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Preface

The human body functions as a 24-h machine: remarkably, this machine keeps

going with a circa 24-h rhythm in sleeping and waking, in physiologies such as

blood pressure and cortisol production, in cognitive functions, and indeed also in

expression of circa 10–20 % of the genome in any given cell. The circadian (from

the Latin “circa diem” or about a day) clock controls all of these processes with a

molecular mechanism that is pervasive, as we now know that essentially every cell

of our body is oscillating. Furthermore, our cells apparently utilize a circadian clock

mechanism with a similar molecular makeup. The recent years have witnessed an

enormous progress in our understanding of the mechanistic and genetic basis of this

regulation, which we have tried to highlight in this volume.

The circadian clock is relevant for heath—clock gene mutants show reduced

fitness, increased cancer susceptibility and metabolic diseases. In addition, drug

efficacy and toxicity often vary with time of day with huge implications for

therapeutic strategies. The intention of this book is to provide the reader with a

comprehensive and contemporary overview about the molecular, cellular and

system-wide principles of circadian clock regulation. In keeping with the focus of

the Handbook of Experimental Pharmacology series, emphasis is placed on

methods as well as the importance of circadian clocks for the timing of therapeutic

interventions. Despite the decades-old practice of administration of cortisol on the

morning, chronopharmacology and chronotherapy are still mostly at an experimen-

tal level. Thus, knowledge about the widespread impact of circadian clocks should

be invaluable for a broad readership not only in basic science but also in transla-

tional and clinical medicine.

This book contains four topical sections. Part I is devoted to describing our

current knowledge about the molecular and cellular bases of circadian clocks. In the

first chapter, the readers learn about clock genes and the intracellular genetic

network that generates ~24-h rhythms on the molecular level. The second chapter

focuses on how the circadian clock is using epigenetic mechanisms to regulate the

circadian expression of as many as 10 % of cellular transcripts. The following two

chapters focus on the hierarchy of mammalian circadian organization: the clock in

the brain is the master pacemaker, often controlling daily timing in peripheral
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tissues. The mechanisms of these synchronization processes within tissues and

organisms are discussed.

Part II of the book is devoted to describing how and what is controlled by the

circadian clock. The general term for this is outputs of the clock. Here, we will

cover sleep, metabolism, hormone levels and mood-related behaviors that are

especially relevant to pharmacology. In recent years, the reciprocal control of

metabolic processes and the circadian system emerged, which is the focus of the

first chapter of this part. This connection has been elucidated both on a molecular

basis and also in epidemiological studies. Several common themes will emerge

including the feedbacks between clocks and the clock output systems as well as the

balance between local and tissue-specific clocks and the system-wide control of

circadian functions. Concerning human behavior, there is nothing more disparate

than the states of sleep and wakefulness; the reader will learn that the timing of

these states is profoundly governed by the circadian clocks and its associated genes

(see also Part III, Roenneberg et al.). Single point mutations in clock genes can

dramatically alter sleep behavior. Disruption of temporal organization—clock gene

mutations or shift work—can lead to health problems and behavioral disorders

related to mood alterations. The last chapter in this section discusses these

connections and possible pharmacological interventions such as light or lithium

therapy.

The aim of Part III is to discuss the implications of a circadian system for

pharmacology. The first chapter reviews studies from the past several decades

that describe daily changes in drug absorption, distribution, metabolism, and

excretion. In addition, drug efficacy is controlled by the circadian system due to

daily changes in the levels and functionality of many drug targets. The second

chapter exemplifies these principles for anticancer therapy, where chronotherapy is

relatively advanced. This may be based on the fact that cancer cells have less

synchronized circadian clocks. Modulating or strengthening the molecular clock by

pharmacological intervention is a strategy that is addressed in one of the

contributions in this section. High-throughput screening approaches for small

molecules that are capable of pharmacological modulation of the molecular clock

are described—this may develop into a valuable approach for both scientific and

therapeutic purposes. The last chapter in this section focuses on the role of light for

the synchronization of the human clock to our environment (entrainment). Light is

the primary synchronizer (zeitgeber), and novel light-sensitive cells in the retina

mediate entrainment, which is conceptually and epidemiologically analyzed. In

shift work, as well as in everyday working life, the dissociation of internal and

external time leads to health problems, suggesting the need for intervention

strategies that use light as though it were a prescription drug.

Finally, Part IV of this book is devoted to systems biology approaches to our

understanding of circadian clocks. In general, our field has relied on models to

enhance our conceptual understanding of the highly complex circadian system. The

iterative approach of improving models with data from high throughput approaches

and feeding back the results for experiments suggested therein—in essence, modern

systems biology—is developing into a major tool in our chronobiology repertoire.
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In the first chapter of this section, the principles of rhythm generation will be

described from a mathematical perspective. It will become clear that feedback

loops and coupling are fundamental concepts of oscillating systems. How these

fundamentals are used to create rhythms that regulate, for example, transcription at

many different times of day is highlighted in the second chapter of this part. The last

chapters again help to appreciate the pervasiveness of circadian regulation by

focusing on genome- and proteome-wide studies that uncovered circadian rhythms

almost everywhere.

This volume adds up to an up-to-date review on the state of chronobiology,

particularly with respect to molecular processes. It should be of special interest to

chronobiologists, pharmacologists, and any scientists who is concerned with excel-

lent protocols and methods.

Berlin, Germany

Munich, Germany

Achim Kramer

Martha Merrow
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Molecular Components of the Mammalian

Circadian Clock

Ethan D. Buhr and Joseph S. Takahashi

Abstract Mammals synchronize their circadian activity primarily to the cycles of

light and darkness in the environment. This is achieved by ocular photoreception

relaying signals to the suprachiasmatic nucleus (SCN) in the hypothalamus. Signals

from the SCN cause the synchronization of independent circadian clocks through-

out the body to appropriate phases. Signals that can entrain these peripheral clocks

include humoral signals, metabolic factors, and body temperature. At the level of

individual tissues, thousands of genes are brought to unique phases through the

actions of a local transcription/translation-based feedback oscillator and systemic

cues. In this molecular clock, the proteins CLOCK and BMAL1 cause the tran-

scription of genes which ultimately feedback and inhibit CLOCK and BMAL1

transcriptional activity. Finally, there are also other molecular circadian oscillators

which can act independently of the transcription-based clock in all species which

have been tested.

Keywords Circadian • Clock • Molecular

1 Introduction

As the sun sets, nocturnal rodents begin to forage, nocturnal birds of prey begin

their hunt while diurnal birds of prey sleep, filamentous fungi begin their daily

production of spores, and cyanobacteria begin nitrogen fixation in an environment
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of low O2 after the day’s photosynthesis. As the sun rises the next morning, many

plants have positioned their leaves to catch the first rays of light, and many humans

sit motionless in cars on a nearby gridlocked highway. It is now understood that the

obedience to temporal niches in these and all organisms is governed by a molecular

circadian clock. These clocks are not driven by sunlight but are rather synchronized

by the 24-h patterns of light and temperature produced by the earth’s rotation. The

term circadian is derived from “circa” which means “approximately” and “dies”

which means “day.” A fundamental feature of all circadian rhythms is their

persistence in the absence of any environmental cues. This ability of clocks to

“free-run” in constant conditions at periods slightly different than 24 h, but yet

synchronize, or “entrain,” to certain cyclic environmental factors allows organisms

to anticipate cyclic changes in the environment. Another fundamental feature of

circadian clocks is the ability to be buffered against inappropriate signals and to be

persistent under stable ambient conditions. This robust nature of biological clocks is

well illustrated in the temperature compensation observed in all molecular and

behavioral circadian rhythms. Here temperature compensation refers to the rate of

the clock being nearly constant at any stable temperature which is physiologically

permissive. The significance of temperature compensation is especially evident in

poikilothermic animals that contain clocks that need to maintain 24-h rhythmicity

in a wide range of temperatures. Combined, the robust oscillations of the molecular

clocks (running at slightly different rates in different organisms) and their unique

susceptibility to specific environmental oscillations contribute to and fine-tune the

wide diversity of temporal niches observed in nature.

However, the circadian clock governs rhythmicity within an organism far

beyond the sleep: activity cycle. In humans and most mammals, there are ~24-h

rhythms in body temperature, blood pressure, circulating hormones, metabolism,

retinal electroretinogram (ERG) responses, as well as a host of other physiological

parameters (Aschoff 1983; Green et al. 2008; Cameron et al. 2008; Eckel-Mahan

and Storm 2009). Importantly, these rhythms persist in the absence of light–dark

cycles and in many cases in the absence of sleep–wake cycles. On the other side of

the coin, a number of human diseases display a circadian component, and in some

cases, human disorders and diseases have been shown to occur as a consequence of

faulty circadian clocks. This is evident in sleep disorders such as delayed sleep

phase syndrome (DSPS) and advanced sleep phase syndrome (ASPS) in which

insomnia or hypersomnia result from a misalignment of one’s internal time and

desired sleep schedule (Reid and Zee 2009). In familial ASPS (FASPS), the

disorder cosegregates both with a mutation in the core circadian clock gene PER2
and independently with a mutation in the PER2-phosphorylating kinase, CK1 δ
(Toh et al. 2001; Xu et al. 2005). Intriguingly, transgenic mice engineered to carry

the same single amino acid change in PER2 observed in FASPS patients recapitu-

late the human symptoms of a shortened period (Xu et al. 2007). Although these

mutations are likely not the end of the story for these disorders, they give insight

into the way molecular clocks affect human well-being. Jet lag and shift work sleep

disorder are other examples of health issues where the internal circadian clock is

desynchronized from the environmental rhythms. In addition to sleep-related

4 E.D. Buhr and J.S. Takahashi



disorders, circadian clocks are also directly linked with feeding and cellular metab-

olism, and a number of metabolic complications may result from miscommunica-

tion with the circadian clock and metabolic pathways (Green et al. 2008). For

example, loss of function of the clock gene, Bmal1, in pancreatic beta cells can lead
to hypoinsulinemia and diabetes (Marcheva et al. 2010). Finally, some health

conditions show evidence of influence of the circadian clock or a circadian clock-

controlled process. For example, myocardial infarction and asthma episodes show

strong nocturnal or early morning incidence (Muller et al. 1985; Stephenson 2007).

Also, susceptibility to UV light-induced skin cancer and chemotherapy treatments

varies greatly across the circadian cycle in mice (Gaddameedhi et al. 2011;

Gorbacheva et al. 2005).

In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is the

master circadian clock for the entire body (Stephan and Zucker 1972; Moore and

Eichler 1972; Slat et al. 2013). However, the SCN is more accurately described as a

“master synchronizer” than a strict pacemaker. Most tissues and cell types have

been found to display circadian patterns of gene expression when isolated from the

SCN (Balsalobre et al. 1998; Tosini and Menaker 1996; Yamazaki et al. 2000; Abe

et al. 2002; Brown and Azzi 2013). Therefore, the SCN serves to synchronize the

individual cells of the body to a uniform internal time more like the conductor of an

orchestra rather than the generator of the tempo themselves. The mammalian SCN

is entrained to light cycles in the environment by photoreceptors found exclusively

in the eyes (Nelson and Zucker 1981). The SCN then relays phase information to

the rest of the brain and body via a combination of neural, humoral, and systemic

signals which will be discussed in more detail later. Light information influencing

the SCN’s phase, the molecular clock within the SCN, and the SCN’s ability to set

the phase of behavior and physiology throughout the body constitute the three

necessary components for a circadian system to be beneficial to an organism (1)

environmental input, (2) a self-sustained oscillator, and (3) an output mechanism.

2 Mechanism of the Molecular Circadian Clock

2.1 Transcriptional Feedback Circuits

The molecular clock mechanism in mammals is currently understood as a transcrip-

tional feedback loop involving at least ten genes (Fig. 1). The genes Clock and

Bmal1 (or Mop3) encode bHLH-PAS (basic helix–loop–helix; Per-Arnt-Single-
minded, named after proteins in which the domains were first characterized)

proteins that form the positive limb of the feedback circuit [reviewed in Lowrey

and Takahashi (2011)]. The CLOCK/BMAL1 heterodimer initiates the transcrip-

tion by binding to specific DNA elements, E-boxes (50-CACGTG-30), and E0-boxes
(50-CACGTT-30) in the promoters of target genes (Gekakis et al. 1998; Yoo et al.

2005; Ohno et al. 2007). This set of activated genes includes members of the

Molecular Components of the Mammalian Circadian Clock 5
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