Drug Discovery

Anti-aging Drugs

From Basic Research to Clinical Practice

Edited by Alexander M. Vaiserman
Anti-aging Drugs
From Basic Research to Clinical Practice
31: Traditional Chinese Medicine
32: Successful Strategies for the Discovery of Antiviral Drugs
33: Comprehensive Biomarker Discovery and Validation for Clinical Application
34: Emerging Drugs and Targets for Parkinson’s Disease
35: Pain Therapeutics; Current and Future Treatment Paradigms
36: Biotherapeutics: Recent Developments using Chemical and Molecular Biology
37: Inhibitors of Molecular Chaperones as Therapeutic Agents
38: Orphan Drugs and Rare Diseases
39: Ion Channel Drug Discovery
40: Macrocycles in Drug Discovery
41: Human-based Systems for Translational Research
42: Venoms to Drugs: Venom as a Source for the Development of Human Therapeutics
43: Carbohydrates in Drug Design and Discovery
44: Drug Discovery for Schizophrenia
45: Cardiovascular and Metabolic Disease: Scientific Discoveries and New Therapies
46: Green Chemistry Strategies for Drug Discovery
47: Fragment-Based Drug Discovery
48: Epigenetics for Drug Discovery
49: New Horizons in Predictive Drug Metabolism and Pharmacokinetics
50: Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation
51: Nanomedicines: Design, Delivery and Detection
52: Synthetic Methods in Drug Discovery: Volume 1
53: Synthetic Methods in Drug Discovery: Volume 2
54: Drug Transporters: Role and Importance in ADME and Drug Development
55: Drug Transporters: Recent Advances and Emerging Technologies
56: Allosterism in Drug Discovery
57: Anti-aging Drugs: From Basic Research to Clinical Practice

How to obtain future titles on publication:
A standing order plan is available for this series. A standing order will bring delivery of each new volume immediately on publication.

For further information please contact:
Book Sales Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK
Telephone: +44 (0)1223 420066, Fax: +44 (0)1223 420247,
Email: booksales@rsc.org
Visit our website at www.rsc.org/books
Anti-aging Drugs
From Basic Research to Clinical Practice

Edited by

Alexander M. Vaiserman
Institute of Gerontology, Kiev, Ukraine
Email: vaiserman@geront.kiev.ua
Foreword

In 1970, the world’s largest learned society focused on aging underwent a schism that persists to this day. Denham Harman, one of the foremost American gerontologists of that era, had become so incensed at the flight from translational work—or even, to judge from public pronouncements, translational aspirations—of nearly all his colleagues that he felt it necessary to found the American Aging Association in direct competition with the Gerontological Society of America, which had overseen the field for the previous quarter-century.

Was that a good move? This excellent volume provides a fitting affirmative answer. The American Aging Association languished in genuine obscurity and neglect for over 20 years, but by 2000 it had risen to a much greater degree of respect, and it has since become arguably the most prestigious society in the field worldwide, without ever losing sight of its intervention-focused roots. It has done so because of real progress in the laboratory: progress that has shifted other communities to a more translation-friendly stance rather than the other way around.

The pharmacological approach that dominates the following chapters is by no means the only option available to the biomedical gerontologist; in particular, my own work and that of SENS Research Foundation is focused mainly on stem cell and gene therapies. But it remains apparent that pharmacological interventions, simply by virtue of being so much easier to administer, are of immense value even if they only provide much lesser benefit to the average older person than more exotic alternatives, not only because even modest benefit is better than nothing, but also because the latter will not be available for a while and the former can act as a bridge to them.

The first and last sections of this book are no less important. Biogerontology runs the same risk as any science, of becoming an echo-chamber immune to the need for interaction with wider society. Biologists of aging
are perhaps even more duty-bound than any scientists, in consequence of the humanitarian importance of their field, to avoid falling into such a trap. It is therefore laudable that Vaiserman has chosen to invite chapters covering the pros and cons of both the feasibility and the desirability of significant, near-term success in the age-old quest to extend our youth. As one who has dedicated his life to that mission, I can attest that the best way to further it is to discuss it.

Enjoy these chapters as much as I have. They jointly constitute a comprehensive and invaluable primer in the current state of pharmacological anti-aging medicine.

Aubrey de Grey
Preface

Over the last few years, anti-aging medicine has received increasing attention in both public and scientific communities. Public interest in this area of research is largely driven by media attention related to recent developments in regenerative medicine and genome modification technologies. Probably the most famous example of that is the case of Elizabeth Parrish, the CEO of Seattle-based biotech firm BioViva, who claims that she had managed to reverse her own aging process with CRISPR gene editing technology by receiving a treatment targeting two gene loci, one a gene controlling telomere length and the other to protect against loss of muscle mass with age. Even though no confirmation has been received so far on whether or not this technology successfully changed her genome, many safety, ethical and regulatory issues are raised from this case. First of all, this concern is related to possible side effects associated with the use of this technology, primarily cancer. In this respect, using the more conventional pharmacologically based approach seems a reasonable alternative, particularly since many natural and synthetic agents have shown great potential for promoting health and longevity in numerous animal models. Among them, the most attention is currently drawn to rapamycin, resveratrol and the antidiabetic drug metformin. The last one was recently approved by the FDA to be examined in the Targeting Aging with Metformin (TAME) clinical trial to establish whether it may reduce the risk for aging-associated pathologies, such as cognitive impairments, cardiovascular disease and cancer, in non-diabetic persons. If successful, the TAME study would be the first demonstration that a particular drug can prevent or delay the onset of aging-associated chronic human disorders. It might provide a novel regulatory pathway for further clinical trials of pharmaceuticals specifically designed to slow the aging process.

The present volume is the first one devoted entirely to the pharmacological aspects of anti-aging medicine. It provides a comprehensive overview
of current research aimed to search for natural and synthetic compounds that can potentially be developed as drugs for treating aging-related chronic pathologies and, ultimately, for healthy life extension. In the first section of the book, the basic conceptual and methodological aspects of modern anti-aging medicine are described. The next sections are concerned with the main classes of lifespan-promoting agents, such as antioxidants, calorie restriction mimetics, epigenome-targeted drugs and phytochemicals with health-promoting properties. In the subsequent sections, the strategies for translation of research findings in the field of anti-aging medicine into clinical and healthcare practice as well as opportunities and challenges related to the implementation of such approaches are discussed. This volume constitutes a comprehensive collection of chapters written by leading experts in the field. It will be a relevant and useful resource not only for professional scientists and clinicians, but also for scientifically interested amateurs wishing to know more about the current research in anti-aging pharmacology.

Finally, I would like to acknowledge Dr Oksana Zabuga for the helpful assistance in preparing the manuscript of this volume, as well as the editorial staff at the Royal Society of Chemistry, especially Harriet Manning and Rowan Frame, with whom I had the good fortune to work on this project, for their patience and encouragement.

Alexander M. Vaiserman
Contents

Section I: Overview

Chapter 1 Anti-Aging Drugs: Where are We and Where are We Going? 3
Alexander M. Vaiserman and Oleh V. Lushchak

1.1 Introduction 3
1.2 Human Life Extension: Concerns and Considerations 4
1.3 Anti-Aging Pharmacology: Promises and Pitfalls 5
1.4 Concluding Remarks and Future Directions 8
References 9

Chapter 2 Aging: Natural or Disease? A View from Medical Textbooks 11
S. Janac, B. Clarke and D. Gems

2.1 Introduction 11
2.1.1 What Does “Aging” Mean? 12
2.1.2 Is Aging a Disease? 12
2.1.3 What is an Anti-Aging Intervention? 14
2.1.4 Aims of this Study: How is the Aging vs. Disease Division Represented in Medical Textbooks? 15
2.2 How is Aging Viewed in the Medical Field? 17
2.2.1 Two Surveys of the Medical Perception of Aging 17
2.2.2 Medical Textbook Analysis 18
2.3 Discussion 30
Acknowledgements 32
References 32
Chapter 3 The Search for the “Anti-Aging Pill”: A Critical Viewpoint
Éric le Bourg

3.1 Introduction 35
3.2 Diverse Life-History Strategies: Consequences for Lifespan Modulation 37
3.2.1 There Are Various Life-History Strategies in Mammals 37
3.2.2 The Life-History Strategy of the Nematode Caenorhabditis Elegans Could Explain Why Its Longevity is Plastic 41
3.3 Toxic and Essential Molecules May Have the Same Effects at Low Doses 42
3.4 A Drug Treating an Age-Related Pathology is not an “Anti-Aging” Drug 45
3.5 Conclusions 45
References 47

Section II: Basic Concepts, Models and Approaches

Chapter 4 Testing of Geroprotectors in Experiments on Cell Cultures: Pros and Cons
Alexander N. Khokhlov and Galina V. Morgunova

4.1 Introduction 53
4.2 Cytogerontological Model Systems 55
4.3 Constructing of Survival Curves for Cultured Cells in Cytogerontological Experiments 58
4.4 Interpretation of Data About the Impact of Geroprotectors on Viability of Cultured Cells in Cytogerontological Studies 63
4.5 Some Words About Biomarkers of Cell Aging/Senescence 65
4.6 Conclusions 68
References 70

Chapter 5 Pharmacogenomics and Epigenomics of Age-Related Neurodegenerative Disorders: Strategies for Drug Development
Ramón Cacabelos, Juan Carlos Carril and Oscar Teijido

5.1 Introduction 75
5.2 Age-Related Pheno-Genotypes 76
5.2.1 Age- and Genotype-Related Phenotype Variation in Common Biochemical and Hematological Parameters 78
Contents

5.2.2 Common Genes with Age-Related Influence on Health Conditions in NDDs 79

5.3 Pharmacogenomics 83
 5.3.1 APOE-TOMM40 95
 5.3.2 CYPs 97
 5.3.3 Transporters 99

5.4 Epigenomics 100
 5.4.1 Age-Related Epigenetics 101
 5.4.2 Neurodegenerative Disorders 103

5.5 Pharmacoepigenomics 108

5.6 Novel Strategies 111
 5.6.1 LipoFishins 123
 5.6.2 Atremorine (E-PodoFavalin-15999) 126

5.7 Future Trends for the Management of Age-Related NDDs 129

Acknowledgements 131
References 131

Chapter 6 Nanotechnology in Anti-Aging: Nutraceutical Delivery and Related Applications 142

Anila Mathew, Francesco Marotta and D. Sakthi Kumar

6.1 Introduction 142

6.2 Nutraceuticals and Nanodevelopments 143

6.3 Nanoformulations of Bioactive Compounds 146
 6.3.1 Nanoemulsions 147
 6.3.2 Nanoencapsulation/Nanoparticles 154
 6.3.3 Liposomes 157
 6.3.4 Other Nanoformulation Strategies: Nanodisks, Nanogels, Nanofibers etc. 157

6.4 Safety and Regulatory Aspects of Nanofoods 159

6.5 Consumer Attitude Towards Nanotechnology in Food-Related Applications 162

6.6 Conclusion 163

References 164

Chapter 7 Hormetins as Drugs for Healthy Aging 170

Suresh I. S. Rattan

7.1 Introduction 170

7.2 Aging in a Nutshell 171

7.3 Hormesis and Stress Response 172

7.4 Hormetins for Health and Longevity 174

7.5 Discovering Novel Hormetins 175

7.6 Drugs for Health and Longevity 176

References 177
Section III: Antioxidants

Chapter 8 Antioxidant Therapy of Aging: From Free Radical Chemistry to Systems Theory of Reliability
V. K. Koltov

8.1 Introduction: Historical Synopsis 183
8.2 Aging Versus Reliability 184
 8.2.1 Theory of Reliability: Basic Ideas 184
 8.2.2 Preset Reliability Prescribes Lifespan 185
8.3 Free-Radical Failures 187
 8.3.1 Free-Radical Malfunctions of Electron-Transport Nanoreactors 187
 8.3.2 Free-Radical Redox-Timer of Aging 189
8.4 Extension of Lifespan by Antioxidants 191
 8.4.1 Antioxidants: Radical Chemistry Standpoint 191
 8.4.2 Antioxidants: Reliability-Theory Standpoint 195
8.5 Conclusions 200
Acknowledgements 200
References 200

Chapter 9 Mitochondria-Targeted Rechargeable Antioxidants as Potential Anti-Aging Drugs
Elena G. Pasyukova, Boris A. Feniouk and Vladimir P. Skulachev

9.1 Introduction 205
9.2 Mitochondria Malfunction and Aging 206
9.3 The Link Between Oxidative Stress and Aging 207
9.4 Mitochondria-Targeted Rechargeable Antioxidants 209
 9.4.1 Mitochondria-Targeted Antioxidants in Invertebrate Models 211
 9.4.2 SkQ1 Affects Early Survival and Aging in Unmated Flies 212
 9.4.3 SkQ1 Affects Reproduction in Mated Flies 213
 9.4.4 SkQ1 Acts as a Mitochondria-Targeted Antioxidant Combating ROS in D. melanogaster 214
 9.4.5 SkQ1 Effects are Stable Under Different Experimental Scenarios and Across Different Wild-Type Genotypes 216
9.5 Mitochondria-Targeted Antioxidants in Rodents 218
9.6 Conclusion 220
Acknowledgements 220
References 220
Section IV: Mimicking Caloric Restriction

Chapter 10 Mimetics of Caloric Restriction 231
Oleh Lushchak and Dmytro Gospodaryov

10.1 Introduction 231
10.2 Aging and CR 233
 10.2.1 CR in Yeast: *Saccharomyces cerevisiae* 233
 10.2.2 CR in Worms: *Caenorhabditis elegans* 234
 10.2.3 CR in Fruit Flies 235
 10.2.4 CR in Mammals 236
10.3 Beneficial Effects of CR 238
 10.3.1 Cardiovascular System 238
 10.3.2 Brain Function 239
 10.3.3 Hormonal Regulation 240
10.4 Intracellular Consequences of CR 241
 10.4.1 Autophagy 242
 10.4.2 Metabolism of Reactive Oxygen Species 243
10.5 Ways to Achieve CR 244
 10.5.1 Decreased Food Consumption 244
 10.5.2 Dietary Composition 245
 10.5.3 Inhibition of Food Digestion and Absorption 245
 10.5.4 Decrease in Appetite and Satiety 246
 10.5.5 Mimetics of CR 246
10.6 Intracellular Targets of CR 249
 10.6.1 Sensors of Nutrient and Energy State 249
 10.6.2 Signaling Pathways 250
10.7 Conclusion 255
Acknowledgements 257
References 257

Chapter 11 Allosteric SIRT1 Activators as Putative Anti-Aging Drugs 272
Basil P. Hubbard

11.1 Introduction 272
11.2 The Sirtuin Longevity Pathway 273
11.3 Small-Molecule SIRT1 Activators 275
11.4 STACs in Aging and Age-Related Disease 278
 11.4.1 Lifespan Extension 278
 11.4.2 Obesity, Metabolism, and Type II Diabetes 280
 11.4.3 Cancer 281
 11.4.4 Neurodegenerative Disease 282
 11.4.5 Cardiovascular Disease 282
 11.4.6 Inflammation and Immunity 283
 11.4.7 Fertility and Development 284
xvi Contents

11.5 Clinical Challenges with STACs 285
 11.5.1 Pharmacology 285
 11.5.2 Regulatory Paradigms 286
11.6 Conclusion 287
References 287

Chapter 12 Therapeutic Potential of Sirtuin Inhibitors in Cancer 298
Francisco Javier Alcain, Consuelo M. Nieva, Lucia Fernandez
del Rio, Raquel Santiago-Mora, Elena Gutierrez-Casado,
Mario Duran-Prado and Jose M. Villalba

12.1 Introduction 298
12.2 Expression of Sirtuins in Cancer Cells 299
12.3 Sirtuins and the Hallmarks of Cancer 301
12.4 Sirtuin Inhibitors as Anticancer Agents 306
 12.4.1 Nicotidamine and Its Analogues 306
 12.4.2 Splitomicin and Its Derivatives 308
 12.4.3 Sirtinol 309
 12.4.4 Cambinol 310
 12.4.5 Salermide 313
 12.4.6 Indole Derivatives 313
 12.4.7 Tenovin 314
 12.4.8 Other Inhibitors of Human Sirtuins 317
12.5 Concluding Remarks 319
Acknowledgements 319
References 319

Chapter 13 Lifespan-Extending Effect of Resveratrol and Other
Phytochemicals 328
Shin-Hae Lee and Kyung-Jin Min

13.1 Introduction 328
13.2 Resveratrol 329
 13.2.1 Lifespan-Extending Effect of Resveratrol
 in Invertebrates: Yeasts, Worms and Flies 329
 13.2.2 Lifespan-Extending Effects of Resveratrol
 in Vertebrate: Fishes and Rodents 331
 13.2.3 Clinical Trials of Resveratrol in Human
 Subjects 332
 13.2.4 Putative Target Molecules for Lifespan-
 Extending Effect of Resveratrol 333
 13.2.5 Uncertainty of Resveratrol as a Clinical Drug 336
13.3 Other Phytochemicals with Lifespan-Extending
 Effects 337
 13.3.1 Curcumin 337
Contents

13.3.2 Quercetin 339
13.3.3 Catechin 339
13.3.4 Others 340
13.4 Conclusion 342
References 342

Chapter 14 Extending Lifespan by Inhibiting the Mechanistic Target of Rapamycin (mTOR) 352
Dudley W. Lamming

14.1 The Discovery of Rapamycin and mTOR 352
14.2 mTOR Regulates Longevity in Model Organisms 354
14.3 Rapamycin Extends the Lifespan and Healthspan of Mice 355
14.4 How Does Rapamycin Increase Longevity? 358
14.5 Side Effects of Rapamycin Treatment—The Role of mTORC2 359
14.6 mTORC1 Is a Key Integrator of Nutrient and Hormonal Signaling 360
14.7 How Can mTORC1 Be Specifically Targeted? 362
14.8 Conclusions 365
Acknowledgements 365
References 366

Chapter 15 mTOR, Aging and Cancer: Prospects for Pharmacological Interventions 376
Z. D. Sharp

15.1 Rapamycin: A Brief History 376
15.2 The Target of Rapamycin 377
15.3 Rapamycin’s Mysterious Effects on Aging 379
15.4 Effects of Chronic Rapamycin on Age-Associated Diseases 379
15.5 TOR Reductions and Rapamycin Increase Longevity in Other Organisms 382
15.6 Genetic mTOR Inhibition in Mice that Extends Life Span 383
15.7 Composite Picture of mTOR Signaling Pathways in Aging 383
15.8 Why This Is Important 385
15.9 Summary 386
Potential Financial Conflict of Interest 387
Acknowledgements 387
References 387
Chapter 16 Anti-Aging Action of PPARs: Potential Therapeutic Targets
Ki Wung Chung, Byung Pal Yu and Hae Young Chung

16.1 Introduction 393
16.2 Age-Related Changes in Inflammation and Their Role in Metabolic Diseases 394
 16.2.1 Chronic Inflammation and Aging 394
 16.2.2 Roles of Inflammation in Metabolic Diseases During Aging 395
16.3 Functions of PPARs in the Regulation of Metabolism and Inflammation 396
 16.3.1 PPAR Signaling and Metabolism 396
 16.3.2 PPARs and Inflammation 398
16.4 Evidence for Involvement of PPARs in Age-Related Inflammatory Diseases and Aging 400
 16.4.1 The Role of PPARs in Age-Related Inflammatory Diseases 401
 16.4.2 PPARs in Aging and Longevity 403
16.5 Anti-Aging and Therapeutic Potentials of New PPAR Agonists 404
16.6 Effects of Anti-Aging Calorie Restriction on PPAR Modulation 406
16.7 Conclusion 407
References 408

Chapter 17 Antidiabetic Biguanides as Anti-Aging Drugs
Vladimir N. Anisimov

17.1 Introduction 416
17.2 Milestones in Research on Biguanides as Drugs for Aging Prevention in Rodents 417
17.3 Effect of Antidiabetic Biguanides on Aging and Life Span in Rats 418
17.4 Effect of Antidiabetic Biguanides on Aging and Life Span in Mice 420
17.5 Antidiabetic Biguanides in Prevention of Age-Associated Diseases in Mouse Models 424
17.6 Antidiabetic Biguanides as Anti-Carcinogens and Inhibitors of Tumor Growth in Rodents 424
17.7 Conclusion 427
Acknowledgement 429
References 429
Section V: Other Pharmacological Approaches

Chapter 18 S-Adenosylmethionine Metabolism: A Promising Avenue in Anti-Aging Medicine?
W. A. M. Loenen

18.1 Introduction 435
 18.1.1 Discovery of S-Adenosylmethionine 435
 18.1.2 SAM and Aging 436
 18.1.3 This Review 437
18.2 SAM-Dependent Enzymes 437
 18.2.1 Parts of SAM Used by SAM-Dependent Enzymes 437
 18.2.2 Structures of SAM-Dependent Enzymes 438
18.3 Well-Known Pathways of SAM in Central Metabolism 438
 18.3.1 The Methionine Cycle 438
 18.3.2 The Transsulfuration Pathway to Glutathione 442
 18.3.3 The Polyamine Pathway 442
18.4 SAM and RNA-Based Control by Riboswitches 443
 18.4.1 Discovery of SAM Riboswitches 443
 18.4.2 SAM and Other Riboswitches 443
18.5 ‘Radical SAM’ Proteins with Iron–Sulfur (FeS) Clusters 444
 18.5.1 Discovery of Radical SAM Enzymes 444
 18.5.2 The Radical SAM-Binding Domain 444
 18.5.3 Types of SAM Radical Enzymes 445
 18.5.4 Radical SAM Methyltransferases (RSMT) 446
 18.5.5 Radical SAM Methylthiotransferases (MMTases) 447
 18.5.6 The Special Case of Elp3 447
 18.5.7 Lessons from SAM-Independent FeS Proteins? 448
18.6 SAM and Aging 449
 18.6.1 SAM, Mitochondria and Aging 449
 18.6.2 SAM and Neurodegeneration 449
 18.6.3 SAM and Long-Lived Rodents 450
 18.6.4 SAM, the Microbiome and Aging 450
 18.6.5 SAM and Establishment and Maintenance of the Microbiome 451
18.7 Conclusions 452
Note Added after Completion of the Manuscript 453
Abbreviations 453
References 454
Chapter 19 Melatonin as a Geroprotector: Healthy Aging vs. Extension of Lifespan 474
R. Hardeland

19.1 Introduction 474
19.2 Overview of Melatonin's Actions in Relation to Aging 477
 19.2.1 Energy Balance and Metabolic Sensing 477
 19.2.2 Counter-Action of Mitochondrial Dysfunction and Anti-Oxidant Actions 481
 19.2.3 Immunological Actions and Prevention of Inflammaging 483
 19.2.4 Telomere Attrition 486
19.3 Lifespan, Health, Deceleration and Deacceleration of Aging 486
19.4 Conclusion 488
References 489

Chapter 20 Short Peptides Regulate Gene Expression, Protein Synthesis and Enhance Life Span 496
Vladimir Khavinson and Irina Popovich

20.1 Introduction 496
20.2 Isolated Peptide Complexes 498
20.3 Short Synthetic Peptides 500
20.4 Influence of Short Peptides on Immune and Antioxidant Systems 501
20.5 The Influence of Short Peptides on Gene Expression 503
20.6 Application of Peptide Bioregulators in Elderly Patients 504
20.7 Prospective Cellular and Molecular Mechanism of Action of Short Peptides 507
20.8 Conclusion 509
References 510

Chapter 21 HDAC Inhibitors: A New Avenue in Anti-Aging Medicine 514
E. G. Pasyukova and A. M. Vaiserman

21.1 Introduction 514
21.2 Role of Histone Modification in Epigenetic Regulation 516
21.3 Life Span-Modulating Effects of HDAC Inhibitors in Animal Models 517
 21.3.1 Phenylbutyrate 518
 21.3.2 Sodium Butyrate 519
 21.3.3 Trichostatin A 523
 21.3.4 Suberoylanilide Hydroxamic Acid (SAHA) 525
Section VI: Social Context

Chapter 22 Human Life Extension: Opportunities, Challenges, and Implications for Public Health Policy

Ilia Stambler

22.1 Introduction: The Diverse Aspects of Life Extension Promotion as a Part of Health Promotion 537
22.2 Scientific and Technological Implications and Challenges: Is Human Life Extension Scientifically and Technologically Feasible? 540
22.3 Implications and Challenges for the Individual and the Society: Is Life Extension a Desirable Goal? 545
22.4 Normative Action: What Should We Do? 551
 22.4.1 Funding 552
 22.4.2 Incentives 554
 22.4.3 Institutional Support 557
References 559

Subject Index 565
Section I
Overview
CHAPTER 1

Anti-Aging Drugs: Where are We and Where are We Going?

ALEXANDER M. VAISERMAN* and OLEH V. LUSHCHAK

Laboratory of Epigenetics, Institute of Gerontology, Kiev, Ukraine; Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

*E-mail: vaiserman@geront.kiev.ua

1.1 Introduction

Human longevity dramatically increased during the last century when implementation of vaccinations, disinfectants and antibiotics led to a substantial reduction of infectious diseases as a leading cause of death. The decline in mortality among the elderly has continued over the past few decades. It is most probably owing to preventative factors, such as improved diets, as well as exercise and reduction in smoking. If current demographic trends continue then 20% percent of the global population of 9 billion will be over the age of 60 by 2050. As a consequence, most modern nations are undergoing rapid population aging. Although the life expectancy has enhanced dramatically in modern generations, this process has, nevertheless, not been accompanied by an equivalent increase in healthy life expectancy. Since aging is a primary risk factor in most chronic disorders, the prevalence of age-associated disorders, such as type 2 diabetes, neurodegenerative disease, cardiovascular disease, osteoporosis and cancer, rises considerably with the increasing average age in populations of developed countries, representing a
great socio-economic challenge. It is estimated that there will be more than 30 million people over the age of 80 will be in the U.S. by 2050; about half of them will suffer from different forms of dementia, and at least 3 million of all adults will be diagnosed with Parkinson’s disease. The expected prevalence of age-associated conditions will have substantial consequences for future society, including increased financial and psychological burdens for families and greater pressure on government health care programs and entitlement budgets. The demographic trend consisting of an increasing proportion of aged people in the populations of developed countries likely explains the dramatic increase in the interest of the lay public and country leaders in research in the field of biogerontology.

1.2 Human Life Extension: Concerns and Considerations

Investigations aimed at human life extension have traditionally raised concerns that it can lead to the growth of the older population segment and, consequently, to the high prevalence of ageing-associated chronic pathologies. Numerous experimental studies have, however, demonstrated that life extension is usually accompanied by delayed or reduced morbidity, including cardiovascular disease, neurodegeneration, and tumors. There is also increasing evidence from epidemiological studies, which is consistent with the findings from animal models. For example, centenarians, in particular those who live in so-called ‘Blue Zones’ (five regions in Europe, Latin America, Asia and the US with unusually high concentrations of centenarians), have been not only shown to exhibit exceptional longevity but also often remain free from disability and chronic diseases until very advanced age.

The compression of morbidity has been the primary strategy in gerontology and geriatric research during the last few decades. This strategy claims that we may limit morbidity to a shorter period closer to the natural ending of life, thus reducing the burden of illness and disability by delaying the age at onset of major age-associated chronic disorders. Geroscience, a novel branch of geriatric medicine, is centered on healthspan extension. Extension of healthspan is a crucial component of achieving ‘optimal longevity’, defined as living long, but with good health and quality of life, including improved functioning, productivity and independence. Attempts to increase healthspan are currently focused on slowing the basic biological processes accompanying aging, such as mitochondrial dysfunction, cellular senescence, age-related decline of stress resistance, dysregulated cellular energy sensing and growth pathways, impaired proteostasis, deteriorated stem cell function/bioavailability, as well as oxidative and inflammation stress. All these processes interfere with the normal physiological cellular signaling pathways, demanding compensatory adjustments with aging to maintain homeostasis. At a certain age, however, these compensatory mechanisms become exhausted and different aspects of aging are manifested,
thereby increasing the risk for functional decline and the onset and pro-
gression of chronic diseases.15 Therapeutic strategies to combat aging and
age-related diseases are a part of an investigation field commonly referred to
as ‘anti-aging medicine’. Anti-aging medicine has emerged as a new special-
ization in medical practice at the beginning of the 1990s. Over the past few
years, it has become an increasingly discussed and debated topic.16 Its main
purpose is to prolong both healthspan and lifespan by specific regimes of
exercise and dieting, as well as by advanced biomedical interventions aimed
at slowing, stopping or reversing the aging process.17,18

Traditionally, the process of aging is believed to be ‘natural’ and therefore
inevitable. However, in the view of many authors, the idea that aging is an
indefeasible part of human nature is quite questionable.19 In accordance
with many modern evolutionary theories, aging has emerged as a by-product
of evolutionary processes and does not have a specific function.20 If aging is
really not an intrinsic, irrevocable component of life, then it could be manip-
ulated similarly to other processes that are generally deemed to be unnat-
ural or pathological. The major assumption underlying anti-aging research
is that age-associated senescence may be regarded as a pathophysiological
phenomenon that might be prevented or even reversed.21 Modern anti-ag-
ing medicine promotes biomedical technologies and approaches that have
the potential to delay or postpone aging processes.2 The success obtained in
this research field is greatly attributed to the increasingly broad application
of omics-based approaches, such as genomics, transcriptomics, proteomics
and metabolomics.22 Through the implementation of these technologies, a
better understanding has been achieved regarding the key molecular and
 cellular pathways involved in the aging process, including inflammation,
proteostasis, autophagy, mitochondrial efficiency and nutrient signaling,
and regarding the most effective interventions to counteract age-related
senescence.23,24 The impetuous progress in highlighting the mechanisms
underlying aging and longevity and first successful pharmacological
interventions to extend healthy lifespan in different model organisms
indicate that the aging process is malleable.

1.3 Anti-Aging Pharmacology: Promises and Pitfalls

The development of pharmacological agents targeting aging-related func-
tional declines and pathological manifestations (‘anti-aging drugs’) is now in
the spotlight in geroscience. An exponential growth of research in the field of
geriatric pharmacology, including the study of prospective anti-aging drugs,
has been observed over the past 20 years.25 The first step in the process of
drug development is known to involve the selection of druggable targets.26
The situation when gene targets are determined by the study of genetic varia-
tions linked to either gain-of-function or loss-of-function phenotypes is espe-
cially useful because these targets can be considered as those that have been
reliably validated.27 Over the last two decades, a number of genetic pathways
have been identified that play an unequivocal role in control of the aging
process and longevity, all these genes represent attractive drug targets. Currently, many pharmacological agents targeting the putative mechanisms of aging are under development.

Taking into account the extraordinary complexity of the mechanistic pathways underlying the aging process, the recognition of these pathways and development of anti-aging interventions seems a challenging task. Significant progress has, however, been achieved in the last few years in this research field. A number of pharmacological agents with the potential to target particular aging-associated pathways and to produce protective responses against age-related pathologies are currently under investigation. In recent years, several classes of bioactive chemical agents and nutraceuticals have been shown to have potential therapeutic efficacy in anti-aging medicine. In experimental studies, many substances have been identified as having life-extending properties. Among them are calorie restriction mimetics, such as resveratrol, rapamycin and metformin, antioxidants (vitamins A, C and E, quercetin, melatonin, coenzyme Q10, etc.), autophagy inducers, such as spermidine, senolytics, phytochemicals, e.g., curcumin, genistein, catechins and epigallocatechin gallate (EGCG), and several other natural and chemical compounds. In recent years, modern biotechnological approaches have been used for developing novel anti-aging pharmaceutical applications. For example, the coupling of curcumin-based nanoparticles with the Tet-1 peptide, which has affinity for neurons and possess retrograde transportation properties, as well as mitochondria-targeted antioxidant SkQ1, have been recently explored as promising therapeutic applications for the treatment of Alzheimer’s disease. Over the last decade, consistent evidence has also been reported for the role of epigenetic factors, including DNA methylation, histone modifications and microRNA regulation, in the aging process as well as in the pathogenesis and progression of age-related diseases. A lot of hope is being pinned, therefore, on pharmacological agents targeted to the epigenetic regulation of gene activity, such as inhibitors of DNA methyltransferases and histone deacetylases, including sodium butyrate, trichostatin A, sodium 4-phenylbutyrate and suberoylanilide hydroxamic acid.

It should, however, be noted that all agents that can be classified as potent anti-aging therapeutic compounds are multi-functional and targeted at multiple signaling pathways mediating aging. Moreover, the evidence remains limited regarding the overall health benefits of these substances, including epidemiological studies exploring the consequences of their long-term intake for human health. Furthermore, there is evidence that uncontrolled intake of some anti-aging agents can be useless or even harmful. For example, the consumption of antioxidants is considered as quite reasonable by many researchers, especially in the cardiovascular research area. The appropriateness of antioxidant intake, however, still remains a matter of debate. Meta-analysis of observational studies and randomized controlled trials conducted in well-nourished and healthy populations demonstrated that antioxidant supplementation may be associated with undesirable consequences for health and all-cause mortality. Another example is the fact that supplementation with several promising pro-healthspan compounds can
in some cases trigger insulin resistance. This applies to substances such as rapamycin46 and statins.47 Therefore, people should use them with caution and only with careful medical monitoring.

Another method of anti-aging drug discovery is evaluating the pharmacological agents already approved by the FDA and other regulatory agencies for treatment of particular conditions associated with aging, such as statins, metformin, beta-blockers, renin-angiotensin-aldosterone system inhibitors, thiazolidinediones, and anti-inflammatory medications.48 These classes of drugs are commonly used in the treatment of patients with various chronic medical conditions and their efficacy and safety have been proven in many clinical trials. They have also been shown to improve health, physiological functioning and well-being in middle to old age patients with chronic disorders.49 Such agents are presently not used in the treatment of age-associated physiological dysfunctions in the absence of clinical manifestation of disease. However, these medications might theoretically be redirected to treating or preventing conditions or syndromes typically associated with aging.

Le Couteur \textit{et al.}50 noted in their review that ‘despite the potential profits and the extraordinary capacity of drug discovery technology, there is a paucity of new drugs in the development pipeline, particularly for those medications that are likely to be highly profitable because they are used long term and by a large proportion of the population.’ The longevity dividend, \textit{i.e.} an idea that extending healthy life by slowing aging is the most efficient way to combat the fatal and disabling pathologies that plague us today,51 may provide an opportunity to revitalize the drug development pipeline. Indeed, by delaying the aging process \textit{per se}, it likely would be possible to prevent or delay all age-associated pathologies rather than to overcome them one by one, which is the current approach of the disease-based paradigm in drug development. Furthermore, prevention of a particular age-related chronic disorder, \textit{e.g.}, cardiovascular disease, will apparently have only a modest effect on the population life expectancy because comorbidity, \textit{e.g.}, cancer, will to a great extent substitute the reduction in mortality risk caused by preventing the targeted pathology. The main idea of geroscience is that preventing the clinical manifestations of all age-related diseases as a group by inhibiting the basic aging mechanisms can be far more effective than preventing the individual chronic disorders.11,49 A recent analysis conducted by Goldman \textit{et al.}52 demonstrated that substantial socio-economic benefits might be derived from this approach in comparison with current public health strategy targeted to prevention of particular disorders. According to this analysis, the economic impact of delaying aging and increasing healthspan in the US is estimated at \sim7 trillion dollars over the next fifty years. Hence, it is obvious that discovery of new drug targets based on biogerontological research represents an incredible opportunity for the pharmaceutical and healthcare industries.53 Currently, the consensus among physicians and health professionals that the optimization of physiological and mental functioning throughout the life course should be a major emphasis of any contemporaneous biomedical policy addressing global aging. A healthy lifestyle comprising proper
nutrition and physical activity represents the first-line function-preserving strategy. Pharmacological compounds, both existing and potential, can serve as a prospective complementary approach.⁴₈

1.4 Concluding Remarks and Future Directions

To summarize, it can be assumed that targeting aging per se can be a more effective approach to postponing or preventing age-related disorders than treatments targeted to specific pathological conditions. Because of the aging population, such a therapeutic strategy is undoubtedly an area of increasing relevance for the pharmaceutical industry and public health organizations. As has been recently emphasized by Longo et al.,⁵⁴ ‘the time has come not only to consider several therapeutic options for the treatment of age-related comorbidities, but to initiate clinical trials with the ultimate goal of increasing the healthspan (and perhaps longevity) of human populations, while respecting the guiding principle of physicians primum non nocere.’ In modern pharmacy, anti-aging is likely one of the most prospective markets because the target group can potentially include each person. Several supplements, such as resveratrol, are already advertised in the pharmaceutical market as “anti-aging pills”.⁵⁵ Very promising in this regard is rapamycin (also known as sirolimus), which is already approved by the FDA as an antibiotic and immunosuppressant drug. Current marketing research demonstrates that most people are willing to pay for long-term pharmacological therapy to prevent or delay the aging-related decline in physical and mental functions.⁵⁰ Recent sociological surveys show a great desire for extended life and health in the US and worldwide. In most of the surveys conducted until now, the cautious attitude to life extension was a consequence of an erroneous equation of extended life with a prolonged period of age-related functional decline and frailty. When continued health was stipulated in the questionnaire design, responses significantly favored longer life. In the survey by Donner et al.,⁵⁶ 20% of respondents wished to die at the age of 85, whereas 42% wanted to have an unlimited lifespan. Despite the widespread misconception that implementation of anti-aging medicine would increase the proportion of chronic patients in modern societies, it in fact would lead to reducing the ratio of unhealthy to healthy population since it would result in delaying the onset of age-related pathological conditions. In other words, it may lead to a decrease of biological age (i.e., old individuals will become biologically younger) and to an increase of the age of disability, thereby increasing the retirement age and enhancing revenues without enhancing taxes.⁵⁷ Optimistic predictions of the feasibility of health- and life-extending interventions, however, should certainly be critically discussed in terms of their ethical, economic and social implications. Only after in-depth examination and following comprehensive debates will the implementation of such approaches in clinical practice be possible.
References

CHAPTER 2

Aging: Natural or Disease? A View from Medical Textbooks

S. JANACa, B. CLARKEb AND D. GEMS*a

aUniversity College London, Institute of Healthy Ageing, Gower Street, London, WC1E 6BT, UK; bUniversity College London, Department of Science and Technology Studies, Gower Street, London, WC1E 6BT, UK
*E-mail: david.gems@ucl.ac.uk

2.1 Introduction

Whether a given condition is labelled as a disease or not can depend on a number of factors—including linguistics. For example, in one survey people were asked of 60 different conditions whether they considered them to be a disease or not.1 The study found that alcoholism was seen as a disease, but smoking not. In some ways this is an odd finding since both—broadly speaking—elicit dependence symptoms, involve substance abuse and are detrimental to health in the long-term. Plausibly, this quirk reflects the choice of words employed in the survey. Perhaps if the terms used had instead been \textit{drinking} and \textit{nicotine addiction}, the classification would have come out the other way around.

Difficulties of classification also affect aging. For example, if one went to the doctor and asked for a prescription for anti-aging drugs, their response would likely be surprise, amusement or perhaps mild irritation. This is because aging, in the medical field, is not regarded as a disease.
The question of what exactly is meant by “anti-aging drugs” is complicated by several factors. First, linguistics, and the problem that the word “aging” has more than one meaning. Second, the question of whether aging is a disease. Thirdly, problems relating to what counts as an anti-aging intervention. These issues will be reviewed here briefly and a serving definition of the meaning of anti-aging suggested. This builds on previous work that attempts to define anti-aging interventions. We will then present an attempt at a broad and general description of the biological basis of aging, to offer the beginnings of an etiological basis for the understanding of senescence as a disease syndrome. Then, in the main part of this chapter, we examine how the aging vs. disease question is presented in general medical textbooks.

2.1.1 What Does “Aging” Mean?

The word aging acts as a stumbling block in discussion because it has multiple meanings that are sometimes conflated. The main, distinct meanings are:

- The passage of time (calendar aging).
- Time-dependent alterations, usually in adult living organisms, but also inert objects (age changes).
- Cumulative deteriorative changes in adult organisms leading to pathology and death (senescence). Senescence is one type of age change.

An unfortunate additional source of confusion is that the word senescence also has a second meaning, as introduced by Leonard Hayflick, that of cellular senescence. This refers to a specific type of cellular change where the proliferative capacity of cells is lost and a pathogenic hypertrophic phenotype appears. Confusion between these two meanings can, in some contexts, be avoided by use of the term organismal senescence to contrast with cellular senescence. However, it seems likely that the two meanings of senescence will continue to generate confusion. Replacement of cellular senescence with another term would solve this problem.

Thus, the English language is a hindrance in that the multiple meanings of aging impede understanding. Not all languages have this problem; for example the Russian старение (старение) means, essentially, senescence. For people, age changes include maturational changes, such as the attainment of wisdom, and character development. In this sense, an anti-aging drug would be highly undesirable; clearly, the interest is in anti-senescence (or geroprotectant) drugs, where senescence is meant in its original sense, not the sense of cellular senescence.

2.1.2 Is Aging a Disease?

Human senescence manifests as a wide range of deteriorative changes, including some that are debilitating and sometimes fatal (e.g. cardiovascular disease, cancer and dementia) and some that are not (e.g. greying of hair
and wrinkling of skin). In medicine, a conceptual division is made between the former, as diseases for which aging is a risk factor, and the latter, which are not pathological but rather manifestations of normal aging. Here, aging itself is viewed as a natural and non-pathological process. However, this division and the notion of normal aging is problematic in a number of respects. For example, the designation of particular senescent changes as normal or pathological has been controversial, as illustrated by the transfer of late-onset Alzheimer’s disease and osteoporosis from the former to the latter category. Moreover, from a biological perspective, senescence, a biological process whose defining characteristic is deterioration, is a fundamentally pathological process, identifiable as damage accumulation, degeneration, loss of function, and emergence of numerous disease states that can cause suffering and death. At present there exists some division between perspectives on aging in the medical and scientific domain. In the former the concept of normal aging is more prevalent, whereas in the latter there are more doubts about the existence (or meaning) of “non-pathological senescence”.

As a contribution to this debate, we present here an attempt at a disease definition of aging. Ideally, a disease definition will include a full description of the disease etiology. In the case of aging this is not possible since the biological mechanisms that cause senescence are only partly understood. This definition does not pretend to encompass the views of all biogerontologists, and it surely will not do so. We hope that its faults will incite others to develop better definitions.

2.1.2.1 An Attempt at a Broad Account of the Etiology of Senescence

Organismal senescence manifests as diverse pathologies, including neurodegenerative diseases, cardiovascular disease and cancer, as well as minor pathologies such as skin wrinkling, and encompasses the etiologies of these conditions. There is no single etiology of organismal senescence, but rather multiple causes that generate a number of syndromes and unitary diseases. Thus, aging is a disease super-syndrome. These etiologies are predominantly the result of inherited predisposition, but environmental factors that promote damage and injury also play an important role, often through effects on the expression of predispositions (e.g. mechanical injury to joints can contribute to osteoarthritis).

Insofar as it is genetically determined, organismal senescence is a form of genetic disease, but of a special kind, as follows. According to contemporary medical understanding, a genetic disease is the result of a mutation in a gene that disrupts its evolved function, changing the gene from wild type to mutant, thereby disrupting biological function and causing pathology. By contrast, the inherited predisposition to organismal senescence is largely specified by wild-type genes. This seemingly paradoxical claim makes sense in the light of the evolution of aging.

Until the middle of the last century, aging was viewed as an adaptation that benefited the species by removing worn out, old individuals. This view is still