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Preface

Considering the incredible new developments in technologies over the last few years, this
second edition of the book took care to cover breakthrough technologies in the field of drug
target identification and validation. We are confident that the second edition will be as
successful as the first, with the majority of chapters capturing recently emerging technolo-
gies. These new technologies include 3D cell culture and in particular revolutionary tech-
nologies such as CRISPR, which has a wide field of applications. Since new targets are still a
valuable asset for drug development, an emphasis in this issue is on CRISPR-related
screening technologies. Usage of haploid cell lines adds another breakthrough to exploit
best CRISPR technologies. Other dynamic fields are “big data” and in silico approaches;
hence we extended these topics compared to the previous edition. The in vivo applications
of CRISPR and the best use of animal models in drug development complete the validation
aspects covered by this book.

The quality of target identification and validation is a first and critical indicator for
attrition rate in drug development. In a wider sense, target validation also includes aspects of
efficacy and target patient population, which together define the drug properties and
commercial aspects that determine the success of a drug development program. Humanized
in vitro and in vivo models are instrumental to judge the probability of success, both of
which are covered in this book.

This book contains a comprehensive collection of essential and state-of-the-art meth-
ods, contributed by internationally recognized experts in their specialized fields. The
content of each chapter goes beyond pure protocol lists to also include useful hints,
emphasizing the most critical steps and pinpointing typical pitfalls.

The chapters are organized by major categories covering methods of early drug devel-
opment related to target identification and validation but also translational aspects, such as
animal models and biomarker development.

This book is a valuable source of protocols for lab scientists; in addition, it represents a
useful compendium for any “drug hunter” including molecular and cellular biologists,
pharmacologists, pathologists, bioinformaticians, clinical researchers, or investigators, to
name a few. Last but not least, any scientist who is not an expert in the field will get a quick
overview on state-of-the-art technologies.

Most importantly, we thank all the authors for their valuable contributions. It was a real
pleasure to interact with them in a highly professional manner. The result of these efforts is
the second edition of a book of which all contributors can be proud.

Vienna, Austria Jürgen Moll
Sebastian Carotta
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Identification of Novel Targets Using High Throughput
Screening Assays



Chapter 1

Using Functional Genetics in Haploid Cells for Drug Target
Identification

Jennifer C. Volz, Nicole Schuller, and Ulrich Elling

Abstract

Pooled genetic screens are a powerful tool to identify targets for drug development as well as chemogenetic
interactions. Various complementary methods for mutagenesis are available to generate highly complex cell
populations, including mRNA knockdown, directed genome editing, as well as random genome mutagen-
esis. With the availability of a growing number of haploid mammalian cell lines, random mutagenesis is
becoming increasingly powerful and represents an attractive alternative, e.g., to CRISPR-based screening.
This chapter provides a step-by-step protocol for performing haploid gene trap screens.

Key words Functional genomics, Genetic screen, Haploid, Gene trap, Stem cell

1 Introduction

Chemogenomic approaches can support drug development by rap-
idly uncovering functional interactions of small molecules and
genes [1]. For example, overexpression of direct drug targets can
result in partial resistance of cells to compounds and thus contrib-
ute to target deconvolution. Genetic screens can also shed light on
resistance mechanisms of cytotoxic compounds such as chemother-
apeutics. In addition, functional genomic studies can identify the
genetic interactome of the drug target as well as the required
enzymatic activity to activate prodrugs.

The use of transcriptional reporters coupled to a fluorescent
protein combined with fluorescence-activated cell sorting (FACS)
or an antibiotic resistance allows to expand the screenable range of
phenotypes from lethal assays to any transcriptional event. Further-
more, immunolabelling of signaling events such as phospho-
epitopes followed by flow cytometry allows to deconvolute the
genetic interactome of drug-induced signaling. Importantly,
genetic phenotypic screens are also a powerful tool to identify
novel drug targets for subsequent targeted drug development, for

Jürgen Moll and Sebastian Carotta (eds.), Target Identification and Validation in Drug Discovery: Methods and Protocols,
Methods in Molecular Biology, vol. 1953, https://doi.org/10.1007/978-1-4939-9145-7_1,
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example, for viral host factors or synthetic lethal interactions with
tumorigenic mutations in positive or negative selection screening
paradigms, respectively.

This century has seen several true revolutions in functional
genomic approaches including small RNA-based methods to per-
turb gene function such as siRNA, shRNA, and sgRNA screening.
Alternative methods include random mutagenesis induced by
chemical mutagens or mobile DNA elements. However, random
mutagenesis in mammalian cells was until recently limited to domi-
nant phenotypes, as all mammals and established mammalian cell
lines are diploid, i.e., carry two alleles for all autosomal encoded
genes. In diploidy, the remaining healthy allele will mask any reces-
sive phenotype. Meanwhile, yeast geneticists immersed in the awe-
some power of yeast genetics (“APYG”) [2], where the power of
haploid screens was already showcased in classic work half a century
ago [3].

Chromosome loss and near-haploid chromosome sets are a
peculiarity of acute myeloid and lymphoblastic leukemias
[4, 5]. Based on the derivation of the near-haploid human myeloid
leukemia cell line KBM-7 [6] with only chromosome 8 remaining
diploid, seminal work by Carette, Brummelkamp, and co-workers
established haploid genetic screens in mammalian cells in 2009
[7]. A partially reprogrammed adherent derivative of KBM-7,
termed HAP-1, was developed shortly after [8]. These landmark
studies led to the discovery of host factors of bacteriotoxins as well
as viral life cycles [7, 9, 10].

As a direct consequence of sexual reproduction, all eukaryotes
alternate between a haploid and a diploid stage in their life cycle
[11]; however in most eukaryotic species including all mammals,
the diploid stage is dominant, while the haploid stage is reduced to
mature germ cells. Making use of the haploid stage of the life cycle
in germ cells and induction of embryogenesis in the presence of
only the maternal or paternal genome, the first fully haploid verte-
brate cell lines were derived from frogs [12] and medaka fish
[13]. In 2011, two groups reported derivation of the first truly
haploid mammalian cell lines, mouse haploid embryonic stem
(ES) cells from parthenogenic blastocysts [14, 15]. Shortly after,
androgenic (male genome only) haploid mouse ES cells were
reported [16, 17], followed by embryonic stem cells of rat [18],
monkey [19], and recently human [20, 21]. Furthermore, haploid
neural progenitor cells derived from rhesus monkey haploid embry-
onic stem cells extend the repertoire of haploid cell lines available
for genetic screens [22]. Nevertheless, the availability of haploid
cell lines still represents the major limitation of haploid screening
technology. The fact that human haploid embryonic stem cells—
unlike reported stem cell lines from other organisms—remain hap-
loid also upon differentiation [20] opens the possibility of deriving
a plethora of new haploid cell lines in the future.

4 Jennifer C. Volz et al.



Haploid screens are typically performed by targeting gene trap
or polyA trap vectors randomly into the genome. This is accom-
plished by infection of cells with retro- or lentiviral vectors as well as
transfection with transposons such as sleeping beauty, Tol2, or
piggyBac. Integration of mobile elements can perturb gene expres-
sion by the presence of splice acceptors, which will trap mRNA
transcripts if integrated into an intron. The advantage of insertional
mutagenesis is the ease of identification of mutations in high
throughput [9, 23]. However, hot and cold spots of mutagenesis,
in particular of viral vectors, affect genome saturation, while trans-
posons insert more evenly [23]. Thus, haploid insertional muta-
genesis screens are mostly limited to positive selection and ideally
performed based on at least 107–108 independently mutated cells.
Under these conditions, positive selection screens identify often
hundreds of biologically independent integrations within a gene
of interest as causal for the phenotype of interest and can thus
assign gene function with unprecedented certainty.

Insertional mutagenesis in haploid cells is ideally suited to
uncover genetic interactions with small molecules in an unbiased
manner based on loss of function phenotypes. Advantages of this
approach are that (1) it does not require the generation of small
RNA libraries based on gene predictions, (2) mutations are directly
identified as opposed to being inferred indirectly by presence of
shRNAs or sgRNAs, and (3) results are based on hundreds of
biologically independent mutations resulting in unambiguous
identification of hits [24]. Moreover, new gene trap systems carry-
ing transcriptional enhancers have been developed to activate gene
expression of nearby genes [25]. Thus, enhanced gene trap inser-
tions can uncover direct drug targets also in diploid cells due to
increased resistance [26] by increased drug target abundance.

Technically, a haploid genetic screen is similar to other pooled
screens and consists of the generation of pools of mutagenized cells
by infection or transfection with mutagenic elements followed by
selection for gene trap insertions and subsequently phenotypes of
interest. Mutations are then mapped to the genome by next-
generation sequencing, and genes with clustered mutations are
identified by bioinformatic pipelines. If mutated libraries of cells
are already available, screens can be performed in less than
2 months, thereby making haploid insertion screens a powerful
tool to identify chemogenetic interactions (Fig. 1). The following
protocol provides a detailed step-by-step guide for successful per-
formance of haploid genetic screens in positive selection paradigms.

Haploid Genetic Screens 5
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