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Preface

Drug discovery and development is an outstandingly complex task. Technological
innovations in biology, chemistry, and medicine have provided the pharmaceu-
tical industry with a wealth of targets and molecules, with the potential to treat
diseases formerly assumed intractable to drug therapy.

The consequential increase in complexity, both in terms of the molecules and
their biological targets, combined with the increasing need to work in an efficient
and cost-constrained environment has necessitated an evolution in the role of
pharmaceutical sciences in discovery support.

Because more and more drug candidates in the pipeline pose constraints such
as poor solubility and stability, the development of an overall formulation strategy
to support in vivo studies should be considered carefully as it can reduce cycle
time and resources.

The in vivo studies performed in the preclinical setting can broadly be
classified as pharmacology, pharmacokinetic, and toxicology studies. The goals
and challenges of these studies are diverse.

Therefore, drug developers must consider many aspects when positioning a
preclinical drug candidate to succeed in first-in-human clinical trials.

Besides many other factors, a biopharmaceutical assessment of drug substances
is crucial for different phases of the development process. In an early phase,
pharmaceutical profiling should help to rate candidate molecules in terms of
their “drug-like” properties.

The first step for a new molecule moving out of the discovery phase is the
preformulation studies, or developability assessment. Indeed, preformulation
work lays the foundation for choosing the right salt and polymorph, delivery
technology, and formulation strategies.

Formulation approaches to deliver molecules in the preclinical setting include,
besides many other innovative forms, the more traditional ones like suspensions,
solutions, and amorphous dispersions administered as solids or in aqueous
vehicles. Nowadays, advanced systems such as nanosuspensions and silica
particles are also explored for this purpose.

The goals of preformulation studies are to choose the correct form of the drug
substance, evaluate its physical and chemical properties, and generate a thorough
understanding of the material’s stability under the conditions that will lead to the
development of a practical drug delivery system. Preformulation is a science that
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serves as a big umbrella for the fingerprinting of a drug substance or product both
at the early and later stages of development in pharmaceutical manufacturing.

Traditionally, pharmaceutical scientists participated in the discovery teams
only in the later phases of lead development or in the lead optimization phase,
and their role was largely to assess the development risks (developability) of the
molecule advancing to clinical dosing.

These activities, while important, have been augmented to include early dis-
covery formulation support related to building a basic understanding of biology
through in vivo target validation and demonstration of proof of mechanism.

The book in hand, edited by a very experienced pharmaceutical scientist with
many years of experience in this preformulation field, has pointed out with the
selected chapters a comprehensive view of actual research filed in this area. In
particular, the following chapters are enclosed:

• Impact of the polymorphic form of the drugs/NCEs on the preformulation and
formulation development

• Regulatory aspects for formulation design – with focus on the solid state
• Effect of residual reactive impurities in excipients on the stability of pharma-

ceutical products
• Assessing pharmacokinetics of various dosage forms at early stage
• Preclinical safety assessment for excipients; oral, IV, and topical routes
• Preclinical formulation assessment of NCEs
• Strategies for the formulation development of poorly soluble drugs via oral

route
• Physical characterization techniques to access amorphous nature
• Design and development of ocular formulations for preclinical and clinical

trials
• Insights into innovative applications of parenteral formulations
• Transdermal medical devices: formulation aspects
• Formulation of therapeutic proteins: strategies for developing oral protein

formulations

The series editors are confident that this book and the highly actual topics will
provide valuable benefits to interdisciplinary drug discovery teams working in
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1.1 Introduction

Polymorphism is a well-established phenomenon which describes the ability of
a solid-state molecular structure to be repetitively positioned in at least two dif-
ferent arrangements in three-dimensional space. These different arrangements
can result in different sets of physicochemical properties of the same molecular
structure, which can significantly affect material behavior during handling,
processing, and storing. Hence, polymorphism is crucial for many applications,
including the pharmaceutical industry. Most drugs, whether already produced
or newly discovered candidates, and usually referred to as new chemical entities
(NCEs), are found as solids under normal conditions of temperature and
pressure. Eighty-five percent of active pharmaceutical ingredients (APIs) display
pseudopolymorphism, including 50% having real polymorphism [1]. In addition,
Cruz-Cabeza et al. have listed polymorphic incidence of single-component
NCEs from the Cambridge Structure Database (CSD), European Pharmacopeia,
and data from the extensive screening procedures performed in Roche and Lilly
(Table 1.1) [2].

Consequently, polymorphism must be taken into consideration during every
processing stage starting from early steps such as preformulation and formula-
tion development, passing through processing, manufacturing, and storage, and
eventually until consumption in humans.

1.1.1 Background

Polymorphism has been discussed and investigated by many reports [3–7]. More-
over, several definitions were made depending on the researcher or the field of
research; McCrone (1965) defined polymorphism thus: “Polymorph is a solid
crystalline phase of a given compound resulting from the possibility of at least
two different arrangements of the molecule of that compound in the solid state.”
Buerger defined polymorphism of a crystal as “molecular arrangements having
different properties.” The definition by Purojit and Venugopalan states it is the
“ability of a substance to exist as two or more crystalline phases that have different

Innovative Dosage Forms: Design and Development at Early Stage,
First Edition. Edited by Yogeshwar G. Bachhav.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2020 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Table 1.1 Polymorphism incidence for single-component NCE from
several data source.

Source
Number of
single NCEs

Polymorphism
occurrence (%)

CSD 5941 37
European Pharmacopeia 2004 598 42
Roche 68 53
Lilly 68 66

arrangements or conformations of the molecules in the crystal lattice” [3]. IUPAC
defined the phase transition between polymorphs as the “reversible transition
of a solid crystalline phase at a certain temperature and pressure (the inversion
point) to another phase of the same chemical composition with a different crystal
structure” [8]. Other definitions were similar to those previously mentioned,
such as different crystal arrangements for the same chemical composition [9],
or crystal systems of same elemental structure but with unlike unit cells [4].
Desiraju has debated the experimentality of McCrone’s definition depending on
previous observations of polymorphism cases where coexistence of two poly-
morphs within the same crystal is found with no distinctive phase separation
or, in other cases, where two structures are very similar with a barely identified
difference (divergence). Desiraju has suggested setting criteria to differentiate
whether two arrangements are genuine polymorphs or belong to the same solid
phase [6].

The first reported polymorphism event was discovered with calcium carbon-
ate in 1788 by Kalporoth. In 1832, benzamide was the first organic molecule the
polymorphism of which was observed by Wöhler and Liebig [10]. The first crystal
structure of polymorphic form determined by X-ray diffraction was for resorcinol
in 1938 [11].

Although the term polymorphism seems specific, there is confusion around
designating different structures as polymorphs. Moreover, reports follow differ-
ent terminology rules depending on the fields of interest and background. To
mitigate this confusion, other terms have arisen such as pseudopolymorphism or
solvatomorphism. However, several reports do not encourage using these terms
as it may create further confusion [7, 12].

1.1.2 Types of Polymorphism

If we stick to the pure definition of polymorphism and exclude chemically non-
similar structures, there are two primary types of polymorphism, conformational
and packing polymorphism.

1.1.2.1 Conformational Polymorphism
This type of polymorphism resulted in molecules having flexible moieties which,
in turn, have rotatable bonding. The rotational movement of a single bond
in the molecular structure leads to a symmetry change and produces a new
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configuration, and, subsequently, a change in lattice packing [13]. A typical
example of conformational polymorphism is ranitidine hydrochloride, which
has two polymorphs, form 1 and form 2. Both phases are monoclinic, with the
same space group but with only a difference in the conformation and disorder of
nitroethenediamine moiety (Figure 1.1) [14]. Triamcinolone acetonide acetate,
a drug commonly used for rheumatoid arthritis, exists in three polymorphic
forms A, B, and C and a monohydrate; all these forms exhibit conformational
variations (Figure 1.1) which result in different packing (Figure 1.2) [15].

Figure 1.1 Molecular
structure of triamcinolone
polymorphs A (light blue),
B (red and green), C (orange),
and MH (blue). Source: Bučar
et al. 2015 [14] and Wang
et al. 2017 [15]. Adapted with
permission of ACS.
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Figure 1.2 Lattice packing of triamcinolone acetonide acetate polymorphs. Source: Wang
et al. 2017 [15]. Adapted with permission of ACS.



4 1 Impact of the Polymorphic Form of Drugs/NCEs on Preformulation

1.1.2.2 Packing Polymorphism
In this type, the configuration and bond orientation between two struc-
tures is identical, yet the arrangement and backing of this conformation in a
three-dimensional structure is not similar. Most of the pharmaceutical materials
have flexible moieties; thus, it is rare to observe packing polymorphism in the
field. Donepezil, which is used in the palliative treatment of Alzheimer’s disease,
has two packing polymorphs, forms K and F. The conformation similarity of the
two forms was investigated by superimposing their structure using Mercury
3.3, a 3D structure visualization and measurement program. Root-mean-square
deviation (RMSD) was then calculated and found to be insignificant (0.0624 Å)
supporting the identical confirmation (Figure 1.3) [16].

1.1.3 Thermodynamic-Based Classification of Polymorphism

Polymorphic interconversion is primarily governed by the thermodynamic state
of the material, and as per thermodynamic rules, both temperature and pressure
determine the thermodynamic stability of a certain polymorph. Polymorphism
type depends on the nature of solid-phase transition with respect to temperature
or pressure and can be divided into monotropic and enantiotropic (Figure 1.4).
Understanding and identifying the transition nature of polymorphs is crucial for
establishing optimum parameters for crystallization, screening [17], processing,
and storage of active ingredients and excipients [18, 19].

1.1.3.1 Enantiotropic Polymorphism
In enantiotropic polymorphism, one polymorph (let us call it form I) is con-
sidered the most stable at a certain temperature and pressure, at which the
other polymorph (form II) is not stable, usually called metastable. On the other
hand, the metastable form II becomes stable when reaching different temper-
ature or pressure zones or reaching transition temperature T t or pressure Pt.

(a)

(b)

(c)

Figure 1.3 Superimposed view of donepezil form F (blue) and form K (red); (a) crystallo-
graphic A axis view, (b) 90∘ angle view where an axis is horizontally positioned, the packing of
two polymorphs are translated (green double-headed arrows). However, (c) superimposed
molecular structures show identical conformations, meaning that the two phases are packing
polymorphs. Source: Part et al. 2016 [16]. Adapted with permission of American Chemical
Society.
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Figure 1.4 Phase energy versus temperature diagram for the (a) enantiotropic and
(b) monotropic interconversion for two polymorphic phases FI and FII.

Simultaneously, the stable form I becomes metastable and a phase transition
from form I to form II takes place. In some cases, a third polymorph (form III) is
found and it has a third temperature or pressure zone, above specific transition
temperature or pressure, where it becomes the most stable among others.

1.1.3.2 Monotropic Polymorphism
This type describes the case where one polymorph is considered the most sta-
ble in a wide range of temperatures reaching high transition levels, higher than
the melting point of the other forms which are all considered to be metastable
polymorphs under their melting point.

Two thermodynamic rules can be applied, which basically rely on thermal anal-
ysis to distinguish the type of polymorphism. These rules are heat of fusion and
heat of transition, and may be referred to as Burger–Ramberger rules [20]. To
describe these rules, let us propose two polymorphs form I and TFII T t form II,
where form I is more stable under normal temperature or before heating. The
heat of fusion rule states that if the polymorph with the higher melting point
has lower fusion enthalpy compared to the other form, the relationship between
the two polymorphs is enantiotropic. However, if the higher melting point form
has higher enthalpy of fusion, the polymorphism is monotropic. In the case of
the heat of transition rule, polymorphs I and II are monotropic if the transition
from form II to I is exothermic; or enantiotropic if the transition from form I
to II is endothermic. It should be noted that the interconversion is reversible in
enantiotropic systems and irreversible in monotropic polymorphism [4].

Moreover, enantiotropic polymorphs have a defined transition temperature
(Figure 1.3) and can be determined experimentally. Conversely, monotropic
systems have no observable transition temperature, yet there is a theoretical
transition point that can be calculated using the Bauer–Brandl equation (1.1):

Ttr =
ΔHT

m,I − ΔHT
m,II

ΔHT
m,I∕Tm,I − ΔHT

m,II∕Tm,II
(1.1)
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where ΔHT
m,I and ΔHT

m,II are the melting enthalpy of forms I and II, respectively,
and Tm, I and Tm, II are the melting points of forms I and II, respectively.

1.1.4 Concomitant Polymorphism

Concomitant polymorphism describes the case where more than one solid phase
displays simultaneous nucleation and crystal growth under the same conditions
and within the same batch. The reason behind concomitant polymorphism is a
struggle between kinetically and thermodynamically stable polymorphs [21]. In
other words, the kinetic and thermodynamic phases have a slight free energy dif-
ference [22]. This event may occur momentarily as the kinetically stable phase
could convert rapidly to the thermodynamically stable phase, and in most cases
the event is temporary and not observed due to the polymorphic conversion with
time, or after predisposition to water or solvent (recrystallization or dissolution)
[21]. The appearance of concomitant polymorphism can depend on the nature of
crystallization solvent, temperature, and solution concentration [23].

Concomitant polymorphism poses a challenge to preformulation scientists
when controlling the formation of a specific and desired polymorph. Several
cases of APIs which exhibit concomitant polymorphism have been reported.
A concomitant polymorphism of methoxyflavone, a nonsteroidal anabolic
flavone, was reported. Thermodynamically stable form A and kinetically form
B have a negligible difference in lattice energies and appear simultaneously
after crystallization (Figure 1.5). Form B can transform to form A under the
influence of temperature [24]. The relative nucleation and crystal growth rate
is a crucial factor in controlling polymorphic appearance; furthermore, higher
growth rate will govern the presence of the phase at the end of crystallization.
Two polymorphs of donepezil, forms I and II, can appear concomitantly. The
nucleation rate of form I is slower than that of form II, yet crystal growth is

Figure 1.5 Concomitant polymorphism after crystallization of methoxyflavone form A (bulk
shape) and form B (needle shape). Source: Gong et al. 2016 [24]. Adapted with permission of
American Chemical Society.
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higher in form I. As a result, form I appears at the beginning of the process
followed by form II, which dominates its presence at the end of the process [16].

1.1.5 Debatable Polymorphism Cases

These types are considered by many researchers as imperfect or pseudopolymor-
phism. Unlike the known variations found in basic polymorphism, the structures
under this category have variations within the chemical structure which results
in a change in crystal confirmation of packing.

1.1.5.1 Tautomeric Polymorphism or Tautomerism
Tautomerism is a simultaneous interconversion of isomeric organic compounds
resulting from proton transfer caused by the presence of strong electronegative
atoms such as O or N. Tautomerism depends on the presence of weakly acidic
functional groups such as amines, amides, ketones, and lactams. The transfor-
mations are classified as chemical reactions and primarily consist of intercon-
verting pairs such as keto-enol, oxime-nitroso, amine-imine, amide-imidic acid,
and lactam-lactim reaction (Figure 1.6).

Tautomerism transition occurs at solution or melt state, where the reaction
is at equilibrium, while at solid state, the crystallization of different tautomers
causes a unit cell structure producing polymorphs with tautomeric origin. Rani-
tidine hydrochloride form 2 is found to consist of a tautomeric mixture (50 : 50)
of enamine and nitronic acid, which takes place in the nitroethenediamine
group [26]. In addition, omeprazole tautomerism takes place in solution state
with 5-methoxy–6-methoxy transition. However, in solid state, both tautomers
exist continuously at the molecular level or as solid solution (Figure 1.7) [27].

1.1.5.2 Enantiomerism/Stereoisomerism
The concept describes structures having a similar composition of atoms and
bonding; however, they differ in the three-dimensional arrangement or orienta-
tion of the atoms. This type of structural change is also considered a chemical
reaction as it requires the deconstruction of a covalent bond to allow a new
covalent bond to form, resulting in a configuration that is the mirror image of
the first structure. Most organic molecules that comprise asymmetric or chiral
carbon exhibit this phenomenon, and therefore are named chiral.

OH N
OH

N
O

N

NH2

NH

NH

HN

O

CI

N

OH

CI

O

Keto Enol Oxim Nitroso

Amine Imine Lactam Lactim

Figure 1.6 Examples of tautomeric reactions. Source: Braga et al. 2014 [25]. Adapted with
permission of Bentham Science Publishers Ltd.
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Figure 1.7 Tautomeric forms of omeprazole; 5-methoxy tautomer in form V (right), and
6-methoxy tautomer in form I (left). Source: Bhatt et al. 2007 [27]. Adapted with permission of
Royal Society of Chemistry.

N

O

O O

O

H

N

H

N

O

OO

O

H

N

H

L D Figure 1.8 Enantiomerism of
L-thalidomide and
D-thalidomide.

Enantiomerism is a crucial property in the pharmaceutical and pharmacolog-
ical fields, as nearly 50% of the drugs are chiral and 90% of them are marketed
as racemate equimolar mixtures (containing both isomers). Moreover, different
isomers exhibit different pharmacokinetic and pharmacodynamic properties.
The advancement in chiral drug design has produced safer and more effective
candidates [28]. One of the examples of chiral or enantiomeric drugs is thalido-
mide which displays two enantiomers, (S)-thalidomide and (R)-thalidomide
(Figure 1.8). Thalidomide was used for motion sickness, but it turned out that
l-isomer is teratogenic and the therapeutic activity comes from the d-isomer.

1.1.5.3 Pseudopolymorphism
The utilization of the term pseudopolymorphism supports part of the definition
of polymorphism “having the same chemical composition” as it describes
molecules with different crystal structures caused by the presence of a secondary


