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Preface to the Second Edition

The first edition of “Dynamics of Bone & Cartilage
Metabolism”, published at the very end of the last century,
in 1999, was successfully received by biomedical scien-
tists in the bone field and by clinicians throughout the
world. Since the first edition was published, research in
bone and cartilage metabolism has progressed at a rapid
pace leading to new insights into basic science as well as
new ways in which markers of bone and cartilage metab-
olism can be used clinically. 

This second edition of “Dynamics of Bone &
Cartilage Metabolism” incorporates these advances while
maintaining the general structure of the first edition. It is
a thorough update with all chapters either extensively
revised or completely rewritten. To reflect the changing
climate of knowledge, twelve new chapters have been
added that, we believe, greatly enhance the substance 
and completeness of the book. The topics of these new
chapters include: “Acid Phosphatases”, “Bone Structure,
Architecture and Strength”, “Signalling Mechanisms in
Bone”, “The Central Control of Bone Remodelling”,
“Transgenic Models of Bone Disease”, “Models of
Cartilage Metabolism and Disease”, “Measurement of

Parathyroid Hormone”, “Measurement of Vitamin D”,
“Variability of Bone Markers”, “Monitoring of Anabolic
Treatment”, “Monitoring of Anti-resorptive Treatment”
and “Osteogenesis Imperfecta”. These new chapters add
greatly to updated chapters and together provide a
complete repository of information on this subject. 

We are grateful to all authors for their efforts to deliver
their new or revised chapters within the time constraints,
always a challenge. We are also grateful to the excellent
staff at Elsevier-Academic Press, Tari Broderick, Karen
Dempsey and Renske van Dijk, who helped us so enthusi-
astically throughout the preparation of this new edition of
Dynamics of Bone and Cartilage Metabolism. 

MARKUS SEIBEL, Sydney

SIMON ROBINS, Aberdeen

JOHN BILEZIKIAN, New York

June 2006
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I. INTRODUCTION

Collagens provide the structural framework of bones
and cartilages and hold responsibility for shape and most
of the biomechanical properties such as resistance to pres-
sure, torsion, and tension [1]. In vertebrates, 27 geneti-
cally distinct collagen types with rather diverse structural
and biochemical features have been identified, but only
about half of them are represented in cartilage and bone
[2–4] (Table I). Their specific functions in the tissues are
only partially known.

In cartilage and bone, fibril-forming collagens are domi-
nant: the bone matrix consists basically of two collagen
types, about 95% type I and 5% type V collagen which are
assembled into heterofibrils [5]. Similarly, the backbone of
all cartilages is made of types II /XI collagen heterofibrils
which are decorated with so-called FACIT collagen types
IX, XII, or XIV (see below) [3, 4, 6, 7]. These fibrils are
interwoven with a microfibrillar mesh made of type VI

collagen which may provide additional elasticity [8–11].
In addition, cartilage contains minor amounts of other
collagen types depending on the cartilage type and location
(see below).

The basic function of collagens in cartilage and bone
is to provide the structural scaffold to tissues into which
minerals, proteoglycans, and glycoproteins can be firmly
incorporated, thus being responsible for the unique physio-
logical and mechanical properties of these tissues. But on
top of biomechanical functions, collagens play an impor-
tant role in all tissues, including cartilage and bone as biolog-
ical substrates for cell adherence. Essential cell biological
functions such as proliferation, cytoskeletal organization,
migration, differentiation, and apoptosis are regulated by
collagens, mediated by transmembrane receptors of the
integrin and syndecan families [12].

Since collagens provide the major organic compo-
nent with 90% of the dry mass in bone, or 60% in carti-
lage, respectively, it is obvious that defects in structure,

Copyright © 2006 by Academic Press.
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biosynthesis, assembly, or turnover of collagens generally
will lead to severe diseases such as osteoporosis, osteoarthri-
tis, chondrodysplasias, or osteogenesis imperfecta. In order
to understand the specific functions of the various colla-
gens in cartilage and bone and the reasons for their failure
in connective tissue diseases, it is necessary to have a close
look at the specific structural and biochemical features of
the collagens. An overview on the structural and func-
tional features of cartilage and bone collagens, and their
interactions with other matrix proteins and cell receptors,
will therefore be given in the first part of this chapter.

In order to understand the dynamics of collagen
metabolism in bone and cartilage, it is helpful to gain

insight into the various levels of transcriptional and trans-
lational regulation of collagen biosynthesis and turnover.
Therefore, in the second part of this chapter, the various
steps of collagen biosynthesis and post-translational modi-
fications will be summarized, and an overview is given on
the structure of the collagen genes and their cis-acting
regulatory element. How these are regulated by growth
factors, cytokines, hormones, and transcription factors is
one of the current challenges in understanding dynamics of
connective tissue turnover and homeostasis.

The scope of this chapter does not permit a detailed and
complete presentation of our current knowledge on struc-
ture, biosynthesis, and regulation of collagens in bone 
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Table I. Collagens in Cartilage and Bone

Type Subunits Molecular forms Tissue distribution Characteristic features

Fibril-forming collagens
I α1(I) α2(I) α1(I)2 α2 Bone, dermis, tendon, ligaments cornea, Forms fibers of high tensile strength; most

most other tissues abundant collagen
I α1(I) [α1(I)]3 Dermis, dentin Rare form
II α1(II) [α1(II)]3 Cartilage, notochord, vitreous body Major cartilage collagen; forms heterofibrils

embryonic epithelia, retina with Col IX + XI
III α1(III) [α1(III)] 3 Reticular fibers of most tissues (lung, Often in mixed fibrils with type I collagen;

liver, dermis, spleen, vessel wall, etc.) present in reticular fibers and elastic 
tissues; cystine bridges in triple helix

V α1(V) [α1(V)]3 In vitro: hamster lung cell cultures lung, Propeptide partially retained in the fibrils;
α2(V) [α1(V)]2 α3(V) cornea, bone, fetal membranes; forms hetero-fibrils with type I collagen
α3(V) together with Col I controls fibril diameter

XI α1(XI) [α1(XI) α2(XI) Cartilage, vitreous body Homologous to Col V; nucleates and controls
α2(XI) α3(XI)] Bone cartilage coll. fibril formation; α3(XI) 
α3(XI) [α1(XI)]2 α2(V) same gene as for α1(II)

XXIV α1(XXIV) n.d. Bone, eye Similar to type V collagen, contains TSP
motif in N-propeptide

XXVII α1(XXVII) n.d. Cartilage; eye and ear Col27a1 gene 156 kb, 61 exons

Microfibrillar collagen
VI α1(VI) [α1(VI) α2(VI) α3(VI)] Widespread, in cartilage (pericellular), Contains vWF and Kunitz type protein 

α2(VI) intervert, disk dermis, placenta, lung inhibitor domains; forms beaded filaments; 
α3(VI) vessel wall highly disulfide crosslinked

Network forming, short chain collagens
X α1(X) [α1(X)]3 Hypertrophic cartilage Strong inter- and intramolecular interactions 

between NC1-domains
Mutations in Col X-NC-1 →SMCD

FACIT collagens
IX α1(IX) [α1(IX) α2(IX) α3(IX)] Cartilage, vitreous humor Covalently linked to type II collagen fibrils;

α2(IX) Splice variant without NC-4 domain NC4 domain projects into cartilage matrix;
α3(IX) in cornea contains chondroitin sulfate 

XII α1(XII) [α1(XII)]3 Perichondrium, ligaments, tendon Large cruciform shaped NC3 domain; 
associated with type I collagen fibrils 

XIV α1(XIV) [α1(XIV)]3 Cartilage, dermis, tendon, vessel wall, Associated with type I collagen 
placenta, lung, liver

XVI α1(XVI) [α1(XVI)]3 Cartilage (territorial matrix) papillary Integrates into discrete Col II/XI fibrils
dermis

XX α1(XX) Cornea; sternal cartilage Less FN III repeats than Col XIV
XXI α1(XXI) Blood vessel wall TSP and vWFA domain, but no FNIII rep.
XXII α1(XXII) Myotendinous junction, articular Present only in tissue junctions

cartilage surface
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Figure 1 Type I procollagen as a prototype of fibril-forming collagens. In types I, II, and III procollagens N- and 
C-terminal propeptides are removed after secretion by specific proteases, in types XI and V the N-propeptides are larger (see
Fig. 3) and only partially cleaved. The C-propeptides contain AsN-linked mannose-rich oligosaccharides, while the triple 
helical part contains only hydroxylysine-linked glucosyl-galactosyl disaccharides or monosaccharides.

and cartilage. Fortunately, a number of excellent review
articles and book chapters are available, such as the
recent, most comprehensive book chapter on collagens by
Kielty and Grant [2] and many other articles dealing with
structure and function of collagen types [6, 13–16], with
collagen gene [17–19], collagen biosynthesis and regula-
tion [20–23], collagen degradation [24, 25], and collagen-
related diseases [26–29]. No further information can be
given here on collagens which do not play a major role in
cartilage and bone such as types IV, VII, VIII, and
XIII–XIX. Aspects of extracellular assembly to supra-
molecular structures, in particular fibril formation and
cross-link formation, will be dealt with in Chapters 2, 11,
and 20. Collagen degradation by proteases will be covered
in Chapter 10 on matrix proteases.

II. THE COLLAGEN FAMILIES

Up to 2004, at least 27 genetically distinct collagen types
had been identified in mammals, encyphered by 42 genes
coding for their subunits [2, 6, 15] (Table I). Based on
molecular structure and sequence homology, collagens have
been grouped into seven or eight different families, including
the fibril-forming collagens, FACIT collagens, microfibrillar
collagens, network-forming collagens, transmembrane
collagens, multiplexins, and others (see Table I). Since the
first edition of this book seven new collagen types have been
discovered, partially by screening sequence data banks for
homology with collagen and procollagen peptide sequences
[30–37]. Four of these new collagens (types XX, XXI,
XXII, and XXIV) were found also in cartilage, but their
functions are not yet known.

All collagens consist of one or several collagenous,
triple-helical domains, flanked or interrupted by noncol-
lagenous domains which are largely removed by proteolytic
processing in fibrillar collagen type I, II, and III procol-
lagen. They are retained, however, in the mature molecule
in most non-fibril-forming collagens.

A. The Collagen Triple Helix

The key feature of all collagens is the triple helix, a
coiled-coil structure in the form of a right-handed helix of
1.5 nm diameter, composed of three polypeptide chains
(α-chains) [38–40] (Fig. 1). A structural requirement for
the assembly of polypeptide chains into a collagen triple
helix is the occupation of every third position by a glycine
residue, resulting in the (Gly-X-Y)n repeat structure char-
acterizing all collagens. The α-chains form a stretched,
left-handed helix with a pitch of 18 amino acid residues
per turn [41] and assemble around a central axis in a
manner allowing all glycine residues to be positioned in
the center of the triple helix. The more bulky side chains
of the other amino acids in the X and Y position occupy the
outer positions, where they are available for lateral inter-
actions with adjacent collagen molecules to form fibrils.
Another typical feature of the collagen triple helix is the
high content of proline and hydroxyproline (ca. 20%).
The hydroxyl groups of 4-hydroxy-proline are essential for
the formation of intramolecular hydrogen bonds and thus
critically determine the thermal stability of each collagen
triple helix [40, 42]. The melting temperature of the type I
collagen triple helix is 39�C at neutral pH, but can be
considerably higher, e.g. 46�C in chicken type X collagen
[43], or 65�C in the aminoterminal 7S domain of type IV
collagen [44]. Triple helical domains vary considerably in
their length: in fibril-forming collagens they span 300 nm,
corresponding to 1000 amino acid residues per processed
α-chain, while in other collagens, such as the multiplexins,
they may include only nine triplets. Interruptions of the
Gly-X-Y-Gly-X-Y- structure by one amino acid residue
causes flexibility in the triple helix and renders the helix
susceptible to proteolytic attack, e.g. in collagen type IV
[45]. The native or denatured state of a triple helix may be
measured by optical rotation, circular dichroism or resist-
ance to proteases like pepsin, trypsin, or chymotrypsin
[46]. For example, native type I collagen molecules have
an optical rotation of ε = –1000� at 405 nm, which drops 



to –336� after denaturation. The resistance of the native
triple helix to most proteases has been the basis for
almost all biochemical isolation procedures of collagens
in the past, using pepsin to destroy non-collagenous
proteins while leaving the collagen triple helices intact.

Triple helical collagenous domains are also found in
proteins such as C1q, acetylcholine esterase and MARCO,
a macrophage scavenger receptor [47, 48].

B. Noncollagenous Domains

In the various collagens the triple helical domains are
flanked or interrupted by noncollagenous domains. While
the triple helix is a highly conserved structural protein
element like the α-helix or the β-pleated sheet, there is a
wide structural and functional diversity among the
noncollagenous domains of the different collagen fami-
lies, often bearing essential functions specific for each
collagen.

Fibril-forming collagens are synthesized as procolla-
gens with a triple helix of 300 nm length, which is flanked
by noncollagenous propeptides (NC-domains) at both ends
[2, 49]. The globular C-propeptides, consisting of about
250 amino acid residues per α-chain, are all homologous
and serve as a nucleation site for chain assembly and triple
helix formation, while the N-propeptides regulate the fibril
size when retained in the molecule [50, 51]. These procol-
lagen peptides are largely removed by specific proteases
after secretion, a prerequisite for fibril formation [52].
The C-propeptide of type II collagen remains in carti-
lage after cleavage from the procollagen molecule as a
stable, hydroxyapatite-binding molecule (“chondrocalcin”)
and may participate in cartilage calcification [53]. The 
C-terminal NC-1 domain of type X collagen, a highly
compact and stable, bell-shaped trimer, also binds calcium
and is highly homologous to TNFα [54], but does not
bind to the TNFα receptor; its role is rather structural,
serving as a nucleation site for triple helix assembly as
well as for network assembly [55, 56].

In “FACIT” collagens (fibril-associated collagens with
interrupted triple helices) [57], which include collagen
types IX, XII, XIV, XVI, XIX, XX, XXI, and XXII, the
collagenous domains are interrupted by two or three noncol-
lagenous domains, while the aminoterminal domains form
large, cross-shaped entities anchored in the extracellular
matrix. In the more recently discovered “multiplexins”
(collagens with multiple triple helix interruptions, [58]
see Table I) the collagenous domains are short and sepa-
rated by nine or ten noncollagenous domains. Despite the
differences between fibril-forming and FACIT collagens,
there is also sequence homology among the N-terminal

NC-domains of IX, XI, XII, and XVI collagens. Many
noncollagenous domains, e.g. in collagen VI and XI, contain
thrombospondin- and von Willebrand-factor-like domains
or fibronectin-type III repeats [59].

In the non-fibril-forming collagens, the noncollagenous
domains often show more specific and important structural
and functional features than the triple helical domains.
Thus, the C-propeptide of type XVIII collagen is retained
after cleavage as a protein with antiangiogenic properties
(endostatin) [60].

C. Structural and Functional Diversity 
of Collagens

There is considerable complexity and diversity in the
structure of the different collagen types, their splice variants,
their triple helical and nontriple helical domains, and their
assembly into extracellular matrix structures: fibrils, flexible
meshworks, hexagonal sheets, beaded filaments, anchoring
fibrils and perhaps other, yet unknown, structures [15].

The fibril-forming collagens represent with seven
members (including the recently discovered collagen XXIV
and XVII) and about 90% of the total collagens, the most
abundant and widespread family of collagens in verte-
brates. Type IV collagens with a more flexible triple helix
assemble into supercoiled chicken-wire like meshes that
are restricted to basement membranes. Types VIII and X
collagens are short-chain collagens which form hexagonal
sheets. Type VI collagen is highly disulfide cross-linked
and assembles into a meshwork of beaded filaments inter-
woven with collagen fibrils. Collagens IX, XII, and XIV
associate as single molecules with collagen fibrils (FACIT-
collagens) [3, 7], while others (Col XIII and XVII ) span cell
membranes [61–63]. Little is known on the extracellular
architecture of the more recently discovered collagens,
except for collagens XXIV and XXVII, which have all the
features of fibril-forming collagens [37].

Owing to their tensile strength and torsional stability,
the major function of fibril-forming collagens is to support
tissue architecture and stability. Despite structural similar-
ity, however, the fibrillar collagen types I, II, and III have
different, specific functions in different tissues, different
immunological properties and show specific interactions
with different cell types. For example, replacement of
type II collagen by the similar type I collagen in cartilage,
e.g. in joint repair by fibrous cartilage, causes severe loss
of cartilage-specific features of the tissue. Initial concepts
of specific collagen functions were mostly derived from
their distribution in tissues and from in vitro experiments,
i.e. from cell and organ culture studies. Recently, there is
ample evidence for specific cell biological functions of
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fibrillar collagens, such as types I and II collagen, in serving
as substrates for cell adhesion, proliferation, migration,
and differentiation, mediated by β1 integrins [12, 64–67].

More recently, natural and artificially introduced muta-
tions in human and animal collagen genes, and the inactiva-
tion of collagen genes by homologous recombination in
mice (“knockout mice”) [68–70], have provided valuable
information on the role of some collagens in cartilage and
bone. Surprising results of gene knockout experiments in
mice or from human mutations have often caused a revision
of common opinions on the function of various collagens;
thus, after inactivation of the type II collagen gene Col2a1
in mice, rather normal development of long bones and of
the eye was observed, although early expression of Col2a1
in embryonic corneal and retinal epithelia [71–73] and
several in vitro studies had strongly suggested a critical
role of collagen in early epithelial–mesenchymal interac-
tions [71, 74]. The lack of type II collagen in the notochord
of the Col2a1−/− mice did not prevent somite differentia-
tion as expected [75], but the resorption of the notochord
during development of the spine [69]. More and valid
information on the function of individual collagens and
their domains have been obtained from targeted mutations
in distinct domains and tissue-specific inactivation (condi-
tional knockout) of collagen genes.

III. BONE COLLAGENS

The organic mass of the bone matrix comprises about
90% of type I and 5% of type V collagen [76], the remain-
der being bone-specific phospho- and glycoproteins such
as osteopontin, bone sialoprotein, osteocalcin, osteonectin,
and others. In bone, type I and V collagen assemble into

a quarter-staggered heterofibrils with diameters between
25 and 400 nm (Fig. 2). Fibrils thicker than 50 nm show
a characteristic banding pattern in the electron microscope
with a periodicity of 65–67 nm (D-period) [16, 77, 78].
Adachi and Hayashi [79] have shown that inclusion of
type V collagen controls the fibril diameter of type I
collagen fibrils; in embryonic chick cornea, for example,
a content of 20% type V collagen limits the fibril diameter
to 25 nm [80]. In contrast, collagen fibrils in bone with 
a content of ca. 5% type V collagen reach diameters of
400 nm or more [76, 81]. Embedded in hydroxyapatite
crystals and various bone-specific phosphoproteins and
glycoproteins and SLRPs (small leucine-rich proteoglycans)
such as osteoadherin (see Chapter 3), type I/V heterofibrils
reveal unmatched biomechanical properties concerning
load bearing, tensile strength, and torsional resistance. They
serve also as a nucleation site for hydroxyapatite crystals
[82] (see Chapter 12).

In the osteons of compact bone, collagen fibrils seem
to run parallel in two nearly orthogonal directions, form-
ing twisted, nearly rectangular plywood-like layers [83].

As the assembly of collagen molecules into fibrils will
be dealt with in detail in Chapter 2, here the structure 
of the bone collagen molecules, their biosynthesis and
regulation, are focused on.

A. Type I Collagen

1. MOLECULAR STRUCTURE AND TISSUE DISTRIBUTION

Type I collagen is the most abundant, longest-known
and best-studied collagen in vertebrates. It forms 90% of
the organic mass of bone and tendon and is the major
collagen of skin, ligaments, cornea, and many interstitial
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Figure 2 Packing of types II, XI, and IX collagen in the cartilage collagen heterofibril, showing the location of the covalent
cross-links between type II and IX collagen. The globular NC4 domains of type IX collagen reach out of the fibril. (From: 
D. Eyre (2001) Collagen of articular cartilage. Arthritis Res. 4, 30–35, with kind permission by BioMed Central, Ltd.)



connective tissues. Much of our information on biochemi-
cal and biophysical properties, cross-linking, and biosyn-
thesis of collagens is based on research on this collagen,
but may be applied to other collagens. The human type I
procollagen is made of 2 proα1 chains of 1464 amino acid
residues [84] and a somewhat shorter pro α2 subunit
(1366 amino acid residues) (Fig. 1) [85]. It is synthesized
in large quantities by fibroblasts, osteoblasts [86], and odon-
toblasts [87], and to a lesser extent by nearly all other
tissue cells [12].

Although purified type I collagen can be reconstituted
to crossbanded fibrils in vitro, in vivo type I collagen is
always incorporated into heterofibrils containing either
type III collagen, e.g. in skin and reticular fibers [88], or
type V collagen in bone, tendon cornea and other tissues
[76, 89] or both. Type I/III collagen heterofibrils are 
a constituent of reticular fibers of most parenchymal
tissues such as lung, kidney, liver, muscle, or spleen, with
the exception of hyaline cartilage, brain, and vitreous
humor [90].

The key role of type I collagen in bone is most evident
from mutations in the human type I collagen genes COL1A1
and COL1A2 as the cause of osteogenesis imperfecta (OI),
a group of hereditary disorders characterized by a decrease
in bone mass, enhanced bone fragility and multiple frac-
tures (see also Chapter 54; for reviews see [28, 91]. The
severity and progress of the disease is rather variable and
ranges from mild forms to more severe and lethal forms.
The mode of inheritance of the OI is in most cases auto-
somal dominant. More than 160 different mutations have
been reported in the COL1A1 and COL1A2 genes, located
on chromosomes 17q21.3 and 7q21.3–q22, respectively
[28]. Most mutations affect glycine residues, leading to
impaired triple helix formations, even in heterozygotes,
but also exon skipping, frameshift mutations, RNA splicing
mutations and basepair deletions or insertions have been
identified. Generally it is difficult to predict the severity
of the phenotype from the type of mutation. The general
rule is that apparently mild mutations affecting the stability
of the triple helix, owing to a glycine substitution, result in
a more severe phenotype than entire exon deletions, allow-
ing the formation of intact, although shortened, triple helices.
The reason is that one affected α chain with a triple 
helical interruption may exert a dominant negative effect
and impair seven type I collagen molecules. Furthermore,
impaired triple helix formation in the rough endoplasmic
reticulum leads to over-hydroxylation of proline and lysine
residues [92, 93]. Premature chain terminations or deletions
of exons in one COL1A1 allele which do not affect triple
helix assembly may cause haplo-insufficiency, but will still
allow the formation of intact collagen I molecules from the
unaffected allele [28, 91].

2. PHYSIOLOGICAL FUNCTIONS

Besides its biomechanical properties, type I collagen
is important as adhesive substrate for many cells and plays
a major role in tissue and organ development, in cell migra-
tion, proliferation and differentiation, in wound healing,
tissue remodeling, and hemostasis [12, 74]. For example,
in vitro studies have shown that many epithelial and
endothelial cells acquire a polar cell shape and develop a
luminal structure when cultured in a three-dimensional
hydrated collagen lattice [94]. Cells recognize native type I
collagen via α1β1, α2β1, and α11β1 integrins [65, 95]
which are transmembrane receptors and confer signals
from the extracellular matrix to intracellular signal cascades
and to the actin cytoskeleton [96–98]. Furthermore, α11β1
integrin is able to organize the assembly of extracellular
type I collagen molecules into fibrils [99]. Thus, reconsti-
tuted hydrated lattices consisting of native type I collagen
fibrils are widely used for cell and tissue culture purposes,
allowing cells to migrate, proliferate, and differentiate in
a native, three-dimensional environment. Similarly, freeze-
dried collagen sponges find wide applications in surgery
and tissue engineering as scaffolds for wound and tissue
repair by supporting adhesion and invasion of connective
tissue cells [100–102].

Valuable and important information on the role of type I
collagen has been gained from the MOV13 mouse strain,
in which the expression of α1(I) chains is blocked owing
to an insertion of the MULV Moloney virus into the first
intron [103, 104]. Homozygous embryos die at day 13.5
owing to vessel rupture, but early development of organs
is normal in the absence of type I collagen. Organ culture
of salivary glands or lung buds showed that branching
morphogenesis is also normal in the absence of type I colla-
gen [105], possibly owing to a supplementing effect by
type III collagen. Interestingly, in organ culture of tooth
and bone anlagen α1(I) collagen is expressed despite the
insertion of the Moloney virus in the Col1a1 gene [106,
107]. This observation led to the discovery of a bone-
specific control of Col1a1 transcription starting at a site
which differs from the transcriptional control in fibroblasts
(see Section VI).

B. Type V Collagen

Type V and XI collagen are closely related in structural
and evolutionary terms and have therefore been grouped into
a clade of fibril-forming collagens with similar biochemical
properties and similar functions in the organism. Type V
collagen usually co-distributes with type I collagen in bone,
corneal stroma, interstitial matrix of smooth muscle, skele-
tal muscle, liver, lung, and placenta [80, 108], while type XI
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collagen is attributed to cartilage collagen. Both collagens
precipitate in their pepsin-treated form between 0.8 and
1.2 M NaCl at acidic pH, a feature which was decisive for
their first discovery and separation from the dominant
type I or type II collagens, respectively [114, 109]. Five of
the pro-α-chains of collagen V and XI are further charac-
terized by large amino terminal noncollagenous domains,
which are partially retained in the fibrils [50]. The 400
amino acid residue globular domains of α1, α2, α3 (V),
and α1 and α2(XI), located between signal peptide and
the short triple helix of the N-propeptide, are about twice as
large as the corresponding cysteine-rich region in α1(I),
α1(II), and α1(III) (Fig. 2). They contain a proline/arginine
rich domain (PARP domain) which is similar in α1(V),
α2(V), α1(XI), and α2(XI), as well as in the N-terminal
domain of collagen XII [110]. The domains are processed
only partially after secretion, leaving stubs of 70–100 kDa
in the fibril [50, 111] where they are critical for control-
ling fibril assembly and growth (see below). Unusual is
the high content of tyrosine sulfate in the N-propeptide of
α1(V) and α2(V) collagen chains [112]. With 40% of the
tyrosine residues being O-sulfated, a strong regulating
interaction with the more basic triple-helical part is likely
to stabilize the fibrillar complex. In contrast to types I, II,
and III collagen, the triple helical parts of types V and XI
collagen are resistant to digestion with vertebrate collage-
nase (MMP1), but not to stromelysin [113].

Depending on the tissue, there is some heterogeneity in
the composition of type V and XI molecules. Most tissues
contain type V collagen molecules consisting of 2α1(V)
and one α2(V) chain, but [α1(V)]3 homotrimers have been
isolated from tumor cells [114], and some tissues contain
α1(V), α2(V), α3(V) heterotrimers (see Table I). Also type
V/XI hybrid molecules containing α1(V) and α2(XI)
collagen chains were described in articular cartilage [4,
115], in bone [116], and in vitreous humor [117].

Immunohistochemical identification of type V collagen
in tissue sections with antibodies requires demasking of
the epitopes with acid or enzymes [118, 119], indicating
a dense packing of type V collagen within the type I /V
collagen heterofibrils [89].

IV. CARTILAGE COLLAGENS

The backbone of all cartilaginous tissues of the verte-
brate body is a heterofibril containing type II collagen as
the predominant collagen type, into which type XI colla-
gen is incorporated. The cartilage collagen fibril is deco-
rated with FACIT collagens, mostly type IX collagen,
which is covalently linked to type II collagen [7, 120].
The large N-terminal noncollagenous domains of FACIT

collagens, which are globular in the case of type IX collagen
and cross-shaped in the case of types XII or XIV collagen,
reach out of the fibril into the adjacent matrix space and
may serve to anchor the collagen fibril in the proteoglycan
matrix (see Fig. 2). Young growth cartilage contains about
85–90% type II collagen with 5–10% type XI and 5–10%
collagen IX, while adult articular cartilage may have as
little as 1% collagen IX and 3% collagen XI [4].

Substantial differences exist in the matrix composition
of different cartilaginous tissues. Elastic cartilage contains
collagens II, IX, and XI like hyaline cartilage, but elastin
in addition. Fibrous cartilage contains a substantial amount
of type I collagen besides type II collagen; type I collagen
is also found in prechondrogenic tissue, e.g. in the peri-
chondrium, and in tendon insertions [121]. In mammalian
articular cartilage, type I collagen is restricted to the arti-
cular surface, where also the newly discovered collagen
XXII was located [32], while chicken articular cartilage
contains up to 30% type I collagen in the upper zone [122].
In osteoarthritic joints type I collagen was found in osteo-
chondrophytes and fibrous repair tissue. There is still a
debate on the question whether articular chondrocytes turn
on type collagen I synthesis in osteoarthritis. While some
studies report on the presence of type I collagen in osteo-
arthritic cartilage [123, 124], other immunohistological
and in situ hybridization studies confirm the expression
of α2(I) mRNA, but not of type I collagen protein in OA
cartilage [125]. In contrast, type III collagen is an integral
part of mammalian articular cartilage, where it has been
located predominantly in the pericellular environment of
chondrocytes [126]. Electron microscopic studies have
shown that it is also incorporated in the type II collagen
fibril [127].

Recently two new fibril-forming collagens (types XXIV
and XXVII) [31, 37], and two new FACIT-like collagens
(types XX and XXII) [30, 32] were found to be expressed
in bone or cartilage, but their function is not yet known.
The cartilage collagen fibrils are interwoven with a micro-
fibrillar mesh consisting of type VI collagen, which is
prominent in the chondrons of articular cartilage [9, 11].
Type X collagen, a network-forming collagen, is expressed
predominantly in fetal and juvenile hypertrophic growth
cartilage. It was also located to the upper zone of articular
cartilage in certain joints in human, dog, and mouse carti-
lage [128–130], and in chondrocyte clusters of osteoarthritic
cartilage and osteophytes [131, 132]. It supports endo-
chondral ossification [55, 133, 134] and hematopoietic cell
differentiation [135].

As a specific marker for hypertrophic chondrocytes it is
widely used to analyze chondrocyte differentiation in skele-
tal development, but also to describe endochondral ossifica-
tion in fracture callus and osteophyte formation [132, 136].
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A. Type II Collagen

1. STRUCTURE AND LOCALIZATION

Type II collagen is found predominantly, but not exclu-
sively, in hyaline cartilage [137, 138], where it accounts
for approximately 90% of the total collagen. It is a
homotrimeric molecule with the composition [α1(II)]3

with similar size and biochemical features as type I collagen
[3, 120], but it contains substantially more hydroxylysine-
linked galactosyl-glucosyl disaccharides than type I colla-
gen (ten disaccharides per α1(II) vs two per α1(I) chain).
In early embryonic cartilage, type II collagen heterofibrils
generally appear as 25–50-nm thin, unbanded fibrils, while
in calcified cartilage or after reconstitution in vitro type II
collagen may form up to 400-nm thick crossbanded fibrils
with a 68-nm banding pattern repeat similar to type I colla-
gen. Type II collagen exists in two splice variants; in the
IIA splice form which is dominant in mature cartilage,
exon 2 coding for a 69 amino acid residue, cysteine-rich
domain in the N-terminal propeptide is spliced out. It is
retained in the IIA splice variant, a transient embryonic
form which was found in prechondrogenic mesenchyme,
in perichondrium and vertebrae [139, 140]. Type II colla-
gen is not only the major collagen of hyaline elastic [141]
and fibrous cartilage [142, 143], but also represents the
major collagen of vitreous humor [137, 144] and the nucleus
pulposus of intervertebral disks. Furthermore, type II colla-
gen is synthesized transiently by many embryonic epithelia
such as notochord [73], cornea epithelium [72, 73], retina
pigment epithelium, cranio facial mesenchyme, and endo-
cardial and mesocardial tissues [71, 145–147].

2. THE ROLE OF TYPE II COLLAGEN IN CARTILAGE

FORMATION AND STABILITY

Much has been learned on the role of type II collagen in
cartilage development and function from mutations in the
human COL2A1 gene, causing a rather diverse spectrum of
skeletal dysplasias such as achondrogenesis, hypochon-
droplasia, Stickler syndrome, spondyloepiphyseal dysplasia
congenita, and Kniest syndrome [28, 148–150]. As in OI,
the more severe forms of chondrodysplasias result from
dominant negative mutations affecting triple helix stabil-
ity such as glycine substitutions, overmodification of the
proα1(II) and partial or complete intracellular degrada-
tion of type II procollagen molecules containing only one
mutated α1(II) chain. For example, in the cartilages of
achondrogenesis fetuses with a Gly769Ser mutation [151]
or a Gly913Cys mutation causing hypochondrogenesis [152],
no type II collagen was found, but instead a matrix contain-
ing types I and III collagen. Both mutations are lethal,
demonstrating that type I and III collagen cannot replace
the function and properties of type II collagen.

Inactivation of the type II collagen gene in mice by
homologous recombination had severe consequences on
skeletal development, in particular on notochord turnover
[69] and vertebral development [153]. Interestingly, it did
not affect early embryonic development of the eye, somites
or craniofacial tissues, as had been predicted from the
expression of type collagen in numerous early embryonic
epithelia [71, 146]. Type II collagen-deficient mice die as
a result of breathing and weaning inability due to thorax
malformation and cleft palate formation, respectively.
Long bones are shortened due to impaired endochondral
ossification, and vertebral bodies and ribs are abnormal.
Similar to achondrogenesis or hypochondrogenesis patients,
the cartilaginous tissues contain chondrocyte-like cells,
but a matrix consisting of types I and III collagen instead
of type II collagen. Although the cartilaginous matrix
contains aggrecan, the density of the collagen fibrils was
lower and their structure abnormal [153].

Compared to other fibrillar collagens, type II collagen
has unique antigenic properties: antibodies raised against
chicken type II collagen cross-react with type II collagens
from all other species including human, mouse, rat, calf,
dog, sheep, and shark [90, 154], indicating highly conserved
antigenic epitopes in the type II collagen molecule. Like
other matrix components of articular cartilage, which has
an immune privilege as a nonvascularized tissue, type II
collagen is a major target for autoimmune responses in
rheumatoid arthritis [155–157]. In animal models, purified
native type II collagen has been shown to induce arthritis
in certain strains of mice and rats [158, 159]. The major
B-cell epitopes of type II collagen have been identified in
the mouse, rat, and human system. They are confomation-
dependent and located near the integrin-binding site [160,
161]. Interestingly, the major T-cell epitope in rat and human
type II collagen which are MHC restricted includes a
galactosyl-glucosyl carbohydrate residue [162].

B. Type XI Collagen

Type XI collagen is a heterotrimer consisting of α1, α2,
and α3 (XI) subunits found predominantly in hyaline carti-
lage and vitreous humor associated with type II collagen.
The α3(XI) subunit is identical in its amino acid sequence
with α1(II) as it is translated from the Col2a1 gene, but it
differs from α1(II) by a higher degree of hydroxylation
and glycosylation [109, 163]. In mature cartilage, half of
the α1(XI) molecules are replaced by α1(V) chains [164].
As in type V procollagen, the N-terminal domains of
α1(XI) and α2(XI) chains are processed only partially
after secretion, leaving stubs of 70–100 kDa in the fibril
[163, 165]. Complex alternative splicing occurs within
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the aminoterminal noncollagenous domains of α1(XI) and
α2(XI) [166–168]. A proline- and arginine-rich subdomain
(PARP-domain) of the aminopropetides of α1(XI) and
α2(XI) seems to be rather stable and persists in the cartilage
matrix [110, 169].

As an integral part of the cartilage collagen fibril, type XI
collagen serves as a nucleation site of type II/XI collagen
fibril formation and regulates the lateral growth of the fibrils
[170, 171]. Within the fibril, type XI collagens are cova-
lently cross-linked to each other through their N-telopeptide
to helix interaction sites [7] and to the end of type II colla-
gen molecules. The N-propeptide may stick out of the gap
domains in the heterofibril (see Figs 2, 3) [172].

The pivotal role of type XI collagen in control of cartilage
collagen fibril assembly became apparent also from the
analysis of the gene defect of the cho-mouse mutant, which
is affected with an autosomal recessive chondrodysplasia:
a point mutation in the α1(XI) gene leading to chain deter-
mination caused absence of type XI collagen, resulting in
a cartilage with irregular thick collagen fibrils, disorganized
cartilage growth plate and disturbed chondrocyte differ-
entiation [173]. Similarly, an in-frame deletion in the α2(XI)
gene caused an autosomal recessive bone dysplasia or auto-
somal dominant Stickler syndrome [174].

C. Fibril-Associated Collagens with Interrupted
Triple Helices (FACIT Collagens)

1. TYPE IX COLLAGEN

First evidence for the presence of additional collagenous
proteins in cartilage was obtained in the form of various
pepsin-resistant small collagenous fragments [175, 176].
Combined protein chemical and molecular biological efforts
led to the elucidation of the complex structure of type IX
collagen [177, 178]. It is a heterotrimeric molecule consist-
ing of α1(IX), α2(IX) and α3(IX) chain, with three triple
helical segments (COL1–COL3) that are interrupted and
flanked by four globular domains NC1-NC4 [179, 180]
(Figs 3, 4). Electron microscopical analysis of carefully
dissected cartilage collagen fibrils revealed that the highly
cationic NC4 domain, the largest domain with 243 amino
acid residues and a pI of 9.7, reaches out from the fibril
where it presumably interacts with proteoglycans [181].
A “hinge region” in NC3, caused by supernumerary amino
acids in the NC3 domain of the α2(IX) chain, allows flex-
ibility in the molecule. It is covalently linked to the surface
of cartilage collagen fibrils with the collagenous domains
COL1 and COL2 [182, 183]. The α2(IX) chain contains
a chondroitin sulfate side chain [184, 185], linked to 
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Figure 3 Structural domains of fibril-forming collagens and the microfibrillar collagen type VI.



a serine residue in the NC3 hinge region [186]. This CS
chain is considerably longer in vitreous humor than in
cartilage [187].

Owing to a second transcription start site between
exons 6 and 7 in the α1(IX) collagen gene (see below), a
shorter form of the α1(IX) collagen lacking the entire
NC4 globule is expressed in the cornea and vitreous
humor [188, 189]. The importance of type IX collagen
for the integrity of cartilage matrix was underlined by the
result of inactivation of the α2(IX) gene in mice. Animals
homozygous for the deficiency in α2(XI) showed severe
defects in cartilage development and revealed degen-
erative changes in adult articular cartilage similar to
osteoarthritis [190].

2. TYPES XII, XIV, AND XVI COLLAGEN

Type XII collagen is located predominantly in the peri-
chondrium and articular surface, while type XIV collagen is
more uniformly distributed throughout articular and tracheal
cartilage [191]. Type XII collagen is a homotrimeric mole-
cule with sequence homologies to type IX collagen in the
C-terminal NC1 and COL1 domain, but only two collage-
nous domains which associate with type I or II collagen
fibrils [192–194] (Fig. 4). The large, cross-shaped NC3
domain at the amino end reaches out into the perifibrillar

space [195]. This domain contains vWFA-domains, TSP
and FN type III domains. Type XII collagen exists in two
splice variants [196, 197]: the smaller IIB form with an
α1(XII) chain of MW 220 kDa is found in skin, periosteum,
and perichondrium. The larger XII form with an α-chain
of MW 310 kDa was found in an epidermal cell line and
contains a chondroitin sulfate chain.

Collagen type XIV has a similar structure, although
the cross-shaped NC3 domain is smaller than in Col XII
[193, 198]. Type XIV collagen colocalizes with type I colla-
gen in skin, tendon, lung, liver, placenta, and vessel walls
by immunofluorescence [199, 200], and to some extent with
type XII collagen in skin [201]. However, it does not bind
directly to type I collagen, but to the dermatan sulfate
side chain of decorin which associates with type I collagen
[202, 203].

Collagen XVI is predominatly synthesized by fibroblasts
and myoblasts, but also found in the territorial matrix of
chondrocytes [204–206]. By immunohistochemistry and
immunogold electron microscopy it was shown that colla-
gen XVI is integrated in a discrete population of thin, 
D-banded collagen fibrils containing type II and XI that
are distinct from type IX collagen-containing fibrils [204].
In the papillary dermis, however, collagen XVI is a compo-
nent of fibrillin-1-containing microfibrils [204].
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3. TYPES XIX, XX, XXI, AND XXII COLLAGENS

These recently discovered collagens are phylogenetically
and structurally related to FACIT collagens, but whether
they are associated with fibrils in vivo remains to be shown.
Type XIX collagen is restricted to muscle in the embryo,
but not in the adult [207, 208]. Collagen XX is most
abundant in the corneal epithelium, but by RTPCR it has
also been detected in sternal cartilage and tendon [30].
The collagen XXI gene codes for a short FACIT collagen
containing a vWFA and a Tsp (thrombospondin)-domain
like the other FACIT collagens, but little is known on the
protein [209]. Collagen XXII exhibits a restricted local-
ization at tissue junctions such as myotendinous junc-
tions, the hair follicle basement membrane or the articular
cartilage–synovial fluid interface [32].

D. Microfibrillar Collagens: Type VI Collagen

Type VI collagen is the major collagenous component of
microfibrils in elastic fibers and in a larger variety of tissues
including cartilage, skin, blood vessels (intima), cornea,
placenta, uterus, ciliary body, iris, and others [2, 210].
The type VI collagen molecule is a highly glycosylated,
cysteine-rich heterotrimer consisting of two α-chains of ca.
1000 amino acid residues (α1(VI) and α2(VI)), and the
long α3(VI) chain with about 3000 amino acid residues;
the short triple helical core accounts only for about 20% of
the molecule. It was discovered first in the form of pepsin-
resistant “short-chain” collagen with three α-subunits in
smooth muscle and placenta [211]. The three α-chains
share three noncollagenous domains which are homologous
to the von Willebrand factor-A domain [212, 213]; the
α3(VI) which exists in multiple splice variants [214–216]
contains an additional eight VWF-A-domains at the 
N-terminus [216]. The C-terminal domain of α3(VI) also
contains a Kunitz-type inhibitor motif and is essential for
collagen VI assembly and secretion [217]. Interestingly,
the α3(VI) subunit is down-regulated by γ-interferon, but
the other subunits are not [218]. Type VI collagen inter-
acts with other matrix proteins and proteoglycans, e.g.
hyaluronan, heparan sulfate, decorin or NG2-proteogly-
can [219], but also with type IV collagen in basement
membranes [220].

Examination of type VI collagen in tissues or cell cultures
by electron microscopy often reveals beaded filaments
with 25-nm beads aligned in 100-nm intervals [221, 222].
Such structures can be assembled in vitro from type VI
collagen tetramers which connect and overlap at the glob-
ular ends when visualized by rotary shadowing [210, 223].
Complexes of matrilin-1 and biglycan or decorin decorate
type VI collagen and link it to type II collagen [224]. 

In the presence of lumican, however, type VI collagen can
also assemble into hexagonal networks similar to type X
collagen [225]. In tissues like skin or cartilage the type VI
collagen forms a highly disulfide cross-linked, branched
network, interwoven with fibrillar collagens [9]. Type VI
collagen expression is up-regulated already in early stages
of chondrocyte differentiation [226]. In mature cartilage
it is preferentially located in the pericellular space [8, 9, 11].
It is enhanced in osteoarthritic cartilage [227], but has not
been identified yet in calcified bone tissues. In some tissues
such as nucleus pulposus and in some tumors type VI colla-
gen filaments may assemble in a parallel fashion to give
rise to sheets with the characteristic 100-nm periodicity
[222, 228].

The pericellular location of type VI collagen is consistent
with its highly adhesive properties for many cell types. In
contrast to other fibrillar collagens, several RGD-sequences
in the α2-and α3(VI)-chain were found to be recognized
by integrin receptors [229].

E. Network Forming Collagens: Type X Collagen

Hypertrophic cartilage in the growth plate of fetal and
juvenile long bones, ribs, and vertebrae contains a short-
chain collagen, type X collagen [55, 230–232] which is
unique to this tissue in the normal organism and only found
elsewhere under pathological conditions, e.g. in osteo-
arthritic articular cartilage and in chondrosarcomas [131,
132, 233–235]. There is, however, recent evidence that
type X collagen is also present in small amounts in the
menisci and in the surface layer of articular cartilage of
certain human, mouse, and dog joints [128–130].

Type X collagen is a homotrimeric collagen with a
130-nm triple helical core (460 amino acids per chain), 
a large C-terminal globular NC1 domain and a short amino
terminal NC2 globule [55, 232]. It is homologous in both
sequence and tertiary structure to type VIII collagen,
which is produced by endothelial cells [236]. Type VIII
collagen assembles into sheets with a hexagonal arrange-
ment in the Descemet’s membrane [237], and in vitro
reconstitution experiments with chicken type X collagen
indicate that this collagen is able to form similar structures
[238]. The three C-terminal NC1 domains of type X colla-
gen molecule associate with unusually high affinity to a
dense bell-shaped trimer [54, 56, 239] which is homologous
to the complement factor C1q and adipoQ and TNFα, not
only by amino sequence [239] but also by their crystal
structure [54]. Mutations in the NC1 domains lead to carti-
lage growth abnormalities and waddling gait in patients
affected with Schmid-type metaphyseal chondrodysplasia
(SMCD) [240–245]. In vitro studies on the chain assembly
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