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Preface

Progress in a given field is often dependent upon the development of appropriate, 
accurate models. In modern times, cancer research has been engaged in a focused 
search for such models for more than 50 years. The foremost problem in developing 
such models is that cancer is many, many diseases arising from nearly every tissue 
and metastasizing to many. A major breakthrough for model in cancer research was 
the development of transplantable rodent tumors. Many of the early tumor lines 
were carcinogen-induced, but other arose naturally in elderly animals from inbred 
strains of mice. These syngeneic tumors grown in the inbred host of origin allowed 
reproducible tumor growth and reproducible response to anticancer agents to be 
achieved. These tumor lines also frequently allowed the analysis of tumor metasta-
sis in the host.

The mutual needs for as large an array as possible of tumor types and expansion 
of true inbred strains of mice to carry these tumors lead to the identification of 
mutant mice with characteristics of deficient immunity suitable for the growth of 
human tumors as xenografts. The most frequently used of these mutant mouse 
strains are nude mice and SCID mice. Human tumor xenograft models were estab-
lished from the many human tumor cell lines developed in the 1970s and 1980s and 
from fresh tumor explants. Since techniques for genetic manipulation have become 
more routine, animals expressing “oncogenes” or missing “tumor suppressor” 
genes have been developed, allowing a new level of understanding of the process 
of malignancy and new models for testing anticancer agent efficacy. Through the 
use of these techniques for some diseases and targets, it has been possible to estab-
lish specific animal models.

Therapeutic index continues to be a critical variable for anticancer agents 
directed toward any cellular target related to proliferation. Animal models devel-
oped to determine potential normal tissue toxicities of new agents as well as the 
potential of normal tissue protectors have focused on proliferating normal tissues 
such as mucosa, gut, skin, and bone marrow although cardiac, renal, and lung toxi
city can also be modeled. Still, it is the determination of meaningful experimental 
endpoints that defines the usefulness of models to a field. Increase-in-lifespan (sur-
vival) was an endpoint used by Dr. Howard Skipper and colleagues in their ground-
breaking murine leukemia studies. Many current models, especially solid tumor 
models, are not amenable to a survival endpoint; therefore, other measures of tumor 
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response, usually involving tumor volume measurements are applied. Endpoints 
such as tumor growth delay and tumor growth inhibition closely mimic clinical 
endpoints, such as response time and time to recurrence. Other endpoints, such as 
ratio of treated group to control group, log kill, percent apoptosis, and tumor cell 
survival, depend upon the availability of an untreated or vehicle-treated control 
group in the experiment.

The past 6 years since the first edition of this book have seen great progress in 
the development of genetically engineered mouse (GEM) models of cancer. These 
models are finding an important role in furthering our understanding of the biology 
of malignant disease. A comfortable position for GEM models in the routine con-
duct of screening for potential new therapeutics is slowly but surely coming. 
Increasing numbers of genetically engineered mice are available, some with condi-
tional activation of oncogenes, some with multiple genetic changes providing 
mouse models that are moving closer to the human disease.

While we wait for the perfection of the GEMs, the transplantable tumor remains 
the main resource for drug discovery and efficacy modeling. Though often maligned 
as models of human disease, antitumor activity in syngeneic mouse tumors and 
human tumor xenografts is a requirement for most therapeutics prior to entry into 
development. The criticism directed at these models is frequently a result of the 
differences between mice and humans. Drug pharmacokinetics in the mouse can be 
markedly different from pharmacokinetics for the same molecule in other species. 
The mouse is a remarkably resilient host often able to tolerate much higher doses 
of experimental therapeutics than human patients, thus allowing blood levels to be 
reached in mice that cannot be attained in humans frequently leading to disappoint-
ing clinical findings. These limitations of the host cannot readily be solved but are 
limitations which are recognized and are increasingly taken into account in decision 
making in selecting development candidates.

An ideal tumor model would imitate in scale and mirror in response to the 
human disease. Though no such ideal models exist for the diseases that are cancer, 
the models described herein represent the efforts of many investigators for many 
years and approach with closer and closer precision examples that can serve as 
guides for the selection of agents and combinations for the treatment of human 
malignancy.

� Beverly A. Teicher 
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Abstract  Modern cancer therapeutic research is at crossroads in evolving our 
approaches to discovering, developing, and entering novel therapeutics into early-
stage clinical trials. This chapter endeavors to summarize the customary use and 
interpretation of animal models used for prioritization of cancer treatments for 
entry into clinical trials through the end of the last century. We then consider the 
novel screening paradigms currently in use which exemplify the diverse types of 
challenging lead compounds for in  vivo evaluation. Finally, we offer a strategic 
overview of steps to maximize utility of the animal model information in selecting 
agents for clinical study in the twenty-first century.

Keywords  Targeted in vivo models • Cancer drug development

1.1 � Introduction and Statement of the Problem

Modern cancer therapeutic research is at crossroads in evolving our approaches to 
discovering, developing, and entering novel therapeutics into early-stage clinical 
trials. The sequencing of the human genome [1] and the increasing awareness of the 
detailed sequence of numerous cancer cell genomes raises the possibility that the 
empiricism so characteristic of past cancer drug development will give rise to an 
approach more analogous to current AIDS or cardiovascular disease-related 
paradigms, where a precise knowledge of the structure of a putative target guides all 
aspects of a drug’s conceptualization, development, and clinical testing. Yet we have 
not arrived there yet, as it is currently not feasible in most diseases to employ clini-
cally applicable testing to predict the value of novel agents, outside of fairly specific 

E. Sausville (*) 
University of Maryland Marlene & Stewart Greenebaum Cancer Center, 
22 S. Greene St, Baltimore, MD 21201, USA 
e-mail: esausville@umm.edu
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examples relevant to antibody-based therapeutics. Indeed, as an example, while the 
recently observed lack of value of anti-epidermal growth factor antibody therapy in 
patients with colon cancer with mutated K-ras alleles is understandable post hoc, an 
appreciation of that reality was apparent only in retrospective analysis [2]. Had it been 
possible to model reliably that circumstance, it is conceivable that a more efficient 
and focused development strategy could have been designed. Thus, the challenges 
facing the use and interpretation of animal models for human cancer drug develop-
ment center on the predictability of the models in forecasting effects on tumor cells 
as well as in predicting tolerability of the agent by the host. The model use should 
occur within a product lifecycle that usually offers no more than 2 or 3 years in most 
industrial development paradigms after a lead has been identified, and ideally has a 
direct relevance to how the agent will be studied in early clinical trials.

A related issue that will always inject an element of empiricism into the use and 
interpretation of animal models used in prioritizing human therapeutics for clinical 
study is the intrinsic unpredictability of animal (usually rodent) vs. human pharma-
cology and metabolism. While algorithms exist to predict susceptibility to, for 
example, cytochrome p450 metabolism features [3] or bioavailability [4], since 
molecules for cancer treatment, at least the classical cytotoxics, are usually 
employed at close to their maximum tolerated dose (MTD), even minor differences 
from the human in rodent compound handling parameters (absorption, plasma pro-
tein binding, clearance mechanisms, intrinsic susceptibility of host tissues) can 
translate into decreased relevance of murine dosing and efficacy information as 
predicting clinical value. Table 1.1 lists points of model departure from rodent vs. 
human behavior. In contrast, it is interesting to consider that certain classes of 
agents, particularly monoclonal antibodies with intrinsic anti-signaling of tumor 
cell tropism properties have for the most part rather reliably defined useful effects 
that were eventually borne out in humans [5] perhaps in part because of the bland 
interaction of human antibodies with both mouse and ultimately human physiology, 

Table 1.1  Potential points of divergence between rodent and human drug features

Property Example

Plasma protein  
binding

Camptothecins [61]; result in stabilization of lactone in mice and 
therefore increased perception of activity

7-OH staurosporine [62]; much more avid protein binding in humans 
prolong half-life and diminish potential for activity

Half-life MS-275 [63]; human clearance much slower than mouse; correlates with 
mice tolerating more frequent dosing schemes while humans do not

Intrinsic drug target  
susceptibility

Neriifolin and cardiac glycosides [64]; murine Na/K ATPase intrinsically 
less susceptible to agents therefore mouse model over-predict 
capacity for anti-tumor activity

H-ras farnesylation intrinsically more sensitive to certain farnesyl-
transferase inhibitors and therefore not appropriate model for human 
Ki-ras associated tumors [65]

Differing end-organ  
susceptibility

Bizelisin [66] murine marrow cells intrinsically less susceptible to anti-
proliferative effects than humans therefore under-predict human 
toxicity
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and the capacity of certain antibodies such as trastuzumab to down-regulate the 
action of a target to whose action the relevant cell type is “addicted.”

This chapter endeavors to summarize the customary use and interpretation of 
animal models used for prioritization of cancer treatments for entry into clinical trials 
through the end of the last century. We then consider the novel screening paradigms 
currently in use which exemplify the diverse types of challenging lead compounds for 
in vivo evaluation. Finally we will offer a strategic overview of steps to maximize 
utility of the animal model information in selecting agents for clinical study in the 
twenty-first century.

1.2 � Tumor Models for Cancer Drug Development:  
Where We Were

1.2.1 � Historical Basis

Drug treatments for cancer arose from three distinct philosophical points of view. 
Classically, Ehrlich’s concept of “magic bullets” [6] that would cause toxicity to 
tumor cells while sparing normal cells arose from the observation that different 
dyestuffs had obvious affinity for different parts of the cell or different cell types. By 
this logic, therefore, screening for chemicals that might have a differential effect on 
tumor cells in comparison to normal cells might be a basis for deriving useful thera-
peutics related to cancer. A second potential direction was suggested by the observa-
tion of profound leucopenia as part of the symptom complex imparted by exposure 
to mustard gas during World War I. This suggested to some that in lower doses such 
chemicals might be useful in controlling tumors of (in that case) the hematopoietic 
system while not ablating all normal marrow elements [7]. Finally the observation 
that hormonal manipulation could cause useful regression of tumors derived from 
endocrine responsive organs [8] suggested that an understanding of the biological 
bases of tumor growth could impart strategies for treatment. This latter point of view, 
when coupled to the then emerging knowledge of the biochemistry of nucleic acids 
and the increase particularly in RNA content of tumor cells, led naturally to the 
efforts to develop what we now call anti-metabolites such as folate antagonists by 
Farber et al. [9] and purine and pyrimidine analogs by Elion, Hitchings, Heidelberger 
and a large number of colleagues [10]. Ironically, although such agents are now 
“lumped” into the category of “cytotoxics,” anti-metabolites were the rationally 
“targeted” therapeutics of the middle of the last century.

The plethora of new chemicals potentially available for cancer treatment, along 
with relative indifference for cancer as a focus of opportunity by corporate pharma-
ceutical entities of the time created the perceived need to develop common 
platforms for evaluation of new molecules available for cancer treatment. This 
resulted in the evolution of tumor models that were geared for high throughput and 
mostly employed serially propagated tumor cells in syngeneic hosts. As recounted 



6 S. Decker and E. Sausville

elsewhere by Zubrod et al. [11], such screening efforts in academia exemplified by 
Memorial Sloan Kettering were helpful but to keep up with demand for compound 
evaluation, Congress in 1955 directed the U.S. National Cancer Institute (NCI) to 
develop a publicly funded and publicly accessible resource that would promote 
both clinical testing and pre-clinical evaluation of novel anti-cancer agents. The 
former initiative was the precursor of the current national Cooperative Group 
approach to clinical trials. The latter initiative resulted in the formation of the 
Cancer Chemotherapy National Service Center (CC-NSC), whose “NSC” acces-
sion catalog of compounds continues to the present day at NCI’s Developmental 
Therapeutics Program as the successor to the CC-NSC. Compounds studied by NCI 
for the most part were synthesized by contractors or solicited from academic or 
commercial parties by an active compound acquisition program [12]. Encouragement 
to industry as well as academic participants was provided by confidentiality agree-
ments that assured protection of the submitting party’s intellectual property. Results 
generated by the NCI screening effort could then be the basis for development of 
the compound to clinical trials sponsored either by the NCI through its Cooperative 
Groups or privately funded ventures.

1.2.2 � Early Screening Models

The models employed in efforts at NCI and at academic screening centers included 
and were exemplified by the L1210 and P388 mouse leukemias serially trans-
planted by the peritoneal route and treated by intraperitoneal injection of drug. 
The endpoint of the screening assay was survival of the treated vs. untreated or 
vehicle-treated groups of animals. A compound was considered to show prelimi-
nary evidence of activity if the mean or median lifespan of the treated animals 
was increased by 125%, with the control group survival set at 100%, and with the 
important caveat that “positive” compounds had to have acceptable therapeutic 
index with evidence of maintained or increasing body mass in treated animals and 
no untoward short-term toxic phenomena. Among the advantages of this model 
as a screening tool were its relative speed, with experiment evaluation generally 
complete by 2–3 weeks; capacity for high throughput allowing many compounds 
to be evaluated; and reproducibility of the model owing to high take rate and 
uniform growth rate. Using these and related models, important clinically rele-
vant principles of cancer chemotherapeutic development were elucidated and 
formed the basis for construction of human chemotherapy regimens and prac-
tices. These principles include the demonstration that active agents produced with 
each dose increment reduction in the tumor cell population a reduction in tumor 
cell mass by logarithmically increasing increments. This led to the concept that 
valuable agents had to be applied in successive “cycles” to cause tumor-free ani-
mals to emerge. The inverse relationship of tumor cell inoculum to curability at 
a constant dose led likewise to the theoretical underpinnings of “adjuvant” treat-
ment programs [13, 14].
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Potential pitfalls of such models were numerous. Most obviously was the “same 
site” nature of the treated space, without a physiological barrier between the admin-
istration site and the locus of drug action. A second concern was the potential lack 
of relevance of such models to solid tumors. Both of these concerns were partially 
addressed by the use of syngeneic metastasizing murine models such as Lewis lung 
carcinoma or B16 melanoma. These models could be run either as solid allografts, 
with treatment intravenously or orally in a way that mimicked human treatment, or 
following a period of residence in a body part, generally an extremity, removal of 
the “primary” tumor could allow for observation of compound activity against the 
establishment or formation of metastases. Although such models were valuable 
adjuncts to evaluating positive compounds in the murine leukemia studies, an 
emerging concern throughout the later 1970s was that the paucity of agents emerg-
ing through such murine leukemia-based screens that ultimately had robust activity 
in human solid tumors.

The limited value of agents detected in murine leukemia screening models when 
applied to human solid tumors resulted in enormous interest in the use of immuno-
compromised animals to study xenografts of human tumors through technology 
that was first applied on a large scale commencing ~1980 using athymic “nude” 
mice [15]. One initial hope was that agents thereby revealed to be active would be 
intrinsically more suitable for use in human solid tumors. An immediate problem 
in the use of these models, however, is their intrinsically less efficient throughput 
owing to a variety of factors including the mechanics of implanting and sizing 
tumors in a subcutaneous site; the fact that different human tumor cell lines had 
intrinsically different “take rates” and variable growth rates. This encouraged the 
development of prioritization criteria often after in vitro screening to assure that 
compounds entering into in vivo study already had evidence of cytotoxic potential. 
The “NCI 60” cell line panel is representative of one such large-scale effort of this 
type whose historical basis and output has been described elsewhere [16, 17]. 
Moreover, criteria for value of an agent in athymic mouse xenografts are problem-
atic in that tumor growth delay is more frequently encountered than actual responses 
of established tumors, and the meaning of this to the clinical setting remains unde-
fined in a precise way to this day.

Looking at the performance of predominantly classical cytotoxic agents studied at 
the NCI in a variety of murine syngeneic and prototypic human xenograft systems, 
one can conclude that agents irrespective of their level of in vitro activity which have 
activity in less than 33% of the models tested had no “positive” phase 2 clinical trials. 
In contrasts, agents with activity in at least 33% of such models had an approximately 
50% likelihood of positivity in phase 2 clinical trials [18]. Noteworthily, there was 
little histology-specific correlation of activity in models with activity in the clinic. As 
described above, the reason for this disconnect between animal and human experi-
ences when ultimately understood has in the examples cited in Table 1.1 largely 
related to differences in animal and human pharmacological features or target suscep-
tibility or importance to the host organism. This and related experiences [19] has 
reinforced that from a purely stochastic viewpoint there is value in prioritizing com-
pounds for entry into the clinic by their behavior in some number of animal models.
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The most profoundly dissatisfying aspect of this set of outcomes is that there is 
no tie on the part of the in vivo models used to evaluate the majority of screening 
experiences to the biology of the tumors studied. While one might argue that this is 
reasonable in light of the fact that most of the chemical entities selected from ran-
dom screening experiences were not really designed around any key mechanism as 
relevant to the biology of a particular tumor, the present age has for the most part 
moved past the point where high enthusiasm for a compound arises solely by virtue 
of its behavior in a screening system. Rather novel approaches to cancer drug 
screening are generating lead compounds that will require distinctive approaches to 
further elicitation of activity in vivo, and will ideally be coupled to novel strategies 
to apply in early clinical trials.

1.3 � Novel Screens Beget Novel In Vivo Model Challenges

Traditionally as discussed above, lead compounds were selected for study in vivo 
based on evidence in vitro or expectation of cytotoxicity. The molecular target era 
has allowed the creation of a flood of new screening models. Importantly, some 
screens are aimed at identifying targets or pathways of interest as an initial step 
in then defining the effect of a compound on the target(s) or pathway(s) of interest, 
but not necessarily tied to initial evidence of cytotoxicity. Whether action of a 
lead against the target in one of these in vitro or non-traditional assay systems is 
enough to justify proceeding with the lead to in vivo models discussed throughout 
this volume is a key strategic issue to consider. These assay systems run the 
gamut from non-mammalian in vivo models in an array of organisms, to information-
intensive screens capitalizing on the explosion of new “data mining” technologies, 
to cell-based in vitro assays looking for non-classical endpoints such as angio-
genesis or invasion.

1.3.1 � Non-mammalian Models

In the last 10 years, efforts utilizing non-mammalian models to actually identify 
targets and drugs have proliferated. In some cases, such as for yeast and Drosophila, 
the organisms have been used for many decades as biological models, but have not 
traditionally served as a source of anti-cancer leads. Other organisms such as 
zebrafish have arisen relatively recently as models.

1.3.1.1 � Unicellular

Yeast screens have been widely used in cell biology and genetics studies. It was the 
first organism to have its genome sequenced [20]. Yeast strains are easily grown 
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and manipulated, allowing for facile studies of DNA damage repair, cell cycle 
progression and checkpoint control, among other well recognized utilities. Yeast 
screens have provided a facile way to identify sets of genes that contribute to sen-
sitivity or resistance to particular drugs. For instance, for the synthetic tripeptide 
arsenical GSAO that inhibits angiogenesis and targets actively dividing but not 
quiescent endothelial cells, Hogg et al. identified 88 GSAO-sensitive Saccharomyces 
cerevisiae deletion strains by screening a genome-wide set of 4,546 such strains, 
thus identifying potential molecular targets of GSAO and allowing for confirmatory 
studies in mammalian cells [21].

Classical pathways well explored in yeast actually from a biological point of 
view have defined strains with alterations in cell cycle and cell cycle checkpoint 
control, particularly in response to DNA damage [22]. This observation has been 
capitalized on by numerous groups to screen for compounds that interfere with cell 
cycle control, thus potentially enhancing sensitivity to classical DNA-damaging 
chemotherapy or radiation therapy. The National Cancer Institute (NCI) Yeast 
Anticancer Drug Screen has screened tens of thousands of compounds in selected 
yeast strains mutated for cell cycle control or DNA damage repair [23]. One limita-
tion of such screens though is the possibility that larger organisms do not rely on a 
single mechanism for repairing DNA damage. For example, mammals in some 
cases appear to have checkpoint-independent mechanisms for surviving radiation 
[24], so a compound identified in yeast as interfering with a checkpoint may be 
ineffective as a radiation sensitizer in humans. Thus, yeast serve to illustrate the 
caveat that a mammalian relevant in  vivo model may need to be carefully con-
structed to provide evidence that the yeast-related screen output is an accurate 
reflection of a human circumstance.

1.3.1.2 � Multicellular

In an attempt to overcome some of the shortcomings of unicellular organism 
screens as predictors of in  vivo activity, various groups have developed in  vivo 
models in non-mammalian organisms ranging from zebrafish to nematodes to flies. 
The potential advantages of such screens generally are that they are cheaper and 
proceed more quickly than mammalian in vivo models, but still have the capacity 
to provide information about the ability of a drug lead to act in a live host.

Drosophila strains have been used for over a century for genetic studies, and 
have a relatively small genome, making it an attractive model for studying various 
biological processes. A number of different cancer-related screening campaigns 
have now been run in Drosophila models, including transgenic models. For exam-
ple, extending from the observation discussed above that whole organisms have 
checkpoint-independent mechanisms for surviving DNA damage from chemother-
apy and radiation, Tin Su et  al. ran a pilot screen for radiation sensitizers using 
wild-type and checkpoint mutants [24]. Drug candidates were mixed into food and 
placed in wells with Drosophila larvae, and survival was determined by counting 
the empty pupae cases. In another screening context, by looking at phenotypic 



10 S. Decker and E. Sausville

changes from Drosophila developing leg imaginal discs, Phanstiel et al. screened 
for drug–polyamine conjugates with polyamine transporter (PAT)-selective targeting 
ability, deriving from the observation that PAT is elevated in many tumor types and 
hypothesizing that drug–polyamine conjugates may be able to selectively attack 
tumor cells [25]. While the limited genetic redundancy of Drosophila lends itself 
to phenotypic endpoints and is part of the basis of its attractiveness as a model, it 
is also potentially a limitation of the model as the hits identified in such models 
may fail in more complex mammalian systems where redundancy is more 
frequent.

The Caenorhabditis elegans nematode has been used as a model system for 
several decades. The worm goes from egg to fertile adult in 3 days, and each adult 
can produce 300 progeny making it a quick and inexpensive model system. 
Numerous knockout mutants exist and strains can be frozen for decades [26]. In one 
recent cancer application, Salgia et al. described a C. elegans nematode model in 
which transgenic worms were generated harboring either wild-type c-Met or muta-
tions of c-Met commonly seen in lung cancer [27]. The worms expressing the 
mutant c-Mets consistently displayed the phenotypic outputs of abnormal vulval 
development and low fecundity. While this model can be used to investigate the role 
of gene mutations in a whole organism, invertebrates may not be appropriate 
models for certain cancer-related processes such as apoptosis due to their lesser 
complexity [28].

Avian embryo models have also been used in developmental biology for many 
years, but only more recently in cancer research with any frequency, most likely 
due in part to the recent sequencing of the chick genome. Advantages include the 
speed of the model in reproducing human tumor growth and angiogenesis. 
Researchers have validated that human glioblastoma grafted onto the chorioallantoic 
membrane (vascularized extra embryonic tissue; CAM) displays similar patterns of 
gene expression changes as the human disease [29]. Although they still have 
efficiency advantages over mouse models, CAM models also have disadvantages 
over other vertebrate non-mammalian systems such as a relatively lengthy assay 
(~10 days), higher cost than other models and difficulties in quantitation of the 
output [30].

Proponents of Xenopus tadpole models point to rapid extra uterine development, 
the transparency of developing tadpoles, permeability of the skin, and similarities 
to mammals in certain organ development, anatomy and physiology as advantages 
[31]. To identify molecules affecting angiogenesis and lymphangiogenesis, Brandli 
et al. screened 1,280 compounds in a Xenopus model looking first for edema as a 
phenotype and then used whole-mount in situ hybridization of Xenopus embryos to 
visualize blood and lymphatic vessel development for the 66 positive hits from the 
initial stage of the screen, with confirmatory endothelial cell proliferation and tube 
formation assays then conducted on the second level hits. The original Xenopus 
model, Xenopus laevis has a pseudotetraploid genome and a relatively long genera-
tion time, making the development of stable transgenic lines lengthy relative to 
other non-mammalian models, however work has also been done to use the diploid 
Xenopus tropicalis as a model for experimental genetics [32].
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Zebrafish have been cited as having numerous advantages for screening, 
many of them shared with the advantages of Xenopus models above. The assays, 
while in vivo, are still relatively quick at approximately 3 days, relatively cheap, 
and have reasonably high throughput as they can be done on plates [9]. As 
demonstrated by Willett et al. using known angiogenesis inhibitors TNP470 and 
SU5416 [30], zebrafish, being transparent, lend themselves very well to 
angiogenesis-related assays as blood vessel formation can be assessed by visual 
inspection. Zebrafish have been used for models of drug sensitization and resis-
tance. Transgenic models have been generated as well. Much less is known, 
however, about cancer-relevant issues such as DNA repair enzymes and the 
orthologs of human oncogenes and tumor suppressor genes in zebrafish than 
other model systems [33].

1.3.2 � Technology-Intensive Screening

Advances in fields such as computing technology, imaging, robotics, and miniaturiza-
tion among others have helped spawn a range of new screening possibilities. All of 
these technology-intensive methodologies produce a wealth of information much 
more quickly than many classical screening techniques, but the challenge is in sifting 
through and capitalizing on the information. In many cases in vivo models applicable 
to the output of such screens will need to be constructed as a dedicated effort in paral-
lel with the design and output of the ex vivo screen.

1.3.2.1 � High-Throughput Screening

High-throughput screening (HTS) methods became increasingly necessary as the 
number of potential molecular targets for cancer drugs grew virtually exponentially. 
In one possible format for an HTS assay, the activity of an enzyme is linked to an 
easily readable output, such as fluorescence or bioluminescence from luciferase. 
Cell-based HTS is also possible, many times with cell lines that have been trans-
fected with a receptor or promoter of interest. Methodologies for HTS campaigns 
have been discussed extensively [34, 35] and the literature abounds with results 
from campaigns directed against particular enzymatic targets. In the fortunate cir-
cumstance where the role of the enzyme in a biological pathway relevant to human 
disease is well understood, where structural biology can show the development 
candidate interacting with the binding site of the enzyme, where the candidate has 
favorable drug-like characteristics, and where the action of the drug on the target 
can be tracked in cell culture and in vivo models, the path for development can be 
relatively straightforward. In the case where the output of a screening campaign 
using a cell-based assay where pathway activation or inhibition is the ultimate 
readout, caution must be urged in  exploring activity in in  vivo models prior to 
deconvolution of the lead compounds mechanism of action.
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1.3.2.2 � Chemogenomics

Unlike a single HTS assay that has the ability to screen many compounds against a 
single target, chemogenomics represents the integration of a study of the effects of 
compounds on biological targets with modern genomics technologies, attempting 
to comprehensively discover and describe all possible drugs to all possible drug 
targets [36]. For instance, for a chemical genetics application, the function of pro-
teins is probed by small molecules by adding a library of small molecules to cells, 
selecting those that produce the phenotype of interest and identifying the protein 
bound by the molecules [37]. Many of the newer applications of yeast screens fall 
into the chemogenomics category, helping to identify genes that can help explain 
the activity of known compounds [2].

1.3.2.3 � Proteome and Kinome Screens

With the success of genome-wide screens, efforts next logically extended down to 
the proteome and a particular target class such as protein kinases (thus a “kinome” 
directed virtual screen) in the search for drug targets. In one such effort, Schreiber 
et al. combined a chemical genetics screen that identified small molecule modifiers 
of rapamycin activity with a probe of a yeast proteome chip to identify proteins that 
bound the small molecules [38]. One potential advantage of probing of the pro-
teome over traditional affinity chromatography is the bias of chromatography 
toward high-abundance proteins. Some approaches have elected to limit the probe 
to the kinases rather than the whole proteome. Dagorn et al. screened the human 
kinome for all kinases involved in pancreatic cancer cell survival and gemcitabine 
resistance, identifying a set of potential targets for drug discovery campaigns [39]. 
Comprehensive screening of the whole yeast proteome has been undertaken to 
systematically identify protein–protein interactions, in an effort that might eventu-
ally assist in the development of small molecules that can disrupt key interactions 
[40]. Analysis of such protein–protein interaction data sets however requires sig-
nificant bioinformatics resources, and the complexity will only increase when 
multicellular organism proteomes are screened.

1.3.2.4 � Nanotechnology

Considerable effort has been expended in recent years on integrating nanotechnology 
with more traditional biologically based methodologies. In one series of approaches 
nanoparticles such as quantum dots or magnetofluorescent particles are conjugated 
to peptides, antibodies, or small molecules to allow the targeting of the nanoparticle 
to specific cells, such as tumor cells. Some groups have had success in using such 
bioconjugates for imaging [41] and have demonstrated differential cellular uptake 
[42]. Others are using nanoparticles to produce formulations of compounds, ones 
with excellent in vitro activity but no systemic bioavailability, in an effort to make 
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such compounds clinically viable [43]. As a therapeutic approach however, these 
bioconjugates remain unproven clinically and numerous scientific, cost, and regula-
tory hurdles exist.

1.3.2.5 � RNA Interference

Since its discovery approximately a decade ago, RNA interference (RNAi) has 
found application in many aspects of cancer drug discovery including target iden-
tification and validation, identification of drug resistance and sensitization mecha-
nisms, and synthetic lethal screening. Genome-wide RNAi screens have been used 
successfully in C. elegans and Drosophila to understand biological processes and 
work toward a comprehensive characterization of gene function [44]. For example, 
Woo et al. identified “driver genes” in hepatocellular carcinoma, each of which can 
now be considered for screening to define hepatocellular carcinoma-related drugs 
[45]. Iorns et  al. suggest the utility of conducting chemical genetics and RNAi 
screens in parallel to simultaneously identify small molecule inhibitors and targets, 
giving as an example their use of an RNAi screen to identify the PDK1 pathway as 
a determinant of sensitivity to tamoxifen coupled with a screen to locate chemical 
inhibitors of the pathway [46].

Synthetic lethal screening is another potential application of RNAi. Two genes 
are “synthetic lethal” when cell death results from mutation of both genes even 
though the cell remains viable with mutation of either alone. One recent demon-
stration of the relevance of siRNA-related synthetic lethal screens arose from the 
observation that cells deficient in BRCA-1 were highly sensitive to concomitant 
PARP inhibition [47], based on the inability to repair DNA lesions utilizing 
homologous recombination.

1.3.3 � In Vitro Models

Cell-based in vitro models with cytotoxic endpoints that had the goal of identifying 
compounds for subsequent in  vivo testing were used for several decades as 
primary screens (e.g., the NCI60 described above). More recently, cell-based 
models are being employed to either further filter hits from the high throughput 
and mammalian models discussed above or to look for other endpoints such as 
angiogenesis.

As discussed above, yeast screens have been employed to identify compounds 
that act against yeast strains with specific genetic mutations that are believed to be 
relevant to cancer. The number of hits obtained from such assays though still 
requires further filtering before an in vivo mammalian model can be contemplated. 
In vitro cell-based models, particularly those where activity in a knockout cell line 
can be compared to the wild-type, can act as a further filter. For instance, Lamb 
et al. used a three-stage screen to first identify compounds inhibiting the growth 
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of double-strand break repair-deficient yeast cells, producing 28 hits, which were 
winnowed by looking for toxicity proportional to levels of topoisomerase I or II 
expression [48]. They then screened the remaining eight hits in two lines of 
chicken pre-B-cell line DT40, one wild-type and the other defective in double-
strand break repair.

Other in  vitro assays assess look at endpoints other than cytotoxicity, such as 
endothelial cell migration or cord formation, looking for compounds that affect 
processes such as angiogenesis or metastasis. By themselves such assays are not 
necessarily sufficient to warrant pursuit of in  vivo models with identified com-
pounds. In combination with other results, however, endothelial cell assays can be a 
source of lead compounds. For instance, Sekhar et al. combined observations from 
a chemistry-driven drug discovery screen for inhibitors of endothelial cell tubule 
formation with biochemical pathway screening and shRNA suppression to identify 
compounds to pursue as drug leads, and also validate ENOX1 as a target for enhanc-
ing radiation response of tumors [49]. Other endothelial cell strategies have looked 
to capitalize on differences between tumor and normal endothelial cells. Camussi 
et al. identified cyclic peptides that showed specific binding only to tumor but not 
normal endothelial cells to use as a mechanism for delivering antiangiogenic agents 
only to the tumor [50].

The integrin inhibitors can serve as an example, however, of how action on a 
molecular target coupled with endothelial cell assays for angiogenesis endpoints 
may not be enough to guarantee a drug candidate worthy of development. Screening 
for inhibitors of integrins, adhesion molecules considered important in angiogenesis, 
has been conducted in conjunction with numerous other angiogenesis assays [51]. 
In this case, while data existed to support the search for integrin inhibitors, certain 
of the integrins are promiscuous and the biology considerably more complicated 
than suggested in primary screening assays, such that development of an integrin 
inhibitor has been thus far unsuccessful [52].

1.4 � Tumor Models for Cancer Drug Development:  
Where We Need to Be

The above examples emerging from modern biology-driven potential cancer 
relevant screens illustrate the wide diversity of premises that need to be embodied 
in the in vivo models that might ultimately be used to further evaluate the value of 
such lead molecules in vivo. Given the fact that many of these leads may not be 
intrinsically cytotoxic but directed to particular targets, either directly in a molecu-
lar sense or as part of a pathway a readout which formed the basis of the screening 
efforts, how would the clinical development process be informed and fortified by 
knowledge gleaned from in vivo models exploring the activity of these agents? 
Following is a suggested series of steps that might be considered in the practice of 
in vivo models using such leads with the goal of pre-clinical evaluation of such a 
“targeted” compound. As illustrated in Table 1.2, it differs from the path that 
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might have been applied to the traditional “cytotoxic” drug candidate of the last 
century in that the latter agents were generally developed according to an MTD 
model where pharmacological information could reasonably be obtained after 
initial confirmation of in vivo activity on a particular schedule. In contrast, most 
efficient and useful development steps for targeted agents would have a more early 
integration of pharmacological information, both kinetic and dynamic, into the 
early development strategy, and may actually not embark on evaluation of unchar-
acterized models with respect to target expression or pathway activation status. 
With this reasoning, the following steps might be usefully be allied to the process 
of in vivo model use with screening leads in the age of biologically tailored cancer 
drug screens.

1.4.1 � “In Vitro” Area Under the Concentration × Time Curve  
for Target Effect

In a range of cell culture models expressing the target, definition of the time until 
target modulation as a function of compound addition and removal, and the rela-
tionship of this to secondary endpoints such as cytotoxicity is critical, and helps to 
define initial dosing strategies. Ideally controls with respect to secondary endpoints 
would include cell lines not expressing the relevant target or pathway. This would 
also provide valuable information about “off target” effects.

1.4.2 � Qualification of Compound for In Vivo Study

A series of related molecules active in vitro can be further qualified for in vivo 
study by application of algorithms suitable for selection of oral bioavailability 
[53], if continuous exposure is the intended strategy. Alternatively, “cassette” type 
dosing schemes [54] allow preliminary assessment of pharmacological properties 
of a series, thereby narrowing choices of molecules for in vivo evaluation.

Table 1.2  Distinction between cytotoxic and “targeted” in vivo model usage

Classical Targeted

Maximum targeted dose driven Biologic dose bracketing an optimized 
concentration

Pharmacology frequently deferrable Early PK and PD crucial and build 
into correlates of clinical value

Number of models active key to prioritization Limited number of models, but target enriched
Need to define host cell susceptibility Need to define effect on host target 

in relation to toxicity observed



16 S. Decker and E. Sausville

1.4.3 � Initial Rodent Pharmacology and Model Selection

Using a realistic dosing scheme, attempts to recreate at least the area under the 
concentration  ×  time curve (AUC) defined in  vitro by the results of studies 
described above using non-tumored animals should then occur. Transition to the 
use of tumored animals would initially use a tumor model with cells known to be 
dependent on the function of the target for growth, viability, or some easily assessed 
biologic readout. These may express the target endogenously or heterologously; in 
the latter event appropriate vector alone controls are necessary. In the event the 
target is expressed endogenously, consideration of a cell type related to the first 
where the target is absent or not functional would be an additional useful control.

1.4.4 � Sample Size and Randomization of Animals

Several considerations go into selecting the number of animals chosen for control and 
experimental groups, and consultation of a biostatistical expert in designing the experi-
ments is useful. In part the sample size relates to the magnitude of the effect desired 
and the nature of the endpoint [55]. In the event that tumor is to be assessable at the 
initiation of the experiment, randomization of animals with different tumor sizes so that 
treatment groups are matched with respect to initial tumor size may be necessary.

1.4.5 � Correlative Studies

Ideally evaluation of efficacy in “hitting” the putative target should accompany 
in vivo evaluation of the compound, as well as in a most ideal case assessment of 
the pharmacologic properties of the agent achieving that effect (dose–response of 
effect on target in association with usual parameters such as plasma maximal con-
centration (C

max
), half life (t

1/2
), AUC, etc.). Determination of tumor drug levels 

corresponding to these phenomena would be a plus. Examples of successful inte-
gration of such information obtained in early in  vivo studies with value when 
applied to the clinic would include bortezomib anti-tumor effect correlated with 
effect on proteosome inhibition [56] or more recently effect of dasatinib on bcr-abl 
kinase substrate phosphorylation in relation to plasma concentrations in mice [57], 
a set of observations which assisted initial clinical development.

1.4.6 � Additional Desirable Studies

While one intensively evaluated model (with respect to pharmacodynamics and 
pharmacology) may be useful in setting the “boundary conditions” and expectations 
for benchmarking initial compound use and performance in humans, particularly 
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if the tumor system studied is “artificial” with respect to the anticipated state of 
the target or pathway of interest in the clinic (e.g., heterologously expressed or 
otherwise manipulated cells), enthusiasm for the compound is increased gener-
ally if a range of non-manipulated cell types are exposed to the agent at the 
appropriate concentration dose and range with confirmation that in that circum-
stance there are expected effects on target function and consequences for cellular 
physiology. It may not be necessary to develop stable in vivo models from each 
cell type; such techniques as the “hollow fiber assay” [58] can be a way of use-
fully assessing in vivo effect without the time and expense of deriving indepen-
dent models [59].

1.5 � Conclusion

The ultimate goal of in vivo model studies in the pre-clinical development of anti-
cancer agents is to serve a variety of interests. First, from a strictly pragmatic 
standpoint, demonstration of unbiased, well understood in vivo activity serves to 
increase confidence in investing the considerably more time-consuming and expen-
sive effort in developing the safety database to allow human early phase clinical 
testing. Valuable activity in an in  vivo model should reflect pharmacological 
“action at a distance” across physiological and anatomical barriers in a way that has 
an acceptable therapeutic index on the clinical proposed dose range and schedule. 
Second, the in  vivo model experience from a scientific standpoint becomes that 
which the early clinical trials would ideally seek to emulate precisely as a “mirror 
image” accurate reflection. Third, from an ethical standpoint, clear demonstration 
of in vivo activity on the part of a candidate anti-cancer agent is a basis for poten-
tially justifying in a prospective patient’s mind their participation in such a study. 
Although recent studies have documented that modern phase I anti-cancer drug 
clinical trials are extremely safe and for many of the newer molecular entities have 
the prospect of benefit in perhaps as much as 30% of participants [60], the initial 
in  vivo experiences in animals can serve as a talking point in assuring potential 
participants that there is the possibility of benefit at doses and schedules that have 
a modicum of expected safety and tolerability.

The ideal for in vivo model use in therapeutics development is the assembly of 
a package of information that will guide in the design and ultimate interpretation of 
the initial human clinical trial. Conversely, it is also conceivable that once an initial 
appreciation of achieved human pharmacology emerges from the results of the 
initial early phase clinical trials in humans, a focused return to in  vivo animal 
models with the intention of conscientiously modeling the achieved human 
pharmacology in the animals may allow a more realistic strategy to emerge before 
committing to an extensive human phase 2 program. In this way in vivo animal 
models can contribute not only to the initial qualification of a compound for human 
use but also to a more refined way of advancing it to having its best chance for 
positive later-stage clinical trial efforts.
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