
Abhinav Grover    Editor 

Drug Design: 
Principles 
and 
Applications



Drug Design: Principles and Applications



Abhinav Grover
Editor

Drug Design: Principles 
and Applications



Editor
Abhinav Grover
School of Biotechnology
Jawaharlal Nehru University
New Delhi, India

ISBN 978-981-10-5186-9    ISBN 978-981-10-5187-6 (eBook)
DOI 10.1007/978-981-10-5187-6

Library of Congress Control Number: 2017950053

© Springer Nature Singapore Pte Ltd. 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, express or implied, with respect to the material contained herein or for any errors 
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims 
in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, 
Singapore



v

 1  Applications of Computer-Aided Drug Design  . . . . . . . . . . . . . . . . . .    1
Joo Chuan Tong

 2  Advanced Drug Discovery for Alzheimer’s Disease:  
Challenges and Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    9
Rizwanul Haque and Aamir Nazir

 3  Modern Approaches in Cancer Pharmacology  . . . . . . . . . . . . . . . . . .   31
Sukriti Goyal and Abhinav Grover

 4  Contemporary Approaches for Malaria Drug Discovery . . . . . . . . . .   45
Vijeta Sharma, Sonal Gupta, and Shailja Singh

 5  The Story of Kinase Inhibitors Development with Special 
Reference to Allosteric Site  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   57
Pabitra Mohan Behera and Anshuman Dixit

 6  Recent Advances in the Chemotherapy  
of Visceral Leishmaniasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   69
Vijay Kumar Prajapati and Rajan Kumar Pandey

 7  Strategies for Tackling Drug Resistance in Tuberculosis  . . . . . . . . . .   89
Laurent Maveyraud

 8  ADMET Properties: Overview and Current Topics  . . . . . . . . . . . . . .  113
Haizhen A. Zhong

 9  Cheminformatics Approaches in Modern Drug Discovery . . . . . . . . .  135
Salma Jamal and Abhinav Grover

 10  Pharmacogenetics and Personalized Medicine. . . . . . . . . . . . . . . . . . .  149
Antonello Di Paolo, Elena Arrigoni, Sara Galimberti,  
and Romano Danesi

Contents



vii

About the Editor

Abhinav Grover is currently working as Assistant Professor and Group Leader, 
Molecular Modeling and Biotherapeutics Production Laboratory at School of 
Biotechnology, Jawaharlal Nehru University (JNU), New Delhi, India. He obtained 
his PhD from the prestigious Indian Institute of Technology Delhi, New Delhi. Prior 
to joining this position, he received the coveted INSPIRE fellowship from the 
Department of Science and Technology, Government of India, and worked as 
Assistant Professor at the University of Delhi. His main area of research includes 
Drug Design and Development, Bioprocess Technology, Cheminformatics and 
Computational Biology.

Dr. Grover is a prolific publisher as he has authored more than 80 papers in peer- -
     reviewed international journals of repute and two book chapters in a short span of 
scientific career. He is recipient of the prestigious NASI Young Scientist Award in 
2014, INSA Medal for Young Scientists in 2013, Indo-Swiss Joint Research 
Fellowship, DST Haryana Yuva Vigyan Ratna Award and many more. Notably he 
has also won ICAR-Jawaharlal Nehru Award in 2013 for outstanding PhD thesis. 
He has been supported by a number of research grants from various funding agen-
cies. He is a life member of National Academy of Sciences, India; Indian Science 
Congress Association; Society of Biological Chemists, India; etc. He is also a mem-
ber of International Society for Computational Biology. He has delivered invited 
talks at several national and international conferences and symposia of high repute.



1© Springer Nature Singapore Pte Ltd. 2017
A. Grover (ed.), Drug Design: Principles and Applications, 
DOI 10.1007/978-981-10-5187-6_1

J.C. Tong
Institute of High Performance Computing,  
1 Fusionopolis Way, #16-16 Connexis (North Tower), Singapore 138632, Singapore
e-mail: tongjc@ihpc.a-star.edu.sg

1Applications of Computer-Aided Drug 
Design

Joo Chuan Tong

1.1  Introduction

Computer-aided drug design (CADD) plays an instrumental role in the modern dis-
covery of therapeutically important small molecules. It refers to computational 
methods that can help speed up the lead identification and optimization processes. 
In its broadest sense, CADD represents tools and resources for the storage, manage-
ment, analysis, and modeling of compounds [1]. They are deployed in almost every 
step of the drug discovery pipeline, from the design of small molecule libraries, hits 
identification, to optimization of the affinity and selectivity of compounds. Digital 
repositories are useful resources for researchers studying important chemical inter-
action relationships [2]. Virtual combinatorial libraries can help minimize redun-
dancy or maximize the number of discovered true leads by optimizing a library’s 
diversity or similarity to a target [3]. They allow for both sequential and parallel 
selections of suitable compounds based on preferred molecular profiles. Many tools 
are now publicly available, with various methods and algorithms, to help identify 
protein binding sites and molecular functions [4, 5] as well as design compounds 
with interesting physicochemical properties for drug interventions [6, 7]. Some 
early successes of structure-based design include the carbonic anhydrase inhibitor 
Dorzolamide, and the HIV protease inhibitors Indinavir, Nelfinavir, Ritonavir, and 
Saquinavir [8]. Collectively, these tools and resources could help improve efficiency 
in new drug development and reduce costly late stage clinical trial failures. This 
chapter provides an overview of how various computational methods have been 
deployed to help expedite the drug design and discovery process.
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1.2  Virtual Combinatorial Libraries

Virtual combinatorial libraries offer the potential for improved design by optimizing 
a library’s diversity or similarity to a target [9]. This approach can help identify 
molecules with desired makeup through systematical exploration of the compound 
property space. Molecular diversity, coverage, representativeness, physicochemical, 
and pharmacokinetic properties are concepts that are commonly applied to ensure a 
good sampling on product space using the minimum number of molecules. In recent 
years, much emphasis has been placed on designing libraries that allow the consen-
sus selection of suitable molecules by optimizing multiple properties [10]. Such 
compounds are useful for investigating biological mechanisms and as leads for drug 
property optimization [11].

The design of a virtual library typically involves reaction encoding, selection of 
reagents and enumeration [11]. Two approaches are commonly used for enumerat-
ing molecular variants: Markush methods and reaction-based techniques. Markush 
methods enumerate libraries by varying the functional groups to be attached to a 
common scaffold [12]. While this approach can introduce diversity rapidly into the 
derived libraries, full (or implicit) enumeration of compounds is computationally 
expensive by nature. Reaction-based methods, on the other hand, offer a more flex-
ible approach to library enumeration. This approach specifies which parts of the 
reacting molecules undergo chemical transformations and the type of transforma-
tions, allowing for the systematic generation of chemical products through the use 
of various reagents. However, the derived libraries tend to be smaller, thereby pro-
viding less diversity within the available chemical space.

1.3  Fold Recognition and Geometric Methods

Fold recognition is a method to model proteins that share the same fold as proteins 
of known structures, but do not have homologous proteins with known structure. 
Such method can help identify new binding sites and molecular function [13]. 
Commonly used methods include sequence comparison and protein threading [4].

Proteins are said to have a common fold if they share similar major secondary 
structures in the same arrangement and with the same topological connections. 
Sequence comparison methods typically begin by searching a protein sequence 
against a fold library of sequences with known three-dimensional structures, fol-
lowed by assessing the alignment using substitution matrices, gap penalties, or pro-
pensity scales [5, 14, 15]. One good data source for such comparisons is the 
Structural Classification of Proteins (SCOP) database, which is a rich depository 
containing detailed structural and evolutionary relations between all proteins with 
known structures [16]. On the other hand, protein threading works by evaluating the 
goodness-of-fit of a target sequence on a source structure that is not evolutionarily 
conserved, followed by substituting the backbone coordinates of the template struc-
ture with the target sequence, and assessing the correctness of the model by means 
of a set of empirical potentials [17–19]. This approach is useful for identifying 
proteins that are structurally conserved but not evolutionarily related, and for mod-
eling highly conserved molecular complexes.

J.C. Tong
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Geometric algorithms predict active sites by locating cavities or “pockets” on the 
surface of a protein [20, 21]. Many computational methods have been developed 
that use geometric characteristics to detect protein pockets. There are several ways 
to identify pockets using protein geometry only. Computational tools such POCKET 
[22] and LIGSITE [23] map proteins onto a 3D grid and scan the grid points outside 
the protein for protein-solvent-protein and surface-solvent-surface events, respec-
tively. SURFNET [24] identifies pockets by fitting spheres into the spaces between 
atoms. The clustered spheres with greatest volume define the largest pocket. CAST 
[25] detects pockets by merging neighboring empty tetrahedral that share a com-
mon triangle. In PASS [26], cavities in a protein structure are filled with a set of 
probe spheres, and potential pockets are identified as the probes with the most atom 
contacts. A benchmark on the performances of LIGSITE, LIGSITEcs, LIGSITEcsc, 
SURFNET, CAST, and PASS showed that geometric methods can achieve a success 
rate of 71–77% when tested on a dataset of 48 proteins with unbound structures and 
80–87% for 210 proteins with bound structures [27].

1.4  Molecular Docking

Molecular docking is commonly used to help understand drug–receptor interaction 
[6]. Predicting the binding mode of ligands to macromolecular receptors is non-
trivial. The method must first identify the correct positioning of a ligand within the 
receptor binding site [28], and then evaluate how well the ligand can bind to the 
receptor [13]. A variety of molecular docking software is now available (Table 1.1). 
Incremental construction algorithms such as FlexX [29], FlexE [30], and DOCK 
[31] search for optimal binding poses by placing fragments in the receptor binding 
site and then extend the fragments to fill the space available. Monte Carlo methods 
such as ICM [32] randomly sample a conformational subspace, and then move to a 
new random position independent of the previous position, but according to the 
predefined continuous probability distribution. Ensemble docking methods such as 
those adopted by ICM [33] and FlexE [34] address the issue of receptor flexibility 
by using multiple conformations of the protein to dock the ligand [35]. Other meth-
ods, such as the use of genetic algorithms [36] for flexible docking of ligands to 

Table 1.1 Some available molecular docking software

Name URL

Autodock http://autodock.scripps.edu/

DOCK http://dock.compbio.ucsf.edu/

FlexX https://www.biosolveit.de/FlexX/

FlexE https://www.biosolveit.de/FlexX/

FITTED http://fitted.ca/

FlipDock http://flipdock.scripps.edu/

GOLD http://www.ccdc.cam.ac.uk/solutions/csd-discovery/
components/gold/

Glide https://www.schrodinger.com/glide

ICM http://www.molsoft.com/
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receptors, have also been described. In 2004, Kellenberger and colleagues [37] per-
formed a comparative evaluation of eight docking tools (DOCK, FlexX, FRED, 
GLIDE, GOLD, SLIDE, SURFLEX, and QXP) for docking and virtual screening 
accuracy. Using the crystallographic structures of 100 small-molecular-weight 
ligands, the team found that molecular docking was capable of recovering 63% of 
cases at 1 Å r.m.s.d. threshold, with a maximum success rate of 90% at 2 Å r.m.s.d 
threshold.

Numerous methods have been developed for binding free energy estimations. 
These can be broadly classified into three groups: empirical scoring functions, 
knowledge-based potentials, and force field methods. Empirical-based potentials 
perform binding energy estimations by additive approximations of several energy 
terms such as van der Waals potential, electrostatic potential, hydrophobicity poten-
tial, among others [38]. The relationship between these terms and the binding affinity 
is obtained either by regression or machine-learning algorithms on a training dataset 
of receptor-ligand crystallographic structures with known binding affinity [39]. Tools 
that deploy empirical-based scoring functions include FlexX [29], SCORE [40], 
ICM [33], and VALIDATE [41]. Knowledge-based scoring functions, such as those 
implemented in Potentials of Mean Force (PMF) [42], DrugScore [43], and ASP 
[44], estimate binding free energies based on the frequencies of interatomic contacts. 
This approach is fast but unlike empirical scoring functions, it does not require bind-
ing affinity data for training [6]. Force field methods model free energies of binding 
by summing the strength of van der Waals and electrostatic interactions between all 
atoms of the two binding partners using established mathematical terms or high-level 
quantum mechanical calculations. This method had been implemented in 
AUTODOCK [45], GOLD [46], DOCK [31], and CHARMM [47].

1.5  ADME/Tox Assessment

Assessing small molecule compounds for their absorption, distribution, metabo-
lism, excretion, and toxicity (ADME/Tox) properties is important for early stage 
drug discovery. It has been estimated that 40–60% of drug candidates fail due to 
unsatisfactory ADME/Tox properties [48]. Before a compound can exert a pharma-
cological effect in tissues, it has to cross the gastrointestinal barrier, the blood–brain 
barrier, and the microcirculatory barrier to reach the blood stream. From there, the 
compound is transported to its effector site for distribution into tissues and organs, 
degraded by specialized enzymes, and finally excreted from the body. Furthermore, 
some compounds may undergo metabolic activation and cause adverse reactions or 
toxicity in humans [49]. Accordingly, rapid screening of ADME/Tox properties 
plays a key role in the initial selection of a drug candidate, and for further optimiza-
tion of potency and drug-like properties.

Many factors affect the membrane permeability of a compound, including com-
pound size, aqueous solubility, ionizability (pKa), and lipophilicity (log P). The 
polar surface area (PSA), defined as the sum of surface contributions of polar atoms 
in a compound, has been shown to correlate inversely with lipid penetration ability 
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[50]. Compounds with PSA values of ≤60 Ǻ2 can be completely absorbed by our 
bodies, while compounds with PSA >140 Ǻ2 are known to be poorly (<10%) 
absorbed. Poor absorption and permeation are also more common for drugs with 
molecular weight of <500 g/mol, C log P < 5, hydrogen bond donors <5, and hydro-
gen bond acceptors <10 [51]. These criteria constitute the Lipinski’s “rule of five” 
to evaluate and prioritize compounds for properties related to “drugability” [51]. 
Extensions to this rule were proposed by other researchers, including a more strin-
gent “rule of five” for compounds with molecular weight < 473 g/mol, C log P < 5, 
hydrogen bond donors <4, and hydrogen bond acceptors <7 [52]. A “rule of three” 
for lead-likeness was also defined by Congreve and coworkers [53], for compounds 
with molecular weight < 300 g/mol, hydrogen bond donors ≤3, and C log P ≤ 3. 
While these are useful rules of thumb for evaluating drug-likeness, it should be 
noted that about 68.7% of compounds in the Available Chemical Directory (ACD) 
Screening Database (2.4 million compounds) and 55% of compounds in ACD (240 
thousand compounds) do not violate the “rule of five” [54]. More complex compu-
tational and mathematical models have also been developed to assess ADME/Tox 
properties. These include methods based on genetic algorithms (GAs), ANNs, 
SVMs, and statistical models [54]. Collectively, these tools facilitate better under-
standing of the pharmacokinetics and pharmacodynamics of candidate compounds 
in the early stages of drug development.

 Conclusion

A large variety of tools and resources are now available for computer-aided drug 
design. CADD is now widely accepted as a viable alternative and complement to 
high-throughput screening. The choice of suitable software is dependent on the 
availability of data and resources and varies across different targets of interest. 
Here, we have provided an overview of existing methods and tools for the dis-
covery of new molecular entities. The review is by no means exhaustive, and 
more comprehensive surveys are available elsewhere [1, 4, 6, 10, 13, 28]. Over 
the past decade, much progress has been made in CADD. With the continuous 
developments in the fields of bioinformatics, high-throughput screening, chemi-
cal and structural biology, an increasing number of more sophisticated tools and 
methods can be expected in the future that can help realize the full potential of 
computer-aided discovery by design.
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2Advanced Drug Discovery 
for Alzheimer’s Disease: Challenges 
and Strategies

Rizwanul Haque and Aamir Nazir

2.1  An Introduction to Alzheimer’s Disease

The progressive loss of organization and function of neurons leading to the death of 
neurons collectively constitutes the Neurodegenerative Diseases (NDs). Age- 
associated NDs have been a cause of significant health burden because of lack of 
treatment. NDs pose a great challenge for the elderly population, healthcare provid-
ers and caregivers. These diseases result from progressive loss of structure and/or 
function of neurons. Neuronal death within specific areas of brain predominantly 
cerebral cortex, hippocampus, and spinal cord results in deficiency of key neu-
rotransmitters further affecting motor functions/movement (known as ataxia), and 
non-motor functions/mental functioning (known as dementias). Neurons in general 
don’t reproduce or substitute themselves, when they are damaged they cannot be 
replaced in abundance under normal circumstances though recent studies on neuro-
genesis provide some hope on neuronal recovery too. NDs are incurable and debili-
tating conditions that result in progressive degeneration and/or death of nerve cells. 
A striking number of more than 600 disorders have been reported that affect the 
nervous system. The most common disorders include Alzheimer’s disease (AD), 
Parkinson’s disease (PD), Huntington’s disease, Spinocerebellar ataxia, Prion dis-
ease, and Amyotrophic Lateral Sclerosis (ALS). The cause of each one being 
believed to be dependent on a number of factors, some most important wherein 
causes range from particularly genetic or environmental factors [1]. The most com-
mon among all NDs is AD with an annual death toll of more than 500,000 people 
[2]. According to the World Health Organization (WHO) Global Burden of Disease 
Study in 2012, AD and other dementias are the top fourth cause of death in high 
income countries after heart disease, stroke, and lung cancer [3]. A 2014 report 
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submitted by the US organization reported that more than 5.2 million Americans are 
currently living with the disease, which includes five million people above the age 
of 65 years (late-onset AD) and roughly 2 lakh individuals below 65 years of age 
(early-onset AD) [2], thus making AD the most expensive disease condition in the 
United States with an estimated $214 billion cost to the American Society. 
Worldwide, currently more than 25 million people are affected by dementia, most 
suffering from AD with five million new cases accruing up each year [4]. In Europe, 
the age-standardized prevalence in people more than 65 years of age is 6.4% for 
dementia and 4.4% for AD [5]. A new study predicts that the AD in the United 
States will get doubled by 2050 and the cost of caring will rise to $1.5 trillion per 
year.

AD has been named after a German physician Alois Alzheimer. On 3rd November 
1906, while presenting his findings at the “37th meeting of the Society of Southwest 
German Psychiatrists” in Tübingen Germany, Alois Alzheimer for the first time 
described the symptoms of progressive cognitive impairment, focal symptoms, hal-
lucinations, delusions, and psychosocial incompetence changes in a patient called 
Auguste D, a 51-year-old woman from Frankfurt hospital [6]. The disease was later 
named by a German psychiatrist Emil Kraepelin as “Alzheimer’s Disease.” AD is an 
age-related disorder which affects the population over 65 years of age (elderly popu-
lation) and is not to be confused with the “normal ageing” phenomenon. Clinically, 
AD is characterized by progressive and irreversible decline in memory and cognitive 
functions. In later stages, motor and sensory functions are compromised which leads 
to drastic personality changes like aggression, apathy, agitation, paranoia, insensitiv-
ity to others, lack of initiative, delusional thinking, loss of interest in activities they 
previously enjoyed, inability to make decisions, and finally the person is socially 
withdrawn. The cognitive defects are reflected neuropathologically by demise of spe-
cific neuronal populations, synaptic loss, and brain atrophy in specific brain areas 
[7–9] and most importantly by the presence of senile plaques (amyloid plaques) and 
neurofibrillary tangles (Tau protein) which are formed by improperly processed pro-
teins. These improperly processed proteins tend to form aggregates which are toxic 
to the neurons and ultimately result in their degeneration [10]. The diagnosis of AD 
can only be confirmed by autopsy after the death and in living patients it can be done 
on the basis of some cognitive tests [11]. Patients affected with AD tend to show 
cognitive decline which includes gradual memory loss, difficulty in performing daily 
tasks, declining physical coordination, lack of judgment making, personality changes, 
difficulty in learning, and loss of communication skills [12]. The disease eventually 
leaves its victims unable to care for themselves and in the final stages; victims are 
bedridden and normally die due to secondary infections like urinary tract infection, 
pneumonia, and/or bedsores. The molecular mechanism of the disease progression of 
AD has been a topic of debate for last several years, and there are two cardinal theo-
ries prevailing in the scientific community regarding mechanism of AD. Factors gov-
erning neuronal loss can be grouped into genetic, environmental, and endogenous 
ones. The main culprit is known to be the accumulation of abnormal extracellular 
protein plaques and neurofibrillary tangles of the microtubules formed by amyloid 
beta (Aβ) and tau protein, respectively. Aβ is a 40 or 42 amino acid peptide with 
approximate size of 4 kDa, derived from the precursor protein, namely amyloid 
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