Drug Discovery

## **Anti-aging Drugs**

From Basic Research to Clinical Practice

Edited by Alexander M. Vaiserman



### Anti-aging Drugs From Basic Research to Clinical Practice

#### **RSC Drug Discovery Series**

Editor-in-chief

Professor David Thurston, King's College, London, UK

Series Editors:

Professor David Rotella, *Montclair State University, USA* Professor Ana Martinez, *Centro de Investigaciones Biologicas-CSIC, Madrid,* Spain Pr David Fox, Vulning Science and Learning, UK

Dr David Fox, Vulpine Science and Learning, UK

Advisor to the Board:

Professor Robin Ganellin, University College London, UK

#### Titles in the Series:

- 1: Metabolism, Pharmacokinetics and Toxicity of Functional Groups
- 2: Emerging Drugs and Targets for Alzheimer's Disease; Volume 1
- 3: Emerging Drugs and Targets for Alzheimer's Disease; Volume 2
- 4: Accounts in Drug Discovery
- 5: New Frontiers in Chemical Biology
- 6: Animal Models for Neurodegenerative Disease
- 7: Neurodegeneration
- 8: G Protein-Coupled Receptors
- 9: Pharmaceutical Process Development
- 10: Extracellular and Intracellular Signaling
- 11: New Synthetic Technologies in Medicinal Chemistry
- 12: New Horizons in Predictive Toxicology
- 13: Drug Design Strategies: Quantitative Approaches
- 14: Neglected Diseases and Drug Discovery
- 15: Biomedical Imaging
- 16: Pharmaceutical Salts and Cocrystals
- 17: Polyamine Drug Discovery
- 18: Proteinases as Drug Targets
- 19: Kinase Drug Discovery
- 20: Drug Design Strategies: Computational Techniques and Applications
- 21: Designing Multi-Target Drugs
- 22: Nanostructured Biomaterials for Overcoming Biological Barriers
- 23: Physico-Chemical and Computational Approaches to Drug Discovery
- 24: Biomarkers for Traumatic Brain Injury
- 25: Drug Discovery from Natural Products
- 26: Anti-Inflammatory Drug Discovery
- 27: New Therapeutic Strategies for Type 2 Diabetes: Small Molecules
- 28: Drug Discovery for Psychiatric Disorders
- 29: Organic Chemistry of Drug Degradation
- 30: Computational Approaches to Nuclear Receptors

- 31: Traditional Chinese Medicine
- 32: Successful Strategies for the Discovery of Antiviral Drugs
- 33: Comprehensive Biomarker Discovery and Validation for Clinical Application
- 34: Emerging Drugs and Targets for Parkinson's Disease
- 35: Pain Therapeutics; Current and Future Treatment Paradigms
- 36: Biotherapeutics: Recent Developments using Chemical and Molecular Biology
- 37: Inhibitors of Molecular Chaperones as Therapeutic Agents
- 38: Orphan Drugs and Rare Diseases
- 39: Ion Channel Drug Discovery
- 40: Macrocycles in Drug Discovery
- 41: Human-based Systems for Translational Research
- 42: Venoms to Drugs: Venom as a Source for the Development of Human Therapeutics
- 43: Carbohydrates in Drug Design and Discovery
- 44: Drug Discovery for Schizophrenia
- 45: Cardiovascular and Metabolic Disease: Scientific Discoveries and New Therapies
- 46: Green Chemistry Strategies for Drug Discovery
- 47: Fragment-Based Drug Discovery
- 48: Epigenetics for Drug Discovery
- 49: New Horizons in Predictive Drug Metabolism and Pharmacokinetics
- 50: Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation
- 51: Nanomedicines: Design, Delivery and Detection
- 52: Synthetic Methods in Drug Discovery: Volume 1
- 53: Synthetic Methods in Drug Discovery: Volume 2
- 54: Drug Transporters: Role and Importance in ADME and Drug Development
- 55: Drug Transporters: Recent Advances and Emerging Technologies
- 56: Allosterism in Drug Discovery
- 57: Anti-aging Drugs: From Basic Research to Clinical Practice

#### How to obtain future titles on publication:

A standing order plan is available for this series. A standing order will bring delivery of each new volume immediately on publication.

For further information please contact:

Book Sales Department, Royal Society of Chemistry, Thomas Graham House,

Science Park, Milton Road, Cambridge, CB4 0WF, UK

Telephone: +44 (0)1223 420066, Fax: +44 (0)1223 420247,

Email: booksales@rsc.org

Visit our website at www.rsc.org/books

### **Anti-aging Drugs** From Basic Research to Clinical Practice

Edited by

Alexander M. Vaiserman

Institute of Gerontology, Kiev, Ukraine Email: vaiserman@geront.kiev.ua





RSC Drug Discovery Series No. 57

Print ISBN: 978-1-78262-435-6 PDF eISBN: 978-1-78262-660-2 EPUB eISBN: 978-1-78262-985-6 ISSN: 2041-3203

A catalogue record for this book is available from the British Library

© The Royal Society of Chemistry 2017

#### All rights reserved

Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry or the copyright owner, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page.

Whilst this material has been produced with all due care, The Royal Society of Chemistry cannot be held responsible or liable for its accuracy and completeness, nor for any consequences arising from any errors or the use of the information contained in this publication. The publication of advertisements does not constitute any endorsement by The Royal Society of Chemistry or Authors of any products advertised. The views and opinions advanced by contributors do not necessarily reflect those of The Royal Society of Chemistry which shall not be liable for any resulting loss or damage arising as a result of reliance upon this material.

The Royal Society of Chemistry is a charity, registered in England and Wales, Number 207890, and a company incorporated in England by Royal Charter (Registered No. RC000524), registered office: Burlington House, Piccadilly, London W1J 0BA, UK, Telephone: +44 (0) 207 4378 6556.

Visit our website at www.rsc.org/books

Printed in the United Kingdom by CPI Group (UK) Ltd, Croydon, CR0 4YY, UK

### Foreword

In 1970, the world's largest learned society focused on aging underwent a schism that persists to this day. Denham Harman, one of the foremost American gerontologists of that era, had become so incensed at the flight from translational work—or even, to judge from public pronouncements, translational aspirations—of nearly all his colleagues that he felt it necessary to found the American Aging Association in direct competition with the Gerontological Society of America, which had overseen the field for the previous quarter-century.

Was that a good move? This excellent volume provides a fitting affirmative answer. The American Aging Association languished in genuine obscurity and neglect for over 20 years, but by 2000 it had risen to a much greater degree of respect, and it has since become arguably the most prestigious society in the field worldwide, without ever losing sight of its interventionfocused roots. It has done so because of real progress in the laboratory: progress that has shifted other communities to a more translation-friendly stance rather than the other way around.

The pharmacological approach that dominates the following chapters is by no means the only option available to the biomedical gerontologist; in particular, my own work and that of SENS Research Foundation is focused mainly on stem cell and gene therapies. But it remains apparent that pharmacological interventions, simply by virtue of being so much easier to administer, are of immense value even if they only provide much lesser benefit to the average older person than more exotic alternatives, not only because even modest benefit is better than nothing, but also because the latter will not be available for a while and the former can act as a bridge to them.

The first and last sections of this book are no less important. Biogerontology runs the same risk as any science, of becoming an echo-chamber immune to the need for interaction with wider society. Biologists of aging

RSC Drug Discovery Series No. 57

Anti-aging Drugs: From Basic Research to Clinical Practice

Edited by Alexander M. Vaiserman

<sup>©</sup> The Royal Society of Chemistry 2017

Published by the Royal Society of Chemistry, www.rsc.org

are perhaps even more duty-bound than any scientists, in consequence of the humanitarian importance of their field, to avoid falling into such a trap. It is therefore laudable that Vaiserman has chosen to invite chapters covering the pros and cons of both the feasibility and the desirability of significant, near-term success in the age-old quest to extend our youth. As one who has dedicated his life to that mission, I can attest that the best way to further it is to discuss it.

Enjoy these chapters as much as I have. They jointly constitute a comprehensive and invaluable primer in the current state of pharmacological anti-aging medicine.

Aubrey de Grey

### Preface

Over the last few years, anti-aging medicine has received increasing attention in both public and scientific communities. Public interest in this area of research is largely driven by media attention related to recent developments in regenerative medicine and genome modification technologies. Probably the most famous example of that is the case of Elizabeth Parrish, the CEO of Seattle-based biotech firm BioViva, who claims that she had managed to reverse her own aging process with CRISPR gene editing technology by receiving a treatment targeting two gene loci, one a gene controlling telomere length and the other to protect against loss of muscle mass with age. Even though no confirmation has been received so far on whether or not this technology successfully changed her genome, many safety, ethical and regulatory issues are raised from this case. First of all, this concern is related to possible side effects associated with the use of this technology, primarily cancer. In this respect, using the more conventional pharmacologically based approach seems a reasonable alternative, particularly since many natural and synthetic agents have shown great potential for promoting health and longevity in numerous animal models. Among them, the most attention is currently drawn to rapamycin, resveratrol and the antidiabetic drug metformin. The last one was recently approved by the FDA to be examined in the Targeting Aging with Metformin (TAME) clinical trial to establish whether it may reduce the risk for aging-associated pathologies, such as cognitive impairments, cardiovascular disease and cancer, in non-diabetic persons. If successful, the TAME study would be the first demonstration that a particular drug can prevent or delay the onset of aging-associated chronic human disorders. It might provide a novel regulatory pathway for further clinical trials of pharmaceuticals specifically designed to slow the aging process.

The present volume is the first one devoted entirely to the pharmacological aspects of anti-aging medicine. It provides a comprehensive overview

Edited by Alexander M. Vaiserman

RSC Drug Discovery Series No. 57

Anti-aging Drugs: From Basic Research to Clinical Practice

<sup>©</sup> The Royal Society of Chemistry 2017

Published by the Royal Society of Chemistry, www.rsc.org

of current research aimed to search for natural and synthetic compounds that can potentially be developed as drugs for treating aging-related chronic pathologies and, ultimately, for healthy life extension. In the first section of the book, the basic conceptual and methodological aspects of modern anti-aging medicine are described. The next sections are concerned with the main classes of lifespan-promoting agents, such as antioxidants, calorie restriction mimetics, epigenome-targeted drugs and phytochemicals with health-promoting properties. In the subsequent sections, the strategies for translation of research findings in the field of anti-aging medicine into clinical and healthcare practice as well as opportunities and challenges related to the implementation of such approaches are discussed. This volume constitutes a comprehensive collection of chapters written by leading experts in the field. It will be a relevant and useful resource not only for professional scientists and clinicians, but also for scientifically interested amateurs wishing to know more about the current research in anti-aging pharmacology.

Finally, I would like to acknowledge Dr Oksana Zabuga for the helpful assistance in preparing the manuscript of this volume, as well as the editorial staff at the Royal Society of Chemistry, especially Harriet Manning and Rowan Frame, with whom I had the good fortune to work on this project, for their patience and encouragement.

Alexander M. Vaiserman

### **Contents**

### **Section I: Overview**

| Chapter 1 | <b>Anti-Aging Drugs: Where are We and Where are We Going?</b><br><i>Alexander M. Vaiserman and Oleh V. Lushchak</i> | 3  |
|-----------|---------------------------------------------------------------------------------------------------------------------|----|
|           | 1.1 Introduction                                                                                                    | 3  |
|           | 1.2 Human Life Extension: Concerns and Considerations                                                               | 4  |
|           | 1.3 Anti-Aging Pharmacology: Promises and Pitfalls                                                                  | 5  |
|           | 1.4 Concluding Remarks and Future Directions                                                                        | 8  |
|           | References                                                                                                          | 9  |
| Chapter 2 | Aging: Natural or Disease? A View from Medical                                                                      |    |
|           | Textbooks                                                                                                           | 11 |
|           | S. Janac, B. Clarke and D. Gems                                                                                     |    |
|           | 2.1 Introduction                                                                                                    | 11 |
|           | 2.1.1 What Does "Aging" Mean?                                                                                       | 12 |
|           | 2.1.2 Is Aging a Disease?                                                                                           | 12 |
|           | 2.1.3 What is an Anti-Aging Intervention?                                                                           | 14 |
|           | 2.1.4 Aims of this Study: How is the Aging vs.                                                                      |    |
|           | Disease Division Represented in Medical                                                                             |    |
|           | Textbooks?                                                                                                          | 15 |
|           | 2.2 How is Aging Viewed in the Medical Field?                                                                       | 17 |
|           | 2.2.1 Two Surveys of the Medical Perception of Aging                                                                | 17 |
|           | 2.2.2 Medical Textbook Analysis                                                                                     | 18 |
|           | 2.3 Discussion                                                                                                      | 30 |
|           | Acknowledgements                                                                                                    | 32 |
|           | References                                                                                                          | 32 |

RSC Drug Discovery Series No. 57

Anti-aging Drugs: From Basic Research to Clinical Practice

Edited by Alexander M. Vaiserman

<sup>©</sup> The Royal Society of Chemistry 2017

Published by the Royal Society of Chemistry, www.rsc.org

| Chapter 3 | <b>The Search for the "Anti-Aging Pill": A Critical Viewpoint</b><br>Éric le Bourg | 35 |
|-----------|------------------------------------------------------------------------------------|----|
|           | 3.1 Introduction                                                                   | 35 |
|           | 3.2 Diverse Life-History Strategies: Consequences for                              |    |
|           | Lifespan Modulation                                                                | 37 |
|           | 3.2.1 There Are Various Life-History Strategies in                                 |    |
|           | Mammals                                                                            | 37 |
|           | 3.2.2 The Life-History Strategy of the Nematode                                    |    |
|           | Caenorhabditis Elegans Could Explain Why Its                                       |    |
|           | Longevity is Plastic                                                               | 41 |
|           | 3.3 Toxic and Essential Molecules May Have the Same                                |    |
|           | Effects at Low Doses                                                               | 42 |
|           | 3.4 A Drug Treating an Age-Related Pathology is not an                             |    |
|           | "Anti-Aging" Drug                                                                  | 45 |
|           | 3.5 Conclusions                                                                    | 45 |
|           | References                                                                         | 47 |

### Section II: Basic Concepts, Models and Approaches

| Chapter 4 | <b>Testing of Geroprotectors in Experiments on Cell</b><br><b>Cultures: Pros and Cons</b><br><i>Alexander N. Khokhlov and Galina V. Morgunova</i> | 53 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
|           | 4.1 Introduction                                                                                                                                  | 53 |
|           | 4.2 Cytogerontological Model Systems                                                                                                              | 55 |
|           | 4.3 Constructing of Survival Curves for Cultured Cells in                                                                                         |    |
|           | Cytogerontological Experiments                                                                                                                    | 58 |
|           | 4.4 Interpretation of Data About the Impact of                                                                                                    |    |
|           | Geroprotectors on Viability of Cultured Cells in                                                                                                  |    |
|           | Cytogerontological Studies                                                                                                                        | 63 |
|           | 4.5 Some Words About Biomarkers of Cell                                                                                                           |    |
|           | Aging/Senescence                                                                                                                                  | 65 |
|           | 4.6 Conclusions                                                                                                                                   | 68 |
|           | References                                                                                                                                        | 70 |
| Chapter 5 | Pharmacogenomics and Epigenomics of Age-Related<br>Neurodegenerative Disorders: Strategies for Drug                                               |    |
|           | Development                                                                                                                                       | 75 |
|           | Ramón Cacabelos, Juan Carlos Carril and Oscar Teijido                                                                                             |    |
|           | 5.1 Introduction                                                                                                                                  | 75 |
|           | 5.2 Age-Related Pheno-Genotypes                                                                                                                   | 76 |
|           | 5.2.1 Age- and Genotype-Related Phenotype                                                                                                         |    |
|           | Variation in Common Biochemical and                                                                                                               |    |
|           | Hematological Parameters                                                                                                                          | 78 |

|           | 5.2.2 Common Genes with Age-Related Influence              |     |
|-----------|------------------------------------------------------------|-----|
|           | on Health Conditions in NDDs                               | 79  |
|           | 5.3 Pharmacogenomics                                       | 83  |
|           | 5.3.1 APOE-TOMM40                                          | 95  |
|           | 5.3.2 CYPs                                                 | 97  |
|           | 5.3.3 Transporters                                         | 99  |
|           | 5.4 Epigenomics                                            | 100 |
|           | 5.4.1 Age-Related Epigenetics                              | 101 |
|           | 5.4.2 Neurodegenerative Disorders                          | 103 |
|           | 5.5 Pharmacoepigenomics                                    | 108 |
|           | 5.6 Novel Strategies                                       | 111 |
|           | 5.6.1 LipoFishins                                          | 123 |
|           | 5.6.2 Atremorine (E-PodoFavalin-15999)                     | 126 |
|           | 5.7 Future Trends for the Management of Age-Related NDDs   | 129 |
|           |                                                            | 129 |
|           | Acknowledgements<br>References                             | 131 |
|           | References                                                 | 151 |
| Chapter 6 | Nanotechnology in Anti-Aging: Nutraceutical Delivery       |     |
| onupter o | and Related Applications                                   | 142 |
|           | Anila Mathew , Francesco Marotta and                       |     |
|           | D. Sakthi Kumar                                            |     |
|           |                                                            |     |
|           | 6.1 Introduction                                           | 142 |
|           | 6.2 Nutraceuticals and Nanodevelopments                    | 143 |
|           | 6.3 Nanoformulations of Bioactive Compounds                | 146 |
|           | 6.3.1 Nanoemulsions                                        | 147 |
|           | 6.3.2 Nanoencapsulation/Nanoparticles                      | 154 |
|           | 6.3.3 Liposomes                                            | 157 |
|           | 6.3.4 Other Nanoformulation Strategies:                    |     |
|           | Nanodisks, Nanogels, Nanofibers etc.                       | 157 |
|           | 6.4 Safety and Regulatory Aspects of Nanofoods             | 159 |
|           | 6.5 Consumer Attitude Towards Nanotechnology in            |     |
|           | Food-Related Applications                                  | 162 |
|           | 6.6 Conclusion                                             | 163 |
|           | References                                                 | 164 |
|           |                                                            | 4=0 |
| Chapter 7 | Hormetins as Drugs for Healthy Aging                       | 170 |
|           | Suresh I. S. Rattan                                        |     |
|           | 7.1 Introduction                                           | 170 |
|           | 7.2 Aging in a Nutshell                                    | 170 |
|           | 7.2 Aging in a Nutshen<br>7.3 Hormesis and Stress Response | 171 |
|           | 7.4 Hormetins for Health and Longevity                     | 172 |
|           | 7.5 Discovering Novel Hormetins                            | 174 |
|           | 7.6 Drugs for Health and Longevity                         | 175 |
|           | References                                                 | 170 |
|           |                                                            | ±,, |

xiii

### Section III: Antioxidants

| Chapter 8 | Antioxidant Therapy of Aging: From Free Radical<br>Chemistry to Systems Theory of Reliability | 183 |
|-----------|-----------------------------------------------------------------------------------------------|-----|
|           | V. K. Koltover                                                                                |     |
|           | 8.1 Introduction: Historical Synopsis                                                         | 183 |
|           | 8.2 Aging Versus Reliability                                                                  | 184 |
|           | 8.2.1 Theory of Reliability: Basic Ideas                                                      | 184 |
|           | 8.2.2 Preset Reliability Prescribes Lifespan                                                  | 185 |
|           | 8.3 Free-Radical Failures                                                                     | 187 |
|           | 8.3.1 Free-Radical Malfunctions of                                                            |     |
|           | Electron-Transport Nanoreactors                                                               | 187 |
|           | 8.3.2 Free-Radical Redox-Timer of Aging                                                       | 189 |
|           | 8.4 Extension of Lifespan by Antioxidants                                                     | 191 |
|           | 8.4.1 Antioxidants: Radical Chemistry Standpoint                                              | 191 |
|           | 8.4.2 Antioxidants: Reliability-Theory Standpoint                                             | 195 |
|           | 8.5 Conclusions                                                                               | 200 |
|           | Acknowledgements                                                                              | 200 |
|           | References                                                                                    | 201 |
| Chapter 9 | Mitochondria-Targeted Rechargeable Antioxidants as                                            |     |
| on pror 5 | Potential Anti-Aging Drugs                                                                    | 205 |
|           | Elena G. Pasyukova, Boris A. Feniouk                                                          |     |
|           | and Vladimir P. Skulachev                                                                     |     |
|           | 9.1 Introduction                                                                              | 205 |
|           | 9.2 Mitochondria Malfunction and Aging                                                        | 206 |
|           | 9.3 The Link Between Oxidative Stress and Aging                                               | 207 |
|           | 9.4 Mitochondria-Targeted Rechargeable Antioxidants                                           | 209 |
|           | 9.4.1 Mitochondria-Targeted Antioxidants in                                                   |     |
|           | Invertebrate Models                                                                           | 211 |
|           | 9.4.2 SkQ1 Affects Early Survival and Aging in                                                |     |
|           | Unmated Flies                                                                                 | 212 |
|           | 9.4.3 SkQ1 Affects Reproduction in Mated Flies                                                | 213 |
|           | 9.4.4 SkQ1 Acts as a Mitochondria-Targeted                                                    |     |
|           | Antioxidant Combating ROS in                                                                  |     |
|           | D. melanogaster                                                                               | 214 |
|           | 9.4.5 SkQ1 Effects are Stable Under Different                                                 |     |
|           | Experimental Scenarios and Across Different                                                   |     |
|           | Wild-Type Genotypes                                                                           | 216 |
|           | 9.5 Mitochondria-Targeted Antioxidants in Rodents                                             | 218 |
|           | 9.6 Conclusion                                                                                | 220 |
|           | Acknowledgements                                                                              | 220 |
|           | References                                                                                    | 220 |

### Section IV: Mimicking Caloric Restriction

| Chapter 10 | Mimetics of Caloric Restriction                                                            | 231        |
|------------|--------------------------------------------------------------------------------------------|------------|
| -          | Oleh Lushchak and Dmytro Gospodaryov                                                       |            |
|            | 10.1 Introduction                                                                          | 231        |
|            | 10.2 Aging and CR                                                                          | 233        |
|            | 10.2.1 CR in Yeast: Saccharomyces cerevisiae                                               | 233        |
|            | 10.2.2 CR in Worms: Caenorhabditis elegans                                                 | 234        |
|            | 10.2.3 CR in Fruit Flies                                                                   | 235        |
|            | 10.2.4 CR in Mammals                                                                       | 236        |
|            | 10.3 Beneficial Effects of CR                                                              | 238        |
|            | 10.3.1 Cardiovascular System                                                               | 238        |
|            | 10.3.2 Brain Function                                                                      | 239        |
|            | 10.3.3 Hormonal Regulation                                                                 | 240        |
|            | 10.4 Intracellular Consequences of CR                                                      | 241        |
|            | 10.4.1 Autophagy                                                                           | 242        |
|            | 10.4.2 Metabolism of Reactive Oxygen Species                                               | 243        |
|            | 10.5 Ways to Achieve CR                                                                    | 244        |
|            | 10.5.1 Decreased Food Consumption                                                          | 244        |
|            | 10.5.2 Dietary Composition                                                                 | 245        |
|            | 10.5.3 Inhibition of Food Digestion and Absorption                                         | 245        |
|            | 10.5.4 Decrease in Appetite and Satiety                                                    | 246        |
|            | 10.5.5 Mimetics of CR                                                                      | 246        |
|            | 10.6 Intracellular Targets of CR                                                           | 249        |
|            | 10.6.1 Sensors of Nutrient and Energy State                                                | 249        |
|            | 10.6.2 Signaling Pathways                                                                  | 250        |
|            | 10.7 Conclusion                                                                            | 255        |
|            | Acknowledgements                                                                           | 257        |
|            | References                                                                                 | 257        |
| Chapter 11 | <b>Allosteric SIRT1 Activators as Putative Anti-Aging Drugs</b><br><i>Basil P. Hubbard</i> | 272        |
|            |                                                                                            | a=a        |
|            | 11.1 Introduction                                                                          | 272        |
|            | 11.2 The Sirtuin Longevity Pathway                                                         | 273        |
|            | 11.3 Small-Molecule SIRT1 Activators                                                       | 275        |
|            | 11.4 STACs in Aging and Age-Related Disease                                                | 278        |
|            | 11.4.1 Lifespan Extension                                                                  | 278        |
|            | 11.4.2 Obesity, Metabolism, and Type II Diabetes 11.4.3 Cancer                             | 280<br>281 |
|            |                                                                                            |            |
|            | 11.4.4 Neurodegenerative Disease<br>11.4.5 Cardiovascular Disease                          | 282        |
|            |                                                                                            | 282        |
|            | 11.4.6 Inflammation and Immunity                                                           | 283        |
|            | 11.4.7 Fertility and Development                                                           | 284        |

| Contents |
|----------|
|----------|

|            | 11.5 Clinical Challenges with STACs                                                                                | 285        |
|------------|--------------------------------------------------------------------------------------------------------------------|------------|
|            | 11.5.1 Pharmacology                                                                                                | 285<br>286 |
|            | 11.5.2 Regulatory Paradigms<br>11.6 Conclusion                                                                     | 286<br>287 |
|            | References                                                                                                         | 287        |
|            | References                                                                                                         | 207        |
| Chapter 12 | Therapeutic Potential of Sirtuin Inhibitors in Cancer                                                              | 298        |
|            | Francisco Javier Alcain, Consuelo M. Nieva, Lucía Fernández del Río, Raquel Santiago-Mora, Elena Gutiérrez-Casado, |            |
|            | Mario Duran-Prado and Jose M. Villalba                                                                             |            |
|            | Mario Duran-Frado ana jose M. viliaida                                                                             |            |
|            | 12.1 Introduction                                                                                                  | 298        |
|            | 12.2 Expression of Sirtuins in Cancer Cells                                                                        | 299        |
|            | 12.3 Sirtuins and the Hallmarks of Cancer                                                                          | 301        |
|            | 12.4 Sirtuin Inhibitors as Anticancer Agents                                                                       | 306        |
|            | 12.4.1 Nicotidamine and Its Analogues                                                                              | 306<br>308 |
|            | 12.4.2 Splitomicin and Its Derivatives<br>12.4.3 Sirtinol                                                          | 308        |
|            | 12.4.4 Cambinol                                                                                                    | 310        |
|            | 12.4.5 Salermide                                                                                                   | 313        |
|            | 12.4.6 Indole Derivatives                                                                                          | 313        |
|            | 12.4.7 Tenovin                                                                                                     | 314        |
|            | 12.4.8 Other Inhibitors of Human Sirtuins                                                                          | 317        |
|            | 12.5 Concluding Remarks                                                                                            | 319        |
|            | Acknowledgements                                                                                                   | 319        |
|            | References                                                                                                         | 319        |
| Chapter 13 | Lifespan-Extending Effect of Resveratrol and Other                                                                 |            |
|            | Phytochemicals                                                                                                     | 328        |
|            | Shin-Hae Lee and Kyung-Jin Min                                                                                     |            |
|            | 13.1 Introduction                                                                                                  | 328        |
|            | 13.2 Resveratrol                                                                                                   | 329        |
|            | 13.2.1 Lifespan-Extending Effect of Resveratrol                                                                    |            |
|            | in Invertebrates: Yeasts, Worms and Flies                                                                          | 329        |
|            | 13.2.2 Lifespan-Extending Effects of Resveratrol                                                                   |            |
|            | in Vertebrate: Fishes and Rodents                                                                                  | 331        |
|            | 13.2.3 Clinical Trials of Resveratrol in Human<br>Subjects                                                         | 332        |
|            | 13.2.4 Putative Target Molecules for Lifespan-                                                                     | 002        |
|            | Extending Effect of Resveratrol                                                                                    | 333        |
|            | 13.2.5 Uncertainty of Resveratrol as a Clinical Drug                                                               | 336        |
|            | 13.3 Other Phytochemicals with Lifespan-Extending                                                                  |            |
|            | Effects                                                                                                            | 337        |
|            | 13.3.1 Curcumin                                                                                                    | 337        |

| Contents   |                                                       | xvii |
|------------|-------------------------------------------------------|------|
|            | 13.3.2 Quercetin                                      | 339  |
|            | 13.3.3 Catechin                                       | 339  |
|            | 13.3.4 Others                                         | 340  |
|            | 13.4 Conclusion                                       | 342  |
|            | References                                            | 342  |
| Chapter 14 | Extending Lifespan by Inhibiting the Mechanistic      |      |
| on provide | Target of Rapamycin (mTOR)                            | 352  |
|            | Dudley W. Lamming                                     |      |
|            | 5 8                                                   |      |
|            | 14.1 The Discovery of Rapamycin and mTOR              | 352  |
|            | 14.2 mTOR Regulates Longevity in Model                |      |
|            | Organisms                                             | 354  |
|            | 14.3 Rapamycin Extends the Lifespan and Healthspan    |      |
|            | of Mice                                               | 355  |
|            | 14.4 How Does Rapamycin Increase Longevity?           | 358  |
|            | 14.5 Side Effects of Rapamycin Treatment—The Role of  |      |
|            | mTORC2                                                | 359  |
|            | 14.6 mTORC1 Is a Key Integrator of Nutrient and       |      |
|            | Hormonal Signaling                                    | 360  |
|            | 14.7 How Can mTORC1 Be Specifically Targeted?         | 362  |
|            | 14.8 Conclusions                                      | 365  |
|            | Acknowledgements                                      | 365  |
|            | References                                            | 366  |
| Chapter 15 | mTOR, Aging and Cancer: Prospects for Pharmacological |      |
| -          | Interventions                                         | 376  |
|            | Z. D. Sharp                                           |      |
|            | 15.1 Rapamycin: A Brief History                       | 376  |
|            | 15.2 The Target of Rapamycin                          | 377  |
|            | 15.3 Rapamycin's Mysterious Effects on Aging          | 379  |
|            | 15.4 Effects of Chronic Rapamycin on Age-Associated   |      |
|            | Diseases                                              | 379  |
|            | 15.5 TOR Reductions and Rapamycin Increase            |      |
|            | Longevity in Other Organisms                          | 382  |
|            | 15.6 Genetic mTOR Inhibition in Mice that Extends     |      |
|            | Life Span                                             | 383  |
|            | 15.7 Composite Picture of mTOR Signaling Pathways in  |      |
|            | Aging                                                 | 383  |
|            | 15.8 Why This Is Important                            | 385  |
|            | 15.9 Summary                                          | 386  |
|            | Potential Financial Conflict of Interest              | 387  |
|            | Acknowledgements                                      | 387  |
|            | References                                            | 387  |

| Chapter 16 | Anti-Aging Action of PPARs: Potential Therapeutic<br>Targets                      | 393        |
|------------|-----------------------------------------------------------------------------------|------------|
|            | Ki Wung Chung, Byung Pal Yu and                                                   |            |
|            | Hae Young Chung                                                                   |            |
|            | 16.1 Introduction                                                                 | 393        |
|            | 16.2 Age-Related Changes in Inflammation and Their                                | 201        |
|            | Role in Metabolic Diseases                                                        | 394        |
|            | 16.2.1 Chronic Inflammation and Aging                                             | 394        |
|            | 16.2.2 Roles of Inflammation in Metabolic                                         | 205        |
|            | Diseases During Aging                                                             | 395        |
|            | 16.3 Functions of PPARs in the Regulation of<br>Metabolism and Inflammation       | 200        |
|            | 16.3.1 PPAR Signaling and Metabolism                                              | 396<br>396 |
|            | 16.3.2 PPARs and Inflammation                                                     | 390        |
|            | 16.4 Evidence for Involvement of PPARs in Age-Related                             | 390        |
|            | Inflammatory Diseases and Aging                                                   | 400        |
|            | 16.4.1 The Role of PPARs in Age-Related                                           | 400        |
|            | Inflammatory Diseases                                                             | 401        |
|            | 16.4.2 PPARs in Aging and Longevity                                               | 401        |
|            | 16.5 Anti-Aging and Therapeutic Potentials of New                                 | 405        |
|            | PPAR Agonists                                                                     | 404        |
|            | 16.6 Effects of Anti-Aging Calorie Restriction on PPAR                            | 101        |
|            | Modulation                                                                        | 406        |
|            | 16.7 Conclusion                                                                   | 407        |
|            | References                                                                        | 408        |
|            |                                                                                   | 100        |
| Chapter 17 | <b>Antidiabetic Biguanides as Anti-Aging Drugs</b><br><i>Vladimir N. Anisimov</i> | 416        |
|            | 17.1 Introduction                                                                 | 416        |
|            | 17.2 Milestones in Research on Biguanides as Drugs                                | 110        |
|            | for Aging Prevention in Rodents                                                   | 417        |
|            | 17.3 Effect of Antidiabetic Biguanides on Aging and                               |            |
|            | Life Span in Rats                                                                 | 418        |
|            | 17.4 Effect of Antidiabetic Biguanides on Aging and                               |            |
|            | Life Span in Mice                                                                 | 420        |
|            | 17.5 Antidiabetic Biguanides in Prevention of                                     |            |
|            | Age-Associated Diseases in Mouse Models                                           | 424        |
|            | 17.6 Antidiabetic Biguanides as Anti-Carcinogens and                              |            |
|            | Inhibitors of Tumor Growth in Rodents                                             | 424        |
|            | 17.7 Conclusion                                                                   | 427        |
|            | Acknowledgement                                                                   | 429        |
|            | References                                                                        | 429        |

### Section V: Other Pharmacological Approaches

| Chapter 18 | S-Adenosylmethionine Metabolism: A Promising<br>Avenue in Anti-Aging Medicine? | 435 |
|------------|--------------------------------------------------------------------------------|-----|
|            | W. A. M. Loenen                                                                | 100 |
|            |                                                                                |     |
|            | 18.1 Introduction                                                              | 435 |
|            | 18.1.1 Discovery of S-Adenosylmethionine                                       | 435 |
|            | 18.1.2 SAM and Aging                                                           | 436 |
|            | 18.1.3 This Review                                                             | 437 |
|            | 18.2 SAM-Dependent Enzymes                                                     | 437 |
|            | 18.2.1 Parts of SAM Used by SAM-Dependent                                      |     |
|            | Enzymes                                                                        | 437 |
|            | 18.2.2 Structures of SAM-Dependent Enzymes                                     | 438 |
|            | 18.3 Well-Known Pathways of SAM in Central                                     |     |
|            | Metabolism                                                                     | 438 |
|            | 18.3.1 The Methionine Cycle                                                    | 438 |
|            | 18.3.2 The Transsulfuration Pathway to                                         |     |
|            | Glutathione                                                                    | 442 |
|            | 18.3.3 The Polyamine Pathway                                                   | 442 |
|            | 18.4 SAM and RNA-Based Control by Riboswitches                                 | 443 |
|            | 18.4.1 Discovery of SAM Riboswitches                                           | 443 |
|            | 18.4.2 SAM and Other Riboswitches                                              | 443 |
|            | 18.5 'Radical SAM' Proteins with Iron–Sulfur (FeS)                             |     |
|            | Clusters                                                                       | 444 |
|            | 18.5.1 Discovery of Radical SAM Enzymes                                        | 444 |
|            | 18.5.2 The Radical SAM-Binding Domain                                          | 444 |
|            | 18.5.3 Types of SAM Radical Enzymes                                            | 445 |
|            | 18.5.4 Radical SAM Methyltransferases (RSMT)                                   | 446 |
|            | 18.5.5 Radical SAM Methylthiotransferases                                      |     |
|            | (MMTases)                                                                      | 447 |
|            | 18.5.6 The Special Case of Elp3                                                | 447 |
|            | 18.5.7 Lessons from SAM-Independent FeS                                        |     |
|            | Proteins?                                                                      | 448 |
|            | 18.6 SAM and Aging                                                             | 449 |
|            | 18.6.1 SAM, Mitochondria and Aging                                             | 449 |
|            | 18.6.2 SAM and Neurodegeneration                                               | 449 |
|            | 18.6.3 SAM and Long-Lived Rodents                                              | 450 |
|            | 18.6.4 SAM, the Microbiome and Aging                                           | 450 |
|            | 18.6.5 SAM and Establishment and Maintenance                                   |     |
|            | of the Microbiome                                                              | 451 |
|            | 18.7 Conclusions                                                               | 452 |
|            | Note Added after Completion of the Manuscript                                  | 453 |
|            | Abbreviations                                                                  | 453 |
|            | References                                                                     | 454 |

| Chapter 19 | <b>Melatonin as a Geroprotector: Healthy Aging vs.</b><br><b>Extension of Lifespan</b><br><i>R. Hardeland</i> | 474 |
|------------|---------------------------------------------------------------------------------------------------------------|-----|
|            | 19.1 Introduction<br>19.2 Overview of Melatonin's Actions in Relation to                                      | 474 |
|            | Aging                                                                                                         | 477 |
|            | 19.2.1 Energy Balance and Metabolic Sensing<br>19.2.2 Counter-Action of Mitochondrial                         | 477 |
|            | Dysfunction and Anti-Oxidant Actions<br>19.2.3 Immunological Actions and Prevention                           | 481 |
|            | of Inflammaging                                                                                               | 483 |
|            | 19.2.4 Telomere Attrition<br>19.3 Lifespan, Health, Deceleration and Deacceleration                           | 486 |
|            | of Aging                                                                                                      | 486 |
|            | 19.4 Conclusion                                                                                               | 488 |
|            | References                                                                                                    | 489 |
| Chapter 20 | Short Peptides Regulate Gene Expression, Protein<br>Synthesis and Enhance Life Span                           | 496 |
|            | Vladimir Khavinson and Irina Popovich                                                                         |     |
|            | 20.1 Introduction                                                                                             | 496 |
|            | 20.2 Isolated Peptide Complexes                                                                               | 498 |
|            | 20.3 Short Synthetic Peptides                                                                                 | 500 |
|            | 20.4 Influence of Short Peptides on Immune and<br>Antioxidant Systems                                         | 501 |
|            | 20.5 The Influence of Short Peptides on Gene Expression                                                       | 503 |
|            | 20.6 Application of Peptide Bioregulators in Elderly<br>Patients                                              | 504 |
|            | 20.7 Prospective Cellular and Molecular Mechanism                                                             | 501 |
|            | of Action of Short Peptides                                                                                   | 507 |
|            | 20.8 Conclusion                                                                                               | 509 |
|            | References                                                                                                    | 510 |
| Chapter 21 | HDAC Inhibitors: A New Avenue in Anti-Aging Medicine<br>E. G. Pasyukova and A. M. Vaiserman                   | 514 |
|            | 21.1 Introduction                                                                                             | 514 |
|            | 21.2 Role of Histone Modification in Epigenetic                                                               |     |
|            | Regulation                                                                                                    | 516 |
|            | 21.3 Life Span-Modulating Effects of HDAC Inhibitors                                                          |     |
|            | in Animal Models                                                                                              | 517 |
|            | 21.3.1 Phenylbutyrate                                                                                         | 518 |
|            | 21.3.2 Sodium Butyrate                                                                                        | 519 |
|            | 21.3.3 Trichostatin A                                                                                         | 523 |
|            | 21.3.4 Suberoylanilide Hydroxamic Acid (SAHA)                                                                 | 525 |

Contents

| 21.4 HDACIs in Preclinical and Clinical Trials |     |
|------------------------------------------------|-----|
| 21.4.1 Cancer                                  | 527 |
| 21.4.2 Metabolic and Cardiovascular Pathology  | 527 |
| 21.4.3 Neurodegenerative Diseases              | 528 |
| 21.4.4 Inflammatory Disorders                  | 528 |
| 21.5 Conclusion                                |     |
| Acknowledgements                               |     |
| References                                     |     |
|                                                |     |

xxi

### Section VI: Social Context

| Chapter 22   | Human Life Extension: Opportunities, Challenges, and<br>Implications for Public Health Policy<br>Ilia Stambler | 537 |
|--------------|----------------------------------------------------------------------------------------------------------------|-----|
|              | 22.1 Introduction: The Diverse Aspects of Life Extension<br>Promotion as a Part of Health Promotion            | 537 |
|              | 22.2 Scientific and Technological Implications and                                                             | 557 |
|              | Challenges: Is Human Life Extension Scientifically                                                             |     |
|              | and Technologically Feasible?                                                                                  | 540 |
|              | 22.3 Implications and Challenges for the Individual                                                            |     |
|              | and the Society: Is Life Extension a Desirable Goal?                                                           | 545 |
|              | 22.4 Normative Action: What Should We Do?                                                                      | 551 |
|              | 22.4.1 Funding                                                                                                 | 552 |
|              | 22.4.2 Incentives                                                                                              | 554 |
|              | 22.4.3 Institutional Support                                                                                   | 557 |
|              | References                                                                                                     | 559 |
| Subject Inde | 2X                                                                                                             | 565 |

### Section I

Overview

#### CHAPTER 1

# Anti-Aging Drugs: Where are We and Where are We Going?

ALEXANDER M. VAISERMAN\*<sup>a</sup> AND OLEH V. LUSHCHAK<sup>b</sup>

<sup>a</sup>Laboratory of Epigenetics, Institute of Gerontology, Kiev, Ukraine; <sup>b</sup>Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine \*E-mail: vaiserman@geront.kiev.ua

### 1.1 Introduction

Human longevity dramatically increased during the last century when implementation of vaccinations, disinfectants and antibiotics led to a substantial reduction of infectious diseases as a leading cause of death.<sup>1</sup> The decline in mortality among the elderly has continued over the past few decades. It is most probably owing to preventative factors, such as improved diets, as well as exercise and reduction in smoking.<sup>2</sup> If current demographic trends continue then 20% percent of the global population of 9 billion will be over the age of 60 by 2050.<sup>3</sup> As a consequence, most modern nations are undergoing rapid population aging. Although the life expectancy has enhanced dramatically in modern generations, this process has, nevertheless, not been accompanied by an equivalent increase in healthy life expectancy.<sup>4</sup> Since aging is a primary risk factor in most chronic disorders, the prevalence of age-associated disorders, such as type 2 diabetes, neurodegenerative disease, cardiovascular disease, osteoporosis and cancer, rises considerably with the increasing average age in populations of developed countries, representing a

Edited by Alexander M. Vaiserman

RSC Drug Discovery Series No. 57

Anti-aging Drugs: From Basic Research to Clinical Practice

<sup>©</sup> The Royal Society of Chemistry 2017

Published by the Royal Society of Chemistry, www.rsc.org

great socio-economic challenge. It is estimated that there will be more than 30 million people over the age of 80 will be in the U.S. by 2050; about half of them will suffer from different forms of dementia, and at least 3 million of all adults will be diagnosed with Parkinson's disease.<sup>5</sup> The expected prevalence of age-associated conditions will have substantial consequences for future society, including increased financial and psychological burdens for families and greater pressure on government health care programs and entitlement budgets.<sup>6,7</sup> The demographic trend consisting of an increasing proportion of aged people in the populations of developed countries likely explains the dramatic increase in the interest of the lay public and country leaders in research in the field of biogerontology.<sup>8</sup>

### 1.2 Human Life Extension: Concerns and Considerations

Investigations aimed at human life extension have traditionally raised concerns that it can lead to the growth of the older population segment and, consequently, to the high prevalence of ageing-associated chronic pathologies. Numerous experimental studies have, however, demonstrated that life extension is usually accompanied by delayed or reduced morbidity, including cardiovascular disease, neurodegeneration, and tumors.<sup>9</sup> There is also increasing evidence from epidemiological studies, which is consistent with the findings from animal models. For example, centenarians, in particular those who live in so-called 'Blue Zones' (five regions in Europe, Latin America, Asia and the US with unusually high concentrations of centenarians), have been not only shown to exhibit exceptional longevity but also often remain free from disability and chronic diseases until very advanced age.<sup>10</sup>

The compression of morbidity has been the primary strategy in gerontology and geriatric research during the last few decades. This strategy claims that we may limit morbidity to a shorter period closer to the natural ending of life, thus reducing the burden of illness and disability by delaying the age at onset of major age-associated chronic disorders.<sup>11</sup> Geroscience, a novel branch of geriatric medicine, is centered on healthspan extension.<sup>12</sup> Extension of healthspan is a crucial component of achieving 'optimal longevity', defined as living long, but with good health and quality of life, including improved functioning, productivity and independence.<sup>11</sup> Attempts to increase healthspan are currently focused on slowing the basic biological processes accompanying aging, such as mitochondrial dysfunction, cellular senescence, age-related decline of stress resistance, dysregulated cellular energy sensing and growth pathways, impaired proteostasis, deteriorated stem cell function/bioavailability, as well as oxidative and inflammation stress.<sup>13,14</sup> All these processes interfere with the normal physiological cellular signaling pathways, demanding compensatory adjustments with aging to maintain homeostasis. At a certain age, however, these compensatory mechanisms become exhausted and different aspects of aging are manifested, thereby increasing the risk for functional decline and the onset and progression of chronic diseases.<sup>15</sup> Therapeutic strategies to combat aging and age-related diseases are a part of an investigation field commonly referred to as 'anti-aging medicine'. Anti-aging medicine has emerged as a new specialization in medical practice at the beginning of the 1990s. Over the past few years, it has become an increasingly discussed and debated topic.<sup>16</sup> Its main purpose is to prolong both healthspan and lifespan by specific regimes of exercise and dieting, as well as by advanced biomedical interventions aimed at slowing, stopping or reversing the aging process.<sup>17,18</sup>

Traditionally, the process of aging is believed to be 'natural' and therefore inevitable. However, in the view of many authors, the idea that aging is an indefeasible part of human nature is quite questionable.<sup>19</sup> In accordance with many modern evolutionary theories, aging has emerged as a by-product of evolutionary processes and does not have a specific function.<sup>20</sup> If aging is really not an intrinsic, irrevocable component of life, then it could be manipulated similarly to other processes that are generally deemed to be unnatural or pathological. The major assumption underlying anti-aging research is that age-associated senescence may be regarded as a pathophysiological phenomenon that might be prevented or even reversed.<sup>21</sup> Modern anti-aging medicine promotes biomedical technologies and approaches that have the potential to delay or postpone aging processes.<sup>2</sup> The success obtained in this research field is greatly attributed to the increasingly broad application of omics-based approaches, such as genomics, transcriptomics, proteomics and metabolomics.<sup>22</sup> Through the implementation of these technologies, a better understanding has been achieved regarding the key molecular and cellular pathways involved in the aging process, including inflammation, proteostasis, autophagy, mitochondrial efficiency and nutrient signaling, and regarding the most effective interventions to counteract age-related senescence.<sup>23,24</sup> The impetuous progress in highlighting the mechanisms underlying aging and longevity and first successful pharmacological interventions to extend healthy lifespan in different model organisms indicate that the aging process is malleable.

### 1.3 Anti-Aging Pharmacology: Promises and Pitfalls

The development of pharmacological agents targeting aging-related functional declines and pathological manifestations ('anti-aging drugs') is now in the spotlight in geroscience. An exponential growth of research in the field of geriatric pharmacology, including the study of prospective anti-aging drugs, has been observed over the past 20 years.<sup>25</sup> The first step in the process of drug development is known to involve the selection of druggable targets.<sup>26</sup> The situation when gene targets are determined by the study of genetic variations linked to either gain-of-function or loss-of-function phenotypes is especially useful because these targets can be considered as those that have been reliably validated.<sup>27</sup> Over the last two decades, a number of genetic pathways have been identified that play an unequivocal role in control of the aging process and longevity;<sup>28-30</sup> all these genes represent attractive drug targets. Currently, many pharmacological agents targeting the putative mechanisms of aging are under development.

Taking into account the extraordinary complexity of the mechanistic pathways underlying the aging process, the recognition of these pathways and development of anti-aging interventions seems a challenging task. Significant progress has, however, been achieved in the last few years in this research field. A number of pharmacological agents with the potential to target particular aging-associated pathways and to produce protective responses against age-related pathologies are currently under investigation. In recent years, several classes of bioactive chemical agents and nutraceuticals have been shown to have potential therapeutic efficacy in anti-aging medicine.<sup>3,31</sup> In experimental studies, many substances have been identified as having life-extending properties. Among them are calorie restriction mimetics, such as resveratrol, rapamycin and metformin,<sup>32,33</sup> antioxidants (vitamins A, C and E, quercetin, melatonin, coenzyme Q10, etc.),<sup>34</sup> autophagy inductors, such as spermidine,<sup>35,36</sup> senolytics,<sup>37</sup> phytochemicals, e.g., curcumin, genistein, catechins and epigallocatechin gallate (EGCG),<sup>38</sup> and several other natural and chemical compounds. In recent years, modern biotechnological approaches have been used for developing novel anti-aging pharmaceutical applications. For example, the coupling of curcumin-based nanoparticles with the Tet-1 peptide, which has affinity for neurons and possess retrograde transportation properties,<sup>39</sup> as well as mitochondria-targeted antioxidant SkQ1,<sup>40</sup> have been recently explored as promising therapeutic applications for the treatment of Alzheimer's disease. Over the last decade, consistent evidence has also been reported for the role of epigenetic factors, including DNA methylation, histone modifications and microRNA regulation, in the aging process as well as in the pathogenesis and progression of age-related diseases.<sup>41,42</sup> A lot of hope is being pinned, therefore, on pharmacological agents targeted to the epigenetic regulation of gene activity, such as inhibitors of DNA methyltransferases and histone deacetylases, including sodium butyrate, trichostatin A, sodium 4-phenylbutyrate and suberoylanilide hydroxamic acid.43

It should, however, be noted that all agents that can be classified as potent anti-aging therapeutic compounds are multi-functional and targeted at multiple signaling pathways mediating aging. Moreover, the evidence remains limited regarding the overall health benefits of these substances, including epidemiological studies exploring the consequences of their long-term intake for human health. Furthermore, there is evidence that uncontrolled intake of some anti-aging agents can be useless or even harmful. For example, the consumption of antioxidants is considered as quite reasonable by many researchers, especially in the cardiovascular research area.<sup>44</sup> The appropriateness of antioxidant intake, however, still remains a matter of debate. Meta-analysis of observational studies and randomized controlled trials conducted in well-nourished and healthy populations demonstrated that antioxidant supplementation may be associated with undesirable consequences for health and all-cause mortality.<sup>45</sup> Another example is the fact that supplementation with several promising pro-healthspan compounds can in some cases trigger insulin resistance. This applies to substances such as rapamycin<sup>46</sup> and statins.<sup>47</sup> Therefore, people should use them with caution and only with careful medical monitoring.

Another method of anti-aging drug discovery is evaluating the pharmacological agents already approved by the FDA and other regulatory agencies for treatment of particular conditions associated with aging, such as statins, metformin, beta-blockers, renin-angiotensin-aldosterone system inhibitors, thiazolidinediones, and anti-inflammatory medications.<sup>48</sup> These classes of drugs are commonly used in the treatment of patients with various chronic medical conditions and their efficacy and safety have been proven in many clinical trials. They have also been shown to improve health, physiological functioning and well-being in middle to old age patients with chronic disorders.<sup>49</sup> Such agents are presently not used in the treatment of age-associated physiological dysfunctions in the absence of clinical manifestation of disease. However, these medications might theoretically be redirected to treating or preventing conditions or syndromes typically associated with aging.

Le Couteur *et al.*<sup>50</sup> noted in their review that 'despite the potential profits and the extraordinary capacity of drug discovery technology, there is a paucity of new drugs in the development pipeline, particularly for those medications that are likely to be highly profitable because they are used long term and by a large proportion of the population.' The longevity dividend, *i.e.* an idea that extending healthy life by slowing aging is the most efficient way to combat the fatal and disabling pathologies that plague us today,<sup>51</sup> may provide an opportunity to revitalize the drug development pipeline. Indeed, by delaying the aging process *per se*, it likely would be possible to prevent or delay all age-associated pathologies rather than to overcome them one by one, which is the current approach of the disease-based paradigm in drug development. Furthermore, prevention of a particular age-related chronic disorder, *e.g.*, cardiovascular disease, will apparently have only a modest effect on the population life expectancy because comorbidity, e.g., cancer, will to a great extent substitute the reduction in mortality risk caused by preventing the targeted pathology. The main idea of geroscience is that preventing the clinical manifestations of all age-related diseases as a group by inhibiting the basic aging mechanisms can be far more effective than preventing the individual chronic disorders.<sup>11,49</sup> A recent analysis conducted by Goldman et al.<sup>52</sup> demonstrated that substantial socio-economic benefits might be derived from this approach in comparison with current public health strategy targeted to prevention of particular disorders. According to this analysis, the economic impact of delaying aging and increasing healthspan in the US is estimated at ~7 trillion dollars over the next fifty years. Hence, it is obvious that discovery of new drug targets based on biogerontological research represents an incredible opportunity for the pharmaceutical and healthcare industries.<sup>53</sup> Currently, the consensus among physicians and health professionals that the optimization of physiological and mental functioning throughout the life course should be a major emphasis of any contemporaneous biomedical policy addressing global aging. A healthy lifestyle comprising proper nutrition and physical activity represents the first-line function-preserving strategy. Pharmacological compounds, both existing and potential, can serve as a prospective complementary approach.<sup>48</sup>

### 1.4 Concluding Remarks and Future Directions

To summarize, it can be assumed that targeting aging per se can be a more effective approach to postponing or preventing age-related disorders than treatments targeted to specific pathological conditions. Because of the aging population, such a therapeutic strategy is undoubtedly an area of increasing relevance for the pharmaceutical industry and public health organizations. As has been recently emphasized by Longo et al.,<sup>54</sup> 'the time has come not only to consider several therapeutic options for the treatment of agerelated comorbidities, but to initiate clinical trials with the ultimate goal of increasing the healthspan (and perhaps longevity) of human populations, while respecting the guiding principle of physicians primum non nocere.' In modern pharmacy, anti-aging is likely one of the most prospective markets because the target group can potentially include each person. Several supplements, such as resveratrol, are already advertised in the pharmaceutical market as "anti-aging pills".<sup>55</sup> Very promising in this regard is rapamycin (also known as sirolimus), which is already approved by the FDA as an antibiotic and immunosuppressant drug. Current marketing research demonstrates that most people are willing to pay for long-term pharmacological therapy to prevent or delay the aging-related decline in physical and mental functions.<sup>50</sup> Recent sociological surveys show a great desire for extended life and health in the US and worldwide. In most of the surveys conducted until now, the cautious attitude to life extension was a consequence of an erroneous equation of extended life with a prolonged period of age-related functional decline and frailty. When continued health was stipulated in the questionnaire design, responses significantly favored longer life. In the survey by Donner *et al.*,<sup>56</sup> 20% of respondents wished to die at the age of 85, whereas 42% wanted to have an unlimited lifespan. Despite the widespread misconception that implementation of anti-aging medicine would increase the proportion of chronic patients in modern societies, it in fact would lead to reducing the ratio of unhealthy to healthy population since it would result in delaying the onset of age-related pathological conditions. In other words, it may lead to a decrease of biological age (i.e., old individuals will become biologically younger) and to an increase of the age of disability, thereby increasing the retirement age and enhancing revenues without enhancing taxes.<sup>57</sup> Optimistic predictions of the feasibility of health- and life-extending interventions, however, should certainly be critically discussed in terms of their ethical, economic and social implications. Only after in-depth examination and following comprehensive debates will the implementation of such approaches in clinical practice be possible.

### References

- 1. J. P. de Magalhães, Rejuvenation Res., 2014, 17, 458.
- 2. J. Vijg and A. D. de Grey, *Gerontology*, 2014, **60**, 373.
- 3. B. K. Kennedy and J. K. Pennypacker, Transl. Res., 2014, 163, 456.
- 4. W. W. Hung, J. S. Ross, K. S. Boockvar and A. L. Siu, *BMC Geriatr.*, 2011, **11**, 47.
- 5. G. A. Petsko, Genome Biol., 2008, 9, 113.
- 6. S. Harper, Science, 2014, 346, 587.
- 7. J. R. Beard and D. E. Bloom, Lancet, 2015, 385, 658.
- 8. E. Le Bourg, *Biogerontology*, 2013, 14, 221.
- 9. L. Fontana, L. Partridge and V. D. Longo, Science, 2010, 328, 321.
- 10. B. J. Willcox, D. C. Willcox and L. Ferrucci, *J. Gerontol., Ser. A*, 2008, **63**, 1181.
- 11. D. R. Seals, R. E. Kaplon, R. A. Gioscia-Ryan and T. J. LaRocca, *Physiology*, 2014, **29**, 250.
- B. K. Kennedy, S. L. Berger, A. Brunet, J. Campisi, A. M. Cuervo, E. S. Epel, C. Franceschi, G. J. Lithgow, R. I. Morimoto, J. E. Pessin, T. A. Rando, A. Richardson and E. E. Schadt, *et al.*, *Cell*, 2014, **159**, 709.
- 13. J. L. Kirkland, Exp. Gerontol., 2013, 48, 1.
- 14. L. Fontana, B. K. Kennedy, V. D. Longo, D. Seals and S. Melov, *Nature*, 2014, **511**, 405.
- 15. E. S. Epel and G. J. Lithgow, J. Gerontol., Ser. A, 2014, 69, S10.
- 16. G. Barazzetti and M. Reichlin, Swiss Med. Wkly., 2011, 141, w13181.
- 17. R. Klatz, Ann. N. Y. Acad. Sci., 2005, 1057, 536.
- 18. M. Tosato, V. Zamboni, A. Ferrini and M. Cesari, *Clin. Interventions Aging*, 2007, **2**, 401.
- 19. A. L. Caplan, in *The Fountain of Youth. Cultural, Scientific, and Ethical Perspectives on a Biomedical Goal*, ed. S. G. Post and R. H. Binstock, Oxford University Press, Oxford, 2004, pp. 271–285.
- 20. J. F. Lemaître, V. Berger, C. Bonenfant, M. Douhard, M. Gamelon, F. Plard and J. M. Gaillard, *Proc. Biol. Sci.*, 2015, **282**, 2015020.
- 21. B. Anton, L. Vitetta, F. Cortizo and A. Sali, *Ann. N. Y. Acad. Sci.*, 2005, **1057**, 525.
- E. Cevenini, E. Bellavista, P. Tieri, G. Castellani, F. Lescai, M. Francesconi, M. Mishto, A. Santoro, S. Valensin, S. Salvioli, M. Capri, A. Zaikin and D. Monti, *et al.*, *Curr. Pharm. Des.*, 2010, 16, 802.
- 23. R. de Cabo, D. Carmona-Gutierrez, M. Bernier, M. N. Hall and F. Madeo, *Cell*, 2014, **157**, 1515.
- 24. E. K. Quarles, D. F. Dai, A. Tocchi, N. Basisty, L. Gitari and P. S. Rabinovitch, *Ageing Res. Rev.*, 2015, 23, 101.
- 25. E. Verdaguer, F. Junyent, J. Folch, C. Beas-Zarate, C. Auladell, M. Pallàs and A. Camins, *Expert Opin. Drug Discovery*, 2012, 7, 217.
- 26. Y. Zhou and N. Huang, Methods Mol. Biol., 2015, 1289, 13.
- 27. S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H. Munos, S. R. Lindborg and A. L. Schacht, *Nat. Rev. Drug Discovery*, 2010, **9**, 203.

- 28. A. A. Moskalev, A. M. Aliper, Z. Smit-McBride, A. Buzdin and A. Zhavoronkov, *Cell Cycle*, 2014, **13**, 1063.
- 29. C. M. Lindborg, K. J. Property and R. J. Pignolo, *Mech. Ageing Dev.*, 2015, 146–148, 23.
- 30. A. H. Shadyab and A. Z. LaCroix, Ageing Res. Rev., 2015, 19, 1.
- 31. M. V. Blagosklonny, Cell Death Discovery, 2014, 5, e1552.
- 32. G. Testa, F. Biasi, G. Poli and E. Chiarpotto, *Curr. Pharm. Des.*, 2014, **20**, 2950.
- 33. D. K. Ingram and G. S. Roth, Ageing Res. Rev., 2015, 20, 46.
- 34. M. Wojcik, I. Burzynska-Pedziwiatr and L. A. Wozniak, *Curr. Med. Chem.*, 2010, **17**, 3262.
- 35. N. Minois, Gerontology, 2014, 60, 319.
- 36. F. Madeo, A. Zimmermann, M. C. Maiuri and G. Kroemer, *J. Clin. Invest.*, 2015, **125**, 85.
- M. Malavolta, E. Pierpaoli, R. Giacconi, L. Costarelli, F. Piacenza, A. Basso, M. Cardelli and M. Provinciali, *Curr. Drug Targets*, 2016, 17, 447.
- 38. H. Si and D. Liu, J. Nutr. Biochem., 2014, 25, 581.
- 39. A. Mathew, T. Fukuda, Y. Nagaoka, T. Hasumura, H. Morimoto, Y. Yoshida, T. Maekawa, K. Venugopal and D. S. Kumar, *PLoS One*, 2012, 7, e32616.
- 40. N. A. Stefanova, N. A. Muraleva, V. P. Skulachev and N. G. Kolosova, *J. Alzheimers Dis.*, 2014, **38**, 681.
- 41. A. Brunet and S. L. Berger, J. Gerontol., Ser. A, 2014, 69, S17.
- 42. D. Ben-Avraham, Adv. Exp. Med. Biol., 2015, 847, 179.
- 43. A. M. Vaiserman and E. G. Pasyukova, Front. Genet., 2012, 3, 224.
- 44. U. Alehagen, J. Aaseth and P. Johansson, PLoS One, 2015, 10, e0141641.
- 45. G. Bjelakovic, D. Nikolova and C. Gluud, *Curr. Opin. Clin. Nutr. Metab. Care*, 2014, 17, 40.
- 46. M. V. Blagosklonny, Aging (Albany NY), 2012a, 4, 350.
- 47. B. D. Henriksbo and J. D. Schertzer, Adipocyte, 2015, 4, 232.
- 48. D. R. Seals, J. N. Justice and T. J. LaRocca, J. Physiol., 2016, 594, 2001.
- 49. D. R. Seals and S. Melov, Aging (Albany NY), 2014, 6, 718.
- 50. D. G. Le Couteur, A. J. McLachlan, R. J. Quinn, S. J. Simpson and R. de Cabo, *J. Gerontol., Ser. A*, 2012, **67A**, 168.
- 51. S. J. Olshansky, Public Policy Aging Rep., 2013, 23, 3.
- 52. D. P. Goldman, D. Cutler, J. W. Rowe, P. C. Michaud, J. Sullivan, D. Peneva and S. J. Olshansky, *Health Aff.*, 2013, **32**, 1698.
- 53. D. G. Le Couteur and D. A. Sinclair, J. Gerontol., Ser. A, 2010, 65, 693.
- V. D. Longo, A. Antebi, A. Bartke, N. Barzilai, H. M. Brown-Borg, C. Caruso, T. J. Curiel, R. de Cabo, C. Franceschi, D. Gems, D. K. Ingram, T. E. Johnson and B. K. Kennedy, *et al.*, *Aging Cell*, 2015, 14, 497.
- 55. J. Aschemann-Witzel and K. G. Grunert, *Ann. N. Y. Acad. Sci.*, 2015, **1348**, 171.
- 56. Y. Donner, K. Fortney, S. R. Calimport, K. Pfleger, M. Shah and J. Betts-LaCroix, *Front. Genet.*, 2015, **6**, 353.
- 57. M. V. Blagosklonny, Aging (Albany NY), 2012b, 4, 547.

#### **CHAPTER 2**

### Aging: Natural or Disease? A View from Medical Textbooks

S. JANAC<sup>a</sup>, B. CLARKE<sup>b</sup> AND D. GEMS<sup>\*a</sup>

<sup>a</sup>University College London, Institute of Healthy Ageing, Gower Street, London, WC1E 6BT, UK; <sup>b</sup>University College London, Department of Science and Technology Studies, Gower Street, London, WC1E 6BT, UK \*E-mail: david.gems@ucl.ac.uk

### 2.1 Introduction

Whether a given condition is labelled as a disease or not can depend on a number of factors—including linguistics. For example, in one survey people were asked of 60 different conditions whether they considered them to be a disease or not.<sup>1</sup> The study found that alcoholism was seen as a disease, but smoking not. In some ways this is an odd finding since both—broadly speaking—elicit dependence symptoms, involve substance abuse and are detrimental to health in the long-term. Plausibly, this quirk reflects the choice of words employed in the survey. Perhaps if the terms used had instead been *drinking* and *nicotine addiction*, the classification would have come out the other way around.

Difficulties of classification also affect *aging*. For example, if one went to the doctor and asked for a prescription for anti-aging drugs, their response would likely be surprise, amusement or perhaps mild irritation. This is because aging, in the medical field, is not regarded as a disease.

Edited by Alexander M. Vaiserman

RSC Drug Discovery Series No. 57

Anti-aging Drugs: From Basic Research to Clinical Practice

<sup>©</sup> The Royal Society of Chemistry 2017

Published by the Royal Society of Chemistry, www.rsc.org

The question of what exactly is meant by "anti-aging drugs" is complicated by several factors. First, linguistics, and the problem that the word "aging" has more than one meaning. Second, the question of whether aging is a disease. Thirdly, problems relating to what counts as an anti-aging intervention. These issues will be reviewed here briefly and a serving definition of the meaning of *anti-aging* suggested. This builds on previous work that attempts to define anti-aging interventions.<sup>2–10</sup> We will then present an attempt at a broad and general description of the biological basis of aging, to offer the beginnings of an etiological basis for the understanding of senescence as a disease syndrome. Then, in the main part of this chapter, we examine how the aging *vs.* disease question is presented in general medical textbooks.

#### 2.1.1 What Does "Aging" Mean?

The word *aging* acts as a stumbling block in discussion because it has multiple meanings that are sometimes conflated. The main, distinct meanings are:

- The passage of time (*calendar aging*).
- Time-dependent alterations, usually in adult living organisms, but also inert objects (*age changes*).
- Cumulative deteriorative changes in adult organisms leading to pathology and death (*senescence*).<sup>11-13</sup> Senescence is one type of age change.

An unfortunate additional source of confusion is that the word senescence also has a second meaning, as introduced by Leonard Hayflick, that of *cellular senescence*. This refers to a specific type of cellular change where the proliferative capacity of cells is lost and a pathogenic hypertrophic phenotype appears. Confusion between these two meanings can, in some contexts, be avoided by use of the term *organismal senescence* to contrast with cellular senescence. However, it seems likely that the two meanings of senescence will continue to generate confusion. Replacement of *cellular senescence* with another term would solve this problem.

Thus, the English language is a hindrance in that the multiple meanings of aging impede understanding. Not all languages have this problem; for example the Russian *stareniye* (старение) means, essentially, senescence. For people, age changes include maturational changes, such as the attainment of wisdom, and character development. In this sense, an anti-aging drug would be highly undesirable; clearly, the interest is in anti-senescence (or geroprotectant) drugs, where senescence is meant in its original sense, not the sense of cellular senescence.

#### 2.1.2 Is Aging a Disease?

Human senescence manifests as a wide range of deteriorative changes, including some that are debilitating and sometimes fatal (*e.g.* cardiovascular disease, cancer and dementia) and some that are not (*e.g.* greying of hair

and wrinkling of skin). In medicine, a conceptual division is made between the former, as diseases for which aging is a risk factor, and the latter, which are not pathological but rather manifestations of *normal* aging.<sup>14-16</sup> Here, aging itself is viewed as a natural and non-pathological process. However, this division and the notion of normal aging is problematic in a number of respects. For example, the designation of particular senescent changes as normal or pathological has been controversial, as illustrated by the transfer of late-onset Alzheimer's disease and osteoporosis from the former to the latter category.<sup>5</sup> Moreover, from a biological perspective, senescence, a biological process whose defining characteristic is deterioration, is a fundamentally pathological process, identifiable as damage accumulation, degeneration, loss of function, and emergence of numerous disease states that can cause suffering and death. At present there exists some division between perspectives on aging in the medical and scientific domain. In the former the concept of normal aging is more prevalent, whereas in the latter there are more doubts about the existence (or meaning) of "non-pathological senescence".

As a contribution to this debate, we present here an attempt at a disease definition of aging. Ideally, a disease definition will include a full description of the disease etiology. In the case of aging this is not possible since the biological mechanisms that cause senescence are only partly understood. This definition does not pretend to encompass the views of all biogerontologists, and it surely will not do so. We hope that its faults will incite others to develop better definitions.

### 2.1.2.1 An Attempt at a Broad Account of the Etiology of Senescence

Organismal senescence manifests as diverse pathologies, including neurodegenerative diseases, cardiovascular disease and cancer, as well as minor pathologies such as skin wrinkling, and encompasses the etiologies of these conditions. There is no single etiology of organismal senescence, but rather multiple causes that generate a number of syndromes and unitary diseases. Thus, aging is a disease super-syndrome. These etiologies are predominantly the result of inherited predisposition, but environmental factors that promote damage and injury also play an important role, often through effects on the expression of predispositions (*e.g.* mechanical injury to joints can contribute to osteoarthritis).

Insofar as it is genetically determined, organismal senescence is a form of genetic disease, but of a special kind, as follows. According to contemporary medical understanding, a genetic disease is the result of a mutation in a gene that disrupts its evolved function, changing the gene from wild type to mutant, thereby disrupting biological function and causing pathology. By contrast, the inherited predisposition to organismal senescence is largely specified by wild-type genes. This seemingly paradoxical claim makes sense in the light of the evolution of aging.

Until the middle of the last century, aging was viewed as an adaptation that benefited the species by removing worn out, old individuals. This view is still