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Optimizing the therapeutic ratio is critical in pediatric radiation oncology to effec-
tively treat benign and malignant diseases while simultaneously decreasing dose to 
normal structures to reduce the risk of acute and late effects. Being able to achieve 
therapeutic improvements in radiation therapy is reliant on accurate target volume 
definition to precisely delineate tumor and critical normal tissues. Accurate target 
volume delineation has become ever more important as advanced treatment tech-
nologies such as proton therapy and image-guided conformal therapies become 
standard therapeutic options.

It is necessary to understand the specific and unique clinical considerations for 
multiple pediatric tumors in order to design radiotherapy fields that neither over-
treat nor under-treat the disease entity. The clinical target volume (CTV) must be 
delineated on cross-sectional axial imaging in addition to normal tissues. With cer-
tain radiation treatment approaches such as proton therapy, the precise contouring 
of disease compared to normal structures is essential.

We hope that this text will serve as a comprehensive contouring guide for radia-
tion planning for pediatric diseases in the modern era. Each chapter illustrates dif-
ferent case scenarios to capture the spectrum and diversity that we experience in the 
pediatrics field. In this age of advanced technologies, we feel that a consistent 
approach to target delineation is a critical element to provide the optimum treatment 
for our patients.

Baltimore, MD, USA Stephanie A. Terezakis
Boston, MA, USA Shannon M. MacDonald

Preface
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1.1  Introduction

Recent developments in radiation and neuro-oncology provide the ability to deliver 
required radiation dose to target volumes for pediatric brain tumors while avoiding 
sensitive normal central nervous system (CNS) structures uninvolved by tumor. Many 
CNS target volumes are smaller than in previous years due to better understanding of 
areas at risk for recurrence or involvement and patterns of spread for a given diagno-
ses. Advances in neuroimaging and treatment planning software allow for better 
delineation of tumors and normal neuroanatomy. Utilization of these advances 
requires accurate delineation of avoidance structures. For optimal avoidance as well 
as accurate reporting of normal structure tolerance, it is of paramount importance to 
contour these structures properly. Neuroanatomy is complex and formal education in 
this area is not at present taught in radiation oncology training. This chapter is included 
to provide guidance for contouring of pediatric CNS structures.

Structures that will be covered in the chapter include the retinas, optic nerves, 
optic tracts, optic chiasm, lenses, hypothalamus, cochleae, brainstem (and its com-
ponents—midbrain, pons, and medulla), temporal lobes, and the hippocampi.

Dose constraint goals are reviewed and toxicities discussed, but we acknowledge 
that determination of dose to critical structures is highly dependent on tumor location, 
desired prescription dose to tumor, and the assessed risk-benefit ratio for a given child.

1.2  Visual System

There are several visual structures that may be at risk when delivering radiation for pedi-
atric brain tumors. When thinking about visual toxicity, it is important to consider the 
actual impact on vision, the patient’s visual status at the time of treatment, and competing 
risks of tumor progression in addition to dose constraints of these structures. For instance, 
injury to a lens may be surgically repaired. Injury to the optic nerve or retina will cause 
unilateral vision loss while injury to the chiasm could result in bilateral visual loss. The 
entire visual apparatus is connected in some way. We usually think of critical structures 
from anterior to posterior with the anterior being more sensitive in terms of dose.

1.2.1  Lens

The most anterior structure is the lens (Fig. 1.1). The lens is situated between the ante-
rior and the vitreous chambers of the eye with the iris just anterior and surrounding it. 
The lens is easily seen on CT scan.  The lens is very sensitive to the formation of cata-
racts. Cataracts develop after RT starting with posterior subcapsular opacifications as 
opposed to anterior opacifications, which are generally seen for cataracts that form as 
a result of aging. It may take years for cataracts to form following radiation therapy and 
usually many years to impact vision to the extent that surgical intervention is recom-
mended. This visual loss is considered correctable by surgery and though it is a com-
mon surgery, it may be more complex in patients that have had additional ocular 
problems, especially children that have undergone treatment for retinoblastoma or an 
eye tumor. These children should be seen by an experienced cataract surgeon. Cataracts 
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may develop at single doses as low as 2–3 Gy, and the rate is 80% for a single fraction 
of 10 Gy TBI but only 10% for this dose delivered at standard fractionation [1].

1.2.2  Retina

The typical retinal contour is seen in Figs. 1.1 and 1.2. Contours of the “retina” 
include the sclera and the choroid, as well as the retina, since the retina is too thin 
to contour independently.

Retinopathy is thought to occur at doses of 45 Gy and higher and is due to damage 
to or reorganizing of small vessels supplying the retina [1]. The appearance on exami-
nation is similar to diabetic retinopathy. If a portion of the retina is damaged, the field 
of vision affected corresponds to the area of the retina damaged. For example, supe-
rior retinopathy may affect the inferior visual field (i.e., walking down stairs may be 
difficult). Retinopathy of the macula or fovea (Fig. 1.1) will lead to central visual loss, 
which would have a greater effect on overall visual function. Though fovea size is 
relatively small compared to the rest of the retina, it is the only area of the retina where 
20/20 vision is attainable and critical for seeing fine detail and color. The fovea is 
employed for accurate vision in the direction where it is pointed. It comprises less 
than 1% of retinal size but takes up over 50% of the visual cortex in the brain.

1.2.3  Optic Nerves, Chiasm, and Optic Tracts

The optic nerves leave the posterior edge of the globe and pass obliquely to the optic 
canal. At the posterior opening of the optic canal, the internal carotid curves under 
the edge of the anterior clinoid process (Figs. 1.2 and 1.3, axial images). The optic 
nerves join the chiasm that is superior to the pituitary gland and anterior to the 
infundibular stalk (95% of cases).

Fig. 1.1 Axial slice from a planning CT. The lens is shown as well as the retina (RET) and its 
fovea (FOV). The retinal contour, more easily seen in the CT than the MR scan, includes the retina, 
the choroid, and the sclera. The retinal layer adjacent to the vitreous chamber is too thin to be 
contoured individually. The fovea (FOV) is indicated just lateral to the optic disk, the region where 
the optic nerve (OPT N) exits the globe

1 Central Nervous System Normal Structures
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Fig. 1.3 This more 
inferior axial CT slice 
shows the optic nerves 
(OPT N) extending through 
the optic canal medial to 
the anterior clinoid 
processes to join the 
chiasm. The optic tracts 
(OPT TR) extend 
posteriorly from the chiasm 
to the lateral geniculate 
nucleus of the thalamus 
(present in the MR 
Fig. 1.4e at the terminal 
end of the optic tracts). The 
hypothalamus (HYPOTH) 
is wider at this level than in 
Fig. 1.2. The third ventricle 
is located in the center of 
the hypothalamus

Fig. 1.2 This more inferior axial slice shows the retinas (RET) and the optic nerves (OPT N). The 
optic nerves are not connected to the eyes in this section and approach the sphenoid bone posterior 
to the orbit. Because of the angle of the CT scan, the optic nerves are also not connected to the 
chiasm in this section. The optic tracts (OPT TR) extend posteriorly from the chiasm. The hypo-
thalamus (HYPOTH) is located on either side of the third ventricle as seen also in Fig. 1.4c. The 
anterior temporal lobes are shown in the most lateral portion of the brain (cyan)

B. Fullerton and S. M. MacDonald
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We define the chiasm as the region that is no longer carrying only monocular 
fibers (Figs. 1.2 and 1.3); it includes the fibers crossing from the two eyes. The tem-
poral retinal field fibers from each eye continue through the chiasm to the optic tract 
of the same side, while the nasal retinal field fibers cross in the chiasm to the oppo-
site optic tract.

The optic tracts can be in danger of receiving a high dose of radiation, so they are 
sometimes contoured as well. They pass posteriorly from the chiasm lateral to the 
hypothalamus and encircle the anterior midbrain (Fig. 1.3), terminating in the lat-
eral geniculate body of the thalamus (Fig. 1.4e). We often contour the optic tracts 
when vision has already been lost in one eye, in order to spare the remaining visual 
pathway from a high dose as much as possible.

1.2.4  Visual Impairment

Visual impairment from radiation-induced optic neuropathy can manifest as visual 
acuity loss or visual field loss depending on the area of the optic pathway affected. 
Many series report maximum dose, but it is likely that a dose/volume relationship 
exists, and this may be more meaningful [2, 3]. Though some series report a higher 
tolerance for the optic chiasm than the optic nerves, others report similar dose con-
straints. It is also critical to keep in mind that radiation-induced optic neuropathy of 
one nerve will lead to monocular vision loss, while injury to the chiasm may result 
in a range from “tunnel vision” to complete vision loss in both eyes. With standard 
fractionation, an attempt to keep the dose below 50.4 Gy at 1.8 Gy per fraction will 
minimize risk of injury, but radiation-induced optic injury is unusual for a maxi-
mum dose kept below 54–55 Gy. There is less data available for the dose tolerated 
by the optic tracts. With advanced imaging, the tracts can be contoured, and future 
research may inform us better of the tolerance of these structures. Damage to the 
optic tract would result in a field cut for the responsible location.

1.3  Hypothalamus/Pituitary Gland

The pituitary gland is a slightly hypodense structure compared to surrounding struc-
tures on CT scan. It is centered in the sella and bordered by the anterior and poste-
rior clinoid processes anteriorly and posteriorly, respectively, and the cavernous 
sinuses laterally. The infundibular (pituitary) stalk connects the pituitary to the 
hypothalamus posterior to the chiasm (Fig. 1.4g–j). The most inferior part of the 
hypothalamus includes the mammillary bodies (Fig.  1.4f). The hypothalamus is 
situated on either side of the third ventricle (Figs. 1.2, 1.3, and 1.4c–f) and widens 
superiorly medial to the optic tracts. Ascending superiorly, the hypothalamus nar-
rows and ends at the level of the anterior commissure and massa intermedia con-
necting the thalamus across the midline (Fig. 1.4c). The usual dividing line between 
the infundibular stalk and the inferior-most part of the hypothalamus is the presence 
of the third ventricle (Fig. 1.4g).

1 Central Nervous System Normal Structures
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Fig. 1.4 (a–d) This MR axial series of images was included because many of the anatomical struc-
tures are not easily visible in the CT scans. This group of images extends from the superior part of the 
temporal lobe (a) to the inferior part of the temporal lobe where it intersects with the preoccipital 
notch (k). The brain in the figure is slightly asymmetrical, so that the temporal lobe on the (patient’s) 
right is slightly more superior than on the left. (a) The temporal lobe arrow on the right points to the 
transverse gyri of Heschl. The Sylvian fissure (SYLVIAN F) forms the medial boundary of the tem-
poral lobe. Panel (b) is at the mid-level of the temporal lobe, and the fornix bundle (FX) from the 
hippocampus is present at the edge of the lateral ventricle. Panel (c) shows the temporal lobe and the 
transition between the hippocampus and its fornix fibers. The most superior part of the hypothalamus 
(HYPOTH) can be seen on either side of the third ventricle. (d) The temporal lobes are present as is 
the most superior part of the hippocampus before the fornix fiber bundle continues rostrally. The 
midportion of the hypothalamus is present; the brainstem (BS) transitions into the thalamus at this 
level from the midbrain. (e) The temporal lobes are wider at this more inferior level and the hippo-
campi (HIPP) are increasing in size. The temporal lobe label on the left marks the boundary between 
the temporal lobe and the frontal lobe. The optic tracts (OPT TR) encircle the brainstem (upper 
midbrain/thalamic) level. The hypothalamus (HYPOTH) is located between the two optic tracts and 
superior to the interpeduncular fossa. (f) The hippocampi are within the main part of the lateral ven-
tricle on both sides and the anterior-medial bulge of the parahippocampal gyrus (PARA GY) is pres-
ent on both sides. The brainstem (BS) is at the level of the middle of the midbrain. The mammillary 
bodies are present within the hypothalamus (HYPOTH) and in the space of the interpeduncular fossa. 
The optic chiasm is present anterior to the hypothalamus.

a b

c d

e f
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The hypothalamic-pituitary axis is responsible for hormone production. The 
hypothalamus secretes stimulatory and inhibitory factors signaling the anterior pitu-
itary and synthesizes oxytocin and vasopressin (ADH) stored in the posterior pitu-
itary. Hormones that are produced in the anterior pituitary include growth hormone, 
gonadotropins, prolactin, cortisol, and thyroid hormone. While radiation can cause 

g h

i

k

j

 (g) The hippocampi are located more anteriorly as the axial sections move inferiorly. The parahip-
pocampal gyri are still present at this level. The brainstem is at the midbrain level. A short segment 
of optic nerves are joining the chiasm, and the hypothalamus is continuing from the pituitary stalk 
inferiorly. (h) At this more inferior level, the hippocampi are present, surrounded laterally by the 
lateral ventricle (LAT VENT). Longer segments of optic nerves are joining the chiasm, and the pitu-
itary stalk is just posterior to the chiasm. The MR slice is only showing a small partial volume of the 
chiasm. The brainstem is still at the midbrain level. (i) The hippocampi (HIPP) are near their inferior 
limit in the temporal lobes. The brainstem is now at the pontine level. (j) The hippocampus is still 
present on the right side, but not the left. The brainstem is at the level of the pons. The pituitary (PIT) 
can now be seen in the pituitary fossa. (k) At the inferior level of the temporal lobe on the left, the 
preoccipital notch (PREOCC NOT) divides the temporal lobe from the visual association cortex 
posteriorly. The brainstem is at the level of the pons

1 Central Nervous System Normal Structures
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damage to both structures, the hypothalamus is more sensitive to radiation. Radiation 
impacts hormone production and is considered to be age and dose dependent [4]. 
Growth hormone deficiency is most common after radiation. The risk is 50% at 
5 years for a dose just over 16 Gy [5]. Precocious puberty and thyroid deficiency 
may be seen at higher doses. Cortisol deficiency is uncommon but may be seen after 
relatively high doses of radiation. Diabetes insipidus is extremely rare after radia-
tion and is usually attributed to mass effect of tumor or surgery.

1.4  Temporal Lobe

The inferior part of the temporal lobe sits in the middle cranial fossa and is easy to 
identify in axial CT scans by the bony margins. In the inferior region posteriorly, the 
preoccipital notch usually marks the division between the temporal lobe and the 
visual association cortex.

The superior surface of the temporal lobe in the horizontal plane contains 
obliquely oriented Heschl’s gyri (primary auditory cortex); the Sylvian fissure 
marks the medial boundary.

Images in Fig. 1.4 (a–k) show the extent of the temporal lobe from the superior 
to inferior extent.

1.4.1  Hippocampus

The hippocampus is considered to be an important part of the temporal lobe. It is 
important for learning and memory and has the capacity for neurogenesis, espe-
cially in younger individuals. There is usually an attempt to limit radiation doses to 
the hippocampus in the pediatric patients in order not to damage the cellular layers 
responsible for neurogenesis [6]. The bulk of the hippocampus is located in the 
inferior temporal lobe along the edge of the lateral ventricle. When contouring 
the hippocampus in CT images, the lateral ventricle is often a good landmark, since 
the hippocampus itself may not be well defined.

Figure 1.4 shows the temporal lobe levels with the hippocampus present from 
superior to inferior extent. There is a fiber tract (fornix) that leaves the main part of 
the hippocampus to course superiorly and posteriorly, running under the corpus cal-
losum and then continuing anteriorly through the hypothalamus to terminate in the 
mammillary bodies. The shape of the hippocampus varies somewhat with slightly 
different angles of the axial plane among individuals.

The temporal lobes and hippocampi are areas of the brain that are important for 
memory and learning. Though all areas of the brain are considered to be critical and 
complex neural connections and functions are not completely understood, these 
areas are proving to be more critical for neurodevelopment. Some tumor locations 
may make it difficult to avoid these regions of the brain, but it is important to be 
mindful of their anatomical location and strive to minimize dose to these critical 
regions when feasible.

B. Fullerton and S. M. MacDonald
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1.5  Brainstem

The brainstem is the region between the thalamus and the spinal cord where the 
cranial nerves connect to provide motor and sensory innervation to the head and 
neck. There are also major fiber pathways that pass through to connect the spinal 
cord to the thalamic and cortical regions. The parts of the brainstem are, from rostral 
to caudal, the midbrain, the pons, and the medulla. The medulla transitions to the 
spinal cord usually just below the foramen magnum of the skull.

Images showing the midbrain are in Fig.  1.4e–h, the pons in Fig.  1.4i–k and 
Fig. 1.5a, and the medulla in Fig. 1.5b–d.

The most ventral portion of the midbrain contains the cerebral peduncles, with 
motor fiber tracts including the corticospinal tract that connect the spinal cord, 
medulla, and pons with the cortical regions. The ventral brainstem region can 
receive a high dose when the treatment is centered in the sellar area potentially lead-
ing to motor signs and symptoms.

Though rare, radiation injury or brainstem necrosis is one of the most feared 
complications for pediatric brain tumor patients. The brainstem tolerance is consid-
ered by most to be 54 Gy, and every effort should be made to minimize the volume 

a b

c d

Fig. 1.5 Caudal axial brainstem images. The section in panel (a) is at the most caudal level of the 
pons. The middle cerebellar peduncle (MCbP) forms a large fiber bundle connecting the brainstem 
to the cerebellum. The fourth ventricle passes over the dorsal surface of the brainstem in panels (a, 
b) and transitions to the foramen of Monroe in panel (c) at the caudal end of the medulla (MED). 
Panel (d) is the most caudal level through the medulla

1 Central Nervous System Normal Structures
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of brainstem receiving this dose. Tumor volumes in close proximity requiring higher 
doses for local control may make this dose limitation challenging to achieve. It is 
important to discuss this complication with families so they understand the risk and 
manifestations of these complications. Although very uncommon, this is a poten-
tially debilitating and life-threatening complication of radiation [7–10].

1.6  Temporal Bone: Cochleas

It is critical to restrict the dose to the cochleas in the temporal bone to avoid hearing 
loss.

The cochlea can be seen most easily in a CT scan with a bone-window setting. 
Figure 1.6 shows a composite of images of the cochlea in the typical plane. The duct 

a b

c d

Fig. 1.6 Temporal bone and cochlea. Panel (a) shows the overview of the temporal bone in a 
bone-window axial CT image. The external auditory canal (EAC) is on the left of the image and 
the internal auditory canal (IAC) is on the right, adjacent to the brainstem (BS). This section is at 
the level of the basal turn of the cochlea as is panel (d). Panel (b) is the most superior of the three 
following levels and is at a level that cuts through the apical turn of the cochlea. The middle ear is 
seen to the left with the superior portions of the malleus and incus present. Panel (c) cuts through 
the middle of the IAC, and the mid-modiolar section of the cochlea is contoured. The lowest level, 
panel (d), cuts through the basal turn of the cochlea

B. Fullerton and S. M. MacDonald
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of the cochlea is coiled and sits in the temporal bone oriented with the small apical 
turn pointed anteriorly and laterally (Fig. 1.6b). The widest part of the cochlea (the 
basal turn) where the eighth nerve enters is located more posteriorly and medially, 
closest to the internal acoustic canal. In the axial sections, the apical turn of the 
cochlea is more superior (Fig. 1.6b) than is the basal turn (Fig. 1.6d). Functionally, 
the basal cochlea is the most important region, since more high-frequency process-
ing takes place in this site that is important for speech.

1.6.1  Ototoxicity

Radiation-induced ototoxicity is a well-known side effect of radiation therapy. In 
adults, hearing loss is uncommon under 45–50 Gy. However, in children hearing 
loss has been reported with mean doses as low as 35 Gy at a median follow-up of 
5 years [11]. It is possible that with follow-up of longer than 5 years, this thresh-
old may be lower. Platinum-based chemotherapy is known to increase the risk of 
hearing loss, and it is best to be cautious with radiation doses in patients that have 
baseline hearing loss or additional risk factors for hearing loss. Hearing loss is 
attributed to damage to sensory cells in cochlea, particularly organ of Corti and 
basal area.
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2.1  Introduction

There are large number of pediatric tumors affecting the chest, abdomen, pelvis, and 
extremities. Often they involve a broad anatomical area with multiple vital organs in 
the tumor vicinity and create a major hurdle for a local control. When targeted with 
radiation therapy, safe dose delivery to the tumor target without damaging organs at 
risk can be very challenging especially when using higher doses in young children. 
There are multiple reports on functional impairments from radiation exposure result-
ing in acute and late toxicities. Chronic impairment of the heart, lungs, kidneys, liver, 
gastrointestinal tract, bladder, reproductive organs, etc. can result in not only poor 
quality of life but even contribute to the mortality of children undergoing cancer 
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