Drug Discovery Series

Editor-in-chief
David Thurston, King’s College, UK

Series editors:
David Fox, Vulpine Science and Learning, UK
Ana Martinez, Centro de Investigaciones Biologicas-CSIC, Spain
David Rotella, Montclair State University, USA
Hong Shen, Roche Innovation Center Shanghai, China

Editorial advisor:
Ian Storer, AstraZeneca, UK

Titles in the Series:
1: Metabolism, Pharmacokinetics and Toxicity of Functional Groups
2: Emerging Drugs and Targets for Alzheimer’s Disease; Volume 1
3: Emerging Drugs and Targets for Alzheimer’s Disease; Volume 2
4: Accounts in Drug Discovery
5: New Frontiers in Chemical Biology
6: Animal Models for Neurodegenerative Disease
7: Neurodegeneration
8: G Protein-coupled Receptors
9: Pharmaceutical Process Development
10: Extracellular and Intracellular Signaling
11: New Synthetic Technologies in Medicinal Chemistry
12: New Horizons in Predictive Toxicology
13: Drug Design Strategies: Quantitative Approaches
14: Neglected Diseases and Drug Discovery
15: Biomedical Imaging
16: Pharmaceutical Salts and Cocrystals
17: Polyamine Drug Discovery
18: Proteinases as Drug Targets
19: Kinase Drug Discovery
20: Drug Design Strategies: Computational Techniques and Applications
53: Synthetic Methods in Drug Discovery: Volume 2
54: Drug Transporters: Role and Importance in ADME and Drug Development
55: Drug Transporters: Recent Advances and Emerging Technologies
56: Allosterism in Drug Discovery
57: Anti-aging Drugs: From Basic Research to Clinical Practice
58: Antibiotic Drug Discovery: New Targets and Molecular Entities
59: Peptide-based Drug Discovery: Challenges and New Therapeutics
60: Drug Discovery for Leishmaniasis
61: Biophysical Techniques in Drug Discovery
62: Acute Brain Impairment Through Stroke: Drug Discovery and Translational Research
63: Theranostics and Image Guided Drug Delivery
64: Pharmaceutical Formulation: The Science and Technology of Dosage Forms
65: Small-molecule Transcription Factor Inhibitors in Oncology
66: Therapies for Retinal Degeneration: Targeting Common Processes
67: Kinase Drug Discovery: Modern Approaches
68: Advances in Nucleic Acid Therapeutics

How to obtain future titles on publication:
A standing order plan is available for this series. A standing order will bring delivery of each new volume immediately on publication.

For further information please contact:
Book Sales Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK
Telephone: +44 (0)1223 420066, Fax: +44 (0)1223 420247,
Email: booksales@rsc.org
Visit our website at www.rsc.org/books
Advances in Nucleic Acid Therapeutics

Edited by

Sudhir Agrawal
Arnay Sciences LLC, Shrewsbury, MA, USA
Email: sagrawal@arnaysciences.com

and

Michael J. Gait
MRC Laboratory of Molecular Biology, Cambridge, UK
Email: mgait@mrc-lmb.cam.ac.uk
Foreword

The initial foundation for using either DNA or RNA (oligonucleotides) as therapeutic drugs was formulated by Zamecnik and Stephenson in a classic paper published several years ago (P. C. Zamecnik and M. L. Stephenson, *Proc. Natl. Acad. Sci. U. S. A.*, 1978, 75, 280). Many of us considered that this concept would prove to be a new, refreshing approach for providing revolutionary drugs useful in the treatment of nondruggable diseases. Over time these expectations have been realized as several oligonucleotide drugs (Macugen, Fomivirsen, Mipomersen, Eteplirsen, Nusinersen, Inotersen, and Patisiran) are currently available for treating a diverse group of diseases. There are also a large number of additional oligonucleotides in various stages of drug development.

The path towards identifying drugs in the nucleic acids therapeutic arena has involved many unexpected revelations. Initially the focus was strictly on using antisense oligonucleotides. Over time, new research has opened possibilities for oligonucleotide drugs in such diverse fields as interfering RNA, microRNA, noncoding RNA, splicing modulation of RNA transcripts, targeting toxic repeats in RNA and DNA, investigating RNA and DNA aptamers and ribozymes for treating various disease states, and formulating synthetic agonists of Toll-like receptors. In this book the editors, through various chapters, provide a broad and complete perspective on the history of these fields. As each chapter unfolds, the reader discovers the logic behind why various DNA and RNA analogues were developed, how they were applied in clinical studies, and the limitations and advantages of these analogues. Also clearly presented are details on the unexpected side effects with some of these being very serious, such as the Toll receptor problem, the retention and targeting of oligonucleotides in tissues, and the variation of clinical studies with animal models.
Drug development in the nucleic acids field continues at an increasing rate. Moreover so do the challenges that are important for successfully identifying an oligonucleotide therapeutic drug. This book provides an excellent road map for navigating all that has come before and also outlines for the reader a multitude of possible directions on how to proceed with further research. The editors have assembled an excellent set of authors who are experts in the science as presented in various chapters. This would be expected as both Michael Gait and Sudhir Agrawal are among the most highly respected and experienced research scientists in this field. Thus it is not at all surprising that the science is both current and focused on important concepts. I can enthusiastically recommend this book as both a reference and also as a guide for further research in the nucleic acids therapeutics arena.

Marv Caruthers
University of Colorado
Preface

Nucleic acids therapeutics are now recognized as the third major drug discovery platform, in addition to small molecules and proteins. In the past three decades, tremendous progress has been made towards the realization of the potential of nucleic acids therapeutics for the treatment of a broad range of diseases. In addition, multiple mechanisms of actions have been elucidated. Recently, several nucleic acid drugs have been approved for clinical use.

Chemical modifications of the three components of nucleic acids – heterocyclic bases, five-membered sugars, and internucleotide linkages – as well as the nucleotide sequences themselves are the key drivers for the creation of nucleic acid drugs. Rational combinations of these have provided drug-like properties. Further advances in the chemistry of nucleic acids and additional insights into their mechanisms of action have expanded their applications to include antisense targeting of mRNA, microRNA, non-coding RNA and splicing modulation, ribozymes, RNA interference (RNAi) and short interfering RNA (siRNA), gene editing, aptamers, and the modulation of immune responses. During the past ten years, since the excellent publication of Jens Kurreck’s book (Therapeutic Oligonucleotides), progress in this field has been so rapid and broad that we felt it was appropriate now to document the key developments in the field in the form of a new book.

In Chapter 1 we provide a brief history of the development of nucleotide analogues, early experience in the use of modified antisense oligonucleotides (ONs) from preclinical studies to human trials, as well as the importance of nucleotide sequence and its implications in interaction with innate immune receptors. The next three chapters provide updates on applications of antisense technology. In Chapter 2, David Corey and Zhongtian Liu discuss various mechanisms of action of antisense ONs. In Chapter 3, Eric Swayze and Punit Seth describe the medicinal chemistry of RNase H-activating antisense
ONs and in Chapter 4, Richard Geary, Brenda Baker and Brett Monia provide an update on and experience of the application of antisense ONs in clinical development.

During the development of antisense technology, it was realized that subcutaneous delivery of antisense ONs led to activation of host immune responses. Initially, this was thought to be a side effect but soon the discovery of the family of Toll-like receptors (TLRs) led to an understanding of immune activation triggered by receptor-mediated engagement. Tremendous progress has been made in translating these observations into a novel therapeutic platform. In Chapter 13, Shin-Ichiroh Saitoh and Kensuke Miyake provide a detailed background on immune receptors that are known to recognize nucleic acid sequence, patterns, and motifs. In Chapters 5 and 14, one of us (S.A.) and Ekambar Kandimalla have discussed the chemistry of novel nucleic acid compounds and how they modulate receptor-mediated immune responses, along with their therapeutic applications, including clinical proof of concept trials.

A more recent therapeutic application of antisense involves splicing modulation to affect the translation of the targeted pre-mRNA. In Chapter 6, Elena Daoutsali and Annemieke Aartsma-Rus provide an up to date survey on this subject through a variety of examples. Similarly, applications of antisense have been expanded to targeting toxic RNA repeats (Chapter 7 by Derick Wansink and colleagues), microRNA (Chapter 8 by Anna Malinowksi and Jonathan Hall) and long non-coding RNA (Chapter 9 by Claes Wahlestedt and colleagues).

In parallel, significant advances have also been made in RNAi technology for therapeutics. In Chapter 10, Anastasia Khvorova and colleagues discuss in detail the challenges of delivery of RNAi-based therapeutics and how these obstacles have been addressed. In Chapter 11, Muthiah Manoharan and Kalanthottathil Rajeev describe the clinical development of siRNA candidates targeted to liver. In Chapter 12 Jiehua Zhou and John Rossi describe the application of RNAi for treatment of HIV infection. Therapeutic application of ribozyme technology had shown early promise, but has now been found to have significant limitations. In Chapter 18, Darko Balke and Sabine Müller describe novel ribozyme constructs in the search for potential therapeutic applications.

In the past few years, we have also seen explosive growth in the development of gene editing using nucleic acids towards therapeutics. In Chapter 17, Carine Giovannangeli and colleagues provide details on this subject. Synthetic nucleic acids have been studied as aptamers to target proteins and other cellular targets and their clinical evaluation is reviewed in Chapter 15 by Paloma Giangrande and colleagues and in Chapter 16 by Gerald Zon. Through understanding the various mechanisms of actions of nucleic acids, extensive experience has been gained on their safety and pharmacokinetics, both in preclinical and in clinical use. In Chapter 20, Cathaline den Besten and Patrik Andersson discuss this topic in detail and provide their analysis.
To maintain successes in the field, significant advances have also been made in manufacturing and quality control, discussed in Chapter 19 by Yogesh Sanghvi.

We are immensely grateful to all these co-authors for their outstanding contributions that provide a detailed story of their respective subjects along with a current bibliography. We are also grateful to the editorial team at the Royal Society of Chemistry (Katie Morrey and Drew Gwilliams, Rowan Frame and Robin Driscoll) for their timely publishing and encouragement and members of the Royal Society of Chemistry staff for their assistance, as well as the many members of the Oligonucleotide Therapeutic Society, the premier professional society in the field, who have contributed to this book, which we hope will become a manual for the state of the art.

In this relatively young field of nucleic acid therapeutics, the use of their sequences to target drugs very precisely in cells and \textit{in vivo} and the development of nucleic acids chemistry have been paramount and resulted in a substantial broadening of their applications. Rapidly developed and newly approved drugs are now available for the treatment of some rare diseases and other more prevalent diseases are surely following. Despite some setbacks, the list of RNA targets and approved drugs is expanding quickly. We are excited at the future prospects for this field.

Sudhir Agrawal and Michael J. Gait
Contents

Chapter 1 History and Development of Nucleotide Analogue in Nucleic Acids Drugs 1
Sudhir Agrawal and Michael J. Gait

1.1 Introduction 1
1.2 The Antisense Concept 2
1.3 Developments in Oligonucleotide Synthesis 3
1.4 Choices for Antisense Oligodeoxynucleotide Modifications
 1.4.1 Backbone Modifications 4
 1.4.2 Heterocyclic Bases 9
 1.4.3 Sugar Modifications 10
1.5 Gapmers Using Combinations of Modified Oligodeoxy and/or Oligoribonucleotides 12
1.6 Antisense Conjugates 13
1.7 The Role of Innate Immune Receptors in Nucleic Acid Therapeutics 14
1.8 Future Directions 16
Acknowledgements 16
References 17

Chapter 2 Mechanisms of Antisense Oligonucleotides 22
Zhongtian Liu and David R. Corey

2.1 Introduction 23
2.2 RNase H and ASO Action 23
2.3 ASOs and Regulation of Splicing 25
2.4 ASOs and Activation of Frataxin, a Case Study for an Emerging Mechanism 27
2.5 Summary 29
Acknowledgements 29
References 29

Chapter 3 The Medicinal Chemistry of RNase H-activating Antisense Oligonucleotides 32
Punit P. Seth and Eric E. Swayze

3.1 Introduction to Gapmers 32
3.2 Human RNase H1 33
 3.2.1 Biochemistry of Human RNase H1 33
 3.2.2 Structural Biology of Human RNase H1 34
3.3 Structure–Activity Relationships of Gap Modifications 36
 3.3.1 Phosphorothioate (PS) DNA 38
 3.3.2 Chiral PS DNA 39
 3.3.3 Methyl Phosphonates, Phosphoramidates, Phosphotriesters and Boranophosphonate DNA 40
 3.3.4 2’-Fluoro Arabino Nucleic Acids (FANA) 40
 3.3.5 DNA-like Modifications 41
3.4 SAR of Wing Modifications 41
 3.4.1 2’-O-Methoxyethyl RNA (MOE) 42
 3.4.2 Locked Nucleic Acids (LNA) and Constrained Ethyl 2’-4’-Bridged Nucleic Acids (cEt) 42
 3.4.3 α-L-LNA and Related Analogs 43
 3.4.4 F-HNA and F-CeNA 43
 3.4.5 Tricyclo DNA (tcDNA) 44
 3.4.6 Phosphorodiamidate Linked Morpholinos (PMOs) 44
3.5 Design of Gapmer ASOs 45
 3.5.1 MOE Gapmer ASOs 45
 3.5.2 LNA Gapmers 46
 3.5.3 cEt Gapmers 47
 3.5.4 ASO Gapmer Duplexes 47
3.6 Control of Protein Binding 47
 3.6.1 Interaction of Gapmer ASOs with Plasma Proteins 48
 3.6.2 Interaction of Gapmer-ASOS with Cell-surface Proteins 48
 3.6.3 Targeting Cell-surface Proteins for Cell-specific Delivery of Gapmers 49
Contents

3.6.4 Avoiding Interactions with TLR Receptors to Avoid Immune-stimulatory Toxicities 50
3.6.5 Optimizing Intracellular Distribution 51
3.7 Conclusions 51
References 52

Chapter 4 Antisense Technology: Liver Targeting and Beyond for Drug Discovery 62
Richard S. Geary, Brenda F. Baker and Brett P. Monia

4.1 Introduction 62
4.2 Liver Targeting 64
 4.2.1 The Beginning 64
 4.2.2 Broadening the Liver-targeting Pipeline 66
4.3 Innovations in Liver Targeting 67
4.4 Beyond the Liver 70
4.5 Conclusions 72
References 73

Chapter 5 Oligonucleotide-based Toll-like Receptor Antagonists and Therapeutic Applications 80
Ekambar R. Kandimalla and Sudhir Agrawal

5.1 Introduction 80
5.2 Oligonucleotide-based TLR Antagonists 82
 5.2.1 Structure–Activity Relationship Studies 83
 5.2.2 TLR Antagonists 83
 5.2.3 Inhibitory Activity of TLR Antagonists 85
 5.2.4 Inhibitory Activity of Clinical Candidates 85
5.3 Studies of TLR Antagonists in Disease Models 87
 5.3.1 Psoriasis 87
 5.3.2 Systemic Lupus Erythematosus (SLE) 88
 5.3.3 Rheumatoid Arthritis (RA) 89
 5.3.4 Duchenne Muscular Dystrophy (DMD) 90
 5.3.5 MyD88 L265P-positive B Cell Lymphoma (BCL) 90
 5.3.6 Restenosis and Atherosclerosis 91
 5.3.7 Inflammatory Bowel Disease (IBD) 92
 5.3.8 HIV-1 92
5.4 Clinical Development of Lead TLR Antagonist Candidates 93
 5.4.1 Moderate-to-severe Plaque Psoriasis 93
 5.4.2 Waldenström’s Macroglobulinemia 94
5.5 Conclusions 96
Acknowledgements 96
References 96
Chapter 6 Splicing Modulation for Therapeutics 103
Elena Daoutsali and Annemieke Aartsma-Rus

6.1 Introduction 103
6.1.1 RNA Splicing 103
6.1.2 Constitutive Splicing 106
6.1.3 Alternative Splicing 106
6.1.4 Cryptic Splicing 108
6.2 Therapeutic Exon Skipping Options 108
6.2.1 Antisense Oligonucleotides (ASOs) and Chemical Modifications 108
6.2.2 Restoring Cryptic Splicing 109
6.2.3 Reading Frame Restoration 111
6.2.4 Exon Inclusion 116
6.2.5 Generating Less Protein or Non-toxic Protein 118
6.3 Future Perspectives, Towards Additional Approved Splice-modulating ASOs 120
6.3.1 The Challenge of Personalized Medicine Development 120
6.3.2 ASO Delivery 121
6.3.3 Future Perspective 121
References 122

Chapter 7 Targeting Toxic Repeats 126
M. Leontien van der Bent, Remco T. P. van Cruchten and Derick G. Wansink

7.1 Introduction 126
7.2 Expanded Repetitive Sequences and Human Disease 127
7.2.1 Repeat Instability 127
7.2.2 Molecular Mechanisms of Disease 128
7.3 Why are Expanded Repeats so Special as Therapeutic Targets? 130
7.3.1 Structures Formed by Expanded Repeats 131
7.3.2 Structures of Repeat-Expanded Transcripts 133
7.3.3 Structural Implications for Therapeutic Targeting 134
7.4 Therapeutics to Target Expanded Repeats 135
7.4.1 Therapeutic Strategies 135
7.4.2 Small Molecules Targeting Repeat Structures 136
Chapter 8 Research and Development of Oligonucleotides Targeting MicroRNAs (miRNAs) 151
A. L. Malinowska and J. Hall

8.1 Introduction: MicroRNA Biogenesis and Functions 151
8.2 miRNAs as Targets for Drugs 154
8.3 AntimiR Oligonucleotides as Drugs 154
 8.3.1 The Development of AntimiR Medicinal Chemistry 154
 8.3.2 New Insights into Mechanisms of Oligonucleotide-based miRNA Targeting 162
 8.3.3 New Chemistries and Alternative Approaches for Targeting miRNAs 165
8.4 AntimiRs in Clinical Trials 167
 8.4.1 AntimiRs Targeting miR-122 for Treatment of HCV 167
 8.4.2 AntimiR-targeting of Other miRNAs in Clinical Studies 169
8.5 Conclusions 170
Acknowledgement 171
References 171

Chapter 9 Oligonucleotide Targeting of Long Non-coding RNAs 181
I. Blokhin, O. Khorkova, J. Hsiao and C. Wahlestedt

9.1 Introduction 181
9.2 History of IncRNAs 182
9.3 Biology and Functions of IncRNA 185
 9.3.1 IncRNAs as Regulators of Transcription 186
 9.3.2 IncRNA as Regulators of Post-transcriptional Processing 187
 9.3.3 IncRNA as Regulators of Translation 189
9.4 Classification of IncRNA 190
 9.4.1 Functional Classification 191
 9.4.2 Genomic Classification 191
Chapter 10 Conjugate-mediated Delivery of RNAi-based Therapeutics: Enhancing Pharmacokinetics–Pharmacodynamics Relationships of Medicinal Oligonucleotides

Bruno M. D. C. Godinho, Andrew H. Coles and Anastasia Khvorova

10.1 Introduction 206
10.2 Chemical Stabilization as a Prerequisite for Conjugate-mediated Delivery of siRNAs: Effects on Clearance, Distribution and Sustained Gene Silencing 207
10.3 Modulating Biodistribution of Therapeutic Oligonucleotides Using Conjugated Modalities: Targeted versus Broad Functional Delivery 213
 10.3.1 Broad Functional Delivery of Conjugated siRNAs 213
 10.3.2 Targeted Delivery of Conjugated siRNAs 216
10.4 Productive Delivery of Therapeutic Oligonucleotides: Overcoming the Endosomal Barrier 218
10.5 The Effects of the Route of Administration: Local versus Systemic Delivery 219
 10.5.1 Local Delivery of Conjugated siRNAs 219
 10.5.2 Systemic Delivery of Conjugated siRNAs 221
10.6 Enhancing PK Properties of Conjugated siRNAs: Reducing Clearance Kinetics and Accelerating Target Tissue Uptake 223
10.7 Conjugation Chemistry for RNAi-based Therapeutics: Future Perspectives 224

Acknowledgements
References 226
Chapter 11 Liver-targeted RNAi Therapeutics: Principles and Applications

Kallanthottathil G. Rajeev and Muthiah Manoharan

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>233</td>
</tr>
<tr>
<td>11.2 The Role of Chemistry</td>
<td>234</td>
</tr>
<tr>
<td>11.3 Liver-specific Delivery of siRNA</td>
<td>237</td>
</tr>
<tr>
<td>11.3.1 Ionizable Lipid Nanoparticles (iLNPs)</td>
<td>238</td>
</tr>
<tr>
<td>11.3.2 Lipid-conjugated siRNA provided</td>
<td>239</td>
</tr>
<tr>
<td>Proof of Concept for RNAi Therapeutics</td>
<td>239</td>
</tr>
<tr>
<td>11.3.3 Discovery of GalNAc Conjugates</td>
<td>240</td>
</tr>
<tr>
<td>11.4 Clinical Candidates</td>
<td>240</td>
</tr>
<tr>
<td>11.4.1 ONPATTRO™ (Patisiran)</td>
<td>240</td>
</tr>
<tr>
<td>11.4.2 Inclisiran</td>
<td>254</td>
</tr>
<tr>
<td>11.4.3 Givosiran</td>
<td>255</td>
</tr>
<tr>
<td>11.4.4 Fitusiran</td>
<td>256</td>
</tr>
<tr>
<td>11.4.5 TTRsc02</td>
<td>256</td>
</tr>
<tr>
<td>11.4.6 Revusiran</td>
<td>256</td>
</tr>
<tr>
<td>11.5 Conclusions and Outlook</td>
<td>257</td>
</tr>
<tr>
<td>References</td>
<td>257</td>
</tr>
</tbody>
</table>

Chapter 12 Advances and Challenges of RNAi-Based Anti-HIV Therapeutics

J. Zhou and J. J. Rossi

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>266</td>
</tr>
<tr>
<td>12.2 Potential Targets for Anti-HIV-1 RNAi Therapeutics</td>
<td>268</td>
</tr>
<tr>
<td>12.2.1 Targeting the HIV-1 Viral Genome</td>
<td>268</td>
</tr>
<tr>
<td>12.2.2 Targeting Host Factors</td>
<td>270</td>
</tr>
<tr>
<td>12.3 Challenges in Obtaining Effective Anti-HIV-1 RNAi Activity</td>
<td>272</td>
</tr>
<tr>
<td>12.3.1 Key Barriers to In Vivo RNAi Efficacy</td>
<td>272</td>
</tr>
<tr>
<td>12.3.2 The Need for Rational Design and for Chemical Modifications</td>
<td>274</td>
</tr>
<tr>
<td>12.3.3 The Need for Combinatorial RNAi</td>
<td>275</td>
</tr>
<tr>
<td>12.4 Recent Progress and Clinical Development of Anti-HIV-1 RNAi</td>
<td>276</td>
</tr>
<tr>
<td>12.4.1 In Vivo Delivery of Anti-HIV-1 RNAi Effectors</td>
<td>276</td>
</tr>
<tr>
<td>12.4.2 Ex vivo Delivery of Anti-HIV-1 shRNAs</td>
<td>281</td>
</tr>
<tr>
<td>12.4.3 Clinical Development of Anti-HIV-1 RNAi</td>
<td>282</td>
</tr>
<tr>
<td>12.5 Conclusions and Perspective</td>
<td>283</td>
</tr>
<tr>
<td>Conflict of Interest Declaration</td>
<td>284</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>285</td>
</tr>
<tr>
<td>References</td>
<td>285</td>
</tr>
</tbody>
</table>
Chapter 13 Nucleic Acid Innate Immune Receptors
Shin-Ichiroh Saitoh and Kensuke Miyake

13.1 Introduction
13.2 Toll-like Receptors
13.2.1 TLR3 Recognizes dsRNA
13.2.2 TLR7 and TLR8 Recognize ssRNA and Guanosine or Uridine
13.2.3 TLR9 Recognizes CpG-DNA
13.2.4 Chaperones Regulate the Maturation of NA-sensing TLRs
13.2.5 Unc93B1 Regulates the Balance of TLR7 and TLR9 Responses
13.2.6 Proteolytic Cleavage of NA-sensing TLRs is Essential for Their Function
13.2.7 Trafficking of TLR7 and TLR9 is Essential for Type I Interferon Production in pDCs
13.3 Nucleic Acids Sensing in the Cytoplasm
13.3.1 Cytosolic DNA Sensors Recognize dsDNA
13.3.2 RIG-I and MDA5 Recognize dsRNA and Activate MAVS to Induce Immune Responses
13.4 Conclusions
References

Chapter 14 Synthetic Agonists of Toll-like Receptors and Therapeutic Applications
Sudhir Agrawal and Ekambar R. Kandimalla

14.1 Introduction
14.1.1 RIG-I-like Receptors
14.1.2 AIM2-like Receptors (ALRs)
14.1.3 NOD-like Receptors, NLRP3 Inflammasome
14.1.4 Cyclic GMP–AMP Synthase (cGAS) and the STING Pathway
14.1.5 Toll-like Receptors (TLR)
14.2 Agonists of TLR3
14.2.1 Synthetic Agonists of TLR3
14.3 Agonists of TLR 7 and TLR 8
14.3.1 Synthetic Agonists of TLR7 and TLR8
14.3.2 Preclinical Studies of Agonists of TLR7 and TLR8
14.4 Agonists of TLR9
14.4.1 Synthetic Agonists of TLR9
14.5 Therapeutic Applications of Synthetic Agonists of TLR9
14.5.1 Preclinical Studies in Cancer
14.5.2 Treatment for Asthma and Allergies 324
14.5.3 Use as Vaccine Adjuvants 325
14.6 Clinical Development of Synthetic Agonists of TLR9 325
14.6.1 Clinical Trials in Hepatitis C Patients 325
14.6.2 Clinical Trials in Cancer 326
14.7 Conclusions 327
References 328

Chapter 15 Prostate-specific Membrane Antigen (PSMA) Aptamers for Prostate Cancer Imaging and Therapy 339
Shambhavi Shubham, Li-Hsien Lin, Ofonime Udofot, Sven Krupse and Paloma H. Giangrande

15.1 Introduction 339
15.1.1 Aptamers and SELEX 339
15.1.2 DNA vs. RNA Aptamers 342
15.2 Prostate Specific Membrane Antigen (PSMA) Aptamers 343
15.2.1 PSMA 343
15.2.2 DNA and RNA PSMA Aptamers 345
15.3 PSMA Aptamers Applications 348
15.3.1 Imaging and Diagnostic Applications 348
15.3.2 PSMA Aptamers as Therapeutic Inhibitors 351
15.3.3 Targeted Delivery Applications 351
15.4 Conclusions 359
15.5 Future Perspectives 359
Acknowledgements 361
References 361

Chapter 16 Aptamers and Clinical Applications 367
G. Zon

16.1 Introduction 367
16.2 Recent Preclinical Studies of Aptamer Drugs 369
16.2.1 Aptamer Structures 369
16.2.2 Non-ocular Diseases 376
16.3 Recent Studies of Aptamer-based Targeting of Drugs 381
16.4 Clinical Studies of Aptamer Drugs Registered in ClinicalTrials.gov 384
16.4.1 Completed Clinical Studies 385
16.4.2 Terminated or Withdrawn Studies 390
16.4.3 Active Studies 391
16.5 Conclusions and Prospects 392
References 394
Chapter 17 CRISPR-based Technologies for Genome Engineering: Properties, Current Improvements and Applications in Medicine
Sylvain Geny, Elaheh Sadat Hosseini, Jean-Paul Concordet and Carine Giovannangeli

17.1 Introduction 400
17.2 Sequence-specific CRISPR Nucleases and Improved Variants 401
 17.2.1 Cas 9 from Streptococcus pyogenes, Orthologues and Variants 401
 17.2.2 Expanding Targeted Functions with “CRISPR Fusions” 404
 17.2.3 Specificity of CRISPR Systems 405
17.3 Genome Editing Mechanisms and Current Improvements 408
 17.3.1 Principles: Genome Editing Takes Place During Repair of DSB Breaks Induced by Cas9 408
 17.3.2 Improvement of HDR-based CRISPR Strategies for Programmable Genome Modification 410
17.4 Epigenome Editing and Base Editing with the CRISPR Systems 414
 17.4.1 Modulation of Transcription, CRISPRa and CRISPRi Systems 414
 17.4.2 Modulation of Chromatin Status 416
 17.4.3 Base Editors 417
17.5 Applications in Medicine and Challenges 419
 17.5.1 Applications in Biomedical Research 419
 17.5.2 The Delivery Challenge 420
 17.5.3 The Genome Editing Precision Challenge 422
 17.5.4 Clinical Trials Based on Genome Editing 422
17.6 Conclusions 423
References 424

Chapter 18 Therapeutic Potential of Ribozymes
Darko Balke and Sabine Müller

18.1 Introduction 434
18.2 Trans-cleaving Ribozymes 435
18.3 Ribozyme-mediated Genetic Repair 439
 18.3.1 Spliceosome-mediated RNA Trans-splicing (SMaRT) 440
 18.3.2 Group I Intron Ribozyme-mediated Trans-splicing 441
Contents

18.3.3 Twin Ribozyme-mediated RNA Repair 443
18.3.4 Correction of Genetic Disorders by Retro-homing Group II Introns 445
18.4 Conclusions 445
References 447

Chapter 19 Large-scale Automated Synthesis of Therapeutic Oligonucleotides: A Status Update 453
Yogesh S. Sanghvi

19.1 Introduction 453
19.2 Chemical Modifications in Clinical and Commercial Products 454
 19.2.1 First-generation Backbone Modifications – the Phosphorothioate (PS) Internucleotide Linkage 454
 19.2.2 Second-generation Sugar Modifications 455
19.3 The Oligonucleotide Manufacturing Process 457
 19.3.1 Use of an Automated Synthesizer 457
 19.3.2 Starting Materials 458
 19.3.3 Reagent-related Impurities 462
 19.3.4 The Four-step Synthesis Cycle 464
 19.3.5 Cleavage and Deprotection 465
 19.3.6 The Purification Process 466
 19.3.7 The Lyophilization Process 468
19.4 Analytical Protocols 468
19.5 Synthesis Yield and Product Purity 470
19.6 Conclusions and Future Outlook 470
References 471

Chapter 20 Preclinical and Clinical Drug-metabolism, Pharmacokinetics and Safety of Therapeutic Oligonucleotides 474
Patrik Andersson and Cathaline den Besten

20.1 Introduction 474
20.2 Oligonucleotide Chemistries and Mode of Action (MOA) 475
 20.2.1 Chemistry and Design Considerations of Therapeutic ONDs 475
 20.2.2 Delivery Approaches 478
20.3 Distribution, Metabolism and Pharmacokinetics (DMPK) 479
 20.3.1 DMPK Properties of ONDs 479
 20.3.2 Delivery Strategies 485
20.4 Class Profile of Toxicity 488
20.5 Hybridization-dependent Toxicities 490
 20.5.1 On-target Safety and Exaggerated Pharmacology 490
 20.5.2 Off-target Pharmacology 491
20.6 Hybridization-independent Toxicities 493
 20.6.1 Effects Related to Transient Protein Binding 494
 20.6.2 Immune-mediated Effects 496
 20.6.3 Toxicity in High-exposure Organs 505
20.7 Getting to the Clinic 511
 20.7.1 Regulatory Considerations for Preclinical Development 511
 20.7.2 Precision Medicine and Opportunity for Accelerated Timelines 515
20.8 Conclusions 515
Acknowledgements 516
References 517

Subject Index 532
CHAPTER 1

History and Development of Nucleotide Analogues in Nucleic Acids Drugs

SUDHIR AGRAWAL*a AND MICHAEL J. GAIT*b

aArnay Sciences LLC, Shrewsbury, MA 01545, USA; bMedical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK

*E-mail: mgait@mrc-lmb.cam.ac.uk, sagrawal@arnaysciences.com

1.1 Introduction

Forty years ago, Zamecnik and Stephenson proposed the therapeutic use of antisense oligonucleotides on the basis of their finding that Rous sarcoma virus (RSV) replication could be inhibited by a synthetic oligonucleotide complimentary to the RSV genome.1 This concept opened up a new approach to drug discovery, namely an oligonucleotide binding sequence-specifically \textit{via} Watson–Crick base-pairing to a complementary target RNA.

Since then, continuous progress has been made towards realizing the potential of this novel scientific approach and this has led recently to the approval of five antisense drugs. While the underlying concept of antisense is very simple, a rigorous understanding of the chemistry of nucleic acids had to be developed for its use in humans. In this chapter we discuss the history of this chemistry of oligonucleotides in antisense and the lessons
learned from preclinical studies and clinical trials that have guided the development in conferring drug-like properties.

In parallel to the development of antisense (see Chapters 2–4), the application of synthetic oligonucleotides as therapeutic agents has evolved into broad applications involving multiple modalities. These applications include ribozymes (see Chapter 18), small interfering RNA (siRNA, see Chapters 10, 11 and 12), microRNA (see Chapter 8), aptamers (see Chapters 15 and 16), non-coding RNA (see Chapter 9), splicing modulation (Chapter 6), targeting toxic repeats (Chapter 7), gene editing (Chapter 17), and immune modulations (see Chapters 5, 13 and 14).

The common feature of these applications is that drug candidates are composed of natural nucleosides or nucleoside analogues linked via phosphodiester or modified linkages.

1.2 The Antisense Concept

In 1976, RSV was the only purified virus for which a sufficient quantity was available for potential sequencing. Maxam and Gilbert sequenced this RNA virus and noted that both ends of the linear viral genome bore the same primary sequence and were in the same polarity. It occurred to Zamecnik that the new piece of DNA synthesized by reverse transcription at the 5′-end of this retrovirus might circularize and hybridize with the 3′-end. Thus he considered the possibility of inhibiting viral replication by adding a piece of synthetic DNA to the replication system to block the circularization step by hybridizing specifically with the 3′-end of the viral RNA in a competitive way.

This experiment led to startling observations, including the inhibition of new virus particles and the prevention of transformation of chick fibroblasts into sarcoma cells. In a cell-free system, translation of the Rous sarcoma viral message was also dramatically impaired. These observations were the first to show proof of the antisense concept.1,2

Not much further progress was made in the field up to 1985, primarily for three reasons. First, there was still widespread disbelief that oligonucleotides could enter eukaryotic cells. Second, there was very little DNA (or RNA) genomic sequence available for targeting by antisense, and third, efficient automated methodologies to synthesize oligonucleotides in sufficient quantities were only just beginning to become established.

1.3 Developments in Oligonucleotide Synthesis

Although the principle of solid-phase oligonucleotide synthesis was first introduced by Letsinger and Mahadevan in 1965,3 development of more efficient methods of oligodeoxynucleotide (ODN) synthesis on solid support took place from 1975 in the Gait laboratory by the phosphodiester chemistry4 and from 1979 by the phosphotriester method in the Itakura laboratory5 and the Gait laboratory.6,7 These methods were superseded by