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 The discovery and commercialization of new drugs for humans is extremely complex. 
Typically, pharmaceutical companies have approached this pharmacology challenge by 
dividing the problem into three stages. These stages in a pharmaceutical drug development 
process are the discovery of drug candidates interacting at a particular therapeutic target 
using whole-animal models, the development of these drug candidates into new chemical 
entities (NCEs) using human subjects, and the commercialization of NCEs into medicines. 
The process requires an enormous fi nancial investment since a decade or longer is typically 
required to transform a drug candidate into a medicine. In addition and probably most 
important is that the process requires a large interdisciplinary team of scientists and support 
staff working closely together with a focused management team to be successful. 

 Whole-animal  in vivo  pharmacology models, which are required by drug regulatory 
agencies, are the gold standard for biopharmaceutic, pharmacokinetic, toxicokinetic, and 
pharmacodynamic late stage drug candidate predictions; however, for many biological 
pathways and mechanisms, they do not provide a good extrapolation to humans. To 
address this issue, pharmaceutical scientists have used an  in vitro  and  in situ  surrogate 
assay reductionisms approach to understand biopharmaceutic, pharmacokinetic, toxico-
kinetic, and pharmacodynamic properties and thus to select drug candidates that have a 
high probability of becoming an NCE and eventually a medicine (Fig.  1 ). These surro-
gate assays provide more representative methods to rule out adverse effects early in the 
screening process for new drug candidates and to provide a knowledge platform for the 
correlation of whole- animal  in vivo  pharmacology results to humans. In this strategy, sur-
rogate assays have been developed to understand the biopharmaceutics of drug candi-
dates including the solid-state characteristics of the drug in physiological fl uids; that is, 
dissolution rates, dissociation constants, ionization potential, lipophilic partition coeffi -
cients, hydrophobicity, stability, solubility, formulation, and permeability. The pharmaco-
kinetics and toxicokinetics of drug candidates have been addressed by examining 
individual physiological processes such as absorption (i.e., passive, active, effl ux transport 
of drugs), distribution (i.e., tissue, protein, and cell drug binding), metabolism (i.e., 
cytochrome P450 (CYP) and UDP- glucuronosyltransferases (UGT)), and drug excretion 
mechanisms (i.e., metabolism, renal and bile). The overall pharmacodynamic predictions 
of the drug candidates have been rationalized by receptor binding and functional assays 
and safety assessment assays including CYP inhibition and induction, drug–drug interac-
tions via assessment of reactive metabolites, hERG (the human Ether-à-go-go-Related 
Gene), DNA damage, genotoxicity, and mutagenicity assays. 

 Thus, based on this reductionism approach, the pharmacology of a drug can be under-
stood and examined by studying its parts, such as biopharmaceutics, pharmacokinetics, 
toxicokinetics, and pharmacodynamics. As previously mentioned, each sub-part contained 
in Fig.  1  can be further subdivided into  in vitro  and  in situ  surrogate assays. Due to the 
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large number of drug candidates that need to be tested, drug discovery and development 
groups in the pharmaceutical industry have adopted an assay tiered approach toward select-
ing potential new drug candidates with superior drug properties from large compound 
collections; that is, funneling thousands of compounds through a series of high-throughput 
capacity assays to lower capacity assays, which reveal more and more detailed information 
on a particular sub-part of the reductionism scheme. Using this approach, “drug-like” 
characteristics in addition to effi cacy properties and good safety profi les are achieved. With 
this process in mind, the book,  Optimization in Drug Discovery: In Vitro Methods , fi rst 
published in 2004, presented a compilation of detailed experimental protocols necessary 
for setting up a variety of  in vitro  and  in situ  assays important in the selection of drug can-
didates based on the reductionism scheme outlined in Fig.  1 . Each chapter contained 
Introductions, Materials, Methods, Notes, and References sections providing scientists 
with important background information on the assay, a list of all the equipment and reagents 
necessary to carry out the assay, a step-by-step protocol, information on dealing with com-
mon and unexpected experimental problems in the assay and fi nally, a listing of important 
supplementary readings. 

 We now have compiled a second edition following the same format as the fi rst edition, 
which contains updated variations on previously reported assays and many new protocols. 
A total of 34 chapters have been contributed by experts covering a wide spectrum of subjects 

  Fig. 1    Pharmacology of a drug       
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including formulation, plasma binding, absorption and permeability, cytochrome P450 
(CYP) and UDP-glucuronosyltransferases (UGT) metabolism, CYP inhibition and induc-
tion, drug transporters, drug–drug interactions via assessment of reactive metabolites, 
genotoxicity, and chemical and photo-mutagenicity assays. 

 Since biopharmaceutic, pharmacokinetic, toxicokinetic, and pharmacodynamic are all 
interrelated, it has been long recognized that a series of  in vitro  and  in situ  assays are 
required to understand how to develop “drug-like” characteristics in new drug candidates. 
For example, biopharmaceutic parameters infl uence the transfer of a drug across cell mem-
branes, and thus affect absorption and distribution of the drug, which in turn affects phar-
macokinetic properties, which in turn affects pharmacodynamic properties and so on. 
 Chapters     1      –    3      of the new second edition provide experimental methods for preparing an 
optimal drug formulation, measuring protein binding and red blood cell binding. When 
combined with measuring p K  a , solubility, lipophilicity, and plasma protein binding tech-
niques from Chaps.   1    ,   8    , and   9     in the fi rst edition, the most fundamental physicochemical 
properties of a drug candidate can be determined. 

 Having a good absorption profi le for new drug candidates is another important require-
ment for a drug to be effective. Drug absorption is primarily governed by solubility proper-
ties of the solid neat drug, permeability, and infl ux and effl ux transport mechanisms. 
 Chapters     4      and    5      are included in the second edition to address different issues on this aspect 
using a 5-day cultured Caco-2 cell model and an  in situ  single pass perfused rat intestinal 
model. Combining these assays with absorption models described in Chaps.   2    –  5     in the fi rst 
edition, the most commonly used assays to investigate drug absorption mechanisms are 
available to research scientists. 

 Optimal metabolic stability of new drug candidates is one property that is necessary 
for a drug to have a long systemic half-life in the body and thus, lasting pharmacological 
effects on the action site. There are many different  in vitro  metabolic stability assays that 
can be used to understand the metabolism fate of new drug candidates, identify potent 
metabolites with better “drug-like” properties, and for using metabolic stability informa-
tion to guide new synthesis and generate more stable drug candidates. In  Chaps.     6      and    7      
in the second edition, the assessment of CYPs and UGTs metabolism is determined from 
incubations with either hepatocytes or microsomes.  Chapters     8      and    9      in the second edi-
tion outline assays to determine the CYP and UGT phenotyping. When these assays are 
combined with metabolic stability assays from Chaps.   10    –  12     in the fi rst edition, an arse-
nal of assays are available with clear advantages and objectives to address most metabolic 
stability questions. 

 Drug–drug interactions (DDIs) are defi ned when one drug alters the pharmacoki-
netics or pharmacodynamics of another drug. Since biopharmaceutic, pharmacokinetic, 
toxicokinetic, and pharmacodynamic are all interrelated, in many cases, one drug gen-
erally alters the metabolism or transport of a second drug. Most DDIs involve alterna-
tions in the metabolic pathways within the CYP system. There are two mechanisms 
involve for the CYPs; that is, through the process of CYP induction which increases 
drug clearance that causes a decline or loss of therapeutic effi cacy or when one drug 
inhibits metabolism of another drug. Drug-CYP induction is typically caused by activa-
tion of gene transcription via ligand- activated specifi c receptor which eventually leads 
to an increase in CYP enzyme expression. The three most commonly involved nuclear 
hormone receptors are (1) PXR, which up-regulates expression of the CYP3A, 
CYP2B, and CYP2C, (2) CAR, which also results in enhanced expression of the CYP3A, 
CYP2B, and CYP2C, and (3) AhR, which results in enhanced expression of the CYP1A 
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and 1B enzymes. Nuclear hormone receptor activation assays using stable cell lines are 
described in  Chaps.     10      –    13      in the second edition.    CYP induction can be evaluated using 
human hepatocytes as described in  Chap.     14      in the second edition or Chap.   13     in the 
fi rst edition. Each system has its own advantages and limitations, and the decision to 
use a particular approach depends upon the goal of the drug evaluation. Drug-inhibition 
of CYPs is typically caused by reversible and irreversible inhibition mechanisms. In 
Chaps.   14     and   15     in the fi rst edition, high-throughput screening assays for 13 indi-
vidual CYPs by using fl uorescent substrates and cDNA-expressed enzymes, and 6 indi-
vidual CYPs using specifi c substrate probes and human liver microsomes were described 
to measure reversible inhibition mechanisms, respectively. In the second edition, sev-
eral assays are described to measure irreversible inhibition mechanisms.  Chapters     15      and 
   16      in the second edition outline assays to measure irreversible inhibition (i.e., time-
dependent inhibition) using plated and suspendered human hepatocytes while  Chaps.  
   17      –    19      use human liver microsomes combined with novel detection methods. A sys-
temic approach is given in Chap.   16     in the fi rst edition to identify mechanism-based 
CYP inhibitors. Thus, a complete set of assays are available to address many DDI ques-
tions that occur due to alterations in the metabolic CYP system pathways. 

 The ATP binding cassette (ABC) superfamily and the solute carrier (SLC) family of 
transporters play a major role in infl uencing the pharmacokinetics and toxicokinetics of 
drugs since they are responsible for the effl ux of a plethora of therapeutic drugs, peptides, 
and endogenous compounds across biological membranes. The ABC subfamily contains 
nine transporters which have different intracellular localizations, substrate specifi cities, and 
structures. In  Chaps.     20      –    22      in the second edition,  in vitro  methods for discovering sub-
strates and inhibitors for the P-glycoprotein (P-gp/ABCB1), the breast cancer resistance 
protein (BCRP), and the multidrug resistance-associated protein 2 (MRP2; ABCC2) are 
discussed in detail, respectively. The organic anion transporting polypeptides (OATPs) are 
members of the SLC family of transporters. In  Chaps.     23      and    24      in the second edition,  in 
vitro  assays for discovering substrates and inhibitors of OATP1B1 and OATP1B3, which 
are predominantly expressed at the sinusoidal membrane of hepatocytes, and OAT1 
(SLC22A6), OAT3 (SLC22A8), and OCT2 (SLC22A2), which are primarily expressed in 
the proximal tubule epithelial cells of the kidney, are discussed in detail, respectively. When 
these assays are combined with transporter assays from Chaps.   6     and   7     in the fi rst edition, 
an arsenal of assays are available to understand the major role that transporters play in 
 infl uencing the drug’s pharmacodynamics. 

 In  Chaps.     25      –    27      in the second edition, a variety of assays are presented dealing with 
establishing good  in vitro  LC/MS/MS assays, LC/MS/MS methods for the identifi ca-
tion of metabolites in biological fl uids, and the detection of endogenous and xenobi-
otic compounds from biological fl uids using LC/MS/MS and dried blood spot 
techniques, respectively. 

 The most important clearance pathways for most drugs in humans involve drugs being 
metabolized by CYP enzymes to more polar compounds that are eventually eliminated in 
urine. However, CYP enzyme-mediated metabolism can also lead to drug bioactivation 
resulting in the formation of reactive metabolites that can potentially induce idiosyncratic 
toxicity by covalently binding to endogenous proteins and nucleic acids before being elimi-
nated from the body. Because reactive metabolites are not stable, direct detection and 
characterization of them is not technically feasible. Therefore, many assay strategies have 
been developed to study the bioactivation liability of drug candidates by using trapping 
reagents that result in the formation of stable adducts which are subsequently characterized 
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by tandem mass spectrometry. In  Chaps.     28      –    30      in the second edition, a variety of assays are 
presented dealing with drug bioactivation including the utilization of trapping reagents 
that results in the formation of stable adducts, quantitative methods for detecting reactive 
metabolites using radioactive and non-radioactive reagents, and screening assays for deter-
mining the reactivity of acyl glucuronides. When these assays are combined with reactive 
metabolites assays from Chaps.   24     and   25     in the fi rst edition, a set of assays are available 
with clear advantages and objectives to help medicinal chemists to optimize lead com-
pounds at an early stage of drug discovery. 

 The failure of NCEs in both clinical development and aftermarket launch for toxicity 
reasons is still a major concern for pharmaceutical companies. Therefore, toxicity assays 
that can provide information at an early stage of drug discovery are of major concerns for 
medicinal chemists to optimize lead compounds. Interaction of drugs with DNAs poten-
tially results in DNA damage or covalent modifi cations which may lead to genotoxicity. In 
 Chaps.     31      and    32      in the second edition, a method for detecting DNA damage at the level 
of individual eukaryotes induced by drugs using the traditional  in vitro  Comet assay (neu-
tral and alkaline) is presented and a system based in eukaryotic yeast cells that utilize an 
endogenous DNA damage-responsive gene promoter and a reporter gene fusion to assess 
the ability of the drugs to damage DNA is presented, respectively. Here the authors pro-
vide examples of these assays with detailed procedures used in their laboratory for the 
analysis and interpretation of assay data. Combining these new versions with DNA damage 
assays from Chaps.   17    –  20     in the fi rst edition, a set of assays are available to medicinal 
chemists to provide a path forward in early stage drug discovery lead optimization pro-
grams. Although the Ames test has long been used to detect mutagens and possible car-
cinogens, an improved version of the assay is given in  Chap.     33      in the second edition as 
compared to the version in Chap.   21     in the fi rst edition. Also, a new version of the mouse 
lymphoma assay (MLA) is outlined in  Chap.     34      in the second edition as compared to the 
version in Chap.   22     in the fi rst edition. In Chap.   23     in the fi rst edition, a high through  in 
vitro  hERG channel assay was presented. 

 Finally, we want to express our tremendous gratitude to all the authors that contributed 
chapters to this book. Without their time and energy, the second edition of  Optimization 
in Drug Discovery: In Vitro Methods  would not have been possible.

          Spring House ,  PA, USA         Gary     W.     Caldwell 
     Spring House, PA, USA Zhengyin     Yan      
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Chapter 1

Small Molecule Formulation Screening Strategies  
in Drug Discovery

Gary W. Caldwell, Becki Hasting, John A. Masucci, and Zhengyin Yan

Abstract

The correct formulation of new drug candidate compounds in drug discovery is mandatory since the 
majority of go/no-go decisions to advance candidates are based on in vitro ADME, receptor binding, in 
vivo pharmacokinetic and efficacy screens. For this reason, having a rapid formulation screen would be a 
valuable tool for chemists and biologists working in drug discovery. This chapter will describe a rapid solu-
bilization screen that consumes minimal amounts of compound using an HPLC detection method to 
measure the solubility of drug candidates in various formulations. Using the pKa and Log P of the com-
pound, formulation selection for drug candidates are based on a decision tree approach to guide the user 
in the selection of appropriate formulations.

Key words Drug discovery formulation, Solubilization techniques, Buffers, Cosolvents, Surfactants 
Complexants, Lipids

1 Introduction

The main goal of drug discovery research is to select drug candidates 
that are worthy of becoming preclinical candidates [1]. These pre-
clinical candidates receive more extensive and time-consuming 
development in the hope of entering clinical testing. From clinical 
testing, medicines emerge which are commercialized. This phar-
maceutical drug discovery/development process requires an enor-
mous financial investment since a decade or longer is required to 
take a drug candidate to commercialization [2]. In addition, it 
requires a large interdisciplinary team of scientists and support staff 
working seamlessly together with a focused management team.

There is a high attrition rate of drug candidates in preclinical 
and clinical development due primarily to insufficient efficacy, 
safety issues, and/or economic reasons. Efficacy and safety  
deficiencies can be related in part to poor oral absorption, distribu-
tion,  metabolism and excretion (ADME) properties, pharmacoki-
netics (PK), toxicokinetics (TK), and formulation issues [3].  

Gary W. Caldwell and Zhengyin Yan (eds.), Optimization in Drug Discovery: In Vitro Methods, Methods in Pharmacology  
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Therefore, most pharmaceutical companies today use panels of 
well- characterized ADME/PK, toxicity and formulation screens 
in parallel with in vivo efficacy and safety assays to identify drug 
candidates that have the potential of becoming preclinical & 
clinical candidates [4, 5]. In this chapter, we will describe a bio-
pharmaceutics strategy to understand formulation issues and use 
this information to create formulation screens that can be used at 
the early stages of drug discovery research to de-risk drug candi-
dates before entering preclinical development. The selections of 
appropriate formulations are based on a decision tree approach 
that is used by many pharmaceutical companies.

There are many excellent books and research papers that cover 
the theoretical [6–11] and practical [12–17] aspects of biopharma-
ceutics including drug formulation in the pharmaceutical industry 
or related industries. From a drug discovery biopharmaceutics 
point of view, physicochemical parameters of drug candidates 
including understanding the solid-state characteristics of the drug, 
solubility and permeability need to be evaluated with the highest 
degree of accuracy in the shortest amount of time using the least 
amount of drug compound (Fig. 1). Since the majority of drug 
candidates in drug discovery are solids at room temperatures, 
solid-state  characteristics typically involve the investigation of salt 
type,  polymorphism/amorphism tendencies, melting point, hygro-
scopicity, particle size distribution, specific surface area and stress 
stability. The characteristics of a drug candidate in solution involve 
dissolution rates, dissociation constants (Ksp), ionization potential 
(pKa), lipophilic partition coefficients (Log P) as a function of pH 
(Log D), hydrophobicity, and stability in solution. Molecular fac-
tors important to the permeability of a drug candidate include its 
molecular weight (MW), lipophilicity/hydrophobicity tendency, 
polar surface area (PSA) and the number of rotatable bonds 
(flexibility).

The relationship between solubility and permeability has been 
described by the Biopharmaceutical Classification System (BCS) 

Fig. 1 Factors involved in biopharmaceutics
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classification (Fig. 2) [18, 19]. While the BCS was originally proposed 
to provide a scientific basis for an FDA biowaiver for conducting 
human bioavailability and bioequivalence studies, it is also a useful 
system to understand the formulation and molecular optimization 
needs of drug candidates [20, 21]. That is, oral absorption for small 
molecule drug candidates (i.e., compounds with MW <1,000 Da) 
is a dynamic process that involves the transfer of drug molecules 
from the stomach to the gastrointestinal lumen followed by transfer 
of the drug molecule across the apical intestinal epithelium mem-
brane followed by diffusion through the cytoplasm and finally exit-
ing through the basolateral membrane into the portal blood system 
(i.e., transcellular passage). The transcellular drug flux across the 
intestinal membrane is a product of the drug concentration (i.e., 
solubility) in the luminal fluid and the rate that the drug travels 
from the apical side of the epithelium cell to the basolateral side 
(i.e., permeability). Thus, a qualitative and quantitative understand-
ing of solubility and permeability is essential in drug discovery to 
de-risk drug candidates against having poor oral absorption charac-
teristics. Consider Fig. 2, a drug is classified as Class I if it has high 
solubility and high permeability; that is, good oral absorption char-
acteristics. Hydrophobic drugs are typically classified as Class IV 
since they have low solubility and low permeability or, in other 
words, poor oral absorption characteristics. Class II and Class III 
represents drugs that have moderate oral absorption characteristics 
due to either having high or low solubility or permeability. Low and 
high cutoff values for solubility and permeability are typically based 
on animal or human physiological parameters.

Fig. 2 Factors involved in oral absorption
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By combining the biopharmaceutical profile as outlined in 
Figs. 1 and 2 with the results of early in vitro absorption, distribu-
tion, metabolism and excretion (eADME) assays [3, 4] leads to an 
integrated “drug developability” assessment of drug candidates for 
in vivo pharmacokinetic and efficacy studies (Fig. 3). Rapid and 
simple methods for classifying drug candidates according to Fig. 2 
have been developed. However, a universally agreed upon choice 
of assays for solubility and permeability that provide an adequate 
biopharmaceutics assessment of drug candidates at the drug dis-
covery stage has not been established. The primary reason for this 
situation is that drug candidate compounds, which are synthesized 
in small batches in drug discovery medicinal chemistry groups, are 
often only available in limited amounts (i.e., 5–20 mg) with vary-
ing degrees of purity (i.e., 70–95 %) from batch to batch. In addi-
tion, these candidate compounds may be available only as dimethyl 
sulfoxide (DMSO) stock solutions (i.e., 5–20 mM), which limit 
the range of assay options. As with all assays or combination of 
assays, the availability and purity of the drug candidate compound 
dictates the choice of assay used and the reliability of the data.

There have been more or less two approaches to biopharma-
ceutical profiling in a drug discovery environment: (a) using high- 
throughput screens (HTS) where drug candidate compounds are 
in DMSO stock solutions with varying degrees of purity and accu-
racy in stock concentrations; (b) using lower throughput screens 
where drug candidate compounds are initially solids with a higher 
degree of purity. Some pharmaceutical companies use one approach 
or the other while others use both approaches in a tiered strategy; 
that is, thousands of compounds are funneled through a series of 
high-throughput capacity solubility and permeability assays to 
lower capacity assays, which reveal more and more detailed infor-
mation. A typical HTS approach to solubility might be the use of a 
kinetic or semi-equilibrium solubility assay [10, 22]. Here drug 
candidate compounds typically start as an inaccurate stock concen-
tration DMSO solution that is both added directly to a buffer [23] 
or the DMSO is first evaporated and then buffer is added [24]. If 
the solubility measurement is taken in a short amount of time (i.e., 
1 h), it is referred to as a kinetic measurement [25]; if the solution 
is allowed to equilibrate for a few hours to a day, the method is 
referred to as a semi-equilibrium measurement [24]. The buffer 

Fig. 3 Integrated “drug developability” assessment of drug candidates
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used in these HTS approaches is typically a phosphate buffer at pH 
6.5 or 7.4 [26]. The parallel artificial membrane assay (PAMPA) 
has been used as a HTS approach to permeability [27, 28]. In this 
type of assay, a lipophilic microfilter is impregnated with 10 %  
wt/vol egg lecithin dissolved in n-dodecane to create a filter- 
immobilized artificial membrane. The filter-immobilized artificial 
membrane is used in a chamber apparatus to separate an aqueous 
buffer solution containing the drug candidate compound at a 
known concentration from an aqueous buffer solution containing 
no compound. The kinetics of transport by diffusion across the 
artificial membrane is measured and a permeability parameter is 
calculated. While these HTS approaches to solubility and permea-
bility provide approximate values, they are not accurate enough for 
conclusive biopharmaceutical profiling of drug candidates and 
many pharmaceutical companies have selected to stop using them. 
Balbach and Korn [29] have designed a series of lower throughput 
assays whereby the solid-state, and solubility characteristics of drug 
candidates can be evaluated in about 4-weeks using no more than 
100 mg of highly purified drug compound. In their approach, the 
following solid-state characteristics of drug candidates are mea-
sured: the dissolution rates, dissociation constants (Ksp), ioniza-
tion potential (pKa), lipophilic partition coefficients (Log P) as a 
function of pH (Log D), hydrophobicity, particle size distribution, 
polymorphism tendency, and stress stability at solid-state. The sol-
ubility and stability in pH 1.2–8.0 in fed-state simulating intestinal 
fluid (FeSSIF) and fasted-state simulating intestinal fluid (FaSSIF) 
are measured for each drug candidate. The human colorectal car-
cinoma intestinal cell line (Caco-2) is a cell culture model that is 
used to measure the permeability of drug candidates [30, 31]. 
Caco-2 cells spontaneously differentiate on microporous filter 
membranes into polarized monolayers with tight cellular junctions. 
The Caco-2 membrane is used in a chamber apparatus to separate 
an aqueous pH 6.4 buffer solution containing the drug candidate 
compound at a known concentration from an aqueous pH 7.4 buf-
fer solution initially containing no compound. Drug molecule dif-
fusion across the Caco-2 membrane, from the apical side to the 
basolateral side, with the permeability parameter being calculated 
based on the amount drug molecule reaching the basolateral side 
[32]. The Caco-2 cell model is designed to emulate transcellular 
drug flux across the intestinal membrane. The more prudent 
approach for an ideal biopharmaceutical profile of drug candidates 
would be some combination of moderate throughput solubility 
and permeability screens using the shortest amount of time (1–2 
weeks), and the least amount of drug compounds (5–10 mg) with 
a high degree of purity (90–95 %).

Once the classification of a drug candidate has been determined, 
a formulation strategy for in vitro and in vivo assays can be estab-
lished (Figs. 2 and 3). For example, in some cases, the solubility of a 
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drug can be improved, from low to high or from low to moderate, 
by optimizing its formulation. Thus, formulation strategies can be 
used to re-classify drugs; that is, change a Class II drug to a Class I 
drug. Formulation strategies for Class III or Class IV drugs may not 
improve their oral absorption characteristics since they are still com-
promised by their low membrane permeability. The best strategies 
for Class III and Class IV drugs are to make molecular design 
changes to improve their permeability based on physicochemical 
parameters outlined in Fig. 1. It should be understood that creating 
sufficient lipophilicity for membrane permeability and receptor bind-
ing, while polar enough for aqueous solubility, is not a trivial medici-
nal chemistry problem. Therefore, the correct choice of formulation 
of drug candidates in drug discovery is mandatory since many go/
no-go decisions for the advancement of candidates are based on in 
vitro ADME and in vivo pharmacokinetic screens.

There are more or less three formulation approaches that are 
either used individually or in combination with each other to enhance 
the solubility of poorly soluble drug candidate compounds (i.e., 
<10 μg/mL) in a drug discovery environment [33–35]: (a) in some 
cases, the drug formulation strategy is oriented toward the creation 
of suspensions (i.e., supersaturating solutions) using polymers 
including methyl cellulose (MC), hydroxylethyl cellulose (HEC) or 
hydroxypropyl cellulose (HPC) [36]; (b) solubilization techniques 
using enhancers to aqueous media such as, buffers, cosolvents, sur-
factants (micellar system), and complexants are used to increase 
solubility [11]; (c) lipid-based formulations including lipid solu-
tions, lipid emulsions, lipid dispersions, self-emulsifying drug deliv-
ery systems (SEDDS) and self-microemulsifying drug delivery 
systems (SMEDDS) have been investigated [37, 38]. In addition, 
rapid dissolving solid state formulations using drug particle engi-
neering to enhance drug is also applied. These formulations include 
solid dispersions, nanoparticles and co-ground mixtures [39].

It is imperative that formulations need to be in vitro and in 
vivo biocompatible and stable. That is, the primary purpose of 
enhancing the solubility of poorly soluble drug candidates is to 
acquire sufficient in vitro and in vivo exposure without interfering 
with the experimental interpretation of the data. For example, 
using suspension formulations can lead to miss interpretation of 
the experimental results since the dissolution rate of the solid is 
typically not measured. In addition, physical stability of the drug 
candidate compound is a major issue of suspension formulations 
and short-term storage. Extreme pH conditions and cosolvents 
can have biocompatibility issues due to tissue irritation and drug 
precipitation in the lumen of the gastrointestinal tract. While cyclo-
dextrins have an acceptable safety profile, there are still concerns of 
nephrotoxicity [40] especially at high acute concentration or in 
chronic studies. Some surfactants have systemic toxicity including 
histamine release and adverse cardiovascular effects and are poorly 
tolerated in chronic studies [34]. In general, nephrotoxicity is a 
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concern for lipid-based formulations. In addition, formulations 
should not mask the pharmacological effect being studied, such as, 
avoiding ethanol formulations when investigating CNS behavioral 
effects or dextrose-based formulation in diabetic animal models. 
While many formulations based on cosolvents, surfactants, and 
complexants will be acceptable for animal studies, they may not be 
acceptable in human studies.

We will focus on formulation approaches using buffers, cosol-
vents, surfactants (micellar system), and complexants that are 
either used individually or in combination with each other. Various 
solubilization techniques have been developed to alter the solubil-
ity and dissolution rates of small molecules in aqueous media [11–
16]. These techniques range from simple methods such as the 
addition of 0.9 % sodium chloride (NaCl) or 5 % dextrose (D5W) 
to water for intravenous (i.v.) dosing to more complex strategies 
based on the addition of enhancers to aqueous media such as, buf-
fers, cosolvents, surfactants (micellar system), complexants and lipids. 
A short list of common solubilizing enhancers is shown in Table 1 
[33] where the recommended percent of the enhancer is given 
along with the route of administration of the dose. These solubiliz-
ing enhancers are either used individually or in combination with 
other enhancers or other solid-state particle size reduction tech-
niques. For example, control of the pH of the aqueous media using 
buffers and particle size reduction using a mortar and pestle are the 
most common methods of enhancing the solubility of drug candi-
dates that are weak acids or bases that ionize at physiological pH 
2–9. Individual or combination formulations can be created using, 
cosolvents, surfactants, and complexants in combination with pH 
adjustments for weak electrolytes drug candidates along with solid-
state nanoparticle size reduction methods [39].

Based upon these solubilization techniques (i.e., buffers, cosol-
vents, surfactants, and complexants) several formulation decision 
tree strategies have been reported in the literature. For example, 
Lee and coworkers [41] have applied these solubilization tech-
niques to i.v. formulations for 317 drug candidates and were able to 
formulate over 80 % of the compounds. Gopinathan and coworkers 
[42] have applied these solubilization techniques to oral formula-
tions for 26 drug candidates. Using 54 formulation conditions, all 
drug candidates could be formulated. The formulation conditions 
can be based on a decision tree approach using the pKa and Log P 
of the compound to guide the user in the selection of appropriate 
formulations (Fig. 4). Following the decision tree in Fig. 4, if the 
drug candidate molecule has acceptable aqueous solubility, then an 
aqueous formulation is selected. If the aqueous solubility is unac-
ceptable and the drug candidate molecule has ionizable functional 
groups, a buffer formulation is attempted; if acceptable, a pH-based 
formulation is selected. If changing the pH is unacceptable and the 
Log P <3, then cosolvents are tried to improve the solubility. If this 
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