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Preface

Adverse drug reactions and drug interactions remain a major issue in 2011. During the 
second edition of our book, FDA reported greater than 370,000 serious adverse events 
in 2009 and more than 100,000 for the first quarter of 2010. The Adverse Event 
Reporting System is a database that gives computerized statistics used to support 
FDA’s post-marketing safety surveillance for all approved drugs. A serious event is 
defined as requiring hospitalization, being life-threatening, causing disability or con-
genital anomalies, for example. Importantly, more than 63,000 deaths were recorded 
in 2009, and more than 20,000 occured during the first quarter of 2010.

The second edition of Handbook of Drug Interactions: A Clinical and Forensic 
Guide has been updated to reflect new information and also includes new chapters 
of interest. In this respect, it is a continuation of the first edition and part of the 
ongoing story of drug–drug interactions.

Pharmacogenomics is a rapidly growing field covering the genetic basis for indi-
vidual variability in drug responses. This new section allows the reader to review 
important polymorphisms in drug metabolizing enzymes and applies the findings to 
forensic interpretation through interesting cases involving opiates.

Although the section relating to central nervous system drugs encompasses a 
number of potential drugs with illicit use such as benzodiazepines and opiates, a 
chapter dealing exclusively with drugs of abuse has been added to the second edi-
tion. Cocaine, amphetamines, cannabis, flunitrazepam and GHB are now discussed. 
Alcohol and nicotine are still covered in the section related to environmental and 
social pharmacology.

The existing chapters from the first edition have, in most cases, been updated and 
edited to reflect new data or bring out better tables and diagrams. More recent drugs 
and formulations are included. Recent references have been added for completeness.

This volume emphasizes explanations when possible and covers both pharma-
cokinetic and pharmacodynamic drug interactions. The result, we hope, will con-
tinue to prove useful to health and forensic professionals as well as students.

Houston, TX Ashraf Mozayani
Fort-Lauderdale-Davie, FL Lionel Raymon
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Abstract Factors considered in the observed variability in drug response within a 
population are intrinsic, extrinsic, or a combination of both. The intrinsic factors are 
differences in the demographics of a given individual (e.g., age or gender), disease 
or physical condition (e.g., renal function or BMI), and pharmacogenetics (see 
below). The extrinsic factors are composed of environmental factors (e.g., diet) as 
well as drug interactions or polypharmacy.

In recent years, the role of genetic variation in drug metabolism and response has 
been increasingly recognized. Since various pharmacokinetic and pharmacody-
namic mediators of drug efficacy and toxicity involve peptides and proteins, poly-
morphisms in the genes responsible for encoding their amino acid sequence create 
a fundamental mechanism for the observed variations. In this chapter, we will briefly 
discuss the sources of variability in drug metabolism and response. The role of 
pharmacogenetics in pharmacokinetics and pharmacodynamics will then be dis-
cussed. Special attention will be paid to the consequence of polymorphisms on the 
forensic applications of toxicology, such as postmortem investigations.

Keywords

Pharmacogenetics and Pharmacogenomics

The terms pharmacogenomics and pharmacogenetics are generally used inter-
changeably, denoting the study of genetic variation on an individual’s ability to 
metabolize a drug or respond to it. More specifically, pharmacogenetics is concerned 
with the effects of variation in one or a handful of genes whereas pharmacogenomics 

S.A. Jortani (*)
Department of Pathology and Laboratory Medicine, University of Louisville, 
511 S. Floyd Street (Room 227), Louisville, KY 40202, USA 
e-mail: sjortani@louisville.edu

Chapter 1
Pharmacogenetics in Clinical and Forensic 
Toxicology: Opioid Overdoses and Deaths

Saeed A. Jortani, Elaine Stauble, and Steven H. Wong 
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involves the entire genome [1]. The field of clinical pharmacogenetics was initiated 
approximately a decade ago [2, 3] with a slow but steady adaptation in various fields 
of medicine such as oncology [4], psychiatry [5, 6], and cardiology [7–9]. In fact, 
the role of pharmacogenetics in warfarin management has led to clinical testing for 

10–12]. This has also involved the 
development of several clinical decision tools that now make it possible for clini-
cians to incorporate genotyping results in their decisions regarding warfarin therapy 
[13, 14]. Such progress has led to recommendations by regulators and guidelines by 
various authoritative bodies [10, 15–17]. The significant role of pharmacogenetics 
in oncology has also been noticeable involving multiple drugs such as Erbitux 
(cetuximab) and K-Ras mutation [18], tamoxifen and CYP2D6 testing [19], and 
Irinotecan and UGT1A1 testing [20, 21]. In pain management, pharmacogenetics 
has been implicated for various non-steroidal anti-inflammatory drugs (NSAIDs) 
such as Celecoxib [22] and opioids such as fentanyl, hydrocodone, and codeine 
[23–27]. Table 1.1 lists various classes of drugs used either directly or as adjuvants 
in pain management [28, 29]. Opioids constitute a major class of analgesics with 
many of the members being influenced by pharmacogenetic variables. Codeine, 
hydrocodone, and oxycodone are substrates for CYP2D6 whereas the pharmacoki-
netics of buprenorphine and fentanyl are influenced by CYP3A4 and CYP3A5 
enzymes [30, 31]. Oftentimes, the same enzymes are responsible for the metabo-
lism of additional drugs also given to the patients for various reasons. Our discus-
sion in this chapter will demonstrate the use of pharmacogenetics for forensic 
applications focusing primarily on opioids. Through the review of several cases, we 

Table 1.1 Drugs used in pain management as analgesics or as adjutants

Drug class Examples

Analgesics
NSAIDs

Traditional Aspirin, ibuprofen
Coxibs Celecoxib, rofecoxib

Opioids
Strong opioids Fentanyl, morphine, hydromorphone
Partial agonists Buprenorphine, pentazocine
Weak opioids Codeine, hydrocodone, propoxyphene

Local anesthetics Lidocaine
Neuroleptics Phenothiazines, clozapine
Tricyclic antidepressants Nortriptyline, despiramine
SSRIs Lamotrigine, citalopram, sertraline
Antiepileptics Barbiturates, carbamazepine
NMDA antagonists Ketamine, methadonea

SSRIs selective serotonin reuptake inhibitors
aMethadone and tramadol elicit their pharmacological actions through opi-
oid receptors and by an additional mechanism such as NMDA antagonism 
or inhibition of reuptake of norepinephrine and serotonin
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will highlight the importance of considering genetic variations in interpretation of 
postmortem drug concentrations in the field of forensic toxicology. Obviously, there 
is a steep learning curve for general toxicologists and pharmacologists trying to 
bring genetic information into their applied practices. Wong and colleagues first 
coined the term molecular autopsy, which best signifies the role of incorporating 
pharmacogenetics in forensic toxicology [25]. It is our hope that this chapter will 
catalyze the adaptability of this novel approach to describe the mechanistic role of 
pharmacogenetics in personalized medicine as well as in personalized justice. This 
latter emerging practice would include the use of molecular diagnostics such as 
pharmacogenomics in legal proceeding to explain the possible genetic contribution 
to drug therapy and efficacy, and therefore performance and side effect. This might 
be applied in the settings of drug influence of drugs (DUID) and working under the 
influence of drugs (WUID). According to Wong, the inevitable check and social 
balance relationship to personalized medicine would enhance both practices in the 
future [70, 71]).

Variability in Response to Medications

Forensic toxicologists are among the professionals facing the interpretive chal-
lenges brought about by variability in drug response and efficacy. Frequently, such 
variabilities are co-presented in settings affected by additional confounders such as 
postmortem redistribution, polypharmacy, unknown drug exposures, and homicidal 
or suicidal poisonings. In this section, we will briefly discuss physician variability 
and genetic differences in drug handling and response that are considered two of the 
main factors affecting interpretation of clinical and forensic toxicology results.

Physician Variability

To demonstrate the issue of physician variability, we will focus on the use of medi-
cations in the area of pain management. Differences among practitioners in this 
medical discipline have led to either inadequate pain management for patients, 
accusation of drug diversion or non-compliance, as well as considerable morbidity 

have been developed to cope with these challenges.
Much attention in the lay press, as well as the medical literature, has focused on 

pain control in the last several years. In emergency rooms, only 44% of patients rate their 
pain control as “very good” [32]. This is especially interesting in light of the fact 
that after Lipitor, hydrocodone (Lortab) is the second most commonly dispensed 
prescription medication in this country [33]. What are the factors that influence 
clinical decision-making on the part of physicians prescribing opioid narcotics? The 
decision to prescribe narcotics is quite complex. It varies depending on the character-
istics of the physician and the presenting condition, as well as patient characteristics. 
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There is a large body of research focusing on physician variables, as well as on the 
different clinical conditions with which patients present. Studies reveal that there is 
an inherent dichotomy between beneficence of the physician versus the physician 
who acts as gatekeeper to forestall narcotic addiction. Every physician approaches 
a problem from his or her own perspective. The decision to prescribe opioids 
depends on the physician’s personal experience (i.e., cultural, surgical). It must 
depend on the clinical content of the situation (i.e., the chief complaint, their experi-
ence investigating the chief complaint, stereotyping), as well as the context (role 
expectation, available resources). Patient expectations and demands also affect the 
decision to prescribe narcotics. Some physicians prescribe more, others less, when 
the patient requests “something strong” for the pain. The effectiveness of the com-
munication between the patient and doctor also plays a role. Language barriers 
make the physician–patient interaction cumbersome; interpreters for a specific dia-
lect are not always readily available. Male and female medical students have been 
shown to respond differently to identical clinical vignettes depicting chest pain [34]. 
Their responses also varied depending on the patient’s race and gender. Each physi-
cian’s training and philosophy of prescribing narcotics develops depending on what 
medical school they attended, how long ago they graduated, and their surgical expe-
rience. The specialty of the physician (i.e., ER physician versus general practitio-
ner) also influences the prescribing of opioid narcotics. General practitioners may 
respond differently to patients with chronic non-cancer pain than the ER physician, 
who is accustomed to treating acute pain. The general practitioner often has more 
continuity with the patient, knows their family history in depth, and has more infor-
mation with which to make a decision regarding prescriptions. In contrast, the ER 
physician makes decisions in a vacuum, relatively speaking. This may permit judg-
mental issues to be more influential, especially at the beginning of an encounter 
with a patient for whom the physician has a paucity of objective data. When ER 
physicians were faced with clinical scenarios of three common medical conditions 
in a study designed by Tamayo-Sarver et al. [35], patient race and ethnicity had no 
effect on whether the physician prescribed narcotics or not. When information about 
high socioeconomic status or socially desirable occupations was provided with the 
same scenario, the physician prescribed more opioid narcotics. In another series of 
cases from a pain clinic, the severity and duration of the pain experienced by the 
patient did not affect narcotic prescribing as much as observed pain behaviors (dis-
torted posture, audible expressions of distress, and avoidance of activity) [36]. The 
communication skills possessed by the clinician have a large influence on his/her 
decision to prescribe medication for pain control. Physicians look for features com-
patible with their expectation about a specific clinical condition [35]. When ER 
physicians viewed identical case scenarios, they had highly variable rates of pre-
scribing narcotics. Physician prejudice and stereotyping also plays a role and occa-
sionally may threaten the patient–physician relationship.

Therefore, the complexity of a clinical decision to prescribe opioid narcotics for 
pain control is apparent. It may be that better curricula must be developed early on 
in medical schools, to standardize the prescribing of opioids for certain clinical 
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conditions, so as to “level the playing field,” and to better control pain for all patients 
with the same condition, no matter how differently they present.

In summary, from a physician’s standpoint, effective pain management is com-
plicated by multiple factors, including strict regulatory requirements and concerns 
about addiction or diversion, and also because both the experience and treatment of 
pain are subject to a broad degree of interindividual variability. Setting policy and 
procedural issues aside, the very subjective nature of pain is at the heart of the prob-
lem for practitioners. Research has found that the experience of pain and patients’ 
response to therapy (with regard to adverse reactions and therapeutic benefit), are 
subject to wide interindividual variability caused by a number of factors, including 
patient age, BMI, organ function, co-medication, underlying disease, and genetics. 
In the remainder of this chapter, we will focus on the genetic variability influencing 
toxicology and interpretation of drug response.

Genetic Differences in Drug Handling and Response

The effect of physician variability is theoretically minimized by a scenario in which 
the same clinician is prescribing a given medication for two different patients. An 
example is pain medication administered to these two individuals with similar 
extrinsic factors. It is widely recognized that even under these circumstances, vari-
ability in response remains unlikely. Since proteins and peptides are responsible for 
the action of therapeutics, alterations in the genetic sequence responsible for encod-
ing them creates an inherent source of variability. The association between drug 
response and toxicity and inherited genetic variations was recognized over 50 years 
ago [37]. Several different types of variations exist in the DNA sequence which 
range from single nucleotide polymorphisms (SNPs) to larger structural alterations 

38, 39]. 
Polymorphisms are defined as genetic variants occurring in at least 1% of the popu-
lation. By the year 2007, over 3.2 million SNPs in the human genome have been 
reported [40]. The functional consequences of SNPs range from having no effect on 
the transcribed protein’s function to a total loss of its activity. Since SNPs can alter 
a drug’s pharmacokinetics and pharmacodynamics, they serve as an objective mea-
sure of a potentially significant source of variability in drug response. In fact, clini-
cal pharmacogenetics has now made it possible for incorporating the effect of such 
variability in dosing decision-making and personalized drug therapy [20].

Polymorphisms in Drug Metabolizing Enzymes

A significant part of genetically caused variations in drug handling arise from the 
mediators of pharmacokinetics such as the drug metabolizing enzymes. These 
enzymes are classified into two main groups based on their function as phase 
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I–oxidative or phase II–conjugative [41]. In the clinical pharmacogenetic practice, 
many of the phase I and phase II enzymes are currently genotyped for assessing an 
individual’s variability in drug metabolism. Within this group, CYP450 and several 
phase II enzymes such as urindine diphosphate glucuronosyltransferase 1A1 
(UGT1A1) take part in the metabolism of the majority of drugs approved in the 
USA. Zanger et al. have studied the elimination routes for the 200 drugs available 
mainly by prescription in the USA [31]. Approximately 80% of drugs for which 
hepatic metabolism is indicated, polymorphisms in CYP450 genes of the families 1, 
2, and 3 are considered to be the main sources of variability. Contribution by 
CYP3A4/5 was shown to be responsible for metabolism of 37% of the drugs stud-
ied. The extent of involvement by other CYP enzymes was reported to be 17% for 
CYP2C9, 15% for CYP2D6, 10% for CYP2C19, 9% for CYP1A2, 6% for CYP2C8, 
and 4% for CYP2B6 [31]. The Food and Drug Administration (FDA) has long rec-
ognized the importance of incorporating pharmacogenetic knowledge and testing in 
clinical practice. The FDA has made significant efforts in relabeling products where 
drug efficacy or toxicity has been linked to polymorphisms (Wu et al. Future medi-
cine 2009). Genotyping tests for several enzymes, including CYP2D6, CYP2C9, 

approved by the FDA as clinical laboratory tests. There are many articles and book 
chapters devoted to presenting pharmacogenetics of various classes of drugs and 
genes for clinical applications [8, 14, 16]. Since covering all of these is beyond the 
scope of this chapter, we will focus on the CYP2D6 and opioid analgesics in the 
setting of pain management and the associated forensic cases. Special attention will 
be paid on drugs more likely to be implicated in postmortem cases and issues related 
to forensic toxicology.

CYP3A4 and CYP3A5

The CYP3A subfamilies are overall the most abundant drug metabolizing enzymes, 
taking part in the metabolism of approximately 40% of the drugs [31]. In this sub-
family of enzymes, the CYP3A4 and CYP3A5 are the two most important ones in 
the hepatic tissue. Many drugs of interest to forensic toxicologists are the semisyn-
thetic or synthetic opioids which are either in part or primarily metabolized by the 
CYP3A4 enzyme. These include methadone, propoxyphene, buprenorphine, trama-
dol, and fentanyl [42, 43]. Generation of norfentanyl from fentanyl by CYP3A4 has 
previously been reported in several forensic cases [25]. Another example of vari-
ability is N-dealkylation of buprenorphine to norbupronorphine [43] by CYP3A4 
[44]. Although buprenorphine has low respiratory depressive properties, its metabo-
lite is the one that primarily contributes to its toxicity [43, 45]. Another issue to be 
considered by toxicologists while interpreting drug levels is the coadministration of 
opioid analgesics with drugs known to alter the activities of CYPA4/5 enzymes. To 
demonstrate this point, consider taking itraconazole or ketoconazole and even drinking 
grapefruit juice which are all known to inhibit the CYP3A4 activity in patients also 
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on fentanyl or buprenorphine. These inhibitors are expected to enhance fentanyl’s 
toxic effects by reducing its elimination whereas they can decrease the toxic buildup 
of the metabolite of buprenorphine! Another example is benzodiazepines such as 
midazolam which are known to be metabolized by CYP3A4 enzyme. Its adminis-
tration to patients taking semisynthetic and synthetic opioids can create a source of 
variability in toxicity and response. This situation is far more common than gener-
ally recognized. In fact, anesthetics and drugs routinely administered during the 
preoperative and perioperative periods can include lists containing midazolam and 
fentanyl. Potential drug interactions can then be expected in patients who are con-
currently receiving inhibitors and substrates of CYP3A4 (e.g., ketoconazole, posa-
conazole), benzodiazepines (e.g., midazolam) and opioids [1, 46]. The contribution 
of CYP3A5 for metabolism of various drugs is also significant. In many cases, both 
CYP3A4 and CYP3A5 contribute to metabolism of the same drugs such as fenta-
nyl. Therefore, it is possible that a patient has wild-type alleles for one enzyme and 
polymorphism in the other. This creates a challenge in interpretation of the genotyp-
ing results for the CYP3A4/5 families. Despite this concern, specific polymorphisms 
denoted as CYP3A4*1B and CYP3A5*3 have been found to be helpful in certifica-
tion of postmortem fentanyl toxicity cases [25]. It is therefore recommended that for 
similar situations, both CYP3A4 and CYP3A5 be genotyped and their results be 
interpreted as an adjunct considering all other case evidence accordingly.

CYP2D6

Only 2–4% of the overall cytochrome composition in human hepatic tissue belongs 
to the CYP2D6 enzyme. Nevertheless, this enzyme, which is highly polymorphic, 
is responsible for metabolizing approximately 35% of all the drugs on the market 
[47]. The role of CYP2D6 in pharmacokinetics of many drugs of interest to forensic 
toxicologists has already been established [26, 30, 48, 49]. According to the Human 
Cytochrome P450 Allele Nomenclature Committee, there are over 120 reported 
base substitutions or polymorphisms reported by June 2009 [50]. Genotyping for 
these is routinely performed by commercially available kits capable of testing for 20 
or less of these polymorphisms. Routinely, multiplexing or array-type techniques 
are best suited for CYP2D6 genotyping [51, 52]. Overall, the allele variants are 
designated by a * and a number. For example a *1 allele variant generally refers to 
the wild-type genotype. An allele variant of *2 is also expected to have normal 
activity whereas *3 through *8 and *11 through *15 genotypes denote no enzymatic 
activity. Partial activity is expected from those with allele designations of *9, *10, 
*11, and *41. Traditionally, four major genetically derived phenotypic designations 
have been described for this CYP2D6. Extensive metabolizers (EM) represent the 
norm for metabolic capacity. Genotypes consistent with the EM phenotype include 
two active CYP2D6 alleles (for example, *1/*1 or *1/*2) or one active and one partially 
active CYP2D6 allele. In general, extensive metabolizers can be administered drugs 
which are substrates of the CYP2D6 enzyme following standard dosing practices. 
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Increased caution may be appropriate for individuals having one partially active 
allele. Intermediate metabolizers (IM) may require lower than average drug dosages 
for optimal therapeutic response. Genotypes consistent with the IM phenotype are 
those with one active and one inactive CYP2D6 allele, one inactive and one par-
tially active CYP2D6 allele, or two partially active CYP2D6 alleles. Poor metabo-
lizers (PM) are at increased risk of drug-induced side effects due to diminished drug 
elimination or lack of therapeutic effect resulting from failure to generate the active 
form of the drug. Genotypes consistent with the PM phenotype are those with no 
active CYP2D6 genes. Ultrarapid metabolizers (UM) exhibit higher than average 
rates of metabolism. Genotypes consistent with the UM phenotype include three or 
more active CYP2D6 alleles due to duplication of an active allele. UMs are at 
increased risk of therapeutic failure as a result of increased drug elimination. Thus 
they may require an increased dosage of medications that are inactivated by 
CYP2D6. Alternatively, UMs may also be at increased risk of drug-induced side 
effects because of increased exposure to active drug metabolites. In this case, they 
may require lower than average doses.

In addition to the above-mentioned enzymes, there are several other genes such 
as the CYP2C19 and UGT subfamily which may be worth looking into during a 
case investigation. The National Academy for Biochemistry (NACB) has developed 
recommendations for the use of pharmacogenetics in forensic applications which 
are now closed for further comments and about to be published [53]. In addition, 
during the past couple of years, the College of American Pathologists has had pro-
ficiency testing surveys available for pharmacogenetic testing [54]. The remainder 
of this chapter will focus on the CYP3A4/5 and CYP2D6 genes by presentation of 
several cases illustrating the use of their genotypic information in working up toxi-
cology cases.

Forensic Applications of Pharmacogenetics

In the discipline of forensic toxicology, results of drug screening activities as well 
as postmortem investigations are influenced by genetic differences in drug metabo-
lism and elimination. We will focus on these areas in more detail below.

Interpretation of Urine Drug Screening Results

Toxicology screens have become very popular in both clinical and forensic toxicol-
ogy disciplines. For clinical purposes, drug screens play an important role in the 
evaluation and treatment of the potentially poisoned patient. Other clinical applica-
tions include pain management, drug addiction treatment, and compliance testing. 
The forensic applications of drug screening are commonly used in workplace test-
ing utilized by both private and governmental organizations. The consequences of 
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these results affect hiring practices, quality assurance, termination policies, and 
medical compensation for work-related injuries. Drug screening for other purposes 
such as driving under the influence and testing in athletes, students, and prisoners is 
also very popular. Obviously, the legal and social repercussions of a given test result 
are potentially devastating to the subject. In addition, the illicit drug use suggested 
by toxicological screens leads to employers routinely denying medical compensa-
tion to workers injured on the job should their hospital evaluation include a positive 
screening result. In many forensic situations, medical review officers (MRO) certify 
the drug screening results without any knowledge or evidence for an individual’s 
ability to metabolize the drug in question. Added to this challenge is the fact that 
many drug screens are performed using immunoassays utilizing antibodies with 
differential cross-reactivities to the parent drug versus its metabolites. Otton et al. 
have demonstrated that the clearance of hydrocodone in the form of hydromorphone 
was 28.1 ± 10.3 mL/h/kg for patients with EM and 3.4 ± 2.4 mL/h/kg for those with 
PM genotypes for the CYP2D6 enzyme [55]. Therefore, in addition to the therapeu-
tic efficacy of hydrocodone, the proportion excreted as its O-demethylated metabo-
lite may have consequences on the urine opioid screening results [55, 56]. Another 
example is the metabolism of diazepam which is dependent on CYP2C19 activity 
[57]. Individuals with the PM genotype have prolonged half-lives for diazepam 
which are twice as long as those with the wild-type phenotype (88.3 ± 17.2 versus 
40.8 ± 14.0 h, respectively). Obviously, benzodiazepine immunoassays with prefer-
ential cross-reactivities for the metabolites may have a reduced chance of detecting 
exposure to the drug. Combining analytical and pharmacogenetic screening was 
used in a case of an individual on oxycodone with continued negative drug screen-
ing results in the urine. Apparently, this individual had been on rifampin, which is a 
known inducer of CYP450 activity causing a very rapid half-life for the drug [58]. 
With the stated examples, it is apparent that alterations in metabolic capacity of 
drugs either due to polymorphisms or drug interactions can have consequences on 
the urine drug screening test results.

Pharmacogenetics in Forensic Investigations

Through presentation of several cases involving various different opioids, we will 
demonstrate the use of pharmacogenetic testing in establishing (or excluding) 
genetic differences in drug metabolism as a potential contributing factor to the cause 
of death. The field of forensic toxicology is in a great position to contribute to phar-
macogenetics and its use in personalized medicine. When drugs are taken in “thera-
peutic” doses, toxicity and ultimately death are not generally expected. In cases 
where a patient dies after taking conventional doses of a drug or a combination of 
drugs, death investigation needs to be highly “individualized.” This is best achieved 
by assessing the person’s ability to metabolize the drugs through genotyping the 
DNA responsible for transcribing the relevant proteins and enzymes. Often, in indi-
viduals with reduced metabolic ability such as the IM or PM genotypes, the toxicity 
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is attributed to the parent drug. Alternatively, in those with the UM genotype, a 
higher than expected production of active metabolites can be the mechanism of 
toxicity. We will present several published and unpublished cases in which pharma-
cogenetics information was useful in determination of cause of toxicity or death.

Case Reports

We will initially focus on codeine and present several cases in which patients with 
various genotypes were investigated. We will then present an example for each of 
the other opioids, namely, oxycodone, fentanyl, and methadone.

Codeine is considered to be a weak opioid agonist, and is generally used for its 
analgesic and antitussive properties. The O-demethylation of codeine to morphine 
is by the CYP2D6 enzyme, and is considered to be important for its analgesic effi-
cacy. Despite this, in PM subjects, respiratory depression and other side effects of 
opioid toxicity have been observed which are thought to be due to codeine itself. 
Therefore, it cannot be assumed that lack of CYP2D6 metabolic activity (by which 
codeine is converted to morphine) also results in the absence of side effects. The 
following cases demonstrate codeine toxicity in patients with different genotypes. 
In each of these, genotyping contributed to either the determination of the cause of 
death or was helpful in confirmation of the cause of death. Codeine is also metabo-
lized by the CYP3A4 enzyme by N-demethylation to norcodeine which is equipo-
tent to codeine.

Case 1: Codeine Intoxication in a Breast-fed Infant

This is the case of a newborn male infant who had developed lethargy at 7 days of 
age [59]. On day 11 after birth, the infant had been noted to have altered skin color 
and had reduced milk intake. The baby was finally transported to a hospital on day 
13 for being cyanotic with no vital signs. Resuscitation efforts that had been initi-
ated at home were unsuccessful and the patient was pronounced dead at the hospi-
tal. After ruling out various inborn errors of metabolism for conditions such as 
organic acidemias, fatty acid oxidative disorders, and thyroid issues, toxicological 
examinations were also performed. The postmortem blood sample had 70 ng/mL of 
morphine and 5.9 g/mL of acetaminophen. The source of this blood sample was 
not mentioned in the report. This morphine concentration is approximately 6–7 
times the therapeutic concentration seen in neonates receiving morphine for analge-
sia. The breast milk which he was being fed contained a morphine concentration of 
87 ng/mL. This milk sample had been collected during the time his mother was tak-
ing half of the prescribed codeine dose during which she was somnolent and consti-
pated. Pharmacogenetic analysis involved genotyping for CYP2D6 and UGT2B7 
(catalyzing the morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) 
formation). The mother was considered to be an ultrarapid metabolizer since she 
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had CYP2D6 gene duplication (heterozygous with CYP 2D6*2A allele and a CYP 
2D6*2 × 2 alleles). The father of the infant and the infant himself were EM with 
CYP2D6 *1/*2 genotypes. In addition, both the infant and his mother were homozy-
gous for the UGT 2B7*2 gene known to be associated with increased M6G to mor-
phine ratio. M6G is known be an active metabolite of morphine. Considering the 
genotype for the mother, it is apparent that she was converting more of the codeine 
to morphine due to her enhanced CYP2D6 activity. Additional morphine in her 
blood had led to her own somnolence and constipation. As a result, her milk also 
contained increased morphine which was fed to the infant. The clinical presentation 
of the infant prior to his death is consistent with opioid intoxication, also confirmed 
by the fact that the postmortem morphine values were in the toxic range.

Case 2: Codeine Intoxication in Twin Boys (Set A)

Codeine is widely used in the pediatric population for its antitussive as well as its 
analgesic properties. Compared to other opioids, it is generally regarded to have 
fewer side effects; therefore, it is frequently prescribed to younger children and 
neonates. This case involves codeine-induced toxicity in a recently published case 
of 3-year-old monozygotic twin brothers [48, 60]. They had been prescribed 10 mg 
of codeine to treat their cough following the diagnosis of upper respiratory infec-
tion. They were both administered codeine for 6 days. On the 6th day, 5 h after 
administration of the last dose, one of the twins was found to be apneic and had 
vomited. Their mother began resuscitation and the child was transferred to the pedi-
atric intensive care unit. He was tachycardic, hypotensive, and had a Glasgow Coma 
Scale of 3. He had elevated leucocytes and was diagnosed with a tracheal viral 
infection. His aspiration pneumonia was treated by administration of antibiotics, 
and catecholamines were used to raise his blood pressure. After a few days, he even-
tually recovered with no further complications. Gas chromatography-mass spec-
trometry analysis of a serum sample collected 7.5 h after the last codeine dose 
resulted in total and free codeine concentrations of 489 and 179 ng/mL, respec-
tively. The total and free morphine in the same sample were 312 and 33 ng/mL, 
respectively. The therapeutic serum concentration for codeine was listed as 
56–129 ng/mL in small children. The concentration of morphine after codeine ther-
apy has been mentioned to be 4.5 ± 2.1 ng/mL [60]. This particular case is consistent 
with codeine (and morphine) overdose leading to apnea, vomiting, and hypotension. 
Unfortunately, the second twin brother had been found dead in his bed at home 
shortly after the first twin was initially discovered to be in distress. Autopsy on the 
second twin revealed aspiration of gastric contents. Analysis of codeine and mor-
phine were performed on several postmortem tissues and fluids on the second twin 
[60]. A serum sample obtained from the femoral vein resulted in a free codeine 
concentration of 547 ng/mL and a free morphine value of 150 ng/mL, respectively. 
The total and free codeine and morphine levels were also high in the cardiac blood. 
It is probable that respiratory depression and aspiration secondary to codeine (and 
the resulting morphine) overdoses led to the death of this twin brother. Genotyping 
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for CYP2D6 was used to investigate the reason for the elevation of both codeine and 
morphine. As expected, both twins had the same CYP2D6 genotypes which were 
considered to be wild types with no gene duplication. Therefore, they were catego-
rized as extensive metabolizers thus ruling out the possibility of reduced metabo-
lism due to genetic variation (i.e., being poor or intermediate metabolizer 
phenotypes). Accumulation of morphine was not attributed to CYP2D6 gene dupli-
cation since the children were not ultrarapid metabolizers. The pharmacogenetic 
data raises the suspicion that too much codeine had been administered to these chil-
dren. Indeed, case investigation further revealed that the prescribed dose was 0.5 mL 
of the codeine solution resulting in 10 mg of the drug per dose. Sadly, their mother 
had administered the codeine to them by “drops.” Each time, she administered 10 
“drops” which were experimentally shown to range from 494 to 940 mg of codeine 
per dose. Authors had concluded that variations in “drop” size and imprecision in its 
measurements could have created the unfortunate overdose situation for these 
twins.

Case 3: Codeine Intoxication in Twin Boys (Set B)

The case of a second set of 3-year-old twin boys who had both died of respiratory 
depression following administration of codeine is presented. These children had 
undergone adenotonsillectomy operations within an hour of one another for severe 
obstructive sleep apnea syndrome (OSAS). Their operations had gone well with no 
complication. Both children had awakened, were extubated, and were stable. To 
control their surgical pain, each had received 5 mL of a codeine elixir containing 
12 mg of codeine sulfate prior to discharge. Later on the same day, each child had 
further received two additional doses of the same codeine elixir at home. The rec-
ommended dose in children 3–6 years of age is 5 mL to be administered 3–4 times 
per day to be given every 3–4 h as needed (PRN). Interestingly, these children were 
being awakened to take their medication every 4 h. Several hours later, the first twin 
was noticed to be in respiratory distress and “choking,” which eventually lead to 
acute cardiopulmonary arrest. CPR was initiated and the child was taken to the hos-
pital. Resuscitation efforts were not successful and he was pronounced dead. While 
at the hospital with the first twin, the parents became concerned about the second 
twin who had been left in the care of a neighbor. The second twin was later on found 
to be unresponsive, had no pulse, and was cyanotic. He was resuscitated and eventu-
ally had his pulse reinstated. Ultimately, after 2–3 days of intensive care, the second 
twin also passed away. Autopsy performed on the first twin the morning after his 
death indicated that he had cerebral edema and airway froth. Toxicological analyses 
were performed on postmortem femoral blood, urine, vitreous fluid, and brain col-
lected at autopsy from the first twin. Analysis of the peripheral blood sample resulted 
in total and free codeine concentrations of 740 and 540/mL, respectively. The total 
and free morphine levels in the same sample were 190 and 60 ng/mL, respectively. 
The concentrations of total and free codeine in the brain tissue were 530 and 500 ng/mL, 
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morphine concentration was <10 ng/mL. CYP2D6 genotyping on these twins 
showed that each had one functional allele (*2) and one nonfunctional allele (*4). 
Therefore, it is concluded that they were both intermediate metabolizers. It is clear 
that the codeine concentrations in twin A, and by extrapolation in twin B, were 
elevated at the time of cardiopulmonary arrest. Additional investigation into this 
case revealed that the mother had administered the correct amount of the drug to 
each child at each dosing time. The volume of unused elixir corroborated this con-
clusion. The twins had inherited the *4 from their mother and *2 from their father, 
since the mother was a carrier of *4 allele and the father was wild type carrying the 
*2 allele. Therefore, carrying a nonfunctional CYP2D6 allele more probably than 
not contributed in part to the reduced metabolism of codeine reflected by the toxic 
concentrations measured in the first twin at autopsy. Contribution of the extent of 
postoperative respiratory compromise or other variables to the demise of these chil-
dren is not known.

Cases 4: Codeine in an Ultrarapid Metabolizer Child

In CYP2D6 rapid metabolizers, opioid toxicity after ingestion of codeine, hydro-
codone, and oxycodone is possible due to the generation of too much morphine, 
hydromorphone, and oxymorphone, respectively. These metabolites are more potent 
than their parent counterparts. In a reported case, codeine elixir was used for man-
aging pain in a 2.5-year-old boy who had undergone tonsillectomy operation [61]. 
He apparently had received four doses of codeine on postoperative day 1 and one 
more dose the next evening. Four hours later, the mother found the child unrespon-
sive and apneic. The emergency team administered naloxone which led to some 
improvement; however, the child became apneic at the hospital and was intubated. 
After a couple of weeks, he was extubated and discharged in stable condition. 
CYP2D6 genotyping revealed that he had a copy of *1 allele and multiple copies of 
the *2 allele. Both *1 and *2 have enzymatic activity and having more than two 
copies renders the individual an ultrarapid metabolizer. In this case, use of pharma-
cogenetic information was found to be useful in implicating morphine as the cause 
of respiratory depression. However, the authors had not verified this finding by mea-
suring the concentrations of codeine and morphine in this child.

Cases 5: Codeine in an Ultrarapid Metabolizer Adult

Another case of toxicity in individuals with multiple copies of CYP2D6 involves a 
62-year-old gentleman with a history of leukemia who had presented with cough, 
fever, and dyspnea [62]. Since this patient was considered to be immunocompro-
mised, bronchoalveolar lavage had been performed which revealed the presence of 
yeast. He was treated with two antibiotics (ceftriaxone and clarithromycin), an antifun-
gal agent (voriconazole) and oral codeine (25 mg three times a day) for cough. His 
condition deteriorated on hospital day 4 and he became unresponsive. The last dose 
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had been administered 12 h prior to the changes in his level of consciousness. The 
patient’s pupils were miotic and he had a Glasgow Coma Scale of 6 (no eye opening, 
no verbal response, and limb withdrawal after pain stimulation) on his initial neuro-
logic examination. Administration of naloxone (0.4 mg repeated two times) resulted 
in a dramatic improvement in his level of consciousness. His plasma codeine concen-
tration was 114 g/L. The reference range for CYP2D6 extensive metabolizers has 
been reported to be 13–75 g/L [62]. He was genotyped for CYP2D6 and CYP3A4, 
both of which are implicated in the metabolism of codeine. In addition, relative activ-
ities of CYP2D6 and CYP3A4 were assessed by administration of dextromethorphan 
and subsequent measurement of deconjugated dextrorphan excreted in the urine. The 
results of genotyping indicated that he had >3 copies of CYP2D6 which was con-
firmed by the phenotyping results assessed by the ratio of dextromethorphan and 
deconjugated dextrorphan. This patient was on a macrolide and an azole derivative to 
treat his infections. Both of these agents are known inhibitors of CYP3A4. It is 
believed that more of the codeine metabolized through the CYP2D6 route since 
CYP3A4 was inhibited, in this situation since there were multiple copies of CYP2D6 
present to convert codeine to morphine. It is clear from this case that genotyping was 
useful in directing the investigation by focusing on codeine as a cause of decreased 
neurological function and opioid toxicity.

Case 6: Oxycodone in a Poor Metabolizer

The decedent was a 49-year-old white male, prescription drug abuser with a history 
of depression and posttraumatic stress disorder [49]. For treating his chronic back 
pain following surgery, OxyContin and Percocet were prescribed. He was an alco-
holic. He attempted suicide once. Of the 60 oxycodone pills prescribed, only 12 had 
remained. His roommate, who saw him in the morning, found the decedent unre-
sponsive after returning from work. Toxicological analysis showed subclavian 
blood, obtained within 24 h after death, with a concentration of oxycodone 
0.437 mg/L, and without detection of alcohol and other drugs. Autopsy showed 
hepatic cirrhosis which might have impaired his drug metabolism. Molecular 
autopsy showed he was CYP 2D6*4 homozygous, corresponding to the poor metab-
olizer phenotype. This deficiency might have contributed to impaired metabolism of 
oxycodone, along with hepatic cirrhosis. Death certification was: cause of death, 
oxycodone overdose; and manner of death, accident.

Cases 7: Methadone in a Poor Metabolizer

The decedent was a 51-year-old white male with a 25-year history of heroin addic-
tion for which he was enrolled in a methadone maintenance program [63]. On 
Friday, he was accompanied by his friend to the methadone clinic where he 
ingested his prescribed dose, and was given an extra dose for the weekend. He 
also bought illicit drugs near the clinic. His girlfriend confirmed that he was alive 
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at 7 a.m. on Sunday, and she found the decedent on Monday at 8 a.m., with a 
bottle of methadone nearby. The decedent had hepatitis C and hepatic cirrhosis. 
Toxicology showed the iliac blood methadone concentration to be 1.6 mg/L. 
Based on the case history, acute ingestion of methadone was likely, followed by 
postmortem interval of <24 h. Thus, the high methadone concentration was not 
due to postmortem redistribution. Molecular autopsy showed CYP 2D6*3 and *4 
compound heterozygosity, corresponding to a poor metabolizer of methadone. 
Other toxicological findings included benzoylecgonine, 0.871 mg/L; propoxy-
phene, 0.32 mg/L; and diazepam, 0.12 mg/L. Autopsy finding included end-stage 
alcoholic liver disease. Death certification was: cause of death, mixed drug toxic-
ity attributed to methadone, cocaine abuse, propoxyphene, and diazepam; and 
manner of death, accident.

Cases 8: Fentanyl in a Poor Metabolizer

The decedent was a 44-year-old white female, with a history of drug abuse (cocaine, 
marijuana, and pain medications), suicidal ideation, and psychiatric disorders [25]. 
In a previous attempt to obtain medications, she had cut her arm. After a rummage 
sale, she complained to her boyfriend about her knee pain, and obtained some nar-
cotic patches. Later that evening, she seemed “goofy.” She was found dead 24 h 
later. One Duragesic patch was attached to her arm, and another adhered to a blan-
ket. Toxicology showed subclavian blood concentrations of : fentanyl and norfenta-
nyl, 19 and 7.6 g/L with a total of 26.6 g/L; cyclobenzapine, 0.16 mg/L; tramadol, 
0.06 mg/L; diphenhydramine, 0.08 mg/L; citalopram, 0.22 mg/L; and olanzapine, 
positive. Pharmacogenetic testing (i.e., molecular autopsy) showed: CYP3A4*1B 
heterozygous and CYP3A5*3 heterozygous. In these individuals, a reduced rate of 
fentanyl metabolism is expected. Therefore, according to the toxicology results and 
the genetic testing information, the death certification was issued as: cause of death, 
mixed drug toxicity  attributed to fentanyl, diphenhydramine, citalopram, cycloben-
zaprine, and tramadol; the manner of death was indicated to be an accident.

Techniques and Methods

Genetic variations in the genes which encode the drug-metabolizing enzymes may 
lead to normal, deficient, or higher enzyme activities. Such genetic variations can 
include SNPs, gene deletion, or gene duplications. For several enzymes such as 
CYP2D6, CYP2C9, and CYP2C19, there are several FDA-approved methodologies 
and kits available [64, 65]. In many of the techniques used for genotyping drug-
metabolizing enzymes, DNA is initially isolated from blood or tissues and is ampli-
fied using PCR-based techniques. The variation in the gene sequence is then queried, 
using a variety of different methods. Restriction fragment length polymorphism 
(RFLP) has been considered to be the traditional approach in identifying known 
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mutations. This approach is limited by the fact that targeted polymorphisms have to 
be able to lead to alterations capable of forming a restriction site. The restriction 
sites will determine changes in the DNA fragmentation (restriction digestion) pat-
tern which is identified on the gel [66]. In allele-specific amplification using real-
time PCR, the product is amplified by PCR and its formation is detected [67]. 
Another approach is the multiplex PCR in which the target DNA sequence is ampli-
fied, and based on allele-specific primer extension technique, the simultaneous 
detection of multiple CYP2D6 variants is achieved [52]. There are many other 
methods such as HPLC, mass spectrometry, and sequencing which can detect varia-
tions in the DNA sequence. The detailed discussion of these methods is beyond the 
scope of this chapter and the reader is referred to other sources for more information 
[51, 66, 68].

Frequently, the question of “what sample type should be used for pharmacoge-
netic testing” comes up in forensic applications. DNA has been isolated from many 
different types of samples, ranging from dried blood spots or whole blood to various 
organs such as the liver. For some genes, sample condition is less of an issue than 
others. For example, many of the PCR products of CYP2D6 are large, and therefore 
sample integrity and DNA quality in the original sample is important. In the clinical 
environment, blood drawn in EDTA plasma tubes is recommended since DNA can 
be readily isolated from the buffy coat. On the other hand, collection of samples 
during autopsy is limited to getting a whole blood specimen or tissue. Since whole 
blood has been used with success for DNA isolation, it is the preferred specimen. 
However, if needed, tissue can also be used for isolation of DNA for pharmacoge-
netic testing.

Since many medical examiner offices and state laboratories do not routinely per-
form pharmacogenetic testing, it is recommended that they use referral laboratories 
for this type of determination. It is also crucial to consider the needed knowledge 
and skill set in order to properly interpret the results for forensic settings. As previ-
ously indicated, the drug-metabolizing gene testing is done as an adjunct to the 
overall process of case investigation. Most ideally, the interpretations should be 
performed by individuals with toxicology knowledge who have been specifically 
trained in pharmacogenetics. Obviously, molecular diagnostics experts often lack 
the pharmacology and toxicology background needed for forensic toxicology issues. 
If too much emphasis is put on the pharmacogenetic data without considering the 
fundamentals of forensic toxicology, the case can be easily misinterpreted. Therefore, 
understanding the drug concentrations and utilizing the pharmacogenetic data are 
best done by considering both items simultaneously. It is recommended that toxi-
cologists consult with the pharmacogenetics experts and use the information as a 
piece of a larger puzzle.

In summary, when assessing therapeutic and toxic effects of opioids such as 
codeine which are often implicated in forensic cases, two distinct issues need to be 
considered. In the CYP2D6 poor metabolizers, not only opioid toxicity can be 
caused by the drug (e.g., codeine) itself, adequate pain relief mediated by its metab-
olite (e.g., morphine) is less likely [24, 69]. In a recent study, CYP2D6 genotyping 
was shown to predict only 50% of ultrarapid metabolizers subjects who carried gene 
duplication [27]. These subjects were better identified by dextromethorphan-based 
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phenotyping, which was able to distinguish 68% of the subjects on codeine with 
high morphine formation. When genotyping and phenotyping were combined, 88% 
of the high morphine formation subjects after administration of codeine were identi-
fied. On the other hand, CYP2D6 genotyping by itself was adequate enough to be 
able to predict insufficient morphine formation subjects. The point to consider when 
interpreting postmortem codeine cases is that determining the metabolic category 
for the patient is useful in establishing the underlying cause. For example, in twin 
set A (Case 2 discussed above), being an extensive metabolizer correlated with the 
finding that imprecision in “drop size” potentially leads to too much drug being 
administered. On the other hand, in twin set B (Case 3), carrying an inactive 
CYP2D6 allele explains toxic concentrations of codeine measured postmortem even 
if the correct dosing has been proven. Therefore, it is advised that genotyping be 
used as an additional piece of the puzzle when forensic toxicity cases are being 
investigated.
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Abstract The benzodiazepines are a class of a relatively large number of drugs that 
share a common chemical structure and have anxiolytic to sedative action on the 
central nervous system (CNS). They are chemically diverse, but share a classic 
structure that consists of a benzene fused to a seven-membered diazepine ring. 
Benzodiazepines are noted to have both pharmacodynamic and pharmacokinetic 
drug interactions. The former can be most devastating, and usually arise from  
co-exposure to another CNS depressant (e.g., ethanol, opioids, barbiturates, anesthe-
tics). These have been associated with enhanced impairment and mortality, usually 
from respiratory depression. Pharmacodynamic interactions occur with all benzodi-
azepines and are not related to their structure. Pharmacokinetic interactions, on the 
other hand are highly structure dependent, as most arise from either inhibition or 
induction of the cytochrome P450s involved in the metabolism of the benzodiaz-
epine. Numerous examples of pharmacokinetic interactions that alter the pharma-
cokinetics of the benzodiazepine have been reported and these are herein described 
for an assortment of drug. These interactions may have sufficient changes to signifi-
cantly reduce efficacy (induction of metabolism), but toxicity from inhibition of 
metabolism was rarely seen at the therapeutic doses used in clinical studies. These 
consequences, however, could be magnified in the overuser. Numerous drug interac-
tions between benzodiazepines and other drugs do occur; those with other CNS 
depressants are of greatest concern.
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General Information About Benzodiazepines

Introduction

The purpose of this chapter is to examine the drug interactions that occur with 
 benzodiazepines and discuss the relevance of these interactions to the field of medi-
cine in general with an emphasis on forensic toxicology. Because of the diverse 
nature of the benzodiazepines, some time has been taken to introduce this class of 
drugs. This introductory material has drawn upon some basic reference material and 
reviews [1–8], and is not otherwise referenced, except for specific points that did not 
come from these references. The primary literature will be more thoroughly cited in 
latter sections presenting evidence of interactions with other central nervous system 
(CNS) depressants and specific enzyme involvement in the metabolism of benzodi-
azepines and drug interactions.

The benzodiazepines are a class of a relatively large number of drugs that share 
a common chemical structure and have anxiolytic to sedative action on the CNS. 
Chlordiazepoxide was first introduced in the 1960s, followed by diazepam, fluraze-
pam, and oxazepam. Since that time, a number of benzodiazepines have been intro-
duced. In the 1999 edition of Martindale [7], at least 43 benzodiazepines were listed 
(Table 2.1). Most were found in the section on anxyolytic sedatives hypnotics and 
antipsychotics; one, clonazepam, was listed in the antiepileptics section. Of these 43 
benzodiazepines only 15 have, or had, US manufacturers listed in the more recent 
online version of Martindales (Table 2.1) [9].

Most benzodiazepines are now made by more than one pharmaceutical house, or 
more than one subsidiary of a pharmaceutical house and therefore have more than 
one trade name. A single example of trade names has been listed in Table 2.1, along 
with an associated manufacturer.

To understand the importance of drug interactions with benzodiazepines, a basic 
understanding of their pharmacodynamic action is required, along with the related 
therapeutic use. In addition, because many of the drug interactions are of a pharma-
cokinetic nature, the chemical structure and metabolism of the benzodiazepines 
must be appreciated.

Pharmacodynamics (Briefly), Uses, and Adverse Effects  
of Benzodiazepines

Most of the effects of benzodiazepines arise from their action on the CNS. 
Within the CNS, the major molecular targets of the benzodiazepines are inhibi-
tory  neurotransmitter receptors directly activated by the amino acid, gamma-
aminobutyric acid (GABA). Benzodiazepines have been shown to bind and 
modulate the major GABA receptor in the brain, GABA

A
, while GABA

B
 recep-

tors are not altered by benzodiazepines. The GABA
A
 receptor is an integral 

membrane chloride channel that mediates most of the rapid inhibitory 
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Table 2.1 Benzodiazepines listed in Martindales

Generic name Representative trade name Representative manufacturer CAS #

Adinazolam None Upjohn, USA 37115-32-5
Alprazolama Xanax (others) Upjohn, USA 28981-97-7
Bentazepam Tiadipona Knoll, Spain 29462-18-8
Bromazepam Lexotan (others) Roche, UK 1812-30-2
Brotizolam Lendormin B.I., Germany 57801-81-7
Camazepamb Albego Daker Farmasimos, Spain 36104-80-0
Chlordiazepoxidea Librium (others) Roche, USA 438-41-5
Cinolazepam Gerodorm Great, Australia 75696-02-5
Clobazam Frisium Hoechst, UK 22316-47-8
Clonazepama Klonopin (others) Roche, USA 1622-61-3
Clorazepatea Tranxene (others) Abbott, USA 20432-69-3
Clotiazepam Clozan (others) Roerig, Belgium 33671-46-4
Cloxazolam Akton (others) Excel, Belgium 24166-13-0
Delorazepam En Ravizza, Italy 2894-67-9
Diazepama Valium (others) Roche, USA 439-14-5
Estazolama Prosom (others) Abbott, USA 29975-16-4
Ethyl Loflazepate Victan (others) 29177-84-2
Etizolam Depas (others) Fournier, Italy 40054-69-1
Fludiazepam Erispan Sumitomo, Japan 3900-31-0
Flunitrazepam Rohypnol (others) Roche, UK 1622-62-4
Flurazepama Dalmane (others) Roche, USA 1172-18-5
Halazepama,b Paxipam (others) Schering, USA 23092-17-3
Haloxazolam Somelin Sankyo, Japan 59128-97-1
Ketazolam Solatran (others) SmithKline Beecham, Sweden 27223-35-4
Loprazolam Dormonoct (others) Hoechst Marian Russell, Belgium 61197-73-7
Lorazepama Ativan (others) Biovail, USA 846-49-1
Lormetazepam Loramet (others) Wyeth, Greece 848-75-9
Medazepam Rudotel AWD, Germany 2898-12-6
Metaclazepamb Talis Organon, Germany 65517-27-3
Mexazolam Sedexil Medibial, Portugal 31868-18-5
Midazolama Versed Roche, USA 59467-96-8
Nimetazepamb Ermin Suitomo, Japan 2011-67-8
Nitrazepam Mogadon (others) ICN, UK 146-22-5
Nordazepam Nordaz (others) Boucharo-Recordati, France 1088-11-5
Oxazepama,c Serafax (others) Wyeth, India 604-75-1
Oxazolam Serenal Sankyo, Japan 24143-17-7
Pinazepam Domar (others) Teoforma, Italy 52463-83-9
Prazepama,c Centrax (others) Parke-Davis, Germany 2955-38-6
Quazepama Doral (others) Questcor, USA 36735-22-5
Temazepama Restoril (others) Novartis, USA 846-50-4
Tetrazepam Myolastan (others) Sanofi Aventis, France 10379-14-3
Tofisopam Grandaxin Hung 22345-47-7
Triazolama Halcion Pharmacia Upjohn, USA 28911-01-5

Note: Benzodiazepines listed in the 32nd edition of “Martindale: The Complete Drug Reference 
(1999)” [7]. When more than one trade name was listed (noted as “other”), either the USA or most 
common one was chosen; a representative manufacturer was selected for listing. Listed in latest 
online edition [9] as: ahaving a US manufacturer; bmanufacturing suspended; cmanufacturing sus-
pended in USA, but still made in other countries
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 neurotransmission in the CNS. Benzodiazepines, unlike barbiturates that also 
bind GABA

A
, act only in the  presence of GABA. Typical benzodiazepine 

 agonists increase the amount of chloride current generated by GABA
A
 activation, 

potentiating the effect of GABA throughout the CNS. Bicuculline, an antagonist 
of GABA

A
, reduces the behavioral and  electrophysiological effects of benzodi-

azepines, and a benzodiazepine analog,  flumazenil, that potently and selectively 
blocks the benzodiazepine binding site, is used clinically to reverse the effects 
of high doses of benzodiazepines [4].

These CNS depressive effects result in anxiolytic, muscle relaxant, hypnotic, 
anti-grade amnesia, anticonvulsant, and sedative effects that define the therapeutic 
uses of benzodiazepines (Table 2.2). While the proper dose of any one benzodi-
azepine will produce many of these effects, some benzodiazepines are more 
appropriate for certain uses than others. In large part, this is dictated by the thera-
peutic half-life of the drug. Benzodiazepines are generally classified as short- 
(0–6 h), intermediate- (6–24 h), or long-acting (> 24 h); some texts, however, 
will just use short- (0–24 h) and long-acting (> 24 h) designations. Benzodiazepines 
used as anticonvulsants are long acting and have rapid entry into the brain. Short- to 
intermediate-acting benzodiazepines are favored for the treatment of insomnia. 
Short-acting benzodiazepines are used as preanesthetic agents for sedation prior 
to surgery. Long-acting or multidose shorter-acting benzodiazepines are gener-
ally used as anxiolytics. The use of benzodiazepines listed in Martindale, along 
with their half-life, route(s) of administration, and normal range of doses is 
presented in Table 2.3.

Drowsiness, sedation, and ataxia are the most frequent adverse effects of benzo-
diazepine use. They generally decrease on continued administration and arise from 
the CNS depressive effects of benzodiazepines. Less common adverse effects 
include vertigo, headache, mental depression, confusion, slurred speech, tremor, 
changes in libido, visual disturbances, urinary retention, gastrointestinal distur-
bances, changes in salivation, and amnesia. Rare events include paradoxical excita-
tion leading to hostility and aggression, hypersensitivity reactions, jaundice, and 
blood disorders. With very high doses, hypotension, respiratory depression, coma, 
and occasionally death may occur.

Table 2.2 Uses of benzodiazepines

1. Anxiety (27)a

2. Insomnia (26)
3. Presurgery/sedation (8)
4. Epilepsy/seizures (7)
5. Alcohol withdrawal (4)
6. Muscle spasms (3)
7. Panic disorder (2)
8. Depression (2)
a The number in parentheses represents 
the number of benzodiazepines listed 
in Martindale that are used to treat this 
disorder
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Table 2.3 Uses of benzodiazepines listed in Martindale

Generic name Half-life (h)a

Route(s) of 
administration Usual dose (mg) Usesb

Adinazolam Short – – 1, 8
Alprazolam 11–15 Oral 0.75–1.5 1, 8
Bentazepam – Oral 25 1, 2
Bromazepam 12–32 Oral 3–18 1, 2
Brotizolam 4–8 Oral 0.25 2
Camazepam – Oral 10 2
Chlordiazepoxide 5–30, 48–120c Oral, iv, im 25–100 1, 2, 3, 5, 6
Cinolazepam – – – 2
Clobazam 18, 42c Oral 20–30 2, 4
Clonazepam 20–40 Oral, iv 0.25–1 4, 7
Clorazepate 48–120c Oral, iv, im 15–90 1, 4, 5
Clotiazapam 4–18 Oral 5–60 1, 2
Cloxazolam Long Oral, im 8–12 1, 3
Delorazepam Long Oral, im 0.5–6 1, 2, 3, 4
Diazepam 24–48, 48–120c Oral, iv, im 5–30 1, 2, 3, 4, 5, 6
Estazolam 10–24 Oral 1–2 2
Ethyl Lorazepate Long Oral 1–3 1
Etizolam Short Oral 3 1, 2
Fludiazepam Short Oral – 1
Flunitrazepam 16–35 Oral, iv 0.5–2 2, 3
Flurazepam 47–100 Oral 15–30 2
Halazepam Short Oral 20 1
Haloxazolam Short Oral 5 2
Ketazolam Long Oral 15–60 1
Loprazolam 4–15 Oral 1–2 2
Lorazepam 10–20 Oral, iv, s.l. 1–6 1, 2, 3, 4
Lormetazepam 11 Oral 0.5–1.5 2
Medazepam Long Oral 10–20 1
Metaclazepam Short Oral 15 1
Mexazolam – Oral 0.5 1
Midazolam 2–7 iv, im 2.5–7.5 3
Nimetazepam Short Oral 3 2
Nitrazepam 24–30 Oral 5–10 2, 4
Nordazepam 48–120 Oral 15 1, 2
Oxazepam 4–15 Oral 15–30 1, 2, 5
Oxazolam Long Oral 10 1
Pinazepam Long Oral 5–20 1, 2
Prazepam 48–120c Oral 30–60 1
Quazepam 39, 39–73c Oral 15 2
Temazepam 8–15 Oral 10–40 1, 3
Tetrazepam – Oral 25–50 6
Tofisopam – Oral 150 1
Triazolam 1.5–5.5 Oral 0.125–5 2
aIf half-lives were not given, they were often referred to as short- or long-acting
bSee Table 2.2 for the number corresponding to different uses
cHalf-life for active metabolite
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Daily benzodiazepine use has been associated with dependence, tolerance, 
and after discontinuation, withdrawal symptoms in many individuals. Tolerance 
to the effects of benzodiazepines is a highly debated topic. It appears to occur in 
some individuals and may not occur in others. The likelihood of dependence 
appears higher in individuals with a history of drug or alcohol dependence and 
personality disorders. High doses and intravenous injection are used for their 
euphoric effects. Because development of dependence cannot be easily predicted, 
abrupt discontinuation of use is not recommended. Rather the dose should be 
tapered. Symptoms of withdrawal include anxiety, depression, impaired concen-
tration, insomnia, headache, dizziness, tinnitus, loss of appetite, tremor, perspi-
ration, irritability, perceptual disturbances, nausea, vomiting, abdominal cramps, 
palpitations, mild systolic hypertension, tachycardia, and orthostatic hypoten-
sion. If long-term use of benzodiazepines occurs, professional assisted with-
drawal is recommended.

Basic Pharmacokinetics

The benzodiazepines are generally lipophilic drugs. Within the class, however, 
 lipophilicity measured as the oil:water coefficient can differ over a 50-fold range. 
Due to their lipophilicity the benzodiazepines have relatively high plasma protein 
binding (70–99%) and relatively large volumes of distribution (0.3–22 L/kg) 
(Table 2.4). In general, the percent plasma protein binding and the volume of distri-
bution increase as does the oil:water partition coefficient.

The differences in lipophilicity can have a major impact on the pharmacoki-
netics of the benzodiazepine. Diazepam is regarded as a long-acting benzodiaz-
epine. When diazepam is given as a single dose, however, it rapidly redistributes 
to non-plasma (lipid) compartments, which is referred to as the  elimination 
phase. It then slowly distributes back into the plasma compartment at subthera-
peutic concentrations with a long terminal elimination half-life. Therefore, single 
doses of diazepam can be used as a preanesthesia medication, while daily dosing 
will result in accumulation during the terminal elimination phase and provide 
long-acting therapy.

The benzodiazepines are well absorbed from the gastrointestinal tract, which 
allows for oral dosing of benzodiazepines (Table 2.3). As described in more detail 
in the Section on metabolism, most will also undergo extensive first-pass metabo-
lism, some to such an extent that parent drug is only detected at very low concentra-
tions in blood (or blood-derived) samples. The plasma concentration of 
benzodiazepines, or their primary pharmacodynamically active metabolites, corre-
lates well with the dose of benzodiazepine administered (Fig. 2.1).

As a class, the benzodiazepines share many properties. There are structural 
 differences between them, and these differences will effect the manner in which the 
benzodiazepine is metabolized, and thereby have an impact on their individual 
 susceptibility to drug interactions.
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Chemistry and Metabolism of Benzodiazepines

Chemistry of Benzodiazepines

The classic structure of benzodiazepines (Fig. 2.2) consists of a benzene (A ring) 
fused to a seven-membered diazepine (B ring). In all but two of the commercially 
available benzodiazepines, the nitrogens in the diazepine ring are in the 1,4-posi-
tion. Clobazam has nitrogens in the 1,5-position of the diazepine ring; tofisopam 
has nitrogens in the 2,3-position of the diazepine ring (Fig. 2.3). In addition, most 
commercially available benzodiazepines have an aryl substituent (C ring) at the 
5-position of the diazepine ring. Therefore, with the exception of clobazam and 
tofisopam, these are 5-aryl-1,4-benzodiazepines.

Following the initial synthesis of chlodiazepoxide by Sternbach in 1957, and 
its introduction as a therapeutic agent in 1961, a number of benzodiazepines have 
been introduced onto the market. The initial modifications involved changes in the 
substituents on the diazepine ring. Modifications along this line first led to the 
development of diazepam, flurazepam, and oxazepam. These have continued 
through the years, leading to a number of 1,4-benzodiazepines (Table 2.5). 
Substitution of the benzene with a thieno group produced the 1,4-thienodiazepines 

Table 2.4 The percent of plasma protein binding and 
volume of distribution (V

d
) of some benzodiazepines

Benzodiazepine % Bound V
d
 (L/kg) Source

Alprazolam 71 0.7 a
Bromazepam 70 0.9 b
Chlordiazepoxide 96 0.3 a
Clobazam 85 1.0 b, c
Clonazepam 86 3.2 a
Clotiazepam 99 – c
Diazepam 99 1.1 a
Estazolam 93 – c
Flunitrazepam 78 3.3 a
Flurazepam 97 22.0 a
Halazepam – 1.0 b
Lorazepam 91 1.3 a
Midazolam 95 1.1 a
Nitrazepam 87 1.9 a
Nordazepam 98 0.8 a
Oxazepam 98 0.6 a
Prazepam – 13.0 b
Quazepam 95 – c
Temazepam 98 1.1 a
Triazolam 90 1.1 a

The source of information was a [5]; b [6]; and c [7]
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Fig. 2.1 The range of therapeutic doses (a) and plasma concentrations (b) of selected benzodiaz-
epines. *In (b), these concentrations are for the primary metabolite, nordiazepam

(Figs. 2.2 and 2.3, Table 2.6). Annelation of an oxazolo (Fig. 2.2, Table 2.6) or 
oxazino group (ketazolam in Fig. 2.3, Table 2.6) at the 4,5-position of the diaz-
epine has been used and the newer benzodiazepines have 1,2 annealed triazolo or 
imidazo groups (Fig. 2.2, Table 2.6). While most benzodiazepines have a phenyl 
substituent at the 5-position of the diazepine ring, bromazepam has a 2-pyridinyl 
substituent, and tetrazepam has a 1-cyclohexen-1-yl substituent at this position 
(Fig. 2.3, Table 2.6). Bentazepam, with a benzylthieno group fused to the diaz-
epine ring, and brotizolam with both the thieno and triazolo groups are unique 
1,4-thienodiazepines (Fig. 2.3, Table 2.6).
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