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Preface

The data explosion in the number of biological macromolecules deposited in the Protein
Data Bank (PDB) [1–3] opened the possibility to investigate the correlation of these
experimentally determined structures with biological information, which is a favorable
scenario for the application of computational systems biology approaches to develop a
mathematical model to predict ligand-binding affinity for this target protein. It is also
possible to use these three-dimensional structures to study target proteins employed in
the development and design of drugs [4–10]. The use of structural information for a target
protein makes it possible to apply virtual screening methodology to identify new hits and
guide the future development of new medicines. The primary approach to investigate
potential new hits for a target protein is the methodology of protein-ligand docking
simulation [11].

Docking is a simulation method that predicts the structure of a receptor-ligand com-
plex, in which the receptor is a protein and the ligand is a small molecule [12–16]. This
simulation is equivalent to the key-lock theory of enzyme specificity [17, 18], in which the
lock is the receptor and the key is the ligand. The goal in any protein-ligand docking
simulation is to adjust the position of the key (ligand) in the lock (ligand-binding pocket
in a protein). From the computational view, we see the protein-ligand docking as an
optimization problem, where our goal is to find the best solution (right position for the
ligand) from a set of possible locations. Protein-ligand docking often makes use of one or
more of the following computational methodologies: genetic algorithm, differential evolu-
tion, Lamarckian genetic algorithm, fast shape matching, incremental construction, distance
geometry, simulated annealing, and others [19]. Protein-ligand docking methodology can
produce several positions for the key in the lock. Therefore, we need a scoring function that
will allow evaluations of all possible positions of the key, and then a selection can be carried
out for the best location. For general reviews of the principles underlying molecular docking
programs, see references [12–16].

Also, to evaluate the ligand-binding affinity for a specific target protein, we can employ a
scoring function to compute scores that resemble ligand-binding energy functions. For both
approaches, experimental information is vital to validate protein-ligand docking simulations
and the ability of scoring functions to estimate ligand-binding affinity [20].

For protein-ligand docking simulations, it is common to start investigating if the
computational approach is capable of reproducing an experimental 3D structure for a
complex involving a protein and at least one ligand. If such structure is available, we employ
it to check whether a specific molecular docking protocol is capable of predicting the
crystallographic position for the ligand in the protein structure, a procedure called redock-
ing. The most used criteria to evaluate redocking success are the root-mean-square deviation
(RMSD) between the crystallographic position for the ligand and the pose (generated by the
computer simulation). In docking simulations, we expect that the best results generate
RMSD values less than 2.0 Å compared with crystallographic structures [12–16].

Furthermore, if we have more than one structure complexed with a ligand, we can take
the validation process further, applying the molecular docking protocol to an ensemble of
complexes structures. In this ensemble, we could have the same protein structure in complex
with different ligands. For instance, a search in the PDB for structures containing the name
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cyclin-dependent kinases (CDKs) and for which there is inhibition constant (Ki) informa-
tion returned 31 structures. These structures have water molecules close to the active ligand
and without repeated ligands (search carried out on March 20, 2019). This data set is an
ensemble of CDK structures, where each entry is a structure complexed with a different
ligand. This ensemble of structures can be employed to validate a docking strategy for a
specific protein target. Moreover, it could also be used to test scoring functions.

For validation of scoring functions, it is common to investigate the correlation between
the experimental binding affinity with scoring functions. Here we evaluated the predictive
performance using squared Pearson’s (R2) or Spearman’s (ρ) correlation coefficients [21].
Application of machine learning methods can improve the predictive performance of scoring
functions trained against data sets composed of experimentally determined structures for
which ligand-binding data is available [22–32].

The focus of the present book is on recent developments in docking simulations for
target proteins. We have chapters dealing with specific techniques or applications for dock-
ing simulations. For instance, we describe the major docking programs. Also, we explain the
scoring functions developed for the analysis of docking results and to predict ligand-binding
affinity. Due to the importance of docking simulations for the initial stages of drug discov-
ery, we believe that the present volume will appeal to those interested in molecular docking
simulation and also in the application of these methodologies for drug discovery.

Finally, I would like to express my gratitude to all authors who accepted the challenge of
bringing to a book their scientific knowledge. I want to thank Prof. John M. Walker (series
editor for the Methods in Molecular Biology series) for his patience and assistance during the
editorial process. This book wouldn’t be possible without the aid of Anna Rakovsky
(Assistant Editor at Springer Science + Business Media, LLC). Many others contributed
directly or indirectly to this book. I want to thank all my students who tested the tutorials
and protocols described here. They did a great job of helping to improve the quality of the
material described in this work. This book is a dream coming true, and it wouldn’t be
possible without the comprehension and love of my wife Carminha (Maria do Carmo
Dantas de Santana Azevedo) who understood my absence and helped me during the months
of preparation of this book. To her: “Obrigado minha linda. Este livro é para você. Te amo
muito.”

Porto Alegre, RS, Brazil Walter Filgueira de Azevedo Jr.
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5. de Ávila MB, Bitencourt-Ferreira G, de Azevedo Jr. WF (2019) Structural basis for inhibition of enoyl-
[acyl carrier protein] reductase (InhA) from mycobacterium tuberculosis. Curr Med Chem doi:
10.2174/0929867326666181203125229

viii Preface



6. Volkart PA, Bitencourt-Ferreira G, Souto AA, de Azevedo WF (2019) Cyclin-dependent kinase 2 in
cellular senescence and cancer. A structural and functional review. Curr Drug Targets doi: 10.2174/
1389450120666181204165344

7. Canduri F, Fadel V, Basso LA, Palma MS, Santos DS, de Azevedo WF Jr (2005) New catalytic
mechanism for human purine nucleoside phosphorylase. Biochem Biophys Res Commun. 327
(3):646–649

8. Canduri F, Teodoro LG, Fadel V, Lorenzi CC, Hial V, Gomes RA et al (2001) Structure of human
uropepsin at 2.45 A resolution. Acta Crystallogr D Biol Crystallogr 57(Pt 11): 1560–1570

9. de Azevedo WF Jr, Dias R (2008) Experimental approaches to evaluate the thermodynamics of
protein-drug interactions. Curr Drug Targets 9(12):1071–1076

10. Delatorre P, Rocha BA, Souza EP, Oliveira TM, Bezerra GA, Moreno FB et al (2007) Structure of a
lectin from Canavalia gladiata seeds: new structural insights for old molecules. BMC Struct Biol 7:52

11. Gschwend DA, Good AC, Kuntz ID (1996) Molecular docking towards drug discovery. J Mol
Recognit 9:175–186

12. Azevedo LS, Moraes FP, Xavier MM, Pantoja EO, Villavicencio B, Finck JA et al (2012) Recent
progress of molecular docking simulations applied to development of drugs. Curr Bioinform
7:352–365

13. DesJarlais RL, Dixon JS (1994) A shape- and chemistry-based docking method and its use in the
design of HIV-1 protease inhibitors. J Comput Aided Mol Des 8:231–242

14. de Azevedo WF Jr (2010) Structure-based virtual screening. Curr Drug Targets 11:261–263
15. de Azevedo WF Jr (2010) MolDock applied to structure-based virtual screening. Curr Drug Targets

11:327–334
16. Dias R, de Azevedo WF Jr (2008) Molecular docking algorithms. Curr Drug Targets 9:1040–1047
17. Fischer E (1890) Ueber die optischen Isomeren des Traubezuckers, der Glucons€aure und der Zuck-

ers€aure. Ber Dtsch Chem Ges 23:2611–2624
18. Fischer E (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges

27:2985–2993
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23. de Ávila MB, de Azevedo WF Jr (2018) Development of machine learning models to predict inhibition

of 3-dehydroquinate dehydratase. Chem Biol Drug Des 92:1468–1474
24. Russo S, de Azevedo WF (2019) Advances in the understanding of the Cannabinoid Receptor 1—

focusing on the inverse agonists interactions. Curr Med Chem doi: 10.2174/
0929867325666180417165247

25. Amaral MEA, Nery LR, Leite CE, de Azevedo Junior WF, Campos MM (2018) Pre-clinical effects of
metformin and aspirin on the cell lines of different breast cancer subtypes. Invest New Drugs
36:782–796

26. Levin NMB, Pintro VO, Bitencourt-Ferreira G, Mattos BB, Silvério AC, de Azevedo Jr WF (2018)
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Departamento de Bioquı́mica e Imunologia, Universidade Federal de Minas Gerais, Belo
Horizonte, MG, Brazil

TIAGO HENRIQUE � Departament of Molecular Biology, Medical School of São José do Rio
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