Kendra K. Bence Editor

Protein Tyrosine Phosphatase Control of Metabolism

Protein Tyrosine Phosphatase Control of Metabolism

Kendra K. Bence Editor

Protein Tyrosine Phosphatase Control of Metabolism

Editor Kendra K. Bence Department of Animal Biology University of Pennsylvania Philadelphia, PA, USA

ISBN 978-1-4614-7854-6 ISBN 978-1-4614-7855-3 (eBook) DOI 10.1007/978-1-4614-7855-3 Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013945401

© Springer Science+Business Media New York 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Tyrosine phosphorylation is a rapid and reversible protein modification catalyzed by the activities of protein tyrosine kinases (PTKs) and their cellular counterparts, protein tyrosine phosphatases (PTPs). Although phosphorylation of proteins on tyrosine is relatively rare compared to phosphorylation on serine or threonine residues, the past 2 decades of research into PTP function have led to a great appreciation of the critical role PTPs have in regulating basic cellular processes. Among these important roles is the regulation of cellular signaling pathways related to metabolism. This volume contains chapters which highlight many aspects of PTP function in the context of metabolism. Given the growing obesity and diabetes epidemics in the United States and throughout the world, the desire to identify possible therapeutic targets for treatment of these diseases is a high priority. In many ways, PTPs may be attractive drug targets since they are amenable to targeting with small molecules; however many challenges abound in making PTP inhibitors.

PTPs are encoded by a large family of 107 genes, the majority of which can be broadly classified into classical phosphotyrosine-specific phosphatases or dualspecificity phosphatases (which display serine, threonine, and tyrosine phosphatase activity). More than half of identified PTPs have been implicated in human disease to date, with a growing number of PTPs now known to play major roles in metabolic disease. Many metabolic signaling pathways invoke a feed-forward cascade of tyrosine-phosphorylated proteins; thus, PTPs have emerged as critical regulators of these pathways, including the insulin and leptin pathways.

The activity of PTPs is regulated in many ways within the cell, most notably by reversible oxidation of the catalytic cysteine residue by reactive oxygen species (ROS). In Chap. 1, assays to quantify redox regulation of PTPs are discussed in the context of metabolic signaling. Subsequent chapters in this volume discuss quantitative modeling approaches that may be effective in modeling PTP behavior, and the importance of identifying novel substrates of PTPs. Several chapters highlight the role of PTPs known to regulate metabolic signaling, including PTP1B, SHP2, TC-PTP, and RPTP epsilon. Over the past decade, mouse models of PTP-deficiency have provided important insight into the precise tissue-specific functions of many PTPs including PTP1B, TC-PTP, SHP2, and PTEN (which also functions as an

inositol phospholipid phosphatase). Perhaps the most well-characterized PTP with a known metabolic role is the prototypical classical, non-receptor PTP, PTP1B. As such, several chapters in this volume are dedicated to the specific metabolic functions of PTP1B. More recently the MAPK phosphatases, or MKPs, have also emerged as important regulators of metabolic homeostasis. Finally, two chapters in this volume discuss the role of the low molecular weight class of PTPs (LMPTP) and the glycogen phosphatase laforin in human metabolic disease pathogenesis.

Overall, recent studies into PTP function in the context of metabolism highlight the importance of understanding the regulation/modifications of PTPs that affect activity, the subcellular localization of PTPs and how that affects their function, and the cell-type specificity of PTP functions. Going forward, it will be important to understand how PTPs function at the intersection of metabolic signaling and other pathways regulated by PTPs, including growth factor signaling and oncogenic signaling pathways, in order to sustain the growing interest in targeting PTPs for treating metabolic syndromes.

Philadelphia, PA

Kendra K. Bence

Contents

1	Redox Regulation of PTPs in Metabolism: Focus on Assays Yang Xu and Benjamin G. Neel	1
2	Quantitative Modeling Approaches for Understanding the Role of Phosphatases in Cell Signaling Regulation: Applications in Metabolism Matthew J. Lazzara	27
3	Protein-Tyrosine Phosphatase 1B Substrates and Control of Metabolism Yannan Xi and Fawaz G. Haj	49
4	PTP1B and TCPTP in CNS Signaling and Energy Balance Kendra K. Bence and Tony Tiganis	71
5	PTP1B in the Periphery: Regulating Insulin Sensitivity and ER Stress Mirela Delibegovic and Nimesh Mody	91
6	Role of Protein Tyrosine Phosphatase 1B in Hepatocyte-Specific Insulin and Growth Factor Signaling Águeda González-Rodríguez and Ángela M. Valverde	107
7	PTP1B in Obesity-Related Cardiovascular Function Pimonrat Ketsawatsomkron, David W. Stepp, and Eric J. Belin de Chantemèle	129
8	Role of the SHP2 Protein Tyrosine Phosphatase in Cardiac Metabolism Maria I. Kontaridis, Eleni V. Geladari, and Charalampia V. Geladari	147
9	Metabolic Effects of Neural and Pancreatic Shp2 Zhao He, Sharon S. Zhang, Jianxiu Yu, and Gen-Sheng Feng	169

10	Protein Tyrosine Phosphatase Epsilon as a Regulator of Body Weight and Glucose Metabolism Ari Elson	187
11	The Role of LMPTP in the Metabolic Syndrome Stephanie M. Stanford, Massimo Bottini, and Nunzio Bottini	203
12	Mitogen-Activated Protein Kinase Phosphatases in Metabolism Ahmed Lawan and Anton M. Bennett	221
13	Glycogen Metabolism and Lafora Disease Peter J. Roach and Anna A. DePaoli-Roach	239
Ind	ex	263

Contributors

Kendra K. Bence, Ph.D. Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA

Anton M. Bennett, Ph.D. Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA

Massimo Bottini, Ph.D. Infectious and Inflammatory Diseases Center, Sanford Burnham Medical Research Institute, La Jolla, CA, USA

Nunzio Bottini, M.D., Ph.D. Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA

Eric J. Belin de Chantemèle, Ph.D. Department of Physiology, Georgia Health Sciences University, Augusta, GA, USA

Mirela Delibegovic, Ph.D. Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK

Anna A. DePaoli-Roach, Ph.D. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA

Ari Elson, Ph.D. Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel

Gen-Sheng Feng, Ph.D. Department of Pathology, University of California, San Diego, CA, USA

Charalampia V. Geladari, M.D. Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA

Eleni V. Geladari, M.D. Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA

Águeda González-Rodríguez, Ph.D. Institute of Biomedicine Alberto Sols (CSIC/UAM), Consejo Superior de Investigaciones Científicas, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades, Metabólicas Asociadas (CIBERDEM, ISCIII), Madrid, Spain

Fawaz G. Haj, M.Sc., D.Phil. Department of Nutrition, University of California Davis, Davis, CA, USA

Department of Internal Medicine, University of California Davis, Sacramento, CA, USA

Zhao He, Ph.D. Department of Pathology and Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA

School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China

Pimonrat Ketsawatsomkron, Ph.D. Department of Pharmacology, University of Iowa, Iowa City, IA, USA

Maria I. Kontaridis, Ph.D. Department of Medicine, Division of Cardiology, and Department of Biological Chemistry and Molecular Pharmacology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston

Ahmed Lawan, Ph.D. Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA

Matthew J. Lazzara, Ph.D. Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA

Nimesh Mody, Ph.D. Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK

Benjamin G. Neel, M.D., Ph.D. Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada

Peter J. Roach, Ph.D. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA

Stephanie M. Stanford, Ph.D. Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA

David W. Stepp, Ph.D. Vascular Biology Center, Department of Physiology, Georgia Health Sciences University, Augusta, GA, USA

Tony Tiganis, Ph.D., B.Sc. Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia

Ángela M. Valverde, Ph.D. Institute of Biomedicine Alberto Sols (CSIC/UAM), Consejo Superior de Investigaciones Científicas, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM, ISCIII), Madrid, Spain **Yannan Xi, B.Sc.** Department of Nutrition, University of California Davis, Davis, CA, USA

Yang Xu, B.S. Department of Medical Biophysics, Princess Margaret Cancer Center, University of Toronto/University Health Network, Toronto, ON, Canada

Jianxiu Yu, Ph.D. Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Sharon S. Zhang, M.D., Ph.D. Department of Pathology, University of Chicago Medical Center, Chicago, IL, USA

Chapter 1 Redox Regulation of PTPs in Metabolism: Focus on Assays

Yang Xu and Benjamin G. Neel

Abstract Protein-tyrosine phosphatases (PTPs), along with protein-tyrosine kinases (PTKs), are the key regulators of phosphotyrosine signaling, and therefore are important contributors to normal metabolism and metabolic disease. Over the past 10 years, reactive oxygen species (ROS), which had long been viewed as toxic by-products of metabolism, have been recast as important second messengers, which act, at least in part, to regulate PTP activity by reversible oxidation. For example, ROS-catalyzed PTP oxidation can transiently inhibit PTP enzymatic activity and facilitate ligand-induced receptor tyrosine kinase (RTK) signaling. Identifying ROS-inactivated PTPs represents a key challenge to understanding the role of PTPs and redox regulation in physiology and pathology. Here, we briefly review ROS regulation of PTPs, focusing on existing assays and new approaches to identify and quantify PTP oxidation.

Abbreviations

ABP	Activity-based probe
AGE	Advanced glycation end product
Alk-β-KE	Alkyne β-ketoester
BBP-Biotin	α-Bromobenzylphosphonate biotin
BP1	Biotin-1,3-cyclopentanedione

Y. Xu, B.S. (🖂)

B.G. Neel, M.D., Ph.D. Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada M5G 2M9

Department of Medical Biophysics, Princess Margaret Cancer Center, University of Toronto/ University Health Network, Toronto, ON, Canada M5G 1L7 e-mail: yangxu.xu@mail.utoronto.ca

DOD	
DSP	Dual-specificity PTP
DTT	Dithiothreitol
EGF	Epidermal growth factor
ER	Endoplasmic reticulum
FFA	Free fatty acid
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase
GPX	Glutathione peroxidase
GRX	Glutaredoxin
GSH	Glutathione
H_2O_2	Hydrogen peroxide
HFD	High-fat diet
IAA	Iodoacetic acid
IAM	Iodoacetamide
IAP-Biotin	Iodoacetylpolyethylene oxide biotin
IB	Immunoblot
IF	Immunofluorescence
IKK	Inhibitor of KB kinase
IL	Interleukin
IP	Immunoprecipitation
IR	Insulin receptor
IRS	Insulin receptor substrate
JNK	c-Jun NH ₂ -terminal kinase
LA	α-Lipoic acid
LC-MS/MS	Liquid chromatography-tandem mass spectrometry
LC-MS/MS MAPK	Liquid chromatography-tandem mass spectrometry Mitogen-activated protein kinase
	Mitogen-activated protein kinase
MAPK MKP	Mitogen-activated protein kinase MAPK phosphatase
MAPK MKP MPB	Mitogen-activated protein kinase MAPK phosphatase 3-(N-maleimido-propionyl)biocytin
MAPK MKP MPB MRM	Mitogen-activated protein kinase MAPK phosphatase 3-(<i>N</i> -maleimido-propionyl)biocytin Multiple reaction monitoring
MAPK MKP MPB MRM NEM	Mitogen-activated protein kinase MAPK phosphatase 3-(<i>N</i> -maleimido-propionyl)biocytin Multiple reaction monitoring <i>N</i> -ethylmaleimide
MAPK MKP MPB MRM NEM NF-κB	Mitogen-activated protein kinase MAPK phosphatase 3-(<i>N</i> -maleimido-propionyl)biocytin Multiple reaction monitoring <i>N</i> -ethylmaleimide Nuclear factor-κB
MAPK MKP MPB MRM NEM NF-ĸB NOX	Mitogen-activated protein kinase MAPK phosphatase 3-(<i>N</i> -maleimido-propionyl)biocytin Multiple reaction monitoring <i>N</i> -ethylmaleimide Nuclear factor-ĸB NADPH oxidase
MAPK MKP MPB MRM NEM NF-ĸB NOX NRPTP	Mitogen-activated protein kinase MAPK phosphatase 3-(N-maleimido-propionyl)biocytin Multiple reaction monitoring N-ethylmaleimide Nuclear factor-κB NADPH oxidase Non-receptor PTP
MAPK MKP MPB MRM NEM NF-κB NOX NRPTP O ₂	Mitogen-activated protein kinase MAPK phosphatase 3-(<i>N</i> -maleimido-propionyl)biocytin Multiple reaction monitoring <i>N</i> -ethylmaleimide Nuclear factor-ĸB NADPH oxidase Non-receptor PTP Superoxide anion
MAPK MKP MPB MRM NEM NF-κB NOX NRPTP O ₂ oxPTP Ab	Mitogen-activated protein kinase MAPK phosphatase 3-(N-maleimido-propionyl)biocytin Multiple reaction monitoring N-ethylmaleimide Nuclear factor-ĸB NADPH oxidase Non-receptor PTP Superoxide anion Oxidized PTP active site antibody
MAPK MKP MPB MRM NEM NF-κB NOX NRPTP O ₂ - oxPTP Ab PD	Mitogen-activated protein kinase MAPK phosphatase 3-(<i>N</i> -maleimido-propionyl)biocytin Multiple reaction monitoring <i>N</i> -ethylmaleimide Nuclear factor-ĸB NADPH oxidase Non-receptor PTP Superoxide anion Oxidized PTP active site antibody Pull down
MAPK MKP MPB MRM NEM NF-ĸB NOX NRPTP O₂ ^{.−} oxPTP Ab PD PDGF	Mitogen-activated protein kinase MAPK phosphatase 3-(N-maleimido-propionyl)biocytin Multiple reaction monitoring N-ethylmaleimide Nuclear factor-κB NADPH oxidase Non-receptor PTP Superoxide anion Oxidized PTP active site antibody Pull down Platelet-derived growth factor
MAPK MKP MPB MRM NEM NF-ĸB NOX NRPTP O₂ ^{-−} oxPTP Ab PD PDGF PI3K	Mitogen-activated protein kinase MAPK phosphatase 3-(<i>N</i> -maleimido-propionyl)biocytin Multiple reaction monitoring <i>N</i> -ethylmaleimide Nuclear factor-ĸB NADPH oxidase Non-receptor PTP Superoxide anion Oxidized PTP active site antibody Pull down Platelet-derived growth factor Phosphatidylinositol 3-kinase
MAPK MKP MPB MRM NEM NF-κB NOX NRPTP O₂ ^{.−} oxPTP Ab PD PDGF PI3K PKC	Mitogen-activated protein kinase MAPK phosphatase 3-(<i>N</i> -maleimido-propionyl)biocytin Multiple reaction monitoring <i>N</i> -ethylmaleimide Nuclear factor-ĸB NADPH oxidase Non-receptor PTP Superoxide anion Oxidized PTP active site antibody Pull down Platelet-derived growth factor Phosphatidylinositol 3-kinase Protein kinase C
MAPK MKP MPB MRM NEM NF-κB NOX NRPTP O₂ ^{-−} oxPTP Ab PD PDGF PI3K PKC PROP	Mitogen-activated protein kinase MAPK phosphatase 3-(N-maleimido-propionyl)biocytin Multiple reaction monitoring N-ethylmaleimide Nuclear factor-ĸB NADPH oxidase Non-receptor PTP Superoxide anion Oxidized PTP active site antibody Pull down Platelet-derived growth factor Phosphatidylinositol 3-kinase Protein kinase C Purification of reversibly oxidized proteins
MAPK MKP MPB MRM NEM NF-κB NOX NRPTP O₂ ⁻ oxPTP Ab PD PDGF PI3K PKC PROP PRX	Mitogen-activated protein kinase MAPK phosphatase 3-(<i>N</i> -maleimido-propionyl)biocytin Multiple reaction monitoring <i>N</i> -ethylmaleimide Nuclear factor-ĸB NADPH oxidase Non-receptor PTP Superoxide anion Oxidized PTP active site antibody Pull down Platelet-derived growth factor Phosphatidylinositol 3-kinase Protein kinase C Purification of reversibly oxidized proteins Peroxiredoxin
MAPK MKP MPB MRM NEM NF-κB NOX NRPTP O₂ ⁻ oxPTP Ab PD PDGF PI3K PKC PROP PRX PTK	Mitogen-activated protein kinase MAPK phosphatase 3-(<i>N</i> -maleimido-propionyl)biocytin Multiple reaction monitoring <i>N</i> -ethylmaleimide Nuclear factor-ĸB NADPH oxidase Non-receptor PTP Superoxide anion Oxidized PTP active site antibody Pull down Platelet-derived growth factor Phosphatidylinositol 3-kinase Protein kinase C Purification of reversibly oxidized proteins Peroxiredoxin Protein-tyrosine kinase
MAPK MKP MPB MRM NEM NF-ĸB NOX NRPTP O₂ ⁻ oxPTP Ab PD PDGF PI3K PKC PROP PRX PTK PTP	Mitogen-activated protein kinase MAPK phosphatase 3-(<i>N</i> -maleimido-propionyl)biocytin Multiple reaction monitoring <i>N</i> -ethylmaleimide Nuclear factor-ĸB NADPH oxidase Non-receptor PTP Superoxide anion Oxidized PTP active site antibody Pull down Platelet-derived growth factor Phosphatidylinositol 3-kinase Protein kinase C Purification of reversibly oxidized proteins Peroxiredoxin Protein-tyrosine kinase Protein-tyrosine phosphatase
MAPK MKP MPB MRM NEM NF-κB NOX NRPTP O₂ ⁻ oxPTP Ab PD PDGF PI3K PKC PROP PRX PTK PTP PTP1B-OX	Mitogen-activated protein kinase MAPK phosphatase 3-(<i>N</i> -maleimido-propionyl)biocytin Multiple reaction monitoring <i>N</i> -ethylmaleimide Nuclear factor-ĸB NADPH oxidase Non-receptor PTP Superoxide anion Oxidized PTP active site antibody Pull down Platelet-derived growth factor Phosphatidylinositol 3-kinase Protein kinase C Purification of reversibly oxidized proteins Peroxiredoxin Protein-tyrosine kinase Protein-tyrosine phosphatase Oxidized form of PTP1B
MAPK MKP MPB MRM NEM NF-ĸB NOX NRPTP O₂ ⁻ oxPTP Ab PD PDGF PI3K PKC PROP PRX PTK PTP	Mitogen-activated protein kinase MAPK phosphatase 3-(<i>N</i> -maleimido-propionyl)biocytin Multiple reaction monitoring <i>N</i> -ethylmaleimide Nuclear factor-ĸB NADPH oxidase Non-receptor PTP Superoxide anion Oxidized PTP active site antibody Pull down Platelet-derived growth factor Phosphatidylinositol 3-kinase Protein kinase C Purification of reversibly oxidized proteins Peroxiredoxin Protein-tyrosine kinase Protein-tyrosine phosphatase

ROS	Reactive oxygen species
RTK	Receptor tyrosine kinase
S-	Thiolate
scFv	Single-chain variable fragment
SO_2H	Sulfinic acid
SO ₃ H	Sulfonic acid
SOD	Superoxide dismutase
SOH	Sulfenic acid
T2DM	Type 2 diabetes mellitus
TCA	Trichloroacetic acid
TCEP	Tris(2-carboxyethyl)phosphine
TNF-α	Tumor necrosis factor-α
TRX	Thioredoxin
VEGF	Vascular endothelial growth factor

Introduction

Tyrosine phosphorylation is one of the major regulatory mechanisms in signal transduction, and consequently, helps control many cellular processes, including cell growth, differentiation, migration, and metabolic homeostasis [1, 2]. The level of phosphotyrosine on any protein is regulated by the opposing actions of proteintyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs) [1–3]. Dysfunction of specific PTKs or PTPs is associated with several human diseases [4, 5], including metabolic disorders such as obesity, insulin resistance, and type 2 diabetes mellitus (T2DM) [6–9].

The PTP superfamily comprises 107 genes and can be subdivided into four families based on the amino acid sequence in their catalytic domains. Classes I, II, and III are cysteine-based PTPs defined by the consensus $HC(X)_5R$ motif, whereas class IV are aspartic acid-based PTPs [2, 3, 5]. The largest of these, the class I cysteinebased PTPs, containing 99 members, can be further divided into tyrosine-specific "classical PTPs" and dual-specificity PTPs (DSPs), which also can dephosphorylate Ser/Thr residues. The classical PTPs include 17 non-receptor PTPs (NRPTPs), and 21 receptor-like PTPs (RPTPs), each of which contains one, or for the RPTPs, often two, ~280 amino acid catalytic (PTP) domain(s), at least one of which contains a central, highly conserved signature motif [I/V]HCSXGXGR[S/T]G [10]. The invariant cysteinyl residue within the signature motif has a low pKa (~4.5–5.5), enabling it to reside in the thiolate (S⁻) state at physiological pH [11, 12]. This feature of the catalytic cysteine allows it to execute a nucleophilic attack on phosphotyrosine substrates [13], but also renders it highly susceptible to oxidation and inhibition by reactive oxygen species (ROS) [14, 15].

ROS have long been viewed as the toxic by-products of aerobic life and/or defense mechanisms used by phagocytic immune cells. However, studies over the past decade indicate that ROS, especially H_2O_2 , also function as intracellular second