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Preface

When we edited in 2007 the first issue on transient receptor potential channel in the

Handbook of Experimental Pharmacology, we were all very excited by the progress

in this field although only one decade after cloning the first TRP channel had

passed. At this time, somewhat less than 5,000 papers were published on TRP

channel (1/1/1960 until 31/12/2006). If we check now the period (1/1/2007 until

13/1/2014), additional 9,300 papers can be found in a PubMed search.1 Needless to

say, the general interest on these 28 members of the Trp gene family which encode

ion channels is nearly exponentially growing. Therefore, it seemed to be indicated,

although many excellent books on TRP channels have been published meanwhile,

to jump into a new adventure editing a comprehensive source book in this success-

ful Springer Handbook series again on the same topic. This is not only an update of

the 2007 book but also an impressive introduction of novel areas which TRP

channels have entered. The 2007 view that TRP channels are mainly cell sensors

with an intriguing variability concerning the modes of activation has dramatically

extended into the evolutionary field, the structural approach, and especially the

advent of the important role of TRP channels in hereditary and acquired diseases.

Important new data concerning the role of TRP channels in intracellular

compartments are included. We also refer to the still controversial topic how TRP

channel is involved in store-dependent Ca2+ entry. Indeed, the TRP field expansion

did not lose the fast speed. It is extending into so far unexpected areas. The gain of
knowledge has reached such an extent that we have not been able to restrict the

source book into a single volume; rather, we had to agree on a two-volume

publication. In the first volume, we go through all the known TRP channels.

Leading experts in the field summarize features of individual TRP channels starting

with the description of the gene, the expression patters, associated proteins, bio-

physical and biochemical function properties, and transgenic animal models and

1 The used search string was (“transient receptor potential” OR trpa* OR trpc* OR trpm* OR trpp*

OR trpv* OR PKD* OR stim1 OR stim2 OR orai1 OR orai2 OR orai3 OR trpa*). Note that this

search included also the main players of store-operated Ca2+ entry, because of the still-often-

reported links to TRP as also discussed in Volume 2.

v



closing with cellular TRP functions, dysfunctions, and their role in diseases. The

second volume starts with a chapter on sensor properties and functions of TRP

channels. This was highlighted in the 2007 book but is not very much extended.

Surprising new features are reported, e.g., new insights into thermo- and light-

sensing, novel roles or TRPs in taste perception and chemesthesis, and especially

their functional importance as chemosensors for gasotransmitters, including oxygen

sensing, which was evidenced only in the last 5 years. In the second part, more

general topics related to TRP functions and features are discussed such as channel

structure; TRPs as targets of pharmacological modulation, including a wealth of

natural compounds; and the exciting discovery of novel channel toxins. New

aspects are discussed concerning the role of TRPs as important players in the

physiology of reproduction and in neural networks which control reproductive

behavior opening a TRP window into neuroendocrinology, i.e., their role in

hormone-secreting cells. We finish this book with some critical remarks on the

current state of TRP research, controversies, and surprises.

We hope that this book will guide a large reader community through the

fascinating world of the TRP channel family from basic science to pathophysiology

and disease. May this voluminous source/textbook also help to establish

interactions between the fundamental and clinical research and the research in

drug discovery and development! We are convinced that this book is “translational”

in the best meaning of this word. Despite the many advances in the understanding of

the molecular mechanisms and function features of TRP channel, there is still a

tremendous need for more in-depth understanding of the structure of TRP channels,

their implementation in diverse signal cascades, more mechanistic insight into

channel function at the molecular and systemic level, as well as the need for

identifying selective pharmacological tools, new therapeutic targets, and develop-

ing new treatment options. We hope this book stimulates further research. Finally,

we may conclude that we might be still in a period of the end of the beginning rather

than the beginning of the end! The editors wish to thank all authors for excellent

contribution and also Wilma McHugh (Springer) for all expert support and very

helpful editorial advice!

Leuven Bernd Nilius

Homburg Veit Flockerzi
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TRPML1: An Ion Channel in the Lysosome . . . . . . . . . . . . . . . . . . . . . . 631

Wuyang Wang, Xiaoli Zhang, Qiong Gao, and Haoxing Xu

viii Contents for Volume I



TRPML2 and Mucolipin Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
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TRPs: Truly Remarkable Proteins

Veit Flockerzi and Bernd Nilius

Abstract

The family of transient receptor potential cation channels has received in the last

10 years a tremendous interest because members of this family are involved in a

plethora of cell functions and have been identified as causal for many hereditary

and acquired diseases. We shortly introduce these channels, summarize nomen-

clature and chromosomal location of the 28 mammalian Trp genes, and list the

available Trp-deficient mouse lines.

Keywords

TRP cation channel proteins • TRP phylogenetic tree • Trp gene • Chromosomal

location • Trp gene knockout •Trp-deficient mouse strain • Mouse (animal) model

The “transient receptor potential” (trp) gene was cloned from the Drosophila fly in

1989 (Montell and Rubin 1989), the molecular identification and functional char-

acterization of the mammalian TRPC members occurred in 1995 (Wes et al. 1995;

Zhu et al. 1995; Nilius and Owsianik 2011), and we are now, in 2014, probably just

at the beginning to get a deeper understanding of the molecular structure, the

biophysical properties, the functional role, and the pathophysiological impact of

the 28 mammalian (27 human) members of this superfamily. The number of

publications on this topic rises explosively ranging from molecular biology and

crystallography to clinical research, food production, and cosmetics. So far, more
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Saarlandes, Gebäude 46, 66421 Homburg, Germany

e-mail: veit.flockerzi@uks.eu

B. Nilius (*)

Laboratory Ion Channel Research, Department Cell Mol Medicine, KU Leuven, Campus

Gasthuisberg, O&N 1, Herestraat 49-Bus 802, 3000 Leuven, Belgium

e-mail: bernd.nilius@med.kuleuven.be

B. Nilius and V. Flockerzi (eds.), Mammalian Transient Receptor Potential (TRP)
Cation Channels, Handbook of Experimental Pharmacology 222,

DOI 10.1007/978-3-642-54215-2_1, # Springer-Verlag Berlin Heidelberg 2014

1

mailto:veit.flockerzi@uks.eu
mailto:bernd.nilius@med.kuleuven.be


than 13,000 publications and 2,000 reviews have been published about TRPs

(Fig. 1). The increase in the last 20 years is nearly exponential! This flood of new

information justifies hopefully a comprehensive source book which covers the state

of the art in TRP research.

Transient receptor potential (TRP) cation channels have been extensively stud-

ied and described as polymodal cell sensors (Gees et al. 2010, 2012; Nilius and

Owsianik 2011; Wu et al. 2010). They fall into six subfamilies (Fig. 2): TRPC for

“canonical” (TRPC1–7), TRPV for “vanilloid” (TRPV1–6), TRPM for

“melastatin” (TRPM1–8), TRPP for “polycystin” (TRPP2, TRPP3, TRPP5),

TRPML for “mucolipin” (TRPML1–3), and TRPA for “ankyrin” (TRPA1). All

TRP gene products are intrinsic membrane proteins with six putative transmem-

brane spans (S1–S6) and a cation-permeable pore region between S5 and S6. The

length of the intracellular amino (N) and carboxy (C) termini and structural

domains (e.g., ankyrin) they encompass varies significantly between members of

the TRP channel subfamilies (Owsianik et al. 2006). The cytoplasmic domains are

involved in the regulation and modulation of channel function and trafficking.

Functional TRP channels consist of four identical or similar TRP subunits.

Table 1 summarizes the nomenclature used in this chapter and lists the chromo-

somal locations of the 28 Trp channel genes present in human and mouse. Whereas

some chromosomes carry one up to three or four Trp genes (Table 2), only the

Trpv6 and Trpv5 genes and the Trpv1 and Trpv3 genes are located side by side and

in the same transcriptional orientation in single human and mouse chromosomes

(Table 2) suggesting recent gene duplication events in the TRPV subfamily

(Abramowitz and Birnbaumer 2007). In human Trpv3 is located in chromosome

17 immediately before Trpv1 (separated by 7.45 kbps). Similarly in mouse Trpv3 is
located in chromosome 11 immediately before Trpv1 (separated by 6.15 kbps). The
Trpv6 gene is located in human chromosome 7 and mouse chromosome

Fig. 1 Publications in the TRP field (adapted from PubMed, November 3, 2013)

2 V. Flockerzi and B. Nilius



6, respectively, immediately in front of the Trpv5 gene (separated by 21.76 kbps in

human and by 16.37 kbps in mouse).

This handbook is published 7 years after the first TRP Handbook of Experimen-
tal Pharmacology (HEP) (Flockerzi and Nilius 2007) with the intention to focus our
view on the most important achievements. We cover in detail all the 28 mammalian

members of the TRP family, describing the gene, expression, channel functions,

functional properties, interaction partners of TRP channels, diverse and complex

signaling cascades, lessons from knockout models, and their impact on human

diseases.

Especially TRP gene knockout animals, obtained by deletion of individual Trp
genes in embryonic stem cells through homologous recombination, have made it

possible to identify TRP channel functions and their relationship to physiological

and pathophysiological processes in the living organism (Freichel et al. 2011).

Since 2007 additional knockouts for 16 Trp genes have been published [compared

to 10 before 2007 Freichel and Flockerzi (2007)], and at present only two Trp genes
remain to be deleted, Trpml2 and Trpp5 (Table 3). Among the wealth of informa-

tion obtained by phenotyping wild-type animals in comparison to the corresponding

Trp gene-deficient animals (and described in the various chapters of this volume),

two findings are striking: (1) With the exception of Trpm7-deficient
(Jin et al. 2008), Trpm6-deficient (Walder et al. 2009), and Trpp2-deficient animals

(Wu et al. 1998), all other knockouts are viable. Trpm7�/� embryos died before day

7.5 of embryogenesis, Trpm6�/� mice never survived to weaning and mostly died

by embryonic day 12.5, and Trpp2�/� embryos died later than embryonic day 15.

(2) Although several TRPs have been associated with fertility and reproduction,

Fig. 2 The phylogenetic tree of the TRP family [adapted from Nilius and Owsianik (2011) with

permission]
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only TRPV6 channels have been shown to be essential for (mouse male) fertility

(Weissgerber et al. 2011, 2012).

So far half of the published knockouts are conventional or global knockouts

(Table 3). The gene deletion is unrestricted and animals inherit the genetic deletion

in all of their cell types. In these animals, it may be difficult to exclude the

possibility that developmental defects or compensatory upregulation of other

genes contributes to the phenotype observed in adult animals. In addition, this

global gene deletion might make it difficult to attribute abnormal phenotypes to a

particular type of cell. The other half are conditional knockouts (Table 3) which

allow regional and temporal control of TRP gene expression and that restrict

deletions to cells in a specific tissue or at specific points in an animal’s develop-

ment. More of these conditional TRP-deficient mouse models are required.

Other strategies allow visualizing TRP-expressing cells. These strategies include

generation of TRP-dependent reporter-tagged null mutations as shown for TRPA1

[alkaline phosphatase (Kwan et al. 2006)], TRPM8 [eGFP (Dhaka et al. 2007) or

lacZ (Colburn et al. 2007)], and TRPM3 [lacZ (Vriens et al. 2011)]. Whereas the

Table 2 Know thy neighbor: chromosomal location of human and mouse Trp genes

Chromosome Homo sapiens Mus musculus

1 Trpml2+ Trpml3� Trpa1� Trpm8+

2 Trpm8+ Trpm7�
3 Trpc1+ Trpc3� Trpc4+ Trpml3+ Trpml2+

4 Trpp2+ Trpc3�
5 Trpp5+ Trpc7� Trpp2+ Trpv4�
6 Trpv6�/Trpv5�
7 Trpv6�/Trpv5� Trpm4� Trpm1+ Trpc2+ Trpm5�
8 Trpa1� Trpml1+

9 Trpm3� Trpm6� Trpc6+ Trpc1�
10 Trpp3� Trpm2�
11 Trpm5� Trpc2+ Trpv2+ Trpv1+/Trpv3+

12 Trpc6� Trpv4�
13 Trpc4� Trpc7�
14

15 Trpm1� Trpm7�
16

17 Trpv3�/Trpv1� Trpv2+

18 Trpp5+

19 Trpml1+ Trpm4+ Trpm6+ Trpm3+ Trpp3�
20

21 Trpm2+

22

x Trpc5� Trpc5�
y

Back to back are Trpv6/Trpv5 (human, chromosome 7, and mouse, chromosome 6) and Trpv3/
Trpv1 (human, chromosome 17, and mouse, chromosome 11); +, forward strand;�, reverse strand

6 V. Flockerzi and B. Nilius



Table 3 Trp-deficient mice

Gene Deletion of exon(s) Conditional References

Trpa1 23 (part.) No Bautista et al. (2006)

22–24, replaced by IRES-alkaline phosphatase-
polyA-cassette

No Kwan et al. (2006)

Trpc1 8 No Dietrich et al. (2007)

Trpc2 7–10 No Stowers et al. (2002)

6–11 No Leypold et al. (2002)

Trpc3 7 Yes Hartmann et al. (2008)

7–8 Yes Hirschler-Laszkiewicz

et al. (2012)

Trpc4 6 No Freichel et al. (2001)

Trpc5 5 Yes Riccio et al. (2009)

4 Yes Xue et al. (2011)

Trpc6 7 No Dietrich et al. (2005)

Trpc7 1 Yes Perez-Leighton et al.
(2011)

5 Yes Xue et al. (2011)

Trpv1 9, 10, 11 (part.) No Caterina et al. (2000)

Trpv2 10–13 Yes Park et al. (2011)

Trpv3 14–15 No Moqrich et al. (2005)

Trpv4 4 No Suzuki et al. (2003)

12 Yes Liedtke and Friedman

(2003)

Trpv5 13 Yes Hoenderop et al. (2003)

Trpv6 9–15 No Bianco et al. (2007)

13–15 Yes Weissgerber et al. (2012)

Trpm1 2–4 No Morgans et al. (2009)

3 (part.)–5 No Shen et al. (2009)

4–6 No Koike et al. (2010)

Trpm2 20–21 No Yamamoto et al. (2008)

Trpm3 19 (part.) replaced by IRES- lacZ-neo-cassette No Vriens et al. (2011)

Trpm4 15–16 Yes Vennekens et al. (2007)

3–6 Yes Barbet et al. (2008)

Trpm5 15–19 No Zhang et al. (2003)

Promoter, 1–4 No Damak et al. (2006)

Trpm6 5–7 No Walder et al. (2009)

2–3 replaced by IRES- lacZ-neo-cassette No Woudenberg-Vrenken

et al. (2011)

Trpm7 Intron 1 (insertion) No Jin et al. (2008)

17 Yes Jin et al. (2008)

32–36 (kinase) No Ryazanova et al. (2010)

Trpm8 1–2, replaced by lacZ-neo-cassette No Colburn et al. (2007)

Knock-in of eGFP-polyA-cassette into exon

5, 27 nt following start

No Dhaka et al. (2007)

13–14 No Bautista et al. (2007)

(continued)
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TRPA1 and TRPM8 mice have been generated by gene targeting approaches, the

TRPM3 mouse and one of the TRPM6 mouse strains were generated by gene

trapping. The visualization of TRP-expressing cells could also be accomplished

by mouse lines, which carry an internal ribosome entry site (IRES) followed by the

cDNA of a Cre recombinase within the Trp gene. In this strategy the IRES element

will result in transcription of a bicistronic messenger RNA from which the TRP and

cre recombinase are independently translated. These TRP-IRES-Cre animals can be

bred to reporter mice where the “reporter,” the cDNA of a marker gene (e.g., LacZ,
GFP, CFP, or YFP), is expressed only following Cre-mediated recombination

(Fig. 3). So far, no such TRP-IRES-Cre mouse lines obtained by homologous

recombination have been published, but several are in various pipelines. By these

strategies, TRP-positive cells can be directly visualized and additionally

manipulated in various ways depending on the properties of the “reporter” genes

(channelrhodopsin, diphtheria toxin, calcium indicators, etc.) used.

In this volume, the special progress of studying TRP channels in intracellular

organelles, such as TRPML channels in endosomes and lysosomes, will also be

highlighted. In addition, we provide in detail an overview on special cellular

functions of these channels such as photoreception, hearing, olfaction, taste, and

somatosensation such as nociception, mechanoreception, temperature sensing,

chemosensing, i.e., all the classical Aristotle’s senses which are so much depending

on TRPs. TRPs were first considered as unique cell sensors which are involved in

all our Aristotle’s senses by which we discover the world (Damann et al. 2008).

However, TRP channels have a much higher functional importance than just acting

as sensory channels. They play an important role in many homeostatic functions.

These aspects will also be discussed in this book. In addition, some exciting new

developments, e.g., the modulation of TRPs by a plethora of natural compounds,

the role of TRPs in endocrinology and metabolic control, the exciting interaction

with STIM, ORAI, components of the molecular machinery which constitutes

store-operated Ca2+ entry.

From the point of view of fundamental research, TRPs show a unique promis-

cuity of gating mechanisms which came as a surprise even for channel maniacs [for

Table 3 (continued)

Gene Deletion of exon(s) Conditional References

Trpp2 1 (insertion) No Wu et al. (1998)

1 No Pennekamp et al. (2002)

Trpp3 3–9 No Horio et al. (2011)

Trpp5 n.d.

Trpml1 3–5 (part.) Yes Venugopal et al. (2007)

Trpml2 n.d.

Trpml3 11 Yes Jors et al. (2010)

7–8 Yes Castiglioni et al. (2011)

Part. partial, n.d. not described, nt nucleotides; conditional, no, refers to conventional or global

gene deficiency

8 V. Flockerzi and B. Nilius



a comprehensive review, see Gees et al. (2012)]. TRPs are probably expressed in all

cells of our body. It was therefore not unexpected that TRP channels are involved in

several, still not well-understood diseases and have therefore triggered a huge hope

for the development of new drug targeting these channels (Moran et al. 2011; Nilius

et al. 2007; Nilius and Voets 2013).

We hope that this book will provide the most actual overview on the different

faces of these channels written by world leaders in this field. Another—maybe more

sophisticated—answer is that we know a lot about TRPs but we understand a lot

less about the 28 mammalian members of this channel superfamily than of other ion

channels. It is therefore important to reevaluate and reinterpret even the well-

known data under the view of all new achievements. Hopefully this book issue

will serve this important task to describe in a really up-to-date fashion these truly
remarkable TRP proteins!
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