
edge in subjects not so close to my own areas of 
expertise. I am indebted to Professor Pearl for his 
kind words in the Foreword, and would like to 
thank Professor Hedenstierna for providing the 
excellent CT scans in Figure 33.3. I remain espe-
cially indebted to Dr Nunn for his continued sup-
port of the book and its author, and would like to 
thank him for once again providing an excellent 
Chapter 1 on the origins of Earth’s atmosphere. His 

statement that  ‘ Fossil fuels were buried over the 
course of 350 million years, and probably all that is 
recoverable will be burned in 300 ’  is thought pro-
voking. Last, but by no means least, I would like to 
thank Lorraine, Emma and Jenny for again tolerat-
ing a preoccupied and reclusive husband/father for 
so long. Jenny, when aged 5, often enquired about 
my activities in the study, until one evening she 
nicely summarised my years of work by confi dently 
informing me that  ‘ if you don’t breathe, you die ’ . 
So what were the other 527 pages about? 

 Andrew   Lumb 
  Leeds   2010    
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 Chapter     1 

                 The atmosphere 
   John F   Nunn    

            KEY POINTS      

          ■      The mass of the Earth and its distance from the 
sun provide optimal conditions of gravity and 
temperature for long-term liquid surface water and 
the retention in its atmosphere of oxygen, nitrogen 
and carbon dioxide.  

      ■      Primitive life-forms generated energy by 
photosynthetic reactions, producing oxygen, and so 
facilitating the development of an oxygen-containing 
atmosphere and aerobic organisms.  

      ■      Carbon dioxide was initially the main component of 
the Earth’s atmosphere, but by 300 million years ago 
rock weathering and photosynthesis had reduced its 
concentration to current low levels.  

      ■      There is now an acceptance that human activity is 
causing an increase in atmospheric carbon dioxide, 
unprecedented in the last 40 million years.         

 The   atmosphere of Earth is radically different 
from that of any other planet in the solar system 
( Table 1.1   ) and may well be rare on planets of other 
stars in the universe as a whole. The unique char-
acter of our atmosphere is because of two main 
reasons. First, temperature has permitted the exist-
ence of liquid surface water for at least 3800 million 
years (Ma), and this has resulted in weathering of 
silicate rocks, reducing the concentration of car-
bon dioxide far below the levels still pertaining in 
the rocky planets Venus and Mars. Secondly, the 
existence of liquid surface water enabled living 
organisms to appear at a very early stage: life forms 
then evolved to undertake oxygenic photosynthe-
sis. When oxygen sinks were saturated, oxygen 
appeared in the atmosphere and some organisms 

began to utilise highly effi cient oxidative metabolic 
pathways. An atmosphere containing oxygen is in 
inorganic chemical disequilibrium, and is an indica-
tion of the existence of life. 

    EVOLUTION OF THE ATMOSPHERE 

    FORMATION OF THE EARTH AND THE 
PRE-BIOTIC ATMOSPHERE 

 The   earth was formed by a relatively short lived, 
but intense, gravitational accretion of rather large 
planetesimals, orbiting the newly formed sun some 
4560       Ma ago. The kinetic energy of the impacting 
bodies was suffi cient to raise the temperature to a 
few thousand degrees Celsius. This would have 
melted the entire Earth, resulting in loss of the 
primary atmosphere. 

 Earth   cooled rapidly by radiation when the initial 
bombardment abated, and the very high tempera-
ture (Hadean) phase is not thought to have lasted 
longer than a few hundred Ma. The crust solidifi ed, 
but massive outgassing continued, resulting in an 
atmosphere mainly comprising carbon dioxide and 
steam ( Table 1.2   ) as probably occurred on Venus 
and Mars.        1,2   In the case of Earth, the water vapour 
condensed to surface water, and there is good evi-
dence that oceans existed about 3800       Ma ago and 
perhaps even earlier.  3   Once Earth’s crust was cool, 
and surface water was in existence, it was pos-
sible for comets and meteorites to leave a second-
ary veneer of their contents, including water and a 
wide range of organic compounds.  4   

 Important   physico-chemical changes occurred 
in the early secondary atmosphere. Helium and 
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 hydrogen tended to be lost from the Earth’s gravi-
tational fi eld. Ammonia dissociated to nitrogen and 
hydrogen, the former retained and the latter lost 
from the atmosphere. Some carbon dioxide might 
have been reduced by hydrogen to form traces of 
methane, but very large quantities slowly reacted 
with surface silicates to become trapped as car-
bonates, while forming silica (weathering). Traces 
of water vapour underwent photodissociation to 

hydrogen and oxygen. However, oxygen from this 
source was present in only minimal quantities, and 
the early atmosphere is no longer thought to have 
been as strongly reducing as was formerly believed.  6   

 The   initial very high partial pressure of carbon 
dioxide, and probably some methane, would have 
provided a powerful greenhouse effect to offset 
the early minimal weak solar radiation, which was 
some 30% less than today ( Figure 1.1   ). However, 
the Sun commenced its main sequence of thermo-
nuclear fusion of hydrogen to helium about 3000       Ma 
ago. Since then solar radiation has been increasing 
steadily as the Sun proceeds remorselessly towards 
becoming a red giant, which will ultimately envelop 
the inner planets. It is fortunate that increasing solar 
radiation has been approximately offset by a dimin-
ishing greenhouse effect, due mainly to decreasing 
levels of carbon dioxide (see below). As a result, 
Earth’s temperature has remained relatively stable, 
permitting the existence of surface water for the last 
3800       Ma.  

    SIGNIFICANCE OF MASS OF EARTH AND 
DISTANCE FROM SUN 

 Small   bodies, such as Mercury and most of the 
planets ’  satellites, have a gravitational fi eld which 
is too weak for the retention of any signifi cant 

 Table 1.2          Average composition of gas evolved 
from Hawaiian volcanoes  

   CONSTITUENT  PERCENT 

   Water vapour  70.75 
   Carbon dioxide  14.07 
   Sulphur dioxide  6.40 
   Nitrogen  5.45 
   Sulphur trioxide  1.92 
   Carbon monoxide  0.40 
   Hydrogen  0.33 
   Argon  0.18 
   Sulphur  0.10 
   Chlorine  0.05 

  (Data are from reference 5, reproduced from reference 2 by permission of 
the Geologists ’  Association.)  

 Table 1.1          Composition of the atmosphere of Earth and the nearer planets  

   PLANET  ATMOSPHERE   

   Mercury  Extremely tenuous   
   Venus  Carbon dioxide  96.5%   �  Traces: Argon, Helium, Neon, 
     Nitrogen  3.5%  Krypton (all  �  20       ppmv) 
   Earth  Nitrogen  78.08%  Water vapour  –  variable 
     Oxygen  20.95%  Neon  18.2       ppmv 
     Argon  0.93%  Helium  5.2       ppmv 
     Carbon dioxide  0.039%  Methane  1.8       ppmv 
   Mars  Carbon dioxide  95.3%  Oxygen  0.13 % 
     Nitrogen  2.7%  Carbon monoxide  0.27 % 
     Argon  1.6%   �  traces: Neon, Krypton, Xenon 
   Jupiter  Hydrogen  89%  Methane  1750       ppmv 
     Helium  11%   �  Traces: Ammonia, Water vapour etc. 
   Saturn  Hydrogen  94%  Methane  4500       ppmv 
     Helium  6%   �  Traces: Ethylene, Phosphine 

  ppmv, parts per million volume.   
   Earth’s data for carbon dioxide has been updated (see text).   
   (Planetary data are from Taylor, 1  reproduced from Nunn 2  by permission of the Geologists ’  Association.)  
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 atmosphere ( Figure 1.2   ). The gas-giants (Jupiter, 
Saturn, Uranus and Neptune) have a gravitational 
fi eld which is suffi ciently strong to retain all gases, 
including helium and hydrogen, thereby ensuring 
the retention of a reducing atmosphere. The gravita-
tional fi eld of the Earth is intermediate, resulting in 
a differential retention of the heavier gases (oxygen, 
carbon dioxide and nitrogen), while permitting the 
escape of hydrogen and helium. This is essential for 
the development of an oxidising atmosphere and 
life as we know it. Water vapour (molecular weight 
only 18) would be lost from the atmosphere were it 
not for the cold trap at the tropopause. 

 Surface   temperature of a planetary body is cru-
cial for the existence of liquid water, which is essen-
tial for life and therefore the composition of our 
atmosphere. To a fi rst approximation, temperature 
is dependent on the distance of a planet from the 
Sun, and the intensity of solar radiation ( Figure 1.2 ). 
The major secondary factor is the greenhouse effect 
of any atmosphere which the planet may possess. 
Mercury and Venus have surface temperatures far 
above the boiling point of water. All planets (and 
their satellites) which are further away from the Sun 
than Earth have a surface temperature too cold for 

liquid water to exist today. However, there is now 
evidence that Mars had liquid surface water in the 
past,  8   now present only as ice.  9   

 Earth   is the only planet in the solar system which 
has both a mass permitting retention of an oxidising 
atmosphere, and a distance from the Sun at which 
the temperature permits liquid water to exist on its 
surface. It is diffi cult to see how there could be life 
as we know it anywhere in the solar system outside 
the small parallelogram in  Figure 1.2 . However, an 
environment similar to that of the earth may well 
exist on some planets of the 10  22   other sun-like stars 
in the universe.  

    ORIGIN OF LIFE AND THE DEVELOPMENT 
OF PHOTOSYNTHESIS 

 Amino   acids and a wide range of organic com-
pounds are found in a type of meteorite known as 
carbonaceous chondrites.  4   Therefore, whether or 
not such compounds were actually synthesised on 
the early Earth, as Stanley Miller had proposed,  6   it 
is highly likely that a wide range of organic com-
pounds were available on the pre-biotic Earth when 
liquid oceans were formed. 
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 Fig. 1.1          Solar luminosity plotted against the 
age of the Sun, with the open circles giving a 
qualitative impression of the diameter of the Sun. 
Superimposed is an indication of the life of the 
Earth and Moon, which is now about half way 
through the main sequence of the Sun deriving its 
energy from hydrogen fusion to helium. The times 
can only be very approximate. (After reference 7 
with kind permission of Springer Link and Business 
Media.)    
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  It   is less easy to explain the next stage in the evo-
lution of life. An essential feature of all life is the 
synthesis of proteins using a ribonucleic acid (RNA) 
template, usually transcribed from the genetic code 
carried on deoxyribonucleic acid (DNA). There 
would appear to have been a classical  ‘ chicken 
and egg ’  situation. Useful proteins could not be 
formed without the appropriate sequences in RNA 
or DNA: RNA and DNA could not be polymerised 
without appropriate enzymes which are normally 
proteins. Nevertheless, life did appear, perhaps in 
the fi rst instance with the genetic code carried only 
on RNA, or even the much simpler peptide nucleic 
acid (PNA).  10   

 An   essential requirement for life is the avail-
ability of bio-usable forms of energy. The forms of 
available energy and their location at the dawn of 
life remain a mystery. However, one cannot ignore 
the possibility of hydrothermal vents, such as the 
black smokers along the mid-ocean ridges at great 
depths, which still support very simple life forms 
on the basis of chemoautotrophy. They are totally 
independent of sunlight, and exploit the profound 
chemical disequilibrium between the emerging 
hot, reducing and acid water, containing hydrogen 
sulphide, methane, ammonia, phosphorus and a 
range of metals, and the surrounding sea water.  11   
It is likely that there have been hydrothermal vents 

on Earth for as long as surface water has coexisted 
with volcanic activity. Chemoautothrophs might, 
therefore, have appeared as early as 3800       Ma ago. 

 Hydrothermal   vents provide an extremely 
constrained and hazardous environment for life, 
dependent on the continued existence of the energy 
supply. A much more attractive alternative was 
to utilise the limitless availability of energy in the 
form of solar visible light. The most familiar of such 
reactions is the oxygenic photosynthesis of glucose 
summarised as follows: 

  6 6 62 2 6 12 6 2CO H O energy C H O O� � � �       

 The   biochemical adaptation from thermal detec-
tion in hydrothermal vents to photosynthesis does 
not seem to have been insuperable,  12   and it was 
thought that photosynthesising cyanobacteria 
(blue-green algae) may have existed 2700       Ma ago.  13   
However, it has recently been suggested that this 
crucial development may have occurred later, closer 
to 2400       Ma ago when oxygen fi rst appeared in the 
atmosphere.  14   At a later date, cyanobacteria under-
went symbiotic incorporation into the cells of cer-
tain eukaryotes to become chloroplasts, which then 
conferred the biochemical benefi ts of photosynthe-
sis on their hosts, which include all plants.  
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 Fig. 1.2          The planets and some of their 
larger satellites, plotted according to 
distance from the Sun (abscissa), and mass 
(ordinate), both scales being logarithmic and 
relative to Earth. Mean surface temperatures 
are shown. Potential for life as we know 
it exists only within the parallelogram 
surrounding the Earth.    
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     THE APPEARANCE OF OXYGEN IN THE 
ATMOSPHERE 

 Oxygenic   photosynthesis releases oxygen, appar-
ently as a waste product. Initially it accumulated in 
the surface waters of the oceans, where it oxidised 
soluble ferrous iron (Fe 2 �  ), leached from basalt, 
which was then deposited as insoluble ferric iron 
oxide (Fe 3 �  ) in the vast so-called banded iron for-
mations. This process prevented concentrations of 
oxygen in the atmosphere reaching 10  � 5  bar until 
about 2320       Ma ago.  15   After the atmosphere attained 
a higher but critical level of oxygen about 1800       Ma 
ago, banded iron formations seldom appeared, and 
iron was thereafter deposited in red (ferric) beds.  2   

 Oxygen   continued to accumulate in the oceans 
and atmosphere, probably reaching a peak of 25 –
 35% of an atmosphere 300       Ma ago  16   ( Figure 1.3   ). 
It then decreased to about 14%, contributing to 
the end-Permian mass extinction at the end of the 
Palaeozoic Era, about 250       Ma ago.  2   Thereafter it rose 
slightly above the present atmospheric level for 
about 100       Ma.  

    BIOLOGICAL CONSEQUENCES OF AN 
OXIDISING ENVIRONMENT 

 It   seems likely that the appearance of molecular oxy-
gen in their environment would have been unwel-
come to anaerobic organisms. Chapter 26 describes 
the toxicity of oxygen and its derived free radicals, 
against which primitive anaerobes would probably 
have had no defences. Three lines of response can 
be identifi ed. Some anaerobes sought an anaerobic 
micro-environment in which to remain and survive. 
Others developed defences in depth against oxygen 
and its derived reactive species (page 385). The best 
response was the development of aerobic metabo-
lism, which gave enormous energetic advantages 
over organisms relying on anaerobic metabolism 
(page 200). This required the symbiotic incorpora-
tion of purple bacteria which became mitochondria, 
and the increased availability of biological energy 
was essential for the evolution of all forms of life 
more complex than micro-organisms. 

 Photosynthesis   and aerobic metabolism eventu-
ally established a cycle of energy exchange between 
plants and animals, with its ultimate energy input in 
the form of solar visible light, which was interrupted 
only under exceptional circumstances. Such circum-
stances included major meteor strikes and excep-
tional volcanic activity, both of which can throw vast 

quantities of persistent dust into the atmosphere and 
cause extinctions by blocking photosynthesis.  

    CHANGES IN CARBON DIOXIDE LEVELS 

 After   the major outgassing phase of the newly 
formed earth, the concentration of carbon dioxide 
in the atmosphere probably exceeded 90% of an 
atmosphere.  17   It declined rapidly, due to weather-
ing (CO 2       �      CaSiO 3   →  SiO 2       �      CaCO 3 ) and photo-
synthesis, reaching about 0.5% at the time of the 
beginning of the overt fossil record, the Palaeozoic 
Era, from 570       Ma ago ( Figure 1.3 ). A secondary 
major decline to near the present atmospheric level 
occurred during the Carboniferous Period, when 
the coal-forming forests involved photosynthe-
sis and carbon burial on a massive scale. A sharp 
increase occurred at the end of the Permian Period 
(the last Period of the Palaeozoic Era) about 250       Ma 
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 Fig. 1.3          Long-term changes in oxygen and carbon dioxide 
concentrations during the last 600       Ma. Broken horizontal 
lines show present atmospheric levels. The vertical broken line 
shows the Carboniferous/Permian boundary. The continuous 
horizontal lines with arrows show some oxygen limits 
suggested by the geological record of forest fi res.  2   Geological 
periods shown by their capital letters are: Cambrian, 
Ordovician, Silurian, Devonian, Carboniferous and Permian 
(Palaeozoic Era), and Triassic, Jurassic, Cretaceous (Mesozoic 
Era) and Tertiary. Recent research suggests levels of carbon 
dioxide may be slightly less than shown, but the nature of 
the changes is not in doubt. (From Nunn,  2   reproduced by 
permission of the Geologists ’  Association).    
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 ago, and carbon dioxide may have contributed to 
the end-Permian mass extinction. This coincided 
with the decrease in oxygen concentration men-
tioned above. Carbon dioxide concentrations rose 
to about 0.2% of an atmosphere just before 200       Ma 
ago, and then declined until about 20       Ma ago, when 
it entered a range of the order of 180 – 300 parts per 
million, volume (ppmv), which was not seriously 
exceeded until the last few decades.  18    

    CARBON DIOXIDE AND THE ICE AGES 

 Carbon   dioxide is a greenhouse gas, with a doubling 
of atmospheric concentration causing an increase in 
global average surface temperature  ‘  …  likely to be 
in the range 2 to 4.5 ° C  …  values substantially higher 
than 4.5 ° C cannot be excluded.  ’    19   DeConto cites the 
carbon dioxide threshold for Antarctic glaciation 
as 750       ppmv and for the northern hemisphere as 
280       ppmv.  18   However, there is also a periodicity in 
solar insolation (Milankovitch cycles) which initiates 
glacial and interglacial cycles. For the last 500       ka, the 
dominant cycle has been the degree of ellipticity of 
the Earth’s orbit, with a periodicity of about 100       ka, 

and its effect is very clear in the mean global temper-
ature record for the last 420       ka derived from Antarctic 
ice cores ( Figure 1.4   ).  20   

    Figure 1.4  also shows a remarkably close corre-
lation between temperature and the atmospheric 
concentration of carbon dioxide. Detailed analysis 
of time relations shows that the start of end-glacial 
warming usually preceded the start of the increase 
in carbon dioxide by a few thousand years. The 
initial warming released carbon dioxide from stores 
and then the increased carbon dioxide concen-
tration provided powerful positive feed-back to 
temperature. The resultant warming is far greater 
than can be accounted for simply by the change in 
insolation. 

 Casual   inspection of  Figure 1.4  suggests that the 
next glacial period is overdue. However, it appears 
that the rhythmic changes in global mean tempera-
ture shown for the last 420       ka will not continue, as 
we now enter a long phase when the Earth’s orbit 
will remain almost circular. The 100       ka cycle will be 
in virtual abeyance for about 50       ka, during which 
there will be a prolonged interglacial.  22   However, it 
is highly unlikely that mean global temperature will 
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 Fig. 1.4          General trends for temperature and 
atmospheric carbon dioxide concentration, 
obtained from ice cores from Vostok, 
Antarctica, for the last 420       000 years. 
In 2009 the atmospheric carbon dioxide 
concentration is expected to reach 387       ppmv 
(see  Table 1.3 ). (Data from Petit et al.  20   and 
reproduced in part from reference 21, with 
the permission of the Editor of the Optimum 
Population Trust Journal.)    
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 remain constant, due to the current increase in the 
atmospheric carbon dioxide concentration, unprec-
edented in the last 20       Ma.  

    RECENT CHANGES IN CARBON DIOXIDE 
LEVELS 

 Atmospheric   carbon dioxide remained close to 
280       ppmv from the beginning of the current inter-
glacial until the start of the industrial revolution 
(AD 1750). In the next 200 years it increased to 
310       ppmv which averaged 0.155       ppmv/yr ( Table 1.3   ). 
The annual rate of increase rose progressively 
and, from AD 2000 to 2009, reached 1.89       ppmv/yr, 
which is nearly 200 times the rate during the rapid 
rewarming after the last glacial period ( Figure 1.4 ). 

 On   this basis, extrapolation of trends from AD 
1750 to the present suggests that the concentration 
might reach 1000       ppmv by the year AD 2100. This 
prediction is similar to computed predictions based 
on analysis of the many primary factors govern-
ing atmospheric CO 2  concentrations.  23   Thus we 
may expect to reach the highest concentration since 
24       Ma ago, and above the threshold for Antarctic 
glaciations.  18   Whether the rate of change continues 
its present exponential course is critically depend-
ent on the continued effi ciency of the global carbon 
sinks, and attempts to control emissions with all its 
current political uncertainty. The only certain limi-
tation on emissions would seem to be exhaustion of 
the world’s fossil fuels. Global warming may have 
disturbing short term effects on ocean currents, par-
ticularly a weakening of the north Atlantic conveyor 
(including the Gulf Stream).  24   This could result in a 
substantial cooling of north-western Europe.   

    THE GREENHOUSE EFFECT 

 The   balance of heat gain from solar radiation is the 
difference between incoming radiation, mainly in 
the visible wave lengths, and outgoing radiation 
which is largely infra-red. The latter is partially 
trapped in the troposphere, mainly by water vapour 
(60%) and carbon dioxide (25%). Atmospheric 
water vapour concentration increases with rising 
global temperature and therefore provides positive 
feed-back to global warming. It is estimated that 
the present greenhouse effect raises the mean sur-
face temperature of the Earth by some 30 ° C. Carbon 
dioxide makes a major contribution to the very high 
surface temperature of Venus (480 ° C), hotter than 
Mercury but further from the Sun. 

    OTHER GREENHOUSE GASES 

 There   are no infra-red absorption bands for water 
vapour and carbon dioxide between 7 and 13  μ m 
wavelength, and heat loss in this band is consider-
able. It follows that any gas or vapour with strong 
infra-red absorption in this range will have a dis-
proportionate greenhouse effect. Such a gas could 
be considered not so much as thickening the panes 
in the greenhouse as replacing a missing pane. 

 After   water and carbon dioxide, the most impor-
tant greenhouse gases are ozone (8% of total effect) 
and methane (3% of total effect) which is present in 
the atmosphere at a concentration of only 2       ppmv, 
but rapidly increasing: it absorbs infra-red some 25 
times as effectively as carbon dioxide. Dissolved 
methane is currently escaping from lakes in the 
melting tundra, but of greater concern is the vast 
quantity of buried methane held at high pressure 
and low temperature in cages of water molecules, 
known as hydrates or clathrates. Massive escape 
from hydrates is thought to have been a major fac-
tor in the Palaeocene/Eocene Thermal Maximum, 
55       Ma before present, with temperature rises of 
5 – 6 ° C.  25   Fortunately the half-life of methane in the 
atmosphere is only about six years. The chlorofl uor-
ocarbons (2% of total effect) absorb infra-red some 
10       000 times as effectively as carbon dioxide, but 
present atmospheric concentrations are only of the 
order of 0.003       ppmv. However, with their long half 
life, they cannot be ignored. Nitrous oxide, mainly 
of biological origin, also makes a small contribution. 

 With   Earth in an approximately circular orbit 
for the next 50       ka and solar gain likely to remain 
reasonably constant,  22   greenhouse gases are now the 

 Table 1.3          Recent changes in atmospheric carbon 
dioxide concentrations  

     ATMOSPHERIC CO 2   RATE OF CHANGE 

   DATE  MASS IN Gt  ppmv  ppmv PER YEAR 

   18       ka ago  420  200   
   10       ka ago  588  280  0.01 
   1750       AD  588  280  0 
   1950       AD  651  310  0.15 
   2000       AD  777  370  1.20 
   2009       AD  813  387  1.89 

  Gt, gigatonne; ka, thousand years; ppmv, parts per million, volume.   
   Data are from various sources. (Reproduced from Nunn 2  by permission of 
the Geologists ’  Association) and most recently from Mauna Loa directly.  
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 major factors governing global temperature. Carbon 
dioxide is rising rapidly towards the highest levels 
in the last 24       Ma and water vapour will increase 
with rising temperature. The mean global temper-
ature is predicted to increase to within 90% confi -
dence limits of 1.5 – 4.5 ° C by AD 2100. Temperature 
has already increased by 0.6 ° C in the last century, 
mostly since 1950.  26   Not the least serious conse-
quence will be melting of polar ice which has the 
ultimate potential to raise sea level by 67       m. Sea 
level has been rising at about 1.8       mm/year since AD 
1850 but, since 2004, there have been several reports 
of increased sea level rise up to 3.0       mm/year and 
predictions for 2100 indicate a total sea level rise for 
this century of 0.35 – 0.5       m.  27     

    TURNOVER RATES OF ATMOSPHERIC 
GASES 

 Biological   and geological turnover rates of carbon 
dioxide are quantitatively totally different.  2   Living 
organisms, the atmosphere and surface waters of the 

oceans contain about 2200       Gt (gigatonnes) of carbon. 
The annual exchange between photosynthesis and 
aerobic metabolism is approximately 100       Gt annually, 
with anthropogenic burning of fossil fuels and defor-
estation currently releasing about 8       Gt/year in 2002 
as shown in  Figure 1.5   . The total release of carbon 
from burning and fl aring of fossil fuels has now risen 
from 5       Gt/yr in 1983 to 7.7       Gt/yr in 2005, most of the 
increase since AD 2002 being attributable to China. 

 In   stark contrast, geological stores (ocean depths, 
organic biomass and limestone) have a carbon con-
tent in excess of 30       000       000       Gt, but with an annual 
turnover (volcanoes, weathering, etc.) of less than 
0.1       Gt per year. Thus, long term changes are gov-
erned by the geological stores, while very rapid 
atmospheric changes can occur as a result of anthro-
pogenic activity. Fossil fuels were buried over the 
course of 350       Ma, and probably all that is recover-
able will be burned in 300 years. 

 Atmospheric   stores of oxygen are almost 600 
times greater than those for carbon dioxide. If 
oxygen decreases at the same rate as the current 
increase in carbon dioxide, it would take 40000 
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 Fig. 1.5          Stores and turnover of carbon 
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 years for sea level  P  o  2  to fall to the level which 
pertains in Denver today.  

    OXYGEN, OZONE AND ULTRAVIOLET 
SCREENING 

 In   addition to its toxicity and potential for more 
effi cient metabolism, oxygen had a profound effect 
on evolution by ultraviolet screening. Oxygen itself 
absorbs ultraviolet radiation to a certain extent, but 
ozone (O 3 ) is far more effective. It is formed in the 
stratosphere from oxygen which undergoes photo-
dissociation producing free oxygen atoms. The 
oxygen atoms then rapidly combine with oxygen 
molecules to form ozone thus: 

  

O O

O O O

2

2 3

2�

�

↓

�       

 The   absolute quantity is very small, being the 
equivalent of a layer of pure ozone only a few mil-
limetres thick. A Dobson unit of ozone is defi ned 
as the equivalent of a layer of pure ozone 0.01       mm 
thick. About 10% of the total atmospheric ozone is 
in the troposphere, mainly as a pollutant. This also 
acts as an ultraviolet screen and may become rela-
tively more important in the years to come. 

 Life   evolved in water which provided adequate 
screening from ultraviolet radiation. The fi rst colo-
nisation of dry land by plants and animals was in 
the late Silurian Period about 400       Ma years ago, and 
it has been suggested that this coincided with oxy-
gen and ozone reaching concentrations at which the 
degree of ultraviolet shielding fi rst permitted organ-
isms to leave the shelter of an aqueous environment. 

 Ozone   is in a state of dynamic equilibrium in the 
stratosphere and its concentration varies markedly 
from year to year, in addition to displaying a pro-
nounced annual cycle. Ozone can be removed by 

the action of many free radicals including chlorine 
and nitric oxide. Highly reactive chlorine radicals 
cannot normally pass through the troposphere to 
reach the stratosphere, but the situation was dis-
turbed by the manufacture of chlorofl uorocarbons 
(e.g. CF 2 Cl 2 ) for use as propellants and refrigerants. 
These compounds are highly stable in the tropo-
sphere with a half-life of the order of 100 years. This 
permits their diffusion through the troposphere 
to reach the stratosphere, where they undergo 
photodissociation to release chlorine radicals, which 
then react with ozone as follows: 

  

Cl O ClO O

Cl O ClO O

� �

� �

3 2

2

→

↑ ↓

←       

 Chlorine   is recycled and it has been estimated that 
a single chlorine radical will destroy 10       000 mole-
cules of ozone before it combines with hydrogen to 
form the relatively harmless hydrochloric acid. The 
Antarctic  ‘ hole ’  in the ozone layer forms in October 
of each year, when spring sunlight initiates photo-
chemical reactions. Minimal levels fell from 300 
Dobson Units in 1960 to a lowest point (88) in 1995.  28   
Slight recovery to reach 100 had occurred by 2004.  

    EVOLUTION AND ADAPTATION 

 This   chapter has outlined the environmental condi-
tions and biological factors under which the atmos-
phere has evolved to its present composition. In 
the past, nothing has been permanent, and we can 
expect a continuation of the interaction between 
organisms and their environment. What is new is 
that one species now has the power to cause major 
changes in the environment, and the atmosphere in 
particular. These changes will affect a wide range 
of organisms, and result in the extinction of certain 
species.   
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