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Foreword

This substantial compilation of manuscripts provides an important and comprehen-
sive collection of papers by world-renowned scientists covering the literature on 
alternatives for dermal toxicity testing.

Historically, dermal testing was initially thought of as one of the more difficult 
in vitro methods. The physiological basis of dermal toxicity is very complex and 
involves many different cell types and pathways for sensitivity, irritation, and corro-
sion. Yet surprisingly, dermal toxicity is one of the earliest areas of in vitro toxicity 
to provide useful human cell-based systems.

Initial toxicity assay developments were seen as simple (quick) approaches to 
commercial human skin systems that were being developed for treating burn 
patients. A few companies learned the hard way that in vitro toxicology was no 
simpler than using those cultured skin systems as skin grafts. After several years, 
they all went out of business. Several scientists who understood the complexity, 
however, focused on developing human skin models for the sole purpose of in vitro 
toxicity. These models, simple at first, became more standardized and more com-
plex and provided a better matrix for testing.

The Johns Hopkins Center for Alternatives to Animal Testing (CAAT) was founded 
in 1981 specifically to develop in vitro methods for hazard evaluation and safety test-
ing of cosmetic products (see [1]). One aspect of the research program, identified as 
Program Projects, was the coordination of several projects within a selected topic to 
develop a better understanding of mechanisms responsible for a toxic event.

 The Avon Program Project

Avon funded CAAT from the first grant (from the Cosmetic, Toiletry, and Fragrance 
Association (CTFA)) and then continued independently funding the center. After a 
few years, Avon, in the person of Yale Gressel, asked if CAAT could take on a larger 
project—developing an in vitro assay to predict skin sensitization.

We approached the problem by inviting about eight laboratories working on vari-
ous aspects of skin biology to present to their “competitors and colleagues.” They 
were asked how they would approach the issue and what aspects they saw as the 
most important. At first, the discomfort was obvious: “Will what I share be used by 
my competitors?” As the day progressed, however, it became clear that each lab 
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would be focusing on different aspects of the problem. We invited five individuals 
to submit grant applications with the provision that, if approved, up to three applica-
tions would be funded.

The funded project teams would get together twice yearly in a roll-up-your-sleeves 
discussion about their progress and how to proceed. The attendees at these “lab” meet-
ings were the participants along with other experts from Hopkins, the government, 
and Avon. And they were wonderful meetings. At almost every meeting a person from 
one of the sectors would ask a question and the response from another sector would 
be, “That is a great question—I would have never thought of it.” In essence, the cor-
porate and government scientists wanted to know how to use the information gener-
ated and the academics wanted to better understand the mechanisms involved.

The project lasted nine years, and the science it generated formed the basis of our 
understanding of mechanisms of skin sensitization. This project was summarized 
by Craig Elmets [2].

“By all measures it was a very successful project, characterized by identification 
of many of the interleukins, cytokine pathways, and the recognition that keratino-
cytes play an important role in sensitization.” (As quoted from [1])

 Toxicity Testing in the Twenty-First Century

The NAS report, Toxicity Testing in the 21st Century: A Vision and a Strategy, was 
a seminal moment in the development of in vitro assays [3]. This report had under-
gone external review and I was one of the external reviewers.

The major conclusions of the study included the following:

 1. Animal studies are time-consuming and expensive.
 2. There is a lack of predictability of animal studies as they relate to humans.
 3. We should be using human cells in culture.
 4. We should explore systems biology and pathways and mechanisms of toxicity.

This publication was, and is, a major advancement in in vitro toxicology, alterna-
tives, and risk assessment. It created major new research approaches and opportuni-
ties. It provided an important source of encouragement for the development of 
alternative toxicological methodologies and stimulated what is now recognized as a 
scientific revolution.

 Human Cell in Culture

As the in vitro toxicology field began to develop, animal cells, mainly from rats and 
mice, were being used, as human cell culture was essentially not available. When 
CAAT was founded, Leon Golberg (1982) emphasized that human cell cultures would 
be the key to developing in vitro methods for risk assessment that would be accepted 
for decision making. How correct he was. As a result of this realization, CAAT, from 
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the very first round of grants, funded research to advance the science of human cell 
culture. A number of contributors to this volume were funded by CAAT. A summary 
of many aspects of human cell culture can be found in Bressler et al. [4].

 Skin

The skin represents the largest organ of the human body. The ability to understand 
how drugs and chemicals penetrate the skin and how they may adversely affect the 
health of skin is important for protecting consumers from undesired effects. Excised 
human skin sections from cadavers have been used extensively to understand the 
dermal penetration of drugs and cosmetics. And for more than 30 years, the scien-
tific community has devoted much time developing monolayer cultures of cells and 
more recently has focused on 3D reconstituted human skin models.

Alternatives for Dermal Toxicity Testing editors Chantra Eskes, Erwin van Vliet, 
and Howard Maibach have compiled an excellent, important, and comprehensive 
book that is necessary for anyone in the field—from beginner students to highly 
acclaimed senior researchers.

The book contains six sections: irritation, corrosion, sensitization, UV-induced 
effects, genotoxicity, and a concluding section with three papers exploring inte-
grated strategies and high-throughput systems.

I believe that every commercial model is covered, in depth, with adequate infor-
mation to assist one in identifying the best model for their studies. The volume is an 
invaluable resource.

The editors should be congratulated for identifying essentially most, if not all, of 
the contributors in this field and synthesizing a highly readable and important refer-
ence publication.

Alan M. Goldberg, PhD
Center for Alternatives to Animal Testing

Departmental of Environmental Health and Engineering
Bloomberg School of Public Health, Global Food Ethics

Johns Hopkins University
Baltimore, MD 21205, USA
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Preface   

Dermal toxicity is one of the pioneer areas in which alternative methods to the use 
of animal testing have gained scientific, industrial, and regulatory acceptance. Over 
two decades have passed since the publication in 1994 of Mary Ann Liebert’s book 
on In Vitro Skin Toxicology (Rougier A., Goldberg A.M., and Maibach H.I. Eds.). 
Since then, several alternative methods for dermal toxicity have been optimized, 
scientifically validated, and gained international regulatory acceptance. In some 
cases it is already possible to fully replace the regulatory animal test, such as for 
skin irritation and corrosion, by using, e.g., Integrated Approaches to Testing and 
Assessment (IATAs). In other cases, such as for skin sensitization, it is possible to 
partially replace the regulatory animal test with in chemico and in vitro test methods 
that address key events of the adverse outcome pathway (AOP) leading to allergic 
contact dermatitis. Furthermore, the use of human in vitro models in the area of skin 
irritation and the use of defined approaches (DA) for skin sensitization testing (i.e., 
which combine, e.g., in chemico and in vitro test methods) have shown comparable 
if not better correlations to human data than the regulatory animal tests.

In view of the considerable progress made, this book aims at providing up-to-- 
date comprehensive information on the most advanced alternative test methods 
available for the assessment of dermal toxicity with particular emphasis on the areas 
of skin irritation, skin corrosion, skin sensitization, UV-induced effects, and skin 
genotoxicity. For each test method, a description of the currently available protocol 
is given including highlights of its critical steps, applicability, limitations, potential 
role, and use within testing approaches and correlation with the traditional animal 
data and, when available, also human data. Furthermore, the book addresses explor-
atory areas that may be of relevance for the future of dermal toxicity safety testing, 
including the use of human progenitor skin cells, integration of in vitro and clinical 
methodologies, and application of high-throughput screening techniques.

The editors warmly acknowledge all authors that contributed to make the project 
of this book a reality and Springer for their great support and belief in the project. 
Albeit attempting to be comprehensive, new and/or additional methods and authors 
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that could not be involved in this book will be invited to contribute to the next edi-
tions to come, for which any comments and/or suggestions are welcomed.

Magliaso, Switzerland Chantra Eskes 
Houten, The Netherlands  Erwin van Vliet 
San Francisco, CA, USA  Howard Maibach
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1Overview on Current Status 
of Alternative Methods and Testing 
Approaches for Skin Irritation Testing

Chantra Eskes and Markus Hofmann

1.1  Background

If the animal in vivo study has been originally used to classify for potential skin cor-
rosion and skin irritation hazard effects (such as the OECD Test Guideline 404 [1] 
originally adopted in 1981), the area of skin corrosion and irritation represents one 
of the pioneering areas in which a number of alternative methods have been vali-
dated and internationally adopted since 2000 (and 2004) for skin corrosion and 
since 2009 (and 2010) for skin irritation by the EU (and by the OECD 
respectively).

In order to replace or minimize to the extent possible the use of in vivo animal test-
ing, current internationally agreed approaches (UN, OECD and EU) recommend the 
use of integrated approaches and strategies for the assessment of skin irritation and 
corrosion effects, such as the Integrated Approach for Testing and Assessment (IATA) 
endorsed by OECD member countries [2]. These approaches recommend considering 
all existing information sources, and conducting a weigh-of-evidence evaluation before 
performing prospective testing first on alternative test methods, and only as a last resort 
on animals. Depending upon regulatory requirements, some geographical regions 
already allow the use of alternative methods for skin irritation and corrosion testing as 
full replacement of the animal testing, as it is the case in the European Union (EU).

In the EU, a number of legislations indeed call for the use of alternative methods 
to animal toxicological testing. The EU Cosmetics Regulation [3] prohibits animal 
testing of finished products since 2004 and of cosmetic ingredients since 2009, rein-
forced by a marketing ban of cosmetics finished products tested on animals since 
2004 and for cosmetics containing ingredients tested on animals since 2013 [3]. 
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Furthermore, the EU regulation on the Registration, Evaluation, Authorisation and 
Restriction of Chemicals (REACH; [4, 5]), requires that in vitro testing is conducted 
by OECD member countries for skin corrosion and irritation unless the test chemical 
falls outside of the applicability domain of the available in vitro methods or the results 
obtained from such methods do not allow a conclusive decision on (non-)classifica-
tion and risk assessment. The EU regulation on Classification, Labelling and 
Packaging of substances and mixtures (EU CLP; [6, 7]), which implemented the 
Globally Harmonized System for classification and labelling of substances and mix-
tures in the European Union, encourages the use of tiered weight-of-evidence evalua-
tions, and makes use of information from in vitro testing in its tiered classification 
approach for skin corrosion and irritation. Finally, the EU Directive on the protection 
of animals used for scientific purposes [8] states that (article 13(1)) “Member States 
shall ensure that a procedure is not carried out if another method or testing strategy 
for obtaining the result sought, not entailing the use of a live animal, is recognised 
under the legislation of the Union”.

1.2  Classification for Skin Irritation Hazard

The UN has published in 2003 the Globally Harmonized System (GHS) for classi-
fication and labelling to favour harmonized classification of hazards across the 
world, which is now in its 6th revision [9]. This classification system was still then 
based on the traditional in vivo animal test adopted within the OECD Test Guideline 
404 [1] originally developed by Draize and co-workers [10]. Since validation stud-
ies on alternative methods for skin irritation testing have used the animal test as the 
reference test method, a description of this classification system is given here.

Skin irritation is defined in vivo as “the production of reversible damage of the 
skin following the application of a test substance for up to 4 hours” [2, 7, 9]. One 
main irritant category is defined by the UN GHS classification system, i.e., Category 
2, as described in Table 1.1. However, an additional optional category for mild irri-
tants (i.e., Category 3) is also defined for those authorities wanting to have more 
than one skin irritant category.

In the European Union, the UN GHS classification and labelling system has been 
implemented by means of the EU CLP regulation (1272/2008; [6, 7]). It replaced 
from December 2010 the EU Dangerous Substances Directive establishing the for-
mer EU classification system for substances (EU DSD; [11]), and from 2015 the EU 
Dangerous Preparation Directive establishing classification criteria for mixtures 
(EU DPD; [12]). The EU CLP is equivalent to the UN GHS as shown in Table 1.1, 
but makes use of a single category (Category 2) only, whereas the mild irritant cat-
egory 3 is not required. Substances falling in the UN GHS category 3, require No 
Category classification under the EU CLP.

Figure 1.1 provides with a comparison of the criteria applied for skin irritation 
classification according to the UN GHS, EU CLP and EU DSD classification sys-
tems for skin irritation [6, 7, 9, 11]. In addition to the cut-offs shown in Fig. 1.1, the 
three classification systems also consider a substance irritant if effects persist at the 
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end of the observation period (day14) in two or more test animals, and other effects 
such as hyperplasia, scaling, discoloration, fissures, scabs and alopecia.

1.3  Integrated Approaches for Testing and Assessment 
(IATA)

Current internationally agreed approaches (OECD, EU and UN) recommend the 
use of integrated approaches and strategies for the assessment of skin irritation and 
corrosion effects. In particular, the OECD published in 2014 the first Guidance 
Document (GD No. 203) on an IATA adopted at an international level by OECD 
member countries for skin corrosion and irritation [2]. The IATA aims at hazard 
identification of the skin corrosion or irritation potential of chemicals (or the absence 
thereof) and to provide adequate information for classification and labelling accord-
ing to the UN GHS classification system.

Table 1.1 UN GHS skin irritation category(ies)

Categories Criteriaa

Irritant  
Category 2

(1) Mean value of ≥ 2.3 and ≤ 4.0 for erythema/eschar or for oedema in at 
least 2 of 3 tested animals from gradings at 24, 48 and 72 h after patch 
removal or, if reactions are delayed, from grades on three consecutive days 
after the onset of skin reactions; or

(2) Inflammation that persists to the end of the observation period normally 
14 days in at least two animals, particularly taking into account alopecia 
(limited area), hyperkeratosis, hyperplasia, and scaling; or

(3) In some cases where there is pronounced variability of response among 
animals, with very definite positive effects related to chemical exposure in a 
single animal but less than the criteria above

Optional 
mild irritant  
Category 3

Mean value of ≥1.5 and < 2.3 for erythema/eschar or for oedema from 
gradings in at least 2 of 3 tested animals from grades at 24, 48 and 72 h or, if 
reactions are delayed, from grades on three consecutive days after the onset 
of skin reactions (when not included in the irritant category above)

aGrading criteria are understood as described in the OECD Test Guideline 404 [1]

EU DSD

EU CLP

No Classification

No Classification Category 2

UN GHS No Classification Category 3* Category 2

0 1.5 2 2.3 4

Erythema / Oedema in vivo Draize score 

R38

Fig. 1.1 Erythema/oedema Draize score ranges defining EU DSD, EU CLP and UN GHS classi-
fication of skin irritation. Scores refer to the mean value from gradings at 24, 48 and 72 h observed 
in at least two out of three animals (or as required in case of more than three animals). *Category 
3 is an optional category available for those authorities wanting to have more than one skin irritant 
category
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The IATA is divided in three major parts including as Part 1 the use of existing 
information, physico-chemical properties and non-testing methods, as Part 2 a 
weigh-of-evidence evaluation, and as Part 3 the conduct of prospective testing. The 
possible individual information sources integrating the IATA have been grouped 
into eight Modules according to the type of information provided, which can be 
used in one or more Parts of the IATA as described in Table 1.2. The strengths and 
limitations as well as the potential role and contribution of each Module and their 
individual components in the IATA for skin irritation and corrosion are described 
within the OECD GD 203 [2] with the purpose of minimizing the use of animals to 
the extent possible, whilst ensuring human safety. Furthermore, a schematic outline 
of the IATA for skin corrosion and irritation classification and labelling is presented 
in Fig. 1.2.

Table 1.2 Parts and modules of the IATA for skin corrosion and irritation (extract from [2])

Parta Module Data
Part 1 (existing 
information, physico- 
chemical properties and 
non-testing methods)

1 Existing human data
–  Non-standardised human data on local skin effects
– Human Patch Test (HPT)

2 In vivo skin irritation and corrosion data (OECD TG 404)
3 In vitro skin corrosion data

– OECD TG 430
– OECD TG 431
– OECD TG 435

4 In vivo skin irritation data (OECD TG 439)
5 Other in vivo and in vitro data

–  In vitro skin corrosion or irritation data from test 
methods not adopted by the OECD

– Other in vivo and in vitro dermal toxicity data
6 Physico-chemical properties (existing, measured or 

estimated)
such as pH, acid/alkaline reserve

7 Non-testing methods
 for substances: (Q)SAR, read-across, grouping and 
prediction systems;
 for mixtures: bridging principles and theory of additivity

Part 2 (WoE analysis) 8 Phases and elements of Weight of evidence (WoE) 
approaches

Part 3 (additional testing) (5b) Other in vivo and/or in vitro dermal toxicity testing (if 
required by other regulations)

(3) In vitro skin corrosion testing
(4) In vitro skin irritation testing
(5a) In vitro skin irritation testing in test method not adopted 

by the OECD
(2) In vivo skin irritation and corrosion testing

aWhile the three Parts are considered as a sequence, the order of Modules 1–7 of Part 1 might be 
arranged as appropriate
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While the three Parts are considered as a sequence, Modules 1–7 of Part 1 might 
be arranged as appropriate. Ideally, the IATA should be universally applicable to 
ensure human safety, whilst making maximum use of existing data, being resource 
efficient and minimising or eliminating the requirement for animal experiments.

Under Part 1 of the IATA (existing, physico-chemical & non-testing data), exist-
ing and available information is retrieved from literature and databases and other 
reliable sources for Modules 1–5, while under Module 6 on physico-chemical prop-
erties, primarily the pH and the acidic/alkaline reserve are considered, and under 
Module 7 non-testing methods are considered. Whilst the retrieval of existing infor-
mation for Modules 1–5a directly relate to skin corrosion and irritation, Module 5b 
requires a different search for other in vitro and in vivo dermal toxicity studies.

Cat. 2*NC Cat. 1**

NC
Cat.1B,
1C*****

Cat. 1***

Module 7: Non-testing methods ((Q)SAR, read-

across, bridging principles, theory of additivity)

Module 5b: Other in vivo and dermal toxicity 

existing data

Modules 1 - 4 & 5a: Existing human, animal and in 

vitro data on skin irritation and corrosion

Module 5b if required

Module 6: Physico-chemical properties 

Module 8: Weight of evidence evaluation of all 

collected information

Cat. 3

Part 2
WoE

Part 1
Existing, 

physico-

chemical & 

non-testing 

data

If inconclusive WoE

Part 3
Additional 

testing

Modules 3 & 4:Top-Down or Bottom-Up 

in vitro testing (see section 1.4)

Module 5a or 2: Additional testing, if needed, with 

non adopted in vitro methods or in vivo test

Cat. 2*NC Cat. 1**

Cat. 2NC Cat. 1**** 

Cat. 2*NC Cat. 1**

Cat. 2*NC Cat. 1**

WoE

if
needed

WoE

WoE

WoE

Fig. 1.2 Schematic overview of the IATA for skin irritation and corrosion based on the recom-
mendations from the OECD GD 203 [2]. Cat. 1 corrosive to skin, Cat. 2 irritating to skin, NC no 
category. *Including optional Cat. 3, as applicable. **Including corrosive sub-categories 1A, 1B 
and 1C, as applicable. ***If corrosive sub-categorisation is required an appropriate in vitro skin 
corrosion test needs to be conducted. **** Possibilities to sub-categorise depends on the specific 
test method used: OECD TG 435 allows for the discrimination between Sub-cat. 1A, Sub-cat. 1B 
and Sub-cat. 1C but with a limited applicability domain; OECD TG 431 allows for the discrimina-
tion between Sub-cat. 1A and the combined Sub-cat. 1B-and-1C but does not permit the discrimi-
nation between sub-categories 1B and 1C; OECD TG 430 only allows the identification of 
corrosives into a single category without sub-categorisation, i.e., Cat. 1. *****If outside of the 
applicability domain of OECD TG 435
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