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Preface

Computer-aided drug design is an indispensable approach for accelerating and economizing
the costly and time-consuming process of drug discovery and development. In the recent
years, there has been a spurt in the protein and ligand structure data. This has led to a surge
in the number of databases and bioinformatics tools to manage and process the available
data. Optimal application of the vast array of available computational tools is crucial for the
discovery and design of novel drugs.

The aim of this volume on Computational Drug Discovery and Design is to provide
methods and techniques for identification of drug target, binding sites prediction, high-
throughput virtual screening, lead discovery and optimization, and prediction of pharma-
cokinetic properties using computer-based methodologies. This volume includes an over-
view of the possible techniques of the available computational tools, developing prediction
models for drug target prediction and de novo design of ligands. Structure-based drug
designing, fragment-based drug designing, molecular docking, and scoring functions for
assessing protein-ligand docking protocols have been outlined with practical examples.
Phylogenetic analysis for protein functional site prediction has been described. Virtual
screening and microarray studies for identification of potential compounds for drug discov-
ery have been described using examples. The use of molecular dynamics simulation for
virtual ligand screening, studying the protein-ligand interaction, estimating ligand binding
free energy, and calculating the thermodynamic properties of bound water has been pre-
sented with stepwise protocols. In silico screening of pharmacokinetic and toxicity proper-
ties of potential drugs has been demonstrated. The currently available algorithms and
software for protein-protein docking have been discussed with latest examples. Protocols
for quantitative structure-activity relationship have been described. Computational
approaches for the prediction of protein dynamics and protein aggregation have been
presented with relevant protocols. The important methods of enhanced molecular dynamics
have been analyzed with the help of practical procedure description. In silico analysis for
inclusion of solvent in docking studies has been described with detailed methodology. We
have also included a chapter on data analytics protocol, which is useful to summarize
independent studies on drug designing.

There is abundant literature available on bioinformatics. However, there is very limited
literature which will provide a step-by-step approach to utilize the various bioinformatics
tools. In this volume, we present a stepwise description of the protocols for the use of
bioinformatics tools in drug discovery and design. This volume will assist graduate and
postgraduate students, researchers, and scholars working in the fields of drug discovery and
design, pharmacology, bioinformatics, chemoinformatics, computational biology, medicinal
chemistry, molecular biology, and systems biology to effectively utilize computational
methodologies in the discovery and design of novel drugs.
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We would like to express our heartfelt gratitude to the series editor John Walker for his
valuable advice and support during every stage of development of this book. We thank all the
authors who contributed to this book in a timely manner and shared their practical knowl-
edge by providing stepwise methodology for the utilization of bioinformatics tools for drug
discovery and design. We hope that this volume will be helpful to both novice in the field of
bioinformatics and scientists actively engaged in drug discovery research.
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Chapter 1

Computer-Aided Drug Design: An Overview

Alan Talevi

Abstract

The term drug design describes the search of novel compounds with biological activity, on a systematic
basis. In its most common form, it involves modification of a known active scaffold or linking known active
scaffolds, although de novo drug design (i.e., from scratch) is also possible. Though highly interrelated,
identification of active scaffolds should be conceptually separated from drug design. Traditionally, the drug
design process has focused on the molecular determinants of the interactions between the drug and its
known or intended molecular target. Nevertheless, current drug design also takes into consideration other
relevant processes than influence drug efficacy and safety (e.g., bioavailability, metabolic stability, interac-
tion with antitargets).
This chapter provides an overview on possible approaches to identify active scaffolds (including in silico

approximations to approach that task) and computational methods to guide the subsequent optimization
process. It also discusses in which situations each of the overviewed techniques is more appropriate.

Key words ADMET, Anti-target, Computer-aided drug design, Ligand-based approaches, Molecular
optimization, Pharmacophore, QSAR, Structure-based approaches, Target-based approaches, Virtual
screening

1 Introduction

The term drug design describes the search of novel compounds
with biological activity, on a systematic, rational basis. Basically, it
relies on experimental information of the intendedmolecular target
or a similar biomolecule (direct drug design) and/or known bin-
ders of such target (indirect drug design). Lately, however, the idea
of using direct or indirect structural information on relevant anti-
targets has gained increasing attention to improve ligand selectivity
and reduce off-target interactions, leading to enhanced safety and
even improved pharmacokinetic profile [1–4]. In other words,
modern drug design not only relies on available molecular infor-
mation on the proposed molecular targets but also on the informa-
tion on antitargets.

In its most common form, drug design involves modification of
a known active scaffold (molecular optimization) or linking known

Mohini Gore and Umesh B. Jagtap (eds.), Computational Drug Discovery and Design, Methods in Molecular Biology, vol. 1762,
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active scaffolds, although de novo drug design (i.e., from scratch) is
of course also possible (e.g., fragment growing approximations). In
any case, a starting point or seed is required to build up or optimize
the active compound. Computer-aided methods have gained a
prominent role in both stages of modern drug discovery: searching
for starting points and making rational decisions regarding which
chemical modifications are more convenient to introduce to them.

Whereas in silico or virtual screening (VS) (i.e., using compu-
tational methods to explore vast collections of chemicals and iden-
tify novel active scaffolds) represents a rational way of finding
starting points to implement a drug design campaign, it should
be conceptually separated from drug design. Drug design is intrin-
sically and unequivocally related to finding molecular novelty, that
is, novel chemical entities. Novelty is the key, underlying drug
design. In contrast, in silico screening, which can be and usually is
coupled with drug design, typically explores the known chemical
universe in search of new active motifs. The novelty in virtual
screening is not in the chemistry of the emerging hits, but in
uncovering an unknown, hidden association between known che-
micals and a given biological activity. There are, however, many
alternatives to in silico screening to discover such association.

Besides its rationality, an attractive aspect of computer-aided
drug design is its accessibility. The technology gap between high-
and low-income countries is smaller for computer-aided drug dis-
covery than for any other process or approach in the drug discovery
cycle. This is in part because many computational resources and
applications have been made publicly available, and many compu-
tational tools used in the field run fairly smoothly in any modern
personal computer.

It should be emphasized, though, that several constrains oper-
ate on the process of drug design. First, synthetic feasibility of the
designed compounds should not be neglected [5]. A proposed
compound might not be synthetically attainable due to universal
technical reasons (lack of a given synthetic route) or to local limita-
tions (e.g., lack of access to required technology and/or reactants,
expensive synthesis). Equally important is the fact that drug discov-
ery is a challenging multiobjective problem, where numerous phar-
maceutically relevant objectives should be simultaneously
addressed [6], a problem further complicated by the fact that,
occasionally, some of those objectives might be conflicting, result-
ing in very complex solution spaces. For example, it is in general
accepted that higher selectivity leads to safer medications; however,
efficacious treatments for complex disorders might require multi-
target therapeutic agents which, by definition, are not exquisitely
selective [7]. On the other hand, as implicit in the famous Lipinski’s
rule of five and similar rules of thumb [8], a certain degree of
aqueous solubility is often pursued to assure absorption, but an
excessive solubility could be detrimental to absorption and
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biodistribution. Introduction of lipophilic substituents into ade-
quate positions of a ligand often translates into a gain in potency
[8], and certain degree of lipophilicity is also desirable in central
nervous system medications to achieve brain bioavailability
[9]. However, high lipophilicity conspires against both drug disso-
lution [10] and metabolic stability [11]. The key word in drug
design seems to be balance, which explains why multiobjective
optimization methods have gained such popularity in the field in
the past years [6, 12].

A scheme illustrating the complex interplay between some
pharmaceutically important drug properties is shown in Fig. 1.
Naturally, the scheme is an oversimplification. The nature of the
relationship between two properties might not be linear and many
counterexamples to the illustrated relationships can be found, e.g.,
while it is accepted that lipophilicity has a positive impact on cell
permeability, excessively high lipophilic drugs might become
sequestered inside the cell, with little improvement on permeability
across biological barriers (prominently, endothelial and epithelial
tissues) [13], thus determining a parabolic relationship between
lipophilicity and permeability. In general, hit identification is
potency-driven, preferring ligands with affinities in the nM range.
Whereas potent ligands are undoubtedly pursued in some cases

Fig. 1 A complex, conflicting interplay is observed between pharmaceutically relevant properties that are
taken into consideration when facing a drug design project. An inverse, possibly conflicting relationship
between two properties is indicated by a dashed line. Oppositely, a direct, favorable relationship is shown with
a continuous line
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(e.g., to treat anti-infectious diseases), the most potent ligand
might not be the first choice if trying to restore sensitive physio-
logic systems (e.g., the brain or the heart) to its normal function-
ing, since highly potent ligands will tend to impair normal
functioning and produce intolerable side effects.

This chapter overviews the computational approaches that can
be used to find novel active chemotypes and guide the subsequent
molecular optimization. General principles of rational drug design
are also tangentially visited.

2 Where to Start—The Value of Novelty

A critical question when conceiving a drug discovery project is
where to start. Obviously, any target-driven drug discovery project
today starts by choosing one (single-target agents) or more (tai-
lored multitarget agents) drug targets. What makes a good drug
target? First, it must be disease-modifying. Second, it must be
druggable, that is, it should be modulated by binding a small
molecule or, according to some authors, a biologic [14, 15]. If no
ligand is known to bind the potential target, druggability predic-
tion can be performed, which generally involves examining the
target surface for binding sites, or checking the existence of similar
proteins which have already proven to be druggable
[16–18]. Other desirable features include assayability, differential
expression throughout the body and a favorable intellectual prop-
erty situation (no competitors focused working on the same
target!) [14].

Second, if we exclude entirely de novo approximations, where
forcefully one should begin from a model of the molecular target,
any other approach requires a starting (and hopefully novel) active
scaffold (ligand) into which chemical modifications are introduced.

Leaving aside serendipitous discoveries (which are of course
useful but unsystematic), hints on potential active scaffolds of
natural origin can be found in traditional medicine. Alternatively,
one might resort to information on the natural ligand of an
intended molecular target to start a drug design project.

At this point, it is worth emphasizing that chemical structural
novelty is a key factor in the pharmaceutical sector. Novelty is a
fundamental requisite to obtain intellectual property rights on an
invention (and thus exclusivity). And although recently drug repur-
posing (finding new medical uses to already known drugs) has
raised considerable interest within the health community, it also
faces nontrivial intellectual property, regulatory, and commercial
challenges [19, 20]. Accordingly, the search of novel active chemo-
types remains a priority within the pharmaceutical industry due to
their intellectual property potential.

4 Alan Talevi



High-throughput screening (HTS) methods are among the
most frequent approaches to explore the vast universe of known
chemicals in search of novel active scaffolds. It is the modern
version of the traditional trial-and-error, “exhaustive” screening.
The rationality of HTS lies in the integration of automation and
miniaturization to the screening process, which results in efficient
exploration of the chemical space [21]. Moreover, the approach has
been greatly improved by the design of target-focused libraries [22]
and the recognition of privileged scaffolds [23] (molecular frame-
works/building blocks that are present in many biologically active
ligands against a diverse array of targets). However, it should be
mentioned that HTS requires very expensive technological plat-
forms which are not frequently found in the academic sector or
low- and middle-income countries.

In contrast, VS requires considerably more accessible technol-
ogy, with many resources being completely publicly available, from
specialized software to online chemical repositories. The term VS
refers to the application of a diversity of computational approaches
to rank digital chemical collections or libraries in order to establish
which compounds are more likely to obtain favorable results when
experimentally tested through in vitro and/or animal models. They
have been conceived to minimize the volume of experimental test-
ing and optimize the results, thus being advantageous in terms of
cost-efficiency, bioethics, and environmental impact.

VS approaches can be essentially classified in two categories:
structure-based (or direct or target-based) and ligand-based
(or indirect) approximations.

Molecular docking is prominently used for structure-based
VS. Starting from an experimental structure of the target (or, at
worst, a homolog from other species or another protein belonging
to the same family, i.e., comparative or homology modeling), the
binding event is simulated and a scoring function is used to predict,
for the most likely binding poses, the free energy difference due to
the binding of the screened compounds to the target. While rigid
(computationally undemanding) or more accurate, flexible (com-
putationally demanding) approximations are possible, docking can
be considered a computationally demanding VS approach in com-
parison with ligand-based methods. A search/sampling algorithm
is used to generate a diversity of ligand-binding orientations (rigid-
body approximations) or ligand binding orientations and confor-
mations (flexible approximations). A major obstacle for the imple-
mentation of structure-based VS approaches comes from the fact
that the structures of many validated drug targets have not yet been
solved experimentally. Another caveat of docking relates to the
empirical nature of scoring functions, which in general, depending
on the type of scoring function, include a variable degree of param-
eterization. This limits the reliability of the method, plagued by a
high incidence of false positives [24]. Since the scoring functions
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are parameterized/trained against a number of experimentally
determined binding affinities or experimental structures, the per-
formance of the docking approach tends to be highly system-
dependent and scores are, at best, weakly predictive of affinities
[25]. Results are sometimes improved when different scoring func-
tions are combined into a consensus score [25]. A persistent prob-
lem of the scoring function is the elusive entropic contribution to
free-energy [24, 26] which is ignored in many cases or very approx-
imately estimated in others. The reader should remember that,
upon the binding event, the ligand will lose translational, rota-
tional, and conformational freedom, whereas the target will mostly
lose conformational freedom. The contributions of desolvation and
water molecules mediating ligand–protein interactions (which also
impact the initial and final entropy of the system) should not be
neglected either [27, 28], but often are. Free energy simulations,
which employ molecular dynamics or Monte Carlo simulations,
provide a much more rigorous solution to binding free-energy
estimation [24, 29, 30]. The emergence of low cost parallel com-
puting is starting to relegate docking to the role of a prescreening
tool, in favor of molecular dynamics-based VS [24, 29]. See Fig. 2
for a caption of a ligand–protein interaction simulation.

Ligand-based approximations may be applied whenever a
model of the target structure is not available or to complement
structure-based approximations. Concisely, ligand-based screening
methods can be classified into similarity searches, machine learning
approaches (prominently, supervised machine learning used in the
frame of the Quantitive Structure–Activity Relationhip—QSAR—
theory) and superposition approximations [31–33]. These techni-
ques differ in a number of factors, from their requisites to their
active enrichment or scaffold hopping.

Similarity search employs molecular fingerprints obtained from
2D or 3D molecular representations, comparing database com-
pounds with one or more reference molecules in a pairwise manner.
Remarkably, only one reference molecule (e.g., the physiologic
ligand of a target protein) is required to implement a similarity-
based VS campaign. Similarity searches are frequently the only
option to explore the chemical universe for active compounds
when lacking experimental knowledge on the target or related
proteins, or when the number of known ligands is too small and
impedes using supervised machine learning approaches.

Supervised machine learning approaches operate by building
models from example inputs to make data-driven predictions on the
database compounds. Machine learning approximations require
several learning or calibration examples. The general model devel-
opment protocol involves dataset compilation and curation (see
Note 1); splitting the dataset into representative training (calibra-
tion) and test (validation) sets (whenever the size of the database
allows it) (see Note 2); choosing which molecular descriptors
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should be included into the model (see Note 3); weighing the
contribution of such descriptors to the modeled activity; validating
the model internally and externally and; checking the applicability
domain of themodel whenever a prediction ismade [34].Molecular
diversity of the training samples is critical for VS applications of
supervised machine learning: the molecular diversity of the calibra-
tion examples is directly correlated with a wide applicability domain
of the resulting model.

Fig. 2 Snapshots from a molecular dynamics simulation of the interaction
between anticonvulsant sulfamides and carbonic anhydrase. Note the
significant conformational changes induced by the ligand binding event
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Finally, superposition techniques are conformation-dependent
methods that analyze how well a compound superposes onto a
reference compound or, more frequently, how well they fit a fuzzy
model (pharmacophore) in which functional groups are stripped
off their exact chemical nature to become generic chemical proper-
ties relevant for the ligand–target interaction (hydrophobic points,
H-bond donor, H-bond acceptors, charged groups, etc.). The
pharmacophore is thus a geometric, 3D arrangement of generic,
abstract features which are essential for the drug–target recognition
event. Some approaches that have been used for pharmacophore
generation can also include negative features (features that conspire
against biological activity) in the model. In contrast with docking,
which considers the key features required for drug–target interac-
tion in a direct manner, superposition techniques do the same in an
indirect way, by inferring such features from known ligands. Super-
imposition methods are, by far, the most visual, easy to interpret
and physicochemically intuitive ligand-based approaches. The pro-
cess is facilitated if the modeler counts on an active rigid analog
with limited conformational freedom. Usually, though, one may
resort to flexible alignment (superimposition) of a set of flexible
ligands, either generating a set of low energy conformations and
considering each conformer of each ligand in turn or exploring
conformational space on the fly, i.e., the conformational search is
performed simultaneously to the pattern identification stage (align-
ment stage) [35, 36]. It should be noted that, when applying
pharmacophore-based VS, orientation sampling is probably as
important as conformational sampling, since chemical diversity is
expected in the screened chemical library and defining an orienta-
tion criteria is thus nontrivial. It should also be mentioned that
structure-based pharmacophores are also possible [37].

Which in silico screening method should be chosen to start a
rational drug discovery project? Of course, as indicated in the
preceding paragraphs, the selection is restricted by the available
data (structure-based approaches require experimentally solved
3D structure of the target or similar target; supervised machine
learning requires a minimum of calibration samples, and so on.).
But even if the technical requirements to implement any approach
were met. . .is there a single approach that universally, consistently
outperforms the remaining ones? Is there a method of first choice?

As a rule, the more complex approximations (structure-based
approaches and, then, pharmacophore superposition) are the most
advantageous in terms of scaffold hopping (they retrieve more
molecular diverse hits), while simpler approaches are computation-
ally more efficient while simultaneously achieving good active
enrichment metrics [38]. Furthermore, structure-based approaches
and pharmacophores explain, in an explicit or implicit way, respec-
tively, the molecular basis of ligand–target interaction. They are
visual and easily interpretable, two points which are not covered
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by other approximations. These advantages should not be under-
estimated. Not only are they important from an epistemological
perspective (they provide results and explanations), they also pro-
vide a visual support to their predictions and visual support is
extremely important to communicate results to nonspecialized
audiences (e.g., scientific collaborators from other fields, investors).
Having said so, one should have in mind that the efficacy of a given
technique is highly dependent on the chosen molecular target.
Regarding VS approaches, a gold standard has not been found
yet, a fact that explains the need of rigorous in silico validation
before moving to VS and subsequent wet experiments. Some vali-
dation approaches are briefly discussed (see Note 4).

Frequently, different techniques are complementary in nature
[39] and the simplest methods have surprisingly good outcomes in
some cases. This allows the definition of hybrid protocols combin-
ing simple and complex approximations either serially or in parallel
[40] (Fig. 3); serial combined approaches tend to provide robust
solutions.

A final and important step to prune the hits emerging from
systematic screening involves filtering out promiscuous com-
pounds, unspecific inhibitors and reactive compounds, such as
PAINS and REOS filters [41, 42].

Fig. 3 While in parallel VS hybrid methods result in combination of complemen-
tary sets of hits (thus retrieving more chemical diversity), serial hybrid methods
tend to produce more robust, consensus hit sets
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3 The Actual Design: Hit to Lead and Beyond

Let us assume that one or more hits have emerged from systematic
(wet or in silico) screening (or, maybe, that a starting active scaffold
has been obtained from natural ligands of the intended target or
from traditional medicine or from a serendipitous observation).
The actual drug design process starts here, and involves introdu-
cing changes to the active scaffold in order to optimize the interac-
tion with the target thus gaining potency, and/or to provide
selectivity in relation to nontargeted similar proteins (e.g., nontar-
geted isoforms). Today, the optimization of other pharmaceutically
relevant properties (e.g., chemical and biological stability) is also
considered. Hits emerging from VS are usually active in the μM
range (or, at best, in the high nM range) [43, 44]. A similar scenario
has been observed in HTS campaigns [45]. Molecular optimization
will usually decrease the dissociation (affinity) constant in about
two orders of magnitude. From the 1990s onward, however, the
pharmaceutical sector has understood that potency is not the only
property to take into consideration, a realization that was expressed
in the adoption of the “fail early, fail cheap” philosophy with the
inclusion of in silico in vitro absorption, distribution, metabolism,
excretion, and toxicity (ADMET) filters in the early stages of drug
discovery [46, 47] and the emergent interest in low affinity ligands
within certain therapeutic categories [48]. Classical optimization
strategies include extension, ring variations, ring expansion or con-
traction, bioisosteric replacement and rigidification. In the case of
(complex) active compounds of natural origin, simplification is also
explored.

With the exception of similarity methods, which are of no use
for optimization purposes, all the other approaches described in
Subheading 2 of the chapter can be used to guide optimization. If
the structure of the intended target has been solved, docking and
structure-based pharmacophores are the first choices to guide opti-
mization. They are the only methods that allow exploring, in a
rational manner and without the need of trial and error learning,
interactions with regions of the target that have not been exploited
with previously known ligands. Among ligand-based approxima-
tions, pharmacophore superposition is the friendliest approach to
molecular optimization. However, the QSAR approach is also suit-
able for design purposes, guiding the substitutions made onto the
active scaffold; moreover, the inverse QSAR approach (in which,
from molecular descriptors, new molecules having the desired
activity could be “recovered”) are also suitable for design of de
novo molecules [49–51]. It should be noted that, while classifica-
tion models are useful for VS campaigns, since they can compensate
model errors related to data compiled from different laboratories,
outlier compounds and mislabeled data points [34], when the
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QSAR model is meant for optimization purposes regression mod-
eling can be particularly useful, since the training dataset is usually
synthesized inhouse and experimentally tested in the same labora-
tory. Furthermore, whereas VS applications require chemically
diverse datasets, QSAR models used in optimization campaigns
would typically display a narrower applicability domain, since they
are obtained from a set of compounds with a common scaffold
which has been modified to explore the surrounding chemical
space.

4 In Silico ADMET Filters and Antitargets

From the 1990s onward, the search of more potent derivatives of
an active scaffold has been balanced with early detection of poten-
tial bioavailability and toxicity issues. As a result, in silico and
in vitro ADME filters are now fully integrated in the early stages
of drug discovery and development. Such strategy has resulted in an
impressive reduction of project termination rates related to ADME
issues [46, 47] though pharmacokinetics and bioavailability still
represent a significant cause for attrition at Phase I clinical trials
[52–54]. Toxicology failures (both at preclinical and clinical stage)
represent one of the key challenges still facing the pharmaceutical
industry [52–54].

The earliest ADME filters involved simple rules of thumb
derived from distribution analysis of physicochemical properties
of drugs having or lacking a desired behavior. Lipinski’s rule of
five at Pfizer pioneered this kind of analysis [8], which was later
followed by other similar rules related to the prediction of drug
bioavailability, such as Veber’s [55]. This trend was also explored in
relation to toxicity, e.g., the “3/75” rule [56]. Later, however,
arguments have been raised against rigid implementations of
these kinds of rules [57], and the possible advantages of moving
beyond the “rule of five” chemical space for difficult targets have
been emphasized [58, 59], as well as notable systematic exceptions
to this rule (e.g., natural products) [59, 60]. Lipinski himself, when
first reporting his famous rule, recognized that acceptable drug
absorption depended on the triad “potency–permeability–solubi-
lity”, and that his computational alert did not factor in drug
potency (a point of his analysis that is often overlooked) [8]; he
also recognized the potential contribution of drug formulation to
oral bioavailability, a contribution that can be addressed today
through in silico tools [61].

It has been suggested that control of physicochemical proper-
ties is unlikely to have a significant effect on attrition rates; more-
over, if a safety issue results from the primary drug target
mechanism or from specific off-target interactions (e.g., hERG
channel blockade), it is unlikely that physicochemical properties
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would be predictive of toxicity [52]. A similar point could be made
regarding prediction of bioavailability issues linked to specific inter-
actions with enzymes (e.g., CYP450 enzymes) or transporters
(e.g., ABC efflux transporters). In these cases, using previously
discussed computational tools (docking, pharmacophores, QSAR
models) in connection with the antitarget concept could be more
advantageous.

The use of more complex (yet simple) multiparameter algo-
rithms that address the interplay of physicochemical properties
could also prove rewarding [12].

5 Final Remarks

We have presented an overview of the most relevant methods used
in computer-aided drug design. While human beings (and scientist
in particular) are naturally inclined to a way of thinking based on
pattern recognition and identification of generalities, successful
drug design comprises such a complex interplay between a number
of objectives (e.g., efficacy, safety, and desired physicochemical
properties) that the drug designer should beware oversimplification
and dogmatic principles, which may lead not only to bad decisions,
but also to loss of opportunities and novelty.

As the name itself suggests, drug design per se resembles an
attentive artisan craftwork. The screening stages and the application
of ADMET-related computational alerts, in contrast, involve more
automated decisions, compatible with the idea of efficient explora-
tion and fast pruning of a vast chemical universe. Fast pruning
usually leads, however, to an over reduced chemical space. Flexible
decision rules should be preferred over rigid ones, since they
expand the borders of the more frequently explored regions of
the chemical universe.

The decision to stop a drug candidate for toxicological or
pharmacokinetic reasons involves complex and subtle judgements
that should take into consideration cost–benefit analysis and avail-
able options to compensate the predicted difficulties (e.g, formula-
tion alternatives, targeted-drug carriers). It is advised to be careful
with excessive automation, to favor critical case-by-case decision-
making as much as possible and to consider difficulties in a multi-
disciplinary way, including contributions of different professionals
involved in the drug discovery cycle at each stage of the drug
project.

6 Notes

1. Compiling and curating a dataset is one of the most important
steps in supervised machine learning. The dataset will be used
to infer the model and to validate it. The inferred model will
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only be as good as the biological or biochemical data from
which it is derived: the unknown noise in the training data is
one of the factors that influence the generalization error. It is
accepted that biochemical data (e.g., dissociation constants) are
cleaner than biological data. The activities of all the training
instances should be of comparable quality. Ideally, they should
have been measured in the same laboratory under the same
conditions, so that variability in the measured biological or
biochemical activity only (or mostly) reflects treatment varia-
bility. This requirement is often accomplished when building
models for optimization purposes from a series of inhouse
synthesized compounds, but rarely met when building models
for VS purposes (in this case, the need of a large and diverse
training set frequently leads to compile experimental data from
different laboratories).

Data distribution should be studied in order to avoid
poorly populated regions within the studied chemical space as
well as highly populated narrow intervals: extrapolation is for-
bidden but intrapolation in regions which are poorly populated
by training examples is also risky. The dependent variable
should span at least two or three orders of magnitude, from
the least to the most active compound, and it should be
(if possible) uniformly distributed across the range of activity
(rarely achieved). The inclusion of leverage points (outliers,
i.e., data exceptions represented by extreme values in the
descriptor or response space which is not due to measurement
or labelling errors) is discouraged.

Conscientiously curate the dataset: read data sources care-
fully and remove training examples extracted from inadequate
or dubious experimental protocols. There are currently several
databases that compile experimental data for small molecules
(e.g., ChEMBL); such resources are manually curated from
primary scientific literature. ChEMBL developers flag activity
values that are outside a range typical for a given activity type,
possibly missing data and suspected or confirmed author
errors. Classification models can be used to alleviate the influ-
ence of data heterogeneity; they are useful for VS applications
but less practical for models intended for optimization
purposes.

Not only experimental data but also chemical structures
should be curated. Do not underestimate the importance of
this step: it is quite common that medicinal chemistry papers
and chemical databases include structural mistakes. Remove
those data points that are usually not handled by conventional
cheminfomatic techniques: inorganic and some organometallic
compounds, counterions, salts and mixtures (there exist molec-
ular descriptors, however, that can be used to characterize ionic
species if the dataset molecules are charged at the biologically
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